
Implementing an advanced access control model on Linux

Aneesh Kumar K.V
IBM Linux Technology Center

aneesh.kumar@linux.vnet.ibm.com

Andreas Grünbacher
SUSE Labs, Novell
agruen@suse.de

Greg Banks
gnb@fmeh.org

Abstract

Traditional UNIX-like operating systems use a very
simple mechanism for determining which processes get
access to which files, which is mainly based on the file
mode permission bits. Beyond that, modern UNIX-like
operating systems also implement access control models
based on Access Control Lists (ACLs), the most com-
mon being POSIX ACLs.

The ACL model implemented by the various versions
of Windows is more powerful and complex than POSIX
ACLs, and differs in several aspects. These differ-
ences create interoperability problems on both sides; in
mixed-platform environments, this is perceived as a sig-
nificant disadvantage for the UNIX side.

To address this issue, several UNIXes including So-
laris and AIX started to support additional ACL mod-
els based on version 4 of the the Network File Sys-
tem (NFSv4) protocol specification. Apart from vendor-
specific extensions on a limited number of file systems,
Linux is lacking this support so far.

This paper discusses the rationale for and challenges in-
volved in implementing a new ACL model for Linux
which is designed to be compliant with the POSIX stan-
dard and compatible with POSIX ACLs, NFSv4 ACLs,
and Windows ACLs. The authors’ goal with this new
model is to make Linux the better UNIX in modern,
mixed-platform computing environments.

1 Introduction

File access control is concerned with determining which
activities on file system objects (files, directories) a le-
gitimate user is supposed to be permitted. It mediates
attempts to access files, and allows or denies them based
on administrative metadata attached to those files.

Linux has traditionally had a file access control model
based on the traditional UNIX file mode model stan-
dardised by POSIX [7]. This model is proven, robust
and simple. Beyond that, Linux implements the non-
standard but widely deployed POSIX ACL model suit-
able for more complex permission scenarios, all within
the bounds that the POSIX standard defines.

However, when a Linux system uses a remote filesystem
access protocol like CIFS or NFSv4 to share files with a
Microsoft Windows system, the mismatch between the
Linux and Windows access control models poses a sig-
nificant interoperability challenge. This is a very com-
mon and economically significant deployment scenario,
and other UNIX-like systems (Solaris [10] and AIX [1])
have a solution to these problems.

In this paper, we discuss the challenges involved in im-
plementing an advanced access control model on Linux
which is designed to address these problems. The new
model is based on the NFSv4 ACL model [6], with de-
sign elements from POSIX ACLs that ensure its compli-
ance with the standard POSIX file permission model.

The NFSv4 ACL model is in turn based, somewhat
more loosely, on the Windows ACL model [3]. This
means the mapping between the new model and Win-
dows ACLs, while not completely trivial, is at least pre-
dictable, understandable, and not lossy. This has the
benefit of smoothing remote file access interoperability.

Another benefit is to provide Linux system administra-
tors with an access control model for local filesystems
which is finer-grained and more flexible than the tradi-
tional POSIX model. Some system administrators might
also find the new model more familiar.

For compatibility and security, it is necessary to ensure
that applications using the traditional POSIX file mode
based security model still work when using a filesystem
which implements the new ACL model. This results in a
number of technical challenges whose solution we will
describe.

• 19 •



20 • Implementing an advanced access control model on Linux

2 File Permission Models

This section describes and compares the main file per-
mission models in use today: the standard POSIX file
permission model and the widely supported POSIX
ACLs on the UNIX side, Windows ACLs on Windows,
and NFSv4 ACLs, a hybrid between these two major
approaches.

2.1 The POSIX File Permission Model

The traditional file permission model implemented by
all UNIX-like operating systems including Linux fol-
lows the POSIX.1 standard [7]. The standard can be
thought of as a “contract” between application programs
and the operating system: POSIX.1 defines the mech-
anisms available to portable applications and specifies
how compliant operating systems will react. Applica-
tion programs can rely on the POSIX.1 behaviors; this
is of major importance to system security.

POSIX.1 distinguishes between read (r), write (w), and
execute/search (x) access. The read permission allows
to read a file and directory, the write permission allows
to write to a file and create and delete directory entries,
and the search/execute permission allows to execute a
file and access directory entries.

As explained in POSIX.1 Base Definitions, each file
system object is associated with a user ID, group ID, and
a file mode which includes three sets of file permission
bits. A process that requests access to a file system ob-
ject is classified into one of the three categories owner,
group, and other depending on its effective user ID, ef-
fective group ID, and supplementary group IDs. This
so-called file class determines which set of permissions
determine if the requested access is granted. The ac-
cess is granted if the set of permissions associated with
the file class includes the permissions needed for the re-
quested access, and otherwise denied. Figure 1 depicts
this graphically.

To give an example, assume that a process tries to open a
file for read access and the file permission bits as shown
by the ls command are rw-r-----, granting read and
write access to the owner class and read access to the
group class and no access to the other class. The access
is granted if the effective user ID of the process matches
the user ID of the file, or if the effective group ID or any
of the supplementary group IDs of the process match

the group ID of the file; in all other cases, the access is
denied.

The file permission bits are usually set so that the group
class has the same or fewer permissions than the owner
class, and the other class has the same or fewer permis-
sions than the group class. However, other values like
-w-r-----, which grants write access to the owner
class and read access to the group class, can also be
used. Because a process can only be in one file class
at any one time, these file permission bits do not allow
any process to get read and write access simultaneously.

