
From Fast to Predictably Fast

Dominic Duval
Red Hat Inc.

dduval@redhat.com

Abstract

Many software applications used in finance, telecom-
munications, the military, and other industries have ex-
tremely demanding timing requirements. Forcing an ap-
plication to wait for a few extra milliseconds can cause
vast sums of money to be lost on the stock markets, im-
portant phone calls to be dropped, or an industrial weld-
ing laser to miss its target. Highly specialized realtime
operating systems have historically been the only way
to guarantee that timing constraints would always be re-
spected.

Several enhancements to the Linux kernel have recently
made it possible to achieve predictable, guaranteed re-
sponse times. The Linux kernel is now, more than ever
before, well equipped to compete with other realtime
operating systems. However, applications may still need
to be modified and adjusted in order to run predictably
and fully benefit from these realtime extensions. This
paper describes our findings, experiences and best prac-
tices in reducing latency in user-space applications. This
discussion focuses on how applications can optimize the
realtime extensions available in the Linux kernel, but is
also relevant to any software developer who may be con-
cerned with application response times.

1 Before we start

It is worth emphasizing that no special libraries or ap-
plication programming interfaces are required under the
realtime kernel in order to use the real time capabilities
discussed in this document. The CONFIG_PREEMPT_
RT realtime patch, as opposed to other realtime initia-
tives in the Linux community, follows standard Posix
API’s. The realtime patch only affects code in the ker-
nel: user space applications should not notice any dif-
ference other than better determinism in how they per-
form. Consequently, there is no need for applications
to invoke special libraries in order to benefit from the
realtime kernel.

Some programming techniques, however, are known to
create large sources of latencies in applications. This
could cause a realtime application to lack the level of
determinism that is required from it and to behave un-
predictably to some degree. These techniques and habits
are precisely the ones we will address in this document
and for which alternative methods will be discussed.

2 Testing the system for realtime capabilities

Any environment from which realtime capabilities are
expected should first make sure that the underlying sys-
tem meets realtime requirements. This involves making
sure that:

• The application may lock memory

• The scheduler API is available and the applica-
tion is allowed to set the scheduler to a non-default
scheduling strategy such as SCHED_FIFO

• The kernel was compiled with CONFIG_
PREEMPT_RT=y

• Both user space and kernel space support robust
mutexes

• High Resolution Timers are available

• Clock resolution is high enough to meet the appli-
cation’s requirements

All these tests could be executed by the application
itself, in user space. Alternatively, a tool named
rtcheck is also available for that purpose. rtcheck
consists of a simple application that automatically con-
ducts the tests listed above and returns 0 if they all suc-
ceeded. A non-zero value will be returned if any of the
following tests fails:

• 79 •

80 • From Fast to Predictably Fast

• Memory Lock. Verify ability to lock 32K of mem-
ory in user space and ensure not limits are set by
default for memory locking.

• Scheduler. Exercise the scheduler API to deter-
mine if it supports real-time; namely setting the
scheduler to SCHED_FIFO. If it takes this setting,
we know we have this capability. We can imply
from this test that SCHED_RR can also be set.

• CONFIG_PREEMPT_RT. Look for the presence
of /proc/loadavgrt. If found, we can de-
duce that the system is running with CONFIG_
PREEMPT_RT=y.

• Robust Mutexes: Do lookups on a few symbols in-
dicative of user space support of robust mutexes
and then do test calls of these symbols to confirm
kernel support of robust mutexes.

• High Resolution Timers. Nanosleep is
timed using clock_nanosleep() and
clock_gettime() calls. The value is com-
pared against a threshold large enough to be
infeasible on a system using hrtimers and small
enough to be too fine-grained for a system not
using hrtimers. The threshold currently being used
is 20us.

• Clock Resolution. Using clock_getres(),
make sure the clock resolution is under 200us.

3 Setting Scheduling Policies Right

One of the most basic attribute of a realtime operating
system is the ability to run processes and threads with
different realtime policies and priorities. This mecha-
nism is strictly enforced by the scheduler of a realtime
kernel. Correctly setting priorities for all threads of an
application involves first of all evaluating what parts of
the application need to behave in a realtime way and
which don’t have to. Tasks that are best left to regular
(i.e., SCHED_OTHER) or low priority threads include:

• Interaction with devices for which the speed is con-
sidered unpredictable (i.e., storage devices)

• Dynamic memory allocation

• Filesystem operations

• Logging

It does, however, make sense to set a realtime prior-
ity for any other task that requires predictability. In
this case, the first step involves setting the schedul-
ing policy using the sched_setscheduler() sys-
tem call. We typically need to assign realtime threads
the SCHED_FIFO or SCHED_RR policy here. Threads
running with realtime scheduling policies (also called
scheduling classes) are fairly different from others run-
ning under the regular SCHED_OTHER policy:

• They always preempt regular threads (assuming
they’re ready to run and not blocked).

