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Abstract

Model-checking techniques are limited in the number
of states that can be handled, even with new optimiza-
tions to increase capacity. To be able to apply these
techniques on very large code base such as the Linux
Kernel, we propose to slice the problem into parts that
are manageable for model-checking. A first step toward
this goal is to study the current topology of internal de-
pendencies in the kernel.

1 Introduction

As a general goal of “applying model-checking tech-
niques to the Linux Kernel”, we studied the literature
around this topic in [9]. One major conclusion is that
despite the use of model-checking under the hood in
some tools (such as Coccinelle [4]), direct application
of existing model-checking tools and algorithms seems
impossible because the whole kernel is too big, i.e. con-
tains too much state.

To circumvent this limitation, we propose to work at
the source code level instead of working on the model-
checking algorithm itself. By breaking down the code
base into smaller chunks, the number of states that must
be analyzed is reduced. Before working on the slicing
itself, we propose to study the current internal depen-
dency topology of the kernel.

In the remainder of this paper, we will first make a brief
presentation in section 2 of the topic discussed in [9];
then in section 3 we describe how we built the graph
representing the kernel. Section 4 will focused on the
analysis of what is inside the graph and what it means
for us, before we conclude.

2 Model-Checking and Kernel

We are interested in answering the question: “is it possi-
ble to directly apply model-checking to the Linux Ker-
nel code base”. A literature survey for kernel-related
verification, including but not limited to Linux, that
might be linked to model-checking, revealed at least two
major projects:

• SLAM, initiated by Microsoft

• Coccinelle

A third major project to be cited is the effort conducted
by Engler et al.

2.1 A first step: compiler extensions to check rules

Using compiler extensions to check system rules has
been the first major attempt to check system code. This
has been performed as a fork of the GCC compiler with
a matching language called METAL, which allows defi-
nition of a state machine and patterns to match in source
code. Thanks to this tool, called xgcc [6], a first major
empirical study of errors in kernel source code has been
performed [5] against Linux, OpenBSD and the FLASH
embedded system. Results showed that device drivers
were the main hot point in term of bugs.

Those results were corroborated ten years later by the
Coccinelle team as part of a similar updated survey [12]
using their own tools. Newer kernels showed a real im-
provement since the first study.
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2.2 Verification at Microsoft: SLAM

With the introduction of boolean programs [2], work
started on verification of code at Microsoft. The goal
was to verify correct usage of interfaces, i.e. APIs [3].
Boolean programs are an abstraction of source code
where all variables are substituted with booleans: this
allows for state evaluation to take place. This is code
using a CEGAR (Counter-Example Guided Abstraction
Refinement) loop, allowing to determine feasible paths
in the source code. It allows, in fine, to find code-paths
that are not good and hence bugs.

Results are good enough (in term of bug finding and
false positive) that the tool has been included in the Win-
dows 7 DDK as the Static Driver Verifier [1].

2.3 Coccinelle, tracking Linux bugs

The Coccinelle tool was designed to apply massive
changes to APIs, defined as “collateral evolutions”
[8, 10] and has been rapidly used to hunt bugs in the
code. In order to apply API evolutions, the tool must
work at a higher level than only source code: it is a “se-
mantic patch” tool, i.e. instead of replacing a line by
another, the code is manipulated at the level of adding
or removing a parameter to a function. This is internally
done by transforming the patch into a temporal logic for-
mula, which is matched against the source code: model-
checking.

Once the tool could match source code, its developers
thought of using it to find bugs: the Semantic Patch Lan-
guage is used to describe what to change and how; with
a couple of new operators introduced, it can be used to
find bugs. So naturally Coccinelle has been used to track
them. It is now being used for discovering protocols, i.e.
how an API should be used [7], and to track bug life cy-
cles [11].

3 Kernel graph

The goal is to be able to study dependencies between
“modules” in the source code of the kernel. We consider
those modules to be the .o files, produced during the
compilation. This assumption is done because:

• it is easy to extract symbols usages from object files
using elf parsing (readelf for example)

• it can be matched to C source files

The directed graph is then defined as:

• Nodes are the objects files that have been analyzed

• Edges are symbols used/exported by object files

• Edges are directed.