While this model is flexible enough for a large number
of real-world scenarios, the three permissions and three
possible roles of processes can become a burden or be
too limiting. For example, when people form an ad-hoc
team which the operating system does not know about,
they will have difficulties with sharing files in this team:
the file permission model will not allow them to grant
each other access to files without granting others out-
side this group access as well. The system administrator
can help by creating a new group, but this administrative
overhead is undesirable, and the number of groups can
grow unreasonably large.

In awareness of these limitations, the POSIX.1 stan-
dard defines that the file group class may include other
implementation-defined members, and allows additional
and alternate file access control mechanisms:

• Additional file access control mechanisms may
only further restrict the access permissions defined
by the file permission bits.

• Alternate file access control mechanisms may re-
strict or extend the access permissions defined by
the file permission bits. They must be enabled ex-
plicitly on a per-file basis (which implies that no al-
ternate file access control mechanisms may be en-
abled for new files), and changing a file’s permis-
sion bits with the chmod system call must disable
them.

Many texts on the UNIX operating system describe the
POSIX.1 file permission model in more detail including
Advanced Programming in the UNIX(R) Environment
[15].



2010 Linux Symposium • 21

Figure 1: The POSIX.1 File Permission Model

2.2 POSIX.1e Access Control Lists

As we have seen in the previous section, the POSIX.1
file permission model only uses the file user ID and file
group ID to distinguish between users; there is no way to
grant permissions to additional users or groups. POSIX
Access Control Lists (ACLs)1 remove this restriction.
Each file system object is associated with a list of Ac-
cess Control Entries (ACEs), which define the permis-
sions of the file owner ID, the file group ID, additional
users and groups, and others.

In the usual POSIX ACL text form, the user:: entry
stands for the file user ID, the group:: entry stands
for the file group ID, and the other:: entry stands for
others. Further, user:<name>: entries stand for ad-
ditional users and group:<name>: entries stand for
additional groups with the specified names.

In POSIX.1 terms, POSIX ACLs are an additional file
access control method. The Working Group has also
made use of the provision that the file group class may
include other implementation-defined members by as-
signing the additional user and group entries to this
class. This raises the following questions:

1. As an additional file access control mechanism,
POSIX ACLs may only further restrict the access
permissions defined by the file permission bits.
But since the additional user and group entries are
members of the file group class, what if they grant

1POSIX.1e [8] was never ratified as a standard. The POSIX ACL
implementations found on UNIX-like operating systems are based
on drafts of the POSIX.1e Working Group.

permissions beyond the file group class permis-
sions?

The Working Group has answered this question by
defining that the file group class permissions act as
an upper bound or “mask” to the group class. An
entry in the group class may include permissions
which are not in the file group class permissions,
but only permissions which are in the entry as well
as in the file group class permissions are effective.

2. If the file group class permissions continue to de-
fine the permissions of the file group ID, how can
additional users and groups be granted more per-
missions than the file group ID, since by definition
of additional file access control mechanisms, the
file group class cannot have permissions beyond
the file group class permissions?

This question has been answered by defining that
the file group class permissions no longer define
the file group ID permissions. Instead, in POSIX
ACLs, the group:: entry stands for the file group
ID, and the new mask:: entry stands for the file
group class.2

The file group ID entry remains a member of the
file group class.

Figure 2 shows the relationship between file classes,
ACEs, and the file permission bits: the file owner class
contains exactly one ACE, the file group class contains

2If an ACL contains no entries for additional users or groups, the
group class only contains a single entry. In this case, the Working
Group has defined that the group:: entry shall continue to refer to
the file group class permission bits and no mask:: entry shall exist,
resulting in the same behavior as without POSIX ACLs.



22 • Implementing an advanced access control model on Linux

Figure 2: POSIX.1e Access Control Lists

one or more ACEs, and the file other class again con-
tains exactly one ACE.

The open-headed arrows in Figure 2 show how ACEs
and the file permission bits are kept in sync: per defini-
tion, the user:: entry and owner class, mask:: en-
try and group class, and other:: entry and other class
file permission bits are kept identical; changing the ACL
changes the file permission bits and vice versa.

As an example, consider the following POSIX ACL
as shown by the getfacl utility (line numbers added by
hand):

1 # file: f
2 # owner: lisa
3 # group: users
4 user::rw-
5 user:joe:rwx #effective:rw-
6 group::r-x #effective:r--
7 mask::rw-
8 other::---

The first three lines indicate that the file is called f, the
file user ID is lisa, and the file group ID is users.
Line 4 shows that the owner, Lisa, has read and write
access. Line 5 shows that Joe would have read, write,
and execute access, but the file mask in line 7 forbids ex-
ecute access, so Joe effectively only has read and write
access. Line 6 shows that the group Users would have
read and execute access, but effectively only has read
access. Finally, line 8 shows that others have no access.

In addition to these “normal” ACLs, POSIX.1e also de-
fines so-called default ACLs which have the same struc-
ture as “normal” ACLs. When a file system object is

created in a directory which has a default ACL, the de-
fault ACL defines the initial value of the object’s “nor-
mal” ACL and, if the new object is a directory, also the
object’s default ACL. Default ACLs have no effect after
file creation.