• They do not expire. There’s no such thing as a time
slice for real time processes (unless two or more
processes rely on SCHED_RR)

• They will completely starve other threads of lower
priority, realtime or not, if they don’t go to sleep.

3.1 Setting priorities right

The last parameter in the sched_setscheduler()
system call consists in a priority ranging from 0 to 99,
99 being the highest possible priority. This value should
be the result of careful analysis of your realtime appli-
cation and how threads interact. Typical priorities look
as follows:

Real Time Priorities
99 Watchdog and migration threads
90-98 High priority realtime application threads
81-89 IRQ threads
80 NFS
70-79 Soft IRQs
2-69 Regular applications
1 Low priority kernel threads

It is worth emphasizing from the example above that
interrupts have been assigned priorities (usually around
85) to handle work resulting from the use of a network
interface, for instance. One can always reorder those
priorities. To make sure network traffic will get priori-
tized at the driver level, for example, it would be possi-
ble to adjust the realtime priority of the corresponding
IRQ thread in such a way that it would preempt other
high priority realtime threads. This scheme provide
complete control over what should be executed first.

Setting the scheduling policy and priority involves in-
voking the sched_setscheduler() call like this:

2009 Linux Symposium • 81

struct sched_param sp;
int policy = SCHED_FIFO
sp.sched_priority = 70;
if (sched_setscheduler(0,policy,&sp)) {

perror("Could not set policy and priority");
exit(1);

}

Alternatively, a tool such as rtctl can be used to set
priorities manually at runtime or automatically when the
system boots up.

4 Avoiding Page Faults

Performance associated to memory access can be af-
fected by two factors: pages of memory being swapped
out to disk and memory allocation. By default, Linux
does not provide any guarantees about whether mem-
ory allocated by an application will remain in physical
memory or get swapped out. Memory that ends up on
the swap device may eventually need to be copied back
to physical memory in order to be accessed, thus caus-
ing a major page fault. This is an extremely large source
of latency in applications since that delay depends es-
sentially on the speed of the storage device, which is
usually a few orders of magnitude slower than physical
memory accesses (milliseconds vs nanoseconds).

Likewise, Linux does not guarantee that memory ac-
tually gets allocated at all in physical RAM. In fact,
memory allocated on the stack or via functions such
as malloc() is usually not immediately allocated in
RAM: pages of physical memory can be allocated on the
fly whenever the application writes data to that memory.
This mechanism relies on minor page faults. While mi-
nor faults can be dealt with relatively quickly, they can
also introduce delays in the application.

In order to address these sources of latency we rec-
ommend making use of the mlockall() system call,
which ensures that memory allocated on behalf of a pro-
cess never causes a page fault. mlockall() supports
two flags:

• MCL_CURRENT: Lock all pages which are cur-
rently mapped into the address space of the pro-
cess.

• MCL_FUTURE: Lock all pages which will become
mapped into the address space of the process in the
future. These could be for instance new pages re-
quired by a growing heap and stack as well as new
memory mapped files or shared memory regions.

For most applications both flags are needed: this will
make sure no present or future allocated memory areas
cause any major page faults, i.e.:

if (mlockall(MCL_CURRENT|MCL_FUTURE) == -1) {
perror(Could not lock memory.’’);
exit(1);

}

Make sure you have an idea what the memory consump-
tion of your application should look like before you use
mlockall(). All pages of memory belonging to the
process making a call to mlockall() will be locked
in physical memory. That includes code, data and li-
brary contents. Locked memory can be unlocked if
needed using the munlockall() system call.

For large applications or systems with limited resources,
this system call can easily cause memory starvation
issues on the entire system. As an alternative to
mlockall(), applications that require more flexibil-
ity may rely on the mlock() system call. In this case,
specific memory regions may be locked and unlocked
later on with munlock().

Furthermore, if the application does not get invoked by
the superuser you will need to set the appropriate pro-
cess capability, i.e., CAP_IPC_LOCK. If set, no lim-
its will be placed on the amount of memory the pro-
cess can lock. Similarly, for unprivileged processes the
RLIMIT_MEMLOCK limit can be set instead in order
to define the maximum amount of memory that can be
locked.