Edge directions are defined with the source being the ob-
ject file (A) that is uses a symbol and the target being the
object file (B) that exports this symbol: this symbolize a
dependency: A→ B.

The analyzed object files are limited to the architecture
that the code has been built for. To date, all the process-
ing has only been done on an AMD64 system. Also,
since we limit ourselves to build the kernel using the
defconfig and allyesconfig configurations, we are
sensitive to changes of those configurations. The first
one will only build with a subset of modules that fits
for the system, while the second will enable much more
code, nearly everything.

Code used to extract all the information is avail-
able at git://git.mandriva.com/users/alissy/
callgraph.git, and is written in Python using
SQLAlchemy, PyLibELF and Tulip modules.

4 Graph analysis

In this section we explain what is measured on the
graph, and why. Then we present, explain and try to
interpret those results.

Linux versions considered were 3.0 through 3.4, cover-
ing a time span of nearly one year.1

4.1 Measures

We will look at occurrence of edges in the graph: they
are labeled with the symbols corresponding to the rela-
tion, so it allows us to see how much a symbol is used.
From this we can derive which symbols are the most
important in term of usage.

13.0 released July 22nd 2011; while 3.4 released May 20th 2012.

git://git.mandriva.com/users/alissy/callgraph.git
git://git.mandriva.com/users/alissy/callgraph.git
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We will see how dense the graph is. Graph density is
defined as follows, for a given graph G = (E,N):

dG =
|E|

|N|× (|N|−1)

We will check the average path length inside the graph,
that is how “far” apart two nodes are. It is computed
directly thanks to the Tulip2 library, which states:

Returns the average path length of a graph,
that is the sum of the shortest distances for all
pair of distinct nodes in that graph divided by
the number of those pairs. For a pair of non
connected nodes, the shorted distance is set to
0.

We will have a look at the degrees of the graph, in and
out. As a reminder, in-degree of a node is the number
of exported symbols used, and out-degree is the number
of imported used ones. By used, it means we can have
duplicates: a symbol is used by several other ones.

To have a better view of the dependency, we propose
to produce “heatmap” of the kernel dependency, with
subdirectory granularity, available in section 4.7.

4.2 Graph size

Before we present the specific measures, we can already
have a look at the general graph size: number of nodes,
number of edges. The raw values are available in Fig-
ure 1. Variations are presented in Figure 2 and are com-
puted using the previous one, considering the first ver-
sion as a basis. Each version is compared to its first
ancestor, e.g. v3.1 against v3.0. In the second table,
positive values indicate increases, while negative values
indicate decreases.

We also measured the size of the code base using SLOC-
Count (v2.26) to compare the size evolution of the graph
and the related code base. This information is presented
in Figure 3. The evolution is computed the same way
than previously explained.

A first observation we can make is that, looking at Fig-
ures 3 and 2, while the size of the code base evolution
is similar between defconfig and allyesconfig, and
raw numbers shows that the difference is very small, it
seems not to be correlated with the evolution of nodes
nor edges.

2http://tulip.labri.fr

Nodes
Version defconfig allyesconfig

v3.0 1836 9593
v3.1 1842 9764
v3.2 1861 9897
v3.3 1874 10044
v3.4 1871 10172

Edges
Version defconfig allyesconfig

v3.0 51700 321463
v3.1 52390 332865
v3.2 53005 337717
v3.3 53418 344314
v3.4 53646 349271

Figure 1: Number of nodes and edges

Nodes
Version defconfig allyesconfig

v3.0 - -
v3.1 +0.33% +1.78%
v3.2 +1.03% +1.36%
v3.3 +0.70% +1.49%
v3.4 −0.16% +1.27%

Edges
Version defconfig allyesconfig

v3.0 - -
v3.1 +1.33% +3.55%
v3.2 +1.17% +1.46%
v3.3 +0.78% +1.95%
v3.4 +0.43% +1.44%