2.3 Windows ACLs

Before Windows NT, Windows did not have an ACL
model and permissions could only be attached to an
entire exported directory tree (aka share). Other com-
panies tried to fill this gap by inventing additional file
permission schemes [14]. With the introduction of the
NTFS filesystem in 1993, Microsoft introduced a new
ACL based file permission model, commonly referred
to as Windows ACLs or CIFS ACLs. Its key properties
are:

• Windows ACLs are used to control access to a va-
riety of OS objects in addition to filesystem ob-
jects, e.g. mutexes, semaphores, window system
objects, and threads. Here we are concerned only
with ACLs on filesystem objects.

• Controlled Windows objects have two ACLs, the
DACL (Discretionary ACL) and SACL (System
ACL). The SACL can only be edited by privileged
users, and is used to implement logging of file ac-
cesses (or failures to access). Here we are con-
cerned only with DACLs.

• Each filesystem object is owned by a Security Iden-
tifier (SID), a variable-length unique binary identi-
fier which can refer to either a user or a group.



2010 Linux Symposium • 23

• Each Windows ACE contains a mask of 14 differ-
ent permission bits, see Table 1 for a summary and
File and Folder Permissions [2] on Microsoft Tech-
Net for details.

• Windows ACEs are one of three types: Access-
Denied (used in a DACL to explicitly deny ac-
cess), Access-Allowed (used in a DACL to ex-
plicitly grant access), and System-Audit (used in
a SACL to cause an entry to be made in the system
security log). We shall refer to these by the short
forms DENY, ALLOW, and AUDIT respectively.

• The order in which permissions are granted and
denied in Windows ACLs matters. ACEs are pro-
cessed from top to bottom until all requested per-
missions have been granted, or a requested permis-
sion has been explicitly denied.

• Each ACE contains a SID which identifies the user
or group that the ACE refers to. There is no way
to tell user from group ACEs. There are also some
special SIDs with special semantics.

• The owner of a file can be explicitly mentioned in
an ACE, and implicitly mentioned in an inherit-
only ACE.3 However, there is no way to construct
an ACE that always applies to the file’s current
owner even if the owner is changed.4

• A Windows ACL entry can apply to the special
SID Everyone, which includes the owner and
all users and groups explicitly mentioned in other
ACL entries. The POSIX.1 concept of file classes,
where a process is classified into the owner, group,
and other classes and cannot obtain permissions
which go beyond the permissions of its class, does
not exist, but DENY entries can be used to explicitly
deny some permissions.

• Windows supports inheritance of permissions
at file create time, and since Windows 2000, a
feature called “Automatic Inheritance.” With
Automatic Inheritance, changes to the permis-
sions of a directory can propagate to all files
and directories below that directory. Create time
inheritance and Automatic Inheritance use as
a number of ACE flags (INHERITED_ACE,

3using the special Creator Owner SID
4not even using the special Owner Rights SID which appeared in

Windows Vista [4]; such ACEs are actually disabled when the file’s
ownership changes.

INHERIT_ONLY_ACE, CONTAINER_
INHERIT_ACE, OBJECT_INHERIT_ACE,
and NO_PROPAGATE_INHERIT_ACE).

2.4 NFSv4 ACLs

Up to version 3, the NFS protocol was mainly UNIX
oriented, and its file permission model was limited to
exposing POSIX file modes (in NFS terminology: the
mode attribute) over the network. This created the im-
plicit assumption of POSIX-like behavior.

Version 4 broke with the protocol’s legacy and intro-
duced a new ACL model based on Windows ACLs.
The mode attribute was initially deprecated in favor of
ACLs; more recent updates to the protocol re-endorsed
the mode attribute and clarified some of the interactions
between mode and ACLs (but some inconsistencies still
remain).

The key properties of the NFSv4 ACL model are:

• NFSv4 [5] supports the same 14 permissions
as Windows. NFSv4.1 [6] adds two addi-
tional permissions, ACE4_WRITE_RETENTION
and ACE4_WRITE_RETENTION_HOLD, which
have no equivalent in Windows or POSIX ACLs.

• The ALLOW and DENY ACE types are supported,
and optionally also the AUDIT and ALARM types.

• The NFSv4 and Windows permission check algo-
rithms are equivalent.

• NFSv4 uses principal strings modelled on Ker-
beros for identifying users and groups, e.g.
fred@example.com. User and group ACEs are
distinguised by an ACE flag.

• Each file system object is owned by a user, and
has an owning group. The special OWNER@ prin-
cipal refers to the current owner, and the special
GROUP@ principal refers to the current owning
group of a file, even when the owner or owning
group changes.

• The special EVERYONE@ principal refers to Every-
one, which includes the owner and all users and
groups explicitly mentioned in other ACL entries.



24 • Implementing an advanced access control model on Linux

• NFSv4 recognizes that there is a relationship be-
tween the mode attribute and the ACL, but in-
stead of connecting this to the POSIX file permis-
sion model and sticking to the same requirements,
NFSv4.1 makes up its own special rules for up-
dating the ACL when the mode changes, and vice
versa. These rules are not fully compatible with
POSIX.1 or POSIX.1e.

• NFSv4 supports inheritance of permissions at file
create time. NFSv4.1 adds support for Automatic
Inheritance.

2.5 ACL Model Differences

The various ACL models differ in a number of important
details.

• POSIX1.e entries can only allow access, i.e.
ALLOW semantics. Windows and NFSv4 entries
can either ALLOW or DENY access. This provides
considerably more expressive power (albeit at the
cost of complexity).

