
Fine Grained Linux I/O Subsystem Enhancements to Harness Solid State
Storage

Suri Brahmaroutu
Suri_Brahmaroutu@Dell.com

Rajesh Patel
Rajesh_Patel@Dell.com

Harikrishnan Rajagopalan
Harikrishnan_Rajagopalan@Dell.com

Sumanth Vidyadhara
Sumanth_Vidyadhara@Dell.com

Ashokan Vellimalai
Ashokan_Vellimalai@Dell.com

Abstract

Enterprise Solid State Storage (SSS) are high perform-
ing class devices targeted at business critical applica-
tions that can benefit from fast-access storage. While it
is exciting to see the improving affordability and appli-
cability of the technology, enterprise software and Op-
erating Systems (OS) have not undergone pertinent de-
sign modifications to reap the benefits offered by SSS.
This paper investigates the I/O submission path to iden-
tify the critical system components that significantly im-
pact SSS performance. Specifically, our analysis fo-
cuses on the Linux I/O schedulers on the submission
side of the I/O. We demonstrate that the Deadline sched-
uler offers the best performance under random I/O inten-
sive workloads for the SATA SSS. Further, we establish
that all I/O schedulers including Deadline are not opti-
mal for PCIe SSS, quantifying the possible performance
improvements with a new design that leverages device
level I/O ordering intelligence and other I/O stack en-
hancements.

1 Introduction

SSS devices have been in use in consumer products for
a number of years. Until recently, the devices were
sparingly deployed in enterprise products and data cen-
ters due to several technical and business limitations.As
the performance and endurance continue to improve and
prices fall, we believe large scale utilization of these de-
vices in higher demanding environments is imminent.
Flash-based SSS can replace mechanical disks in many
I/O intensive and latency sensitive applications.

SSS device operations are complex and different from
the mechanical disks. While SSS devices make use of
parallelism to achieve orders of magnitude in improved

read performance over mechanical disks, they employ
complex flash management techniques to overcome sev-
eral critical restrictions with respect to writes.The abil-
ity to fine-tune a storage device for optimal utilization
is largely dependent on the OS design and its I/O stack.
However, most contemporary I/O stacks make several
fundamental assumptions that are valid for mechanical
disks only. This has opened up a sea of opportunities for
designing I/O stacks that can leverage improved perfor-
mance of the SSS devices. For instance, the OS and file
systems can comprehend that SSS contain more intelli-
gence to perform tasks like low level block management
and thus expose rich interface to convey more informa-
tion such as free blocks and I/O priorities down to the
device.

In this paper, we first set guidelines for measuring SSS
performance based on enterprise relevant workloads.
We then discuss the complete life cycle of an I/O request
under Linux OS, identifying system software compo-
nents in the submission path that are not quite tuned to
leverage the benefits of SSS. Specifically, we profile the
Linux I/O stack by measuring current performance yield
under current I/O scheduler schemes and quantifying
the performance that can be improved with a better de-
sign. For our study, we have used an off-the-shelf SATA
SSS as well as a soon-to-be-available Dell PowerEdge
Express Flash PCIe SSS to evaluate improvements to
Linux I/O stack architecture during the I/O request sub-
mission operation.

1.1 Background

SSS performance and device characteristics have been
evaluated along several parameters under various OSes
and workloads by the industry as well as academia.
There has been a specific focus on design tradeoffs [3],

• 133 •



134 • Fine Grained Linux I/O Subsystem Enhancements to Harness Solid State Storage

Access Spec Block Size KB %Reads %Random
DBOLTP 8 7 100

Messaging 4 67 100
OS Paging 64 90 0

SQL Server Log 64 0 0

Table 1: Configuration Parameters

High Performance Computing [1], throughput perfor-
mance [2], and so on. However, there is little published
work about the detailed analysis on end-to-end I/O re-
quest submission or completion operations. Specifi-
cally, the focus of the study is the I/O scheduler and
request queue management from the request submission
perspective. We plan on presenting our findings and rec-
ommendations on IRQ balancing and interrupt coalesc-
ing from the completion standpoint in subsequent papers
in the near future.

All our experiments were conducted on x86-64 bit ar-
chitecture based Linux server based on 3.2.8 kernel.
A dual socket Sandy Bridge motherboard with two 8-
core Intel Xeon CPU E5-2665 64-bit processors run-
ning at 2.40 GHz, with two hardware threads (with hy-
per threading) per core, 64GB of DDR III RAM was
used. 175GB Dell PowerEdge Express Flash PCIe SSS
and LSI MegaRAID SAS 9240 storage controller with
a Samsung 100GB SATA SSS connected were used for
I/O measurements.

We chose fio [7] as our benchmarking tool mainly due
to its asynchronous I/O support. We believe SSS will
be deployed in the enterprise primarily for these four
usage models: OS paging, Messaging, DB-OLTP and
SQL Server Log. Thus, we focused our measurements
on workloads generated using these I/O configuration
parameters, as shown in Table 1.