Figure 2: Variations in nodes and edges

SLOCCount
Version defconfig allyesconfig

v3.0 9614824 9612505
v3.1 9704743 9702470
v3.2 9862036 9860466
v3.3 9977312 9976172
v3.4 10120350 10119606

Evolution
Version defconfig allyesconfig

v3.0 - -
v3.1 +0.94% +0.94%
v3.2 +1.62% +1.63%
v3.3 +1.17% +1.17%
v3.4 +1.43% +1.44%

Figure 3: Code base size evolution

http://tulip.labri.fr
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4.3 Measure: Symbols occurrences

Symbols occurrences are computed simply by counting
how many times a symbol is used, i.e. how many edges
with this symbol exists in the graph. Raw values for ker-
nel v3.0 are available in Figure 4; values for other ver-
sions (v3.1 to v3.4) are not provided but they are close.
The table is limited to top 10. In the most used edges,
throughout the versions, we can derive three categories:

• String manipulations, with printk() being one of
the most used symbols

• Memory management, for example functions
kfree(), kmalloc_caches(), kmem_cache_
alloc_trace() and __kmalloc()

• Locking primitives case, including mutex_lock()
(in the defconfig), mutex_lock_nested() (in
the allyesconfig) and mutex_unlock()

Looking at the 50 most used symbols, there is not
much change in the categories involved: strings see
more symbols used (sprintf(), str*()); memory
management sees its space extended with for exam-
ple memset(), memcpy(), _copy_from_user() and
_copy_to_user(); locking primitives are also in the
top 50.

Extending our view from top 10 to the top 50, how-
ever, shows a difference when looking at the results
on allyesconfig: strings functions are less present
in the hall of fame, and driver-related symbols appear:
drv_get_drvdata(), drv_set_drvdata(). Also,
workqueues symbols (especially __init_work()) ap-
pear in the top 50 when looking at allyesconfig but
not in defconfig.

4.4 Measure: Graph density

The raw values are available in Figures 5 and 6.

Figure 5 shows that the density for allyesconfig is
slightly lower than that of defconfig, which is not a
surprise considering the definition of both. A fact that
is not that obvious, however, is that in defconfig, on
the set of versions studied, density is quite stable; while
in allyesconfig we can see that it is constantly drop-
ping, even though the decrease is slow.

Symbol Occurrences
defconfig

_raw_spin_lock 782
_cond_resched 806

__kmalloc 846
current_task 864
mutex_lock 912

mutex_unlock 936
kmem_cache_alloc_trace 1254

kmalloc_caches 1270
printk 1658
kfree 1706
allyesconfig

mutex_lock_nested 4614
mutex_unlock 4898

__kmalloc 5156
__stack_chk_fail 6258

kmem_cache_alloc_trace 6922
kmalloc_caches 6950

kfree 10152
printk 11336

__gcov_init 19014
__gcov_merge_add 19014

Figure 4: Symbols occurrences in the graph, kernel v3.0

Density
Version defconfig allyesconfig

v3.0 0.015346 0.003494
v3.1 0.015449 0.003492
v3.2 0.015313 0.003448
v3.3 0.015219 0.003413
v3.4 0.015333 0.003376

Figure 5: Graph density

To have a better understanding we looked more closely
at the density inside kernel v3.0. For each subdirectory
containing source code, we compare density between
defconfig and allyesconfig; the values are avail-
able in Figure 6. Some directories are highly impacted:
crypto, drivers, fs, net, security, sound while
some other are not, or only slightly: arch, block, init,
ipc, kernel, lib, mm.

4.5 Measure: Average path length

The raw values are available in Figure 7. A more de-
tailed per-subdirectory overview on kernel v3.0 to v3.4
is available in Figure 8 for the defconfig build and in
Figure 9 for the allyesconfig build.