• The order of evaluation of POSIX.1e entries is not
significant, as all the entries are additive. In Win-
dows and NFSv4 ACLs, entries can deny access,
and thus their order is significant.

• The permission bits in POSIX.1e entries are quite
simple, with only 3 bits defined. Windows has
a total of 14 permission bits, most of which af-
fect a smaller number of actions. NFSv4 follows
Windows closely (even when the permission bits
make no sense), but NFSv4.1 adds two more per-
mission bits (ACE4_WRITE_RETENTION_HOLD
and ACE4_WRITE_RETENTION) which have no
equivalent anywhere else.

• POSIX.1e and NFSv4 ACEs have state which de-
termine whether the ACE refers to a user or a
group, because in POSIX these are strictly differ-
ent namespaces. Windows ACEs contain only a
SID, which might refer to either a user or a group.

• The POSIX.1e model reuses the POSIX.1 concept
of process file classes, where a process is classi-
fied into the owner, group and other classes. The
Windows model has no precise equivalent to any
of these classes. A Windows ACE can apply to Ev-
eryone, but unlike the POSIX “other” class, that

includes the owner and all users explicitly men-
tioned in other ACEs. The NFSv4 model compro-
mises between the two, defining special OWNER@
and GROUP@ principals with the POSIX semantics,
and EVERYONE@ with the Windows semantics.

• The possible existance of DENY entries in Win-
dows and NFSv4 models, and the differences in
file class boundaries, also complicate the permis-
sion algorithm compared to POSIX.1e. The more
complex algorithm must track both allowed and de-
nied masks.

• The POSIX.1e model allows for inheritance of
ACLs from a parent directory at the time when a
filesystem object is created, using a separate “de-
fault ACL” stored on the parent directory. By con-
trast, the Windows, NFSv4 models combine the ac-
tual and default ACLs into one, with extra flags on
each ACE to indicate whether it is to be inherited
or not, and whether it is to be used only for inheri-
tance.

• The POSIX.1e model has no explicit support for
recursive modifications of ACLs on existing trees;
like chmod-R this is expected to proceed entirely
in a userspace utility which recurses over a tree and
modifies ACLs. The Windows and NFSv4 models
also rely on a userspace utility but have more com-
plex ACE propagation algorithms (Automatic In-
heritance) which need some extra bits stored on the
ACL. The NFSv4 standard forgot these bits, and
they only appear in NFSv4.1.

• In addition to the ALLOW and DENY types of en-
tries, the Windows and NFSv4 models allow for
AUDIT and ALARM entries. In Windows, these en-
tries trigger system management side effects. In
NFSv4, their meaning is undefined.

• The POSIX.1e model identifies users and groups
using traditional UNIX user and group ID num-
bers. The Windows model uses SIDs. which are
something like binary hierarchically scoped user
and group IDs and provide a single namespace
for both users and groups. The NFSv4 model
uses principal strings modelled on Kerberos, e.g.
fred@example.com.



2010 Linux Symposium • 25

3 Why We Need a New ACL Model

There are two main reasons why we consider new ACL
model for Linux to be necessary.

Firstly, while POSIX.1e is the current default ACL
model on Linux, and works well, its power and expres-
siveness is limited by its small set of permission bits and
additive ALLOW-only semantics. Subtractive concepts
like "grant read permission to all of the accounting de-
partment, but not to the trainees" are difficult to achieve
and have to be painfully approximated. Windows can
express these neatly and concisely, and we feel this will
be useful to Linux system administrators.

Secondly, in a file serving scenario, there is a signifi-
cant interface mismatch between POSIX ACLs and the
ACL models expected or provided by Windows sys-
tems. This mismatch makes interoperability between
Linux and Windows machines unnecessarily difficult,
requiring the Linux-side software to perform complex,
lossy, and potentially insecure mappings backwards and
forwards between the models.

When files are available through different channels (e.g.
Samba and NFS on the same Linux server) with differ-
ent approaches to the ACL issue, there is the potential
for users to be able to bypass intended access controls.

Even in the homogeneous case when a Linux client
mounts a filesystem via NFSv4 from a Linux server, and
both Linux systems understand POSIX ACLs, the ACL
model enforced by the NFSv4 protocol requires two dif-
ficult mappings in order to transmit an ACL on the wire.
The Linux NFS client presents ACLs using different for-
mats and utilities than those used for the local filesystem
on the Linux server, which leads to unnecessary confu-
sion.

We need a solution which makes the ACL models of
the client, the server and the protocol as similar as pos-
sible, so that mappings between them are much eas-
ier and safer. It should also provide a single point of
ACL enforcement for all protocols and for local appli-
cations, and consistent management tools on the client
and server.

4 Rich ACLs

To bring together the disparate models and address inter-
operability issues, we propose a new ACL mechanism
for Linux called Rich-acl.

4.1 Design Principles

The proposed new ACL model uses NFSv4 ACLs at its
core. Unlike NFSv4 and Windows ACLs, it identifies
users and groups by their numeric UNIX IDs. This al-
lows access decisions to be made for all Linux processes
without having to translate identifiers to their local form
first.

The ALLOW and DENY ACE types are supported; sup-
port for AUDIT and ALARM type ACEs might make
sense to add in the future.