You may verify default settings by running the
rtcheck utility discussed previously in this document
or by invoking

$ ulimit -l

Modifying the RLIMIT_MEMLOCK value typically in-
volves assigning the user running the application to
the realtime group. Limits listed under /etc/
security/limits.d/realtime.confwill then
automatically be applied next time this user logs in.
Such a configuration file may look as follows:

@realtime soft cpu unlimited
@realtime - rtprio 100
@realtime - nice 40
@realtime - memlock unlimited

82 • From Fast to Predictably Fast

Similarly, limits may be set programmatically by the su-
peruser with the setrlimit() system call. In the
following example we’re setting limits for the current
process to unlimited:

#include <sys/resource.h>
struct rlimit rlim = {RLIM_INFINITY,

RLIM_INFINITY};
setrlimit(RLIMIT_MEMLOCK, rlim);

4.1 Pre-faulting the stack

The stack of a process is another potential source of
page faults to be avoided: whenever a local variable gets
defined or a function gets executed, the stack grows by a
few extra bytes. At some point (i.e., when we run out of
physical memory in a stack page) this will trigger a mi-
nor page fault and allocate one more page of RAM. This
can obviously cause some latency that’s not desirable in
the context of a realtime application. As a solution, we
recommend pre-faulting the stack when the application
or the thread get started. This can be done as follows:

#define MAX_STACK_SIZE (128*1024)
void prefaulter(void) {

unsigned char dummy[MAX_STACK_SIZE];
memset(&dummy, 0, MAX_STACK_SIZE);

}

Note that the main challenge here is to determine ahead
of time what the maximum stack usage in the appli-
cation will be. A practical way to determine the stack
size is to pre-fault the entire stack to a known value at
startup time and determine, when the application gets
terminated, which pages of the stack got modified. This
iterative technique is not without its limits but the result
can at least be used as a starting value in the example
listed above.

4.2 Working around malloc’s unpredictability

glibc’s malloc function comes with a default set of
tunings that works well in the common (non realtime)
case, but lacks the predictability expected from real-
time applications. Fortunately, a function known as
mallopt()makes it possible to eliminate many issues
associated with malloc().

Calls to malloc and free are not always necessarily
translated to a corresponding call to sbrk(). In fact,

malloc() usually makes use of a set of preallocated
subheaps in order to reduce memory fragmentation and
speed up memory allocation. This also means that any
application calling free() will use sbrk() to give
memory back to the system. We obviously don’t want
that to happen in the context of a realtime application.
The mallopt() function, in conjunction with the M_
TRIM_THRESHOLD flag lets us modify this behavior
and completely disable the memory reclaim:

if (!mallopt(M_TRIM_THRESHOLD, -1) {
return 1;

}

malloc uses mmap() by default in order to allocate
any block of memory larger than 128k. This can create
undesirable situations where a call to free will result
in the munmap system call being invoked, thus giving
back locked pages to the kernel. Since we want to keep
those locked pages in our address space, we need to dis-
able the use of mmap() in malloc() context:

if (!mallopt(M_MMAP_MAX, 0)) {
return 1;

}

4.3 Real time dynamic memory allocator

As we have just seen, allocating memory dynamically
is generally considered incompatible with the require-
ments of a realtime system. Memory locking is widely
viewed as the only alternative to this problem.

There are cases, however, where memory locking just
is not practical. There are applications for which we
just cannot predict the memory footprint. We must thus
come up with a solution that makes it possible to rely
on a dynamic allocator that offer guaranteed response
times. The Two-Level Segregate Fit (TLSF) allocator
is a constant cost memory allocator that can be used in
these cases. While it cannot avoid major page faults
(disabling swap may thus be required), it does pro-
vide guarantees about the time required to allocate any
amount of memory: TLSF operates with O(1), i.e. con-
stant, cost.