In Figure 7, we observe that in both defconfig and
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Linux v3.0 Density
Subdir defconfig allyesconfig

arch 0.039320 0.035418
block 0.268398 0.281667

crypto 0.241935 0.073537
drivers 0.021583 0.002376

fs 0.063002 0.018673
init 0.291667 0.291667
ipc 0.712121 0.719697

kernel 0.122087 0.126854
lib 0.019572 0.016000

mm 0.309949 0.299454
net 0.060322 0.015070

security 0.288762 0.103541
sound 0.173263 0.024607

Figure 6: Graph density per subdirectory, v3.0

Average Path Length
Version defconfig allyesconfig

v3.0 2.410770 2.013618
v3.1 2.413076 2.013085
v3.2 2.415017 2.013867
v3.3 2.417895 2.014709
v3.4 2.429603 2.014612

Figure 7: Graph average path length

allyesconfig the average path length slowly in-
creases, at least between versions 3.0 and 3.4; more-
over, there is an order of magnitude of difference in the
increase between both build configurations: the incre-
ment for defconfig is around 0.002 (although going
from 3.3 to 3.4 shows an increment of 0.012), while
in allyesconfig it is around 0.0006 with two majors
points: going from 3.0 to 3.1, we have a decrease of
about 0.0005 and from 3.3 to 3.4 it also decreases but
only 0.00009.

Since the major difference between both consists of
more drivers (not only the drivers subdirectory), it is
trivial to assume that the reason is inside those. We pro-
pose to have a closer look at this in the table available
in Figure 9, in Section 4.5.1. To have a better under-
standing of the “big” increase between 3.3 and 3.4 in
defconfig, we will have a look at the details in Fig-
ure 8 in Section 4.5.2.

4.5.1 Detailed Average Path Length, kernel 3.0 to
3.4, defconfig

In Figure 8, we can notice:

• The arch subdirectory is nearly constantly de-
creasing, apart from the 3.3 to 3.4 evolution which
shows a slight increase.

• The block subdirectory shows a constant average
path length, with a step between 3.2 and 3.3, going
from 1.80 to 2.17, before and after it is strictly the
same values.

• The crypto and drivers subdirectories are
evolving together, especially with 3.2 showing a
light decrease on both, while they increase the rest
of the time.

• For fs we can observe a constant decrease, al-
though kernel 3.4 shows a noticeable increase.
This is probably to be linked with the number of
commits concerning cifs (54), xfs (57), ext4
(59), nfsd (61), proc (64), btrfs (118), and nfs
(181).

• While init is slowly increasing, ipc and mm are
much more stable.

• The lib subdirectory shows a decrease, dropping
from 1.15 to 0.96.

• Security-related subdirectory, security, is hav-
ing a rough time, alternating between increase, de-
crease and stability (3.2 and 3.4 shows the same
values

• The net subdirectory also shows an alternating be-
havior.

• Main part of the kernel, in the kernel subdirec-
tory, is decreasing in a quite stable way, dropping
from 2.0607 to 2.0417 over the studied versions.

• The sound part is also slowly decreasing over ver-
sions.

So, generally speaking, some parts of the kernel are
“shrinking”, i.e. each sub-part is getting closer to its
neighbors: this is when average path length decreases.
Some other parts are in expansion, with a good example
being the drivers part. Finally, the global increase be-
tween 3.3 and 3.4 observed in the previous table can be
explained by the changes in crypto, drivers, fs and
net.
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Average Path Length – defconfig
Subdir v3.0 v3.1 v3.2 v3.3 v3.4

arch 2.140192 2.132726 2.118681 2.090058 2.096498
block 1.809524 1.809524 1.809524 2.169355 2.169355

crypto 1.790323 1.817204 1.802151 1.881048 1.989919
drivers 2.910024 2.911436 2.897755 2.919029 3.008717

fs 2.570742 2.532482 2.525733 2.491692 2.680926
init 1.805556 1.833333 1.833333 1.944444 1.944444
ipc 1.363636 1.348485 1.348485 1.348485 1.348485

kernel 2.060689 2.067626 2.059235 2.049458 2.041655
lib 1.155375 1.140758 1.125184 1.002295 0.964706

mm 1.914116 1.914116 1.917551 1.911837 1.921633
net 2.432165 2.359474 2.475096 2.350066 2.490345

security 2.613087 2.563300 2.832659 2.834008 2.832659
sound 2.191919 2.191287 2.181980 2.181420 2.181420