Rich-acl supports the same 14 permission bits as NFSv4
(three of which have a dual meaning and mnemonic for
files and directories) plus the two additional write reten-
tion permissions of NFSv4.1. The permissions have the
following meaning:

• READ_DATA, WRITE_DATA, APPEND_DATA:
Read a file, modify a file, and modify a file by ap-
pending to it only.

• LIST_DIRECTORY, ADD_FILE, ADD_
SUBDIRECTORY: List the contents of a di-
rectory, add files, and add subdirectories.

• DELETE_CHILD: Delete a file or subdirectory
from a directory.

• EXECUTE: Execute a file, traverse a directory.

• READ_ATTRIBUTES: Read the stat information
of a file or directory.

• READ_ACL: Read the ACL of a file or directory.

• SYNCHRONIZE: Synchronize with another thread
by waiting on a file handle.

• DELETE: Delete a file or directory even without
the DELETE_CHILD permission on the parent di-
rectory.

• WRITE_ATTRIBUTES: Set the access and modi-
fication times of a file or directory.

• WRITE_ACL: Set the ACL and POSIX file mode
of a file or directory.

• WRITE_OWNER: Take ownership of a file or direc-
tory. Set the owning group of a file or directory to



26 • Implementing an advanced access control model on Linux

the effective group ID or one of the supplementary
group IDs.5

• READ_NAMED_ATTRS, WRITE_NAMED_
ATTRS: Read and write Named Attributes.
Named Attributes neither refer to Windows
Alternate Data Streams nor to Linux Extended
Attributes. These permissions will be stored, but
have no further effect.

• WRITE_RETENTION, WRITE_RETENTION_
HOLD: Set NFSv4.1 specific retention attributes.
These permissions will be stored, but have no
further effect.

Some of the Rich-acl permissions are a subset of a
POSIX permission; others go beyond what the file per-
mission bits can grant. Table 1 shows a complete map-
ping between Rich-ACL and POSIX permissions:

• The READ_DATA and LIST_DIRECTORY per-
missions map to the POSIX Read permission,
the WRITE_DATA, APPEND_DATA, DELETE_
CHILD, ADD_FILE, and ADD_SUBDIRECTORY
permissions map to the POSIX Write permission,
and the EXECUTE permission maps to the POSIX
Execute/Search permission. These permissions fit
the concept of an additional file access control
mechanism.

• The READ_ATTRIBUTES, READ_ACL, and
SYNCHRONIZE permissions are permissions
which cannot be denied under POSIX. Denying
these operations could cause problems with POSIX
applications, so we always grant these permissions
no matter what the ACL says (see section 5.4).

• The DELETE, WRITE_ATTRIBUTES,
WRITE_ACL, and WRITE_OWNER permissions
denote rights which go beyond the POSIX per-
missions, and the READ_NAMED_ATTRIBUTES,
WRITE_NAMED_ATTRIBUTES, WRITE_
RETENTION, and WRITE_RETENTION_HOLD
permissions denote rights which have no equiva-
lent in Linux. These eight permissions can only be
enabled as part of an alternate file access control
mechanism.

5Also see the setfsuid(2) and setfsgid(2) Linux manual pages.

In addition to defining how the permissions of the two
models map onto each other, we need to define how pro-
cesses are classified into the owner, group, and other
classes; this determines which file permission bits af-
fect which processes. We use the following rules analo-
gously to POSIX ACLs:

1. Processes are in the owner class if their effective
user ID matches the user ID of the file.

2. Processes are in the group class if they are not in
the owner class and their effective group ID or one
of the supplementary group IDs matches the group
ID of the file, the effective user ID matches the user
ID of an ACE, or the effective group ID or one of
the supplementary group IDs matches the group ID
of an ACE.

3. Processes are in the other class if they are not in the
owner or group class.

Finally, POSIX requires that after creating a new file or
changing a file’s permission bits with the chmod system
call, processes are not granted any permissions beyond
the file permission bits of their file class. This require-
ment can be implemented in different ways:

1. The ACL can be replaced by an ACL which grants
the equivalent of the file permission bits to the
owner, the owning group, and others.6

2. The ACL can be changed so that it does not
grant any permissions beyond the file permission
bits. This may require removing permissions from
ACEs. In addition, if the owner class has fewer
permissions than the group class or the group class
has fewer permissions than the other class, addi-
tional DENY ACEs may be needed.7

3. The ACL can be left unchanged; in this case, the
access check algorithm must take both the ACL
and the file permission bits into account, and only
grant permissions which are granted by both mech-
anisms.

6NFSv4 ACLs on IBM GPFS and JFS2 do this, Sun/Oracle ZFS
offers this as an option.

7SUN/Oracle ZFS tries to do this by default, but the documented
behavior [10] does not always lead to the correct result.



2010 Linux Symposium • 27

Permission Bit POSIX Mapping
READ_DATA (= LIST_DIRECTORY) Read
WRITE_DATA (= ADD_FILE) Write
APPEND_DATA (= ADD_SUBDIRECTORY) Write
DELETE_CHILD Write
EXECUTE Execute/Search
READ_ATTRIBUTES Always Allowed
READ_ACL Always Allowed
SYNCHRONIZE Always Allowed
DELETE Alternate
WRITE_ATTRIBUTES Alternate
WRITE_ACL Alternate
WRITE_OWNER Alternate
READ_NAMED_ATTRS Alternate (No Effect)
WRITE_NAMED_ATTRS Alternate (No Effect)
WRITE_RETENTION Alternate (No Effect)
WRITE_RETENTION_HOLD Alternate (No Effect)

Table 1: Mapping Between Rich-ACL and POSIX Permissions

We have chosen a variation of approach 3 for Rich-acls
because it does not require complicated ACL manipu-
lations, and is a consequent adaptation of the masking
mechanism already found in POSIX ACLs, which has
already proven itself.