4.4 Dynamic library preloading

Linux uses a technique known as “lazy linking” in order
to load libraries into memory at execution time. This

2009 Linux Symposium • 83

static bool dumpPageFaults(void) {
bool l_PageFaultsDetected = false;
static bool ls_Init = false;
static struct rusage Previous;
struct rusage Current;

getrusage(RUSAGE_SELF, &Current);
int a_NewMinorPageFaults = Current.ru_minflt - Previous.ru_minflt;
int a_NewMajorPageFaults = Current.ru_majflt - Previous.ru_majflt;
Previous.ru_minflt = Current.ru_minflt;
Previous.ru_majflt = Current.ru_majflt;

if (ls_Init) {
if ((a_NewMinorPageFaults > 0) || (a_NewMajorPageFaults > 0)) {

printf("New minor/major page faults: %d/\d{\n",
a_NewMinorPageFaults,
a_NewMajorPageFaults);

l_PageFaultsDetected = true;
}

}
ls_Init = true;
return l_PageFaultsDetected;

}

Figure 1: An example of how to monitor page faults.

method essentially means that a library to which an ex-
ecutable is linked will not be loaded in RAM unless a
call is made to a component of that library. Page faults
can therefore be avoided in the common case where no
calls are made to some parts of the library and, most
importantly, physical memory usage can be minimized.

Applications that link and use libraries will likely cause
page faults. As we have seen in the last section, page
faults are detrimental to the application’s responsiveness
and need to be avoided in realtime environments. This
means we need a way to load libraries in advance, i.e.,
whenever the application gets started.

Lazy linking can be controlled by the environment vari-
able LD_BIND_NOW. The loader reads this variable in
order to determine whether it should load libraries in
memory right now (LD_BIND_NOW) or when it will ac-
tually be invoked (also known as lazy linking). Setting
this environment variable can be done on the command
line with:

$ export LD_BIND_NOW=1

Alternatively, lazy linking can be configured on the ex-
ecutable file itself with the -z linker option at compile

time:

$ gcc app.c -o app -Wl,-z,lazy

As a result, all dynamic libraries will be automatically
loaded when the application gets invoked.

4.5 Monitoring page faults

As we have seen in the previous sections, page faults are
generally one of the largest sources of latency in real-
time applications. Minimizing or eliminating them will
help you achieve better latency results. In order to val-
idate the strategies documented in this whitepaper we
recommend using the getrusage() function defined
in resource.h:

int getrusage(int who, struct rusage

*usage);

The first parameter is generally RUSAGE_SELF: this
will let you access statistics for the current process,
which includes all its threads but excludes any child pro-
cess that may have been created before. The second ar-
gument is a reference to a data structure that contains a
number of statistics related to the current process:

84 • From Fast to Predictably Fast

struct rusage {
[...]
long ru_minflt;
long ru_majflt;
[...]
};

What we really want to focus on here are the ru_
minflt and ru_majflt fields, which report the
number of minor and major faults since the process
started, respectively. An increasing number of minor
and major faults in a realtime application should be a
concern only after the application has been fully initial-
ized: at that point very few operations should generate
faults.

As an example, an application can keep track and report
page fault statistics by implementing something similar
to what’s listed in Figure 1 above.

5 Efficient Locking

The realtime patch is known to expose lock-related bugs
more easily due to the fine grained nature of the realtime
kernel. These bugs are not necessarily new in user space
applications: they were typically just left unnoticed due
to the less dynamic behavior of the standard kernel (this
is particularly true for non-SMP systems). Solving lock-
ing issues should first involve analyzing which locks are
used in the application and ensuring that lock contention
won’t everbecome a problem as the application scales.

Other steps can also be taken in order to improve lock
efficiency in a user space application running on the re-
altime kernel:

• Never use SysV semaphores in order to protect
shared data resources in your application. These
mechanisms are not designed and implemented to
support priority inheritance, which is a requirement
for any realtime system. Pthread mutexes should
be used instead.

• Pthread mutexes should be given the PTHREAD_
PRIO_INHERIT attribute in order to turn priority
inheritance on.

• Rely on mutex priority ceilings if priority inheri-
tance can’t be used.

• If a counting (i.e., non-binary) semaphore is re-
quired in the application, implement it using con-
dition variables.

6 Priority Inversion

Extra latency can occur when threads with different pri-
orities share a common resource that’s protected by a
lock. Priority inversion happens when a high priority
thread tries to obtain exclusive access to a resource that’s
already locked by a lower priority thread. This phe-
nomenon is expected in threaded applications and can-
not be avoided in most cases.

A worst scenario (defined as unbounded priority inver-
sion) would consist of three threads A (high priority),
B (medium priotiy) and C (low priority), all relying on
a common resource. Imagine a situation where thread
C starts first and locks the resource. Thread A (which
is of higher priority) then wakes up, preempts thread C
and tries to access the common resource. Since the re-
source is already locked, thread A will go to sleep. If
thread B wakes up at this point it will delay execution of
thread C since it runs with a higher priority. End result is
that thread C is delaying thread A (which does not make
sense priority-wise) and thread B is not giving thread C
a chance to complete its work. This unbounded priority
inversion situation will persist as long as thread B keeps
executing, which has some obvious latency effects on
thread A.