Figure 8: Graph average path length per subdirectories,
v3.0 to v3.4, defconfig

4.5.2 Detailed Average Path Length, kernel 3.0 to
3.4, allyesconfig

Figure 9, shows that the behavior for arch is not ex-
actly the same as in defconfig build configuration.
crypto increases slightly. Meanwhile drivers starts
higher than in defconfig, increases slightly in 3.1,
and then decreases in v3.3 to finish at a similar level
than in defconfig. The fs subdirectory, however,
shows an inverse behavior in allyesconfig than in
defconfig, with higher average path length, increas-
ing from roughly 2.5 to 3.0.

The init directory remains stable, with similar values
than in defconfig configuration. Similarly ipc re-
mains unchanged, as does kernel: the values are nearly
constant along versions for allyesconfig, and shows
a light difference (1.91 versus 2.05) from defconfig.
The lib subdirectory also shows an inverse behavior in
allyesconfig. The mm subdirectory shows a slight in-
crease, while in defconfig there was a slight decrease.

The alternating behavior observed for net is con-
firmed with values ranging from 2.83 to 2.85. In
allyesconfig, the security subdirectory shows a
constant decrease and an important delta, ranging from
3.21 to 3.17 while it was between 2.56 and 2.83
for defconfig. Finally, the sound subdirectory is
quite stable around 2.53 with a light decrease at 2.49
for kernel v3.1, exposing a similar behavior than in
defconfig build configuration, the only difference be-
ing the values: around 2.18.

Major differences are fs, security, sound and lib.
One could have expected that drivers showed a much

Average Path Length – allyesconfig
Subdir v3.0 v3.1 v3.2 v3.3 v3.4

arch 2.079778 2.073589 1.959125 1.969219 2.192387
block 1.930000 1.907692 1.907692 2.278049 2.278049

crypto 1.897335 1.897335 1.921848 1.906866 1.920599
drivers 3.005424 3.011469 3.028173 3.009538 3.000608

fs 3.037271 3.044064 3.048455 3.016527 3.007562
init 1.861111 1.861111 1.861111 1.861111 1.861111
ipc 1.363636 1.348485 1.348485 1.348485 1.348485

kernel 1.915090 1.914885 1.914908 1.914107 1.914962
lib 1.026194 0.956759 0.953852 1.248667 1.254550

mm 1.934973 1.938251 1.942359 1.958333 1.960813
net 2.855261 2.843975 2.854679 2.840436 2.836698

security 3.212210 3.227209 3.187363 3.187960 3.177200
sound 2.546933 2.495413 2.533996 2.530829 2.530232

Figure 9: Graph average path length per subdirectories,
v3.0 to v3.4, allyesconfig

more bigger difference.

4.6 Measure: Degrees

The raw values, from an aggregated subdirectory point
of view are available in Figure 10 for kernel v3.0 and 11
for kernel v3.4. Those values are another point of view
of the heatmap available, for example, in Figure 12. As
a reminder, in-degree of a node in the graph we use maps
to exported symbols, i.e. they are used by other nodes.

A first look at values shows that:

• Between successive versions of the kernel, there is
an increase in degrees, both in and out. This is con-
sistent with the expansion we already exposed.

• The top three consuming subdirectories are
drivers, net and fs, in that order for defconfig
and drivers, fs and net for allyesconfig.

• The top five consumed subdirectories are kernel,
drivers, net, fs and mm in defconfig. The
allyesconfig mode shows the same results,
apart from mm being replaced by lib.