2 I/O Request Submission

I/O request traverses through different components of
the Linux subsystem as shown above. Most of these
layers are optimized to work better for rotational disks.
Assumptions such as seek time made considering the
mechanical factors of hard drives are not valid for SSS
and therefore introduction of SSS poses I/O subsystem
architectural challenges. We considered the following
components in the I/O submission path for targeted SSS
specific optimizations.

Figure 1: I/O Block Digram

File System and Buffered I/O - When data is accessed
through a file system, extra processing and reads are
needed to access meta-data to locate the actual data.
Furthermore, buffered I/O copies data from SSS to sys-
tem memory before eventually copying into the user
space. This could potentially cause higher latencies. All
our empirical data collected and presented in this paper
are based on Direct I/O path with no paging or buffering
involved.

SCSI Layer Protocol Processing and Abstraction - SCSI
subsystems provide enhanced error recovery as well as
retry operations for the I/O requests. However, as PCIe
interconnect operates in a much more closed system en-
vironment, it is fairly safe to assume that transport level
errors are rare. Thus, it is more efficient to allow the up-
per layer protocol (in user space) to perform error han-
dling for PCIe SSS. As the SCSI mid layer contributes
about 20% additional latency to the I/O submission path
[4], our PCIe SSS design bypasses the SCSI layer in its
entirety.

Request Re-ordering and Merging (I/O Scheduler) - The
block layer uses one of the elevator (IO scheduler algo-
rithms) to reorder and merge the adjacent requests to
reduce the seek time of hard drives and increase per-



2012 Linux Symposium • 135

Figure 2: Optimized I/O Block Digram

formance. But in case of SSS with no seek latency in-
volved, using elevator algorithms just adds processing
overhead. Section 2.1 presents the taxonomy of various
I/O schedulers and further quantifies the performance
delivered when the system is configured with each of
those scheduler schemes.

Shown above is the IO flow of the new driver model
adopted by Dell PowerEdge Express Flash PCIe SSS
which avoids generic request queue, IO schedulers and
SCSI subsystem. Furthermore, the device utilizes modi-
fied AHCI driver with queue depth of 256 elements in
order to maximize performance. Section 3 describes our
approach further and exhibits the performance gains re-
alized due to these pertinent optimizations.

2.1 I/O Scheduler

The purpose of introduction of these algorithms was to
schedule disk I/O requests in such a way that the disk
operations will be handled efficiently. Different I/O
schedulers were introduced along the way. Selecting
the right one matching SSS behavioral strengths and ap-
plication workload would improve the I/O performance
substantially.

Completely Fair Queuing - The Completely Fair Queu-
ing (CFQ) scheduler aims to provide equal amount of

I/O bandwidth among all processes issuing I/O requests.
Each time a process submits a synchronous I/O re-
quest, it is moved to the assigned internal queue. Asyn-
chronous requests from all processes are batched to-
gether according to their process’s I/O priority. During
each cycle, requests are moved from each non-empty in-
ternal request queue into one dispatch queue in a round-
robin fashion. Our experiments using CFQ scheduler
show that the scheme is suited well for large sequential
accesses, however, sub-optimal for small or random I/O
workloads. Once in the dispatch queue, requests are or-
dered to minimize disk seeks and serviced accordingly,
which may not improve performance in case of SSS, as
solid state devices have negligible seek time. Further-
more, we observed that CFQ scheduling caused a no-
ticeable amount of increase in the CPU utilization.

Deadline Scheduler - In Deadline scheduler, an expira-
tion time or “deadline” is associated with each block
device request. Once a request reaches its expiration
time, it is serviced immediately, regardless of its tar-
geted block device. To maintain efficiency, any other
similar requests targeted at nearby locations on disk will
also be serviced. The main objective of the Deadline
scheduler is to guarantee a response time for each re-
quest. The Deadline scheme is well suited in most real
world workload scenarios such as messaging as shown
here, where SSS are deployed for random I/O perfor-
mance with deeper queue depths.

Noop Scheduler - Among all I/O scheduler types, the
Noop scheduler is the simplest. It moves all requests
into a simple unordered queue, where they are processed
by the device in a simple FIFO order. The Noop sched-
uler is suitable for devices where there are no perfor-
mance penalties for seeks. This characteristic makes
Noop scheduler suitable for workloads that demand
the least possible latency operating with small queue
depths. Also, it may be noted that the SSS firmware
has built-in algorithms to optimize the read/write per-
formance, so in many cases it is best suited for the SSS
internal algorithms to handle the read/write order. Se-
lecting Noop scheduler will avoid I/O subsystem over-
head in rearranging I/O requests.

We further validated our claims by experimenting with
SATA SSS. At deeper queue depths, the Deadline sched-
uler performed better than CFQ by 15% and against the
Noop scheduler by around 3%. For sequential writes,
we found that CFQ outperforms Deadline as well as
Noop schedulers by 30%.We believe most enterprise



136 • Fine Grained Linux I/O Subsystem Enhancements to Harness Solid State Storage

Figure 3: SQL Server

Figure 4: OS Paging

end users will invest in SSS devices for random I/O per-
formance benefit and therefore recommend using Dead-
line scheduler as the default configuration.