The need for a variation to approach 3 becomes obvi-
ous when considering that the file permission bits are
limited to the Read, Write, and Execute/Search permis-
sions, and we would end up without a way to explicitly
enable any of the alternate rich-acl permissions.

To get around this restriction, we introduce the new con-
cept of file masks:

• Each file class (owner, group, and other) is associ-
ated with a file mask which contains a set of rich-
acl permissions.

• When the file permission bits are changed, each file
mask is set to the rich-acl permissions which cor-
respond to the file permission bits of its class.

• The file masks can be changed explicitly to include
alternate rich-acl permissions. Changing the file
masks will also change the file permission bits.

• The access check algorithm grants an access if the
rich-acl grants the access, and the file mask match-
ing the process also includes the reuested rich-acl
permisssions.

Figure 3 shows the relationship between file classes, the
ACL, the file masks, and the file permission bits in rich-
acls.

4.2 Specific Changes

To achieve the above principles, we made the following
code changes.

• Modify the kernel VFS interface to allow filesys-
tems optionally to exert more control over whether
a process is allowed to create or delete filesystem
objects. The rich-acl permission algorithm requires
more information in these two cases than either the
POSIX or POSIX.1e models do.

• Define a machine-independent binary encoding of
a rich-acl ACL, and use the Linux extended at-
tribute (xattr) mechanism to store encoded rich-
acl ACLs on filesystem objects. The same en-
coding is used in the filesystem and on both the
NFS client and server (which is not true of the cur-
rent Linux NFS ACL code). The attribute used is
system.richacl.

• Provide an in-kernel library for manipulating
ACLs. This includes creating and destroying
ACLs, performing permission checks, calculating
a file mode from an ACL and applying a new mode



28 • Implementing an advanced access control model on Linux

Figure 3: Rich Access Control Lists

to an ACL. and encoding an ACL to an xattr and
decoding an ACL from a xattr.

• Use the kernel library to enhance the ext4 filesys-
tem to store, retrieve and enforce the new per-
mission model. A new ext4 superblock option
richacl, settable with the tune2fs utility, is
defined to control whether rich-acls are enabled.

• Use the kernel library to enhance the NFS client
and server to store and retrieve rich-acl ACLs
(enforcement is done in the server-side backing
filesystem, not in NFS code). The server-side con-
version between the rich-acl kernel in-memory for-
mat and the NFS wire format is much simpler than
with POSIX.1e ACLs.

• Provide a userspace library for manipulating
ACLs. It is similar to the kernel library, except that
it does not provide a permission check algorithm.

• Use the userspace library to provide a command-
line utility setrichacl to allow users to store,
retrieve, and manipulate ACLs on files and directo-
ries (loosely equivalent to chmod and ls).

One of the advantages of this approach is consistency of
use: the same tools can be used to examine and manipu-
late rich-acl ACLs on the NFS client and server, as well
as for local applications.

Furthermore, with the rich-acl model ACLs are stored
and enforced consistently and in one place: the server-
side backing filesystem. This prevents users being able
to evade access control by using different access tech-
niques, such as logging into the server or using NFS in-
stead of CIFS.

The code is available in two git repositories, kernel [12]
and userspace [13]. There is also a patch for tune2fs
[11].

5 Further Considerations

5.1 Standards

The text of the NFSv4 standard, as it applies to ACLs,
has undergone several revisions and clarifications. The
initial version appears to have been the result of a purely
theoretical design exercise and not of implementation
experience. Subsequent versions have had progressively
fewer flaws and ambiguities, but some difficulties re-
main.

The behaviour of Windows ACLs is well documented
by Microsoft. Sometimes the documentation is accu-
rate; sometimes experiment is required to determine the
true behaviour.

5.2 Multiple group entries

POSIX allows a user to be a member of multiple groups.
The POSIX.1e model allows access if any one of the
groups that the user belongs to, is allowed access. In
contrast, rich-acl ACEs are processed in order. If the
requested access mask bit matches the access mask bit
present in a DENY ACE, then the access is denied. Each
ACE is processed until all the bits of the requested ac-
cess mask are allowed. This implies that when mapping
a POSIX ACL to rich-acl we need to impose an order-
ing constraint on ACEs, such that ACEs which ALLOW
access to any group must preceed ACEs which DENY
access to any group.



2010 Linux Symposium • 29

5.3 OTHER vs EVERYONE@ ACEs

One of the major differences between the POSIX.1e
model and the rich-acl model is that the rich-acl
EVERYONE@ includes both user and group classes,
whereas the POSIX.1e OTHER class excludes user and
group classes. When mapping a POSIX.1e ACL to a
rich-acl, the OTHER ACE will be mapped to a trailing
ALLOW EVERYONE@ ACE, but to limit it’s effect that
ACE may need to be preceeded with one or more DENY
ACEs which deny some access to specific groups.