Those results can be generalized to versions from 3.0 to
3.4, even though we can notice a decrease in out-degree
for kernel 3.4 in defconfig build configuration for the
arch subdirectory. A closer look at this specific subdi-
rectory shows that:

• In-degree is constantly growing, meaning more and
more symbols exported.
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Linux v3.0 Degrees in
Subdir defconfig allyesconfig

arch 4540 16112
block 541 1621

crypto 258 907
drivers 8803 87986

fs 6097 28262
init 85 135
ipc 103 104

kernel 12876 92789
lib 4006 26397

mm 5418 24879
net 6504 29760

security 721 1403
sound 1681 11054

Degrees out
Subdir defconfig allyesconfig

arch 3489 6831
block 602 906

crypto 497 1322
drivers 17081 191946

fs 7751 42208
init 316 357
ipc 354 431

kernel 4298 6904
lib 396 1001

mm 1721 2798
net 10668 37958

security 1252 3176
sound 3155 25304

Figure 10: Graph degrees per subdirectory, v3.0

• Out-degree is increasing-decreasing: 3489 for
v3.0, 3421 for v3.1, 3608 for v3.2, 3343 for v3.3
and finally 3421 for v3.4.

4.7 Measure: Heatmaps

Heatmaps are generated from the previously presented
dependency graph. It allows to more easily visualize
how things are organized:

• First, we merge together nodes at a defined depth
(in term of subdirectories), while keeping edges
as they were originally: hence, we get the same
dependencies but with a bigger granularity, more
human-readable

• Then, we process all the newly-created nodes, and
we count the number of edges between each pairs
of nodes

Linux v3.4 Degrees in
Subdir defconfig allyesconfig

arch 4983 19822
block 633 1816

crypto 258 1087
drivers 9106 94828

fs 6224 30152
init 85 138
ipc 105 106

kernel 13336 101674
lib 4010 29268

mm 5551 25978
net 6704 31429

security 747 1580
sound 1863 11337

Degrees out
Subdir defconfig allyesconfig

arch 3421 7594
block 733 1192

crypto 515 1382
drivers 17696 207607

fs 8080 46375
init 325 374
ipc 360 464

kernel 4599 7767
lib 399 1149

mm 1776 3105
net 10960 41552

security 1271 3888
sound 3430 26482

Figure 11: Graph degrees per subdirectory, v3.4

• Finally, to be able to compare between versions of
the kernel, we normalize things

A first look at two heatmaps, Figures 12 and 13 which
are Linux v3.0 kernel’s root, respectively in defconfig
and allyesconfig builds. Note that color scale maxi-
mums differ at 0.16 and 0.3; we can see the same results
as those presented in Section 4.4.

A closer look at the drivers subdirectory is available
in Figure 14. A first observation is that dependencies
are mainly contained inside each subdirectory: there is
a thin line with variable value, but nearly always max-
imum, that runs for each subdirectories’ intersection
with itself. We can also note that there are three other
lines, yet lighter: base, pci and usb. Those directories
contains generic stuff for all drivers, or PCI/USB stack,
hence it is normal that they are being used by a lot of
other sub-directories. Other versions of the kernel (e.g.
v3.4 in Figure 15) shows nearly the same behavior, only
the range of values changes.
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Figure 12: HeapMap of Linux v3.0, defconfig
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Figure 13: HeapMap of Linux v3.0, allyesconfig

Another kind of “heatmap” could be created, that we
could call binary heatmap, in which we do not count the
number of edges between two nodes, but only the exis-
tence of an edge between those nodes: it is an adjacency
matrix.

5 Conclusion

Those few metrics allows us to have a better look at
the kernel: a first interesting fact, easily readable in the
heatmaps and not that surprising, is that dependencies
are rather located in spots. Drivers depend mainly on
stuff that concern the specific driver, a bit on generic
stacks such as base, pci or usb, plus a couple of
generic libraries in the kernel such as mm for memory
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HeatMap: 'linux-v3.0.merged-nodes.drivers.tlp'
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Figure 14: HeapMap of Linux v3.0, drivers subdirec-
tory

management, lib for things like strings handling and
kernel for basic stuff.