3 Optimized Dell Driver Performance

We were able to realize significant performance im-
provement when the SCSI layer is bypassed. How-
ever, the gains were much more substantial when the
I/O scheduler logic was avoided as well. Our approach
yielded at least 27% better small random read I/O per-
formance at lower queue depths. Another important as-
pect of our new methodology was to circumvent the lim-
itations imposed by the AHCI interface. The current
Linux AHCI driver implementation does not allow the
queue depth to increase beyond 31, although most of the
enterprise class SSS devices support queue depths up to

Figure 5: DB_OLTP

Figure 6: Messaging

256. As a result, we were able to attain up to 200%
improvement in small random write I/O performance at
deeper queue depths.

Finally, our approach is tuned to offer the best possi-
ble SSS performance under most critical and I/O inten-
sive enterprise applications such as DB-OLTP and Mes-
saging without sacrificing performance of other possi-
ble usage scenarios such as DB logs or OS Paging. We
observed gains of up to 40% and 50% respectively for
DB-OLTP and Messaging workloads.

4 Conclusion

We have discussed the current Linux storage I/O stack
and its constituents. We also identified specific compo-
nents that contribute to SSS performance degradation. A
new approach for PCIe SSS is presented that bypasses



2012 Linux Symposium • 137

Figure 7: 4K Random Read

Figure 8: 4K Randon Write

Figure 9: Simulated Workloads

conventional Linux I/O request management and pushes
requests out to the device with minimal processing in the
software stack. The study quantifies performance gains
of up to 200% in some specific I/O patterns and up to
50% in some real world workload scenarios for PCIe
SSS.

While it is possible to avoid much of the Linux stack for
PCIe SSS, I/O to devices such as SATA SSS can only
be serviced by traversing the conventional stack. Al-
though the current I/O schedulers are outdated and im-
perfect when addressing SSS, they have a critical role to
play to optimize the performance of SAS or SATA SSS.
We demonstrate that a “one size fits all” scheduler pol-
icy does not work well for SATA SSS. Of the current
crop of schedulers, the Deadline scheduler offers up to
15% performance advantage over Noop and therefore
it is best suited for most I/O intensive enterprise appli-
cations. We recommend using Deadline as the default
configuration.

As the SSS technology continues to advance, we believe
the I/O scheduler methodology should evolve taking the
device characteristics into account by working in con-
cert with the intelligence present in the device.

5 Future Work

No system I/O analysis is complete without a thorough
investigation of the completion path. We plan on focus-
ing on two aspects: interrupt coalescing opportunities
and IRQ balancing schemes that work best for SSS. As
we believe vendors continue to support increased num-
ber of MSI-X vectors for parallelism, MSI-X configu-
ration especially from the NUMA optimizations stand-
point will need to be understood.

It is of paramount importance to understand and opti-
mize the SSS devices from a system perspective at a
macro level. For example, real enterprise applications
run with file systems and RAID arrays. We believe file
systems can gain from organizing meta-data in a way
that take into account the special characteristics of SSS.
Thus, we intend to study the impact of these and other
proposed changes in future on various areas of Linux
system design.

6 References / Additional Resources

[1] E. Seppanen, M.T. O£Keefe and D.J. Lilja “High
Performance Solid State Storage Under Linux” in Pro-



138 • Fine Grained Linux I/O Subsystem Enhancements to Harness Solid State Storage

ceedings of the 26th IEEE (MSST2010) Symposium on
Massive Storage Systems and Technologies, 2010

[2] M. Dunn and A.L.N. Reddy, “A New I/O Scheduler
for Solid State Devices”. Texas A&M University ECE
Technical Report TAMU-ECE-2009-02, 2009

[3] N. Agarwal, V. Prabhakaran, T. Wobber,J.D. Davis,
M. Manasse and R. Panigrahy, “Design tradeoffs for
SSS performance” in Proceedings of the USENIX 2008
Annual Technical Conference, 2008

[4] A. Foong, B. Veal and F. Hady, “Towards SSD-ready
Enterprise Platforms” in Proceedings of the 36th Inter-
national Conference on Very Large Data Bases, 2010

[5] D. P. Bovet and M. Cesati, “Understanding The
Linux Kernel”, Third Edition, Oreilly & Associates Inc,
2005

[6] A. Rubini, J. Corbet and G. Kroah-Hartman, “Linux
Device Drivers”, Third Edition, Oreilly & Associates
Inc., 2005

[7] J. Axboe, Fio “Flexible IO Tester”. http://
freshmeat.net/projects/fio

http://freshmeat.net/projects/fio
http://freshmeat.net/projects/fio

	Fine Grained Linux I/O Subsystem Enhancements to Harness Solid State Storage
	S. Brahmaroutu, R. Patel, H. Rajagopalan, S. Vidyadhara, A. Vellimalai
	Introduction
	Background

	I/O Request Submission
	I/O Scheduler

	Optimized Dell Driver Performance
	Conclusion
	Future Work
	References / Additional Resources