5.4 Permissions which are always enabled

The NFSv4 ACL model has some permission bits which
control actions which are always allowed under POSIX,
such as ACE4_READ_ATTRIBUTES for reading file
attributes ACE4_READ_ACL for reading the ACL itself.
To limit impact on the Linux code (for example, by in-
troducing new error cases in complex and critical code
paths) and on existing POSIX applications we have cho-
sen not to enforce these permission bits in the rich-acl
model. In line with our design goals, ACEs which men-
tion these permission bits will be accepted and stored,
but the permission bits will have no effect.

One effect of this choice is that the NFS server will
successfully complete a SETATTR operation which sets
an ACL containing an ACE intended to DENY these
permissions, despite not being able to accurately en-
force the intended effect of the ACE. Such behaviour
is prohibited by language in the NFSv4.1 RFC [6],
which specifies that the NFS server must return the
NFS4ERR_ATTRNOTSUPP error in this case.

Our experiments show that it is very easy for a user us-
ing the Windows permission editor GUI to set such an
ACE, as an unintended side effect of the common id-
iom of denying another user the ability to read file data.
This is due to the editor having “basic” and “advanced”
modes; in the basic mode the user is presented with
abstracted permissions like Read which are amalgams
of multiple underlying permissions. So if our imple-
mentation were to strictly obey the RFC then Windows
users would be unnecessarily inconvenienced and pos-
sibly Windows applications might be broken.

5.5 Sticky bit and capabilities

When describing the POSIX model above, we did not
mention some of the more complex corners of the

model. To meet our design goal of preserving ex-
pected POSIX behaviour, the rich-acl permission algo-
rithm needs to take these into account.

The POSIX sticky(t) bit is used in the file mode of a di-
rectory to change the permission check for deleting files
in the directory. It is usually employed to allow multi-
ple users to share the /tmp directory in such a way that
each user can delete only her own files. Such behaviour
could be approximated with a well designed ACL on the
/tmp directory; however our design goal meant that we
need to preserve the behaviour of the sticky bit regard-
less of the presence of ACLs. A further reason is the
security risk involved with perturbing the behaviour of
/tmp.

POSIX defines capabilities CAP_DAC_OVERRIDE and
CAP_DAC_READ_SEARCH which allow privileged
processes to gain access regardless of the results of an
access control check (with some limits). Another ca-
pability, CAP_FOWNER, allows privileged processes to
gain access normally allowed only to the owner of an
object and not subject to the POSIX DAC controls. Of
course, CAP_FOWNER interacts with the implementa-
tion of the sticky bit.

5.6 Migration

Many filesystems using POSIX ACLs are already de-
ployed. Therefore, in order to enable rich-acl on
an existing Linux file system, we need to provide a
mechanism for migrating the filesystem from existing
POSIX.1e ACLs to rich-acl ACLs.

The current design has a two-step conversion process:

• In the first step, the kernel filesystem code con-
structs a temporary rich-acl ACL on the fly when
an ACL on a filesystem object is required (for
a permissions check or an xattr fetch), and the
filesystem has the richacl option enabled with
tunefs, and the object has no rich-acl ACL
stored, and the object has a POSIX.1e ACL stored.
Once the richacl option is enabled, objects in
the filesystem appear to have both a POSIX.1e
ACL and a functionally equivalent rich-acl ACL.

• The converted ACL is discarded after use, and not
written back to the filesystem object. Hence we
need a second step to complete the conversion: the



30 • Implementing an advanced access control model on Linux

setrichacl utility reads the temporary rich-acl
from the xattr and writes the same bytes back to
the xattr, causing the filesystem to make the rich-
acl permanent on disk. As a side effect of setting
the rich-acl xattr, the kernel deletes the POSIX.1e
ACL xattr.

The advantage of this technique is that the filesystem
is immediately available with functioning rich-acls after
the richacl option is enabled without requiring any
modification of the on-disk metadata. This also allows
experimentally enabling rich-acls on a filesystem in or-
der to test application compatibility, enabling rich-acls
on a readonly filesystem, and more easily fine-tuning
the conversion algorithm used in the user-space utility
used if needed.

Note that migrating a filesystem back from rich-acls to
POSIX.1e ACLs is not supported once the rich-acls are
made permanent on disk, as converting in that direction
is usually lossy.

6 Open Issues / Future Work

Rich-acls are usable today by kernel developers and
early adopters, but there is work remaining to be done.

• Use the userspace rich-acl library to enhance the
Samba server to store and retrieve rich-acl ACLs
(enforcement is done in the server-side backing
filesystem, not in Samba code). The conversion be-
tween the rich-acl userspace in-memory format and
the CIFS wire format is much simpler than with
POSIX.1e ACLs. This could be based on the exist-
ing SGI [9] patch.

• Use the kernel rich-acl library to enhance the smbfs
client to store and retrieve rich-acl ACLs.

• The ls program should indicate those filesystem
objects which have rich-acls, for example by show-
ing a + sign.

• The find program should be aware of ACLs, at
the very least by providing a predicate which tests
whether an object has a rich-acl. Even better would
be predicates to test more subtle effects of rich-
acls.

• The setrichacl utility should be updated to
provide a convenient one-line command to per-
form the second step in the process of migrating a
filesystem from POSIX.1e ACLs to rich-acl ACLs.
In this mode it would traverse the filesystem tree,
fetching the rich-acl xattr and setting it back again,
causing the rich-acl ACL to become permanent on
disk. Currently the program must be invoked twice
per file or directory.