A second result, which is also not surprising, is that the
kernel is expanding, not only in term of code base size
(this fact is well known), but we can see it also from
a density and average path length: over time, at least
within the time span studied, density is decreasing and
average path length is increasing. This, only from a
global point of view: the details in average path length
and density shows that each subsystem evolves in a spe-
cific way.

There are some limitations to the present overview of
the kernel. First, even if we extract all kind of supported
symbols (by the terms of libelf) and store them with
the correct type in the database, we do not (yet) make
use of this kind of meta-data: is the symbol a function,
a variable? When trying to cluster the kernel, this might
become a good point.

Another limitation, due to the current implementation, is
that we do not reproduce the “full tree” in the graph, we
only assign nodes a label with the full path: this could
ease a more generic and deeper analysis, especially in-
teresting for drivers or fs subdirectories.

The current study only covers the kernel over one year,
ranging from 3.0 to 3.4: it is clearly not enough to draw
very generic conclusions. An attempt has been made
to run the current symbols extraction over kernel rang-
ing from 2.6.20 to 3.4; it has not been possible due to
time constraints: building old kernel with recent GCC



2012 Linux Symposium • 119

accessibility
acpi
ata
atm

auxdisplay
base
bcma
block

bluetooth
cdrom

char
clocksource

connector
cpufreq
cpuidle
crypto

dca
devfreq

dma
edac

firewire
firmware

gpio
gpu
hid
hsi
hv

hwmon
i2c
ide
idle

ieee802154
infiniband

input
iommu

isdn
leds

macintosh
md

media
memstick
message

mfd
misc
mmc
mtd
net
nfc

parport
pci

pcmcia
platform

pnp
power

pps
ptp

rapidio
regulator

rtc
scsi

sfi
spi
ssb

staging
target

thermal
tty

uio
usb
uwb

vhost
video
virtio

w1
watchdog

xen

a
c
c
e

s
s
ib

ility
a

c
p

i
a

ta
a

tm
a

u
x
d

is
p

la
y

b
a

s
e

b
c
m

a
b

lo
c
k

b
lu

e
to

o
th

c
d

ro
m

c
h

a
r

c
lo

c
k
s
o

u
rc

e
c
o

n
n

e
c
to

r
c
p

u
fre

q
c
p

u
id

le
c
ry

p
to

d
c
a

d
e

v
fre

q
d

m
a

e
d

a
c

fire
w

ire
firm

w
a

re
g

p
io

g
p

u
h

id
h

s
i

h
v

h
w

m
o

n
i2

c
id

e
id

le
ie

e
e

8
0

2
1

5
4

in
fin

ib
a

n
d

in
p

u
t

io
m

m
u

is
d

n
le

d
s

m
a

c
in

to
s
h

m
d

m
e

d
ia

m
e

m
s
tic

k
m

e
s
s
a

g
e

m
fd

m
is

c
m

m
c

m
td

n
e

t
n

fc
p

a
rp

o
rt

p
c
i

p
c
m

c
ia

p
la

tfo
rm

p
n

p
p

o
w

e
r

p
p

s
p

tp
ra

p
id

io
re

g
u

la
to

r
rtc
s
c
s
i

s
fi

s
p

i
s
s
b

s
ta

g
in

g
ta

rg
e

t
th

e
rm

a
l

tty
u

io
u

s
b

u
w

b
v
h

o
s
t

v
id

e
o

v
irtio

w
1

w
a

tc
h

d
o

g
x
e

n
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Figure 15: HeapMap of Linux v3.4, drivers subdirec-
tory

seems not to be trivial, and symbols extraction for so
many kernel would have required much more time than
available. This is, however, an issue that must be ad-
dressed to be able to confirm the current observation
over a wider sample of kernel.

A new measure that could enhance this study is cluster-
ing coefficient: we have not been able to perform this
one due to time constraints. Applying the same analysis
to other (big) code bases, such as Mozilla (Firefox) or
LibreOffice, would be interesting.
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