• The GNOME and KDE desktops need GUI appli-
cations written to allow users to display and edit
rich-acls on filesystem objects without resorting to
the command-line interface.

• The issue of user identity is not completely re-
solved. Linux, NFSv4 and Windows all use dif-
ferent unique identifiers for users. Rich-acls use
Linux user ids, which require mapping to and from
Windows SIDs or NFSv4 principals on demand.
The mechanisms for such mappings can be awk-
ward and slow. It may be useful to investigate stor-
ing SIDs and principals in the filesystem.

• It might be useful to implement Windows/NFSv4
SACLs and the AUDIT and ALARM ACE types.

• The Linux kernel NFSv4 server places a smaller
limit on the maximum size of NFSv4 ACLs than
does either the rich-acl implementation or the
NFSv4 standard. Fixing this properly requires sig-
nificant surgery to the NFSv4 XDR code.

• The setrichacl utility does not yet perform
Automatic Inheritance.

• The POSIX API does not provide an interface for
an application to atomically create a file or other
filesystem object with a given set of extended at-
tributes; this needs to be performed as two separate
actions. Both the CIFS and NFSv4 protocols do
however provide such an ability. This creates a race
condition where a filesystem object may briefly
have an unintended ACL and be less secure than
the application expected. Such an interface could
be provided to allow the Samba server to avoid the
race.

• The POSIX access function and the NFSv4
ACCESS operation could be enhanced to allow a
Rich-acl-aware application to test for more fine-
grained access types.



2010 Linux Symposium • 31

• Windows Vista introduced a feature that allows to
deny file owners the Read Permissions and Change
Permissions permissions which they are otherwise
implicitly granted [4]; support for this has not been
implemented, yet.

7 Conclusion

The demand for improved interoperability in modern,
mixed-platform environments is increasing over the
years. On UNIX-like systems, the most widely avail-
able kind of ACLs is POSIX ACLs, and they will remain
in that role for some time to come. Still, POSIX ACLs
have proven unsuitable for addressing the interoperabil-
ity challenges we are facing today.

In this paper we have discussed the many goals that
a better, more interoperable ACL model should meet.
The proposed new model meets those goals. A lot of
work still remains to be done at all levels until end users
will be able to reap the benefits, but all the key building
blocks are there already.

8 Acknowledgements

The authors would like to thank IBM, Novell, and SGI
for supporting this work and its predecessors at various
times. We’re also grateful for technical support from
various members of the NFS Working Group, and the
NFS and CIFS communities. David Disseldorp has re-
viewed this paper.

Legal Statement

Copyright c© 2010 IBM. Copyright c© 2010 Novell, Inc.
Copyright c© 2010 Greg Banks.

This work represents the view of the authors and does not
necessarily represent the view of IBM or Novell or Evostor.

IBM and the IBM logo are trademarks or registered trade-
marks of International Business Machines Corporation in the
United States and/or other countries.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

This document is provided “AS IS,” with no express or im-
plied warranties. Use the information in this document at
your own risk.

References

[1] IBM Corp. Working with filesystems using
NFSV4 ACLs. http://www.ibm.com/
developerworks/aix/library/
au-filesys_NFSv4ACL/index%.html.

[2] Microsoft Corp. File and folder permissions.
http://technet.microsoft.com/
en-us/library/cc732880.aspx.

[3] Microsoft Corp. How security descriptors and
access control lists work.
http://technet.microsoft.com/
en-us/library/cc781716.aspx.

[4] Microsoft Corp. Security Identifiers (SIDs) new
for Windows Vista. http:
//technet.microsoft.com/en-us/
library/cc749445%28WS.10%29.aspx.

[5] IETF Network Working Group. RFC 3530:
Network File System (NFS) version 4 protocol.
http:
//tools.ietf.org/html/rfc3530.

[6] IETF Network Working Group. RFC 5661:
Network File System (NFS) version 4 minor
version 1 protocol. http:
//tools.ietf.org/html/rfc5661.

[7] The Open Group. Portable Operating System
Interface.
http://www.unix.org/version3/.

[8] The Open Group. What could have been IEEE
1003.1e/2c. http:
//wt.tuxomania.net/publications/
posix.1e/download.html.

[9] Silicon Graphics Inc. Native NFSv4 ACLs for
Linux XFS & NFS. http://oss.sgi.com/
projects/nfs/nfs4acl/.



32 • Implementing an advanced access control model on Linux

[10] Sun Microsystems Inc. Solaris ZFS
administration guide. http://dlc.sun.
com/pdf/819-5461/819-5461.pdf.

[11] Aneesh Kumar K.V. Rich-acl e2fsprogs patch.
http://kernel.org/pub/linux/
kernel/people/kvaneesh/richaclv1/
e2fsprogs/%.

[12] Aneesh Kumar K.V. Rich-acl kernel git repo.
http://git.kernel.org/?p=linux/
kernel/git/kvaneesh/
linux-richacl.git;a=%summary.

[13] Aneesh Kumar K.V. Rich-acl userspace git repo.
http://git.kernel.org/?p=fs/acl/
kvaneesh/acl.git;a=summary.

[14] Novell, Inc. Netware 6 trustee rights: How they
work and what to do when it all goes wrong.
http:
//support.novell.com/techcenter/
articles/ana20030202.html.

[15] W. Richard Stevens. Advanced Programming in
the UNIX(R) Environment. Addison-Wesley, June
1991.



Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