Two mechanisms are available to help with this situa-
tion:

• Priority inheritance

• Priority ceilings

6.1 Priority Inheritance

With priority inheritance, a low priority thread that holds
a mutex can automatically have its priority increased in
order to complete its work faster and let a higher priority
thread gain access to the lock more quickly. End result is
better response time for high priority threads and better
predictability.

It is worth noting here that recompiling the application
may be required in order to benefit from priority inher-
itance. Since this feature depends on a synchroniza-
tion mechanism called pi futexes, applications that were
compiled under an older glibc release will not get access
to the corresponding feature.

2009 Linux Symposium • 85

6.2 Priority Ceilings

The validity of priority inheritance as a way to mitigate
problems associated with priority inversion has histori-
cally been a debate in the realtime systems community.
Another way to address this unbounded priority inver-
sion problem is to design the application in such a way
that low priority threads get a temporary boost when
they acquire a resource. This makes it impossible for
other threads to preempt the one that’s currently hold-
ing the resource. Moreover, this can minimize the time
spent while the resource is locked since the thread that
holds it can now run at a higher priority. This requires
use of some functions available in the pthread interface:

#include <pthread.h>

pthread_mutexattr_setprotocol(&attr,
PTHREAD_PRIO_PROTECT)
pthread_mutexattr_setprioceiling(&attr,
PTHREAD_PRIO_PROTECT)

7 Scheduling

The sched_yield() system call has historically
been very popular with developers preoccupied with ap-
plication latency. This function used to make it possible
for a process to give up its share of CPU time and let the
scheduler determine what should be executed next. The
idea was that without calls to sched_yield(), the
process would consume its CPU time slice and even-
tually get replaced with another process. This would
obviously takes a relatively long period of time to com-
plete and the process would be ready to run again after
sched_yield() would return.

There are challenges associated with sched_
yield() usage: this system call gives very little
visibility to the scheduler about what the application is
expecting to do next. Moreover, POSIX is extremely
vague about what should happen with the calling
process.

Use of the sched_yield() system call is now dis-
couraged under the real time kernel. The new Com-
pletely Fair Share (CFS) scheduler was designed in such
a way that sched_yield() should not be needed in
any case. In fact, sched_yield() now accomplishes
essentially nothing if it’s called from a realtime process.
Moreover, based on our experience we can conclude that
in most cases we can actually re-architect applications

that depend on sched_yield() in such a way that
pthread_mutex_* calls or condition variables can
replace it. These methods work much more nicely with
the realtime kernel, and provide more visibility to the
scheduler. It can thus make better decisions.

Under normal circumstances, on a system running the
realtime kernel, using sched_yield() should not
result in better results. For instance, in the case of
two CPU-bound programs we extracted the ps output
below. We can see that the two processes were allo-
cated the same CPU time even though one of them,
loop_yield, was making sched_yield() calls in
every loop:

PID USER PR NI S %CPU TIME+ COMMAND
15021 dd 20 0 R 50.1 1:42.33 with_yield
15022 dd 20 0 R 50.1 1:42.96 without_yield

There are very rare cases where application develop-
ers might actually need true sched_yield() capa-
bilities. It is possible, with the realtime kernel, to turn
sched_yield() into a more aggressive mode that
will move the process that makes the call at the very
end of the rbtree. This behavior is close to what is
available under the standard kernel. With this sysctl
turned on (kernel.sched_compat_yield=1), a
process such as loop_yield would end up never get-
ting invoked on the CPU if it was competing against an-
other process that kept the CPU busy with no sched_
yield() calls:

PID USER PR NI S %CPU COMMAND
15044 dd 20 0 R 99.5 0:25.94 without_yield
15046 dd 20 0 R 0.3 0:00.06 with_yield

8 Signals

Relying on signals to execute specific code in a realtime
application is generally considered a bad idea. The code
paths involved in the Linux kernel vary depending on the
interface used: it is thus very hard to make this operation
deterministic.

A better alternative to signals is to use POSIX Threads
to distribute the workload and use condition variables,
mutexes or barriers to let them communicate together.
This method also provides much greater visibility to the
scheduler, which can then make the right decisions to
prioritize tasks.

86 • From Fast to Predictably Fast

If eliminating signals is not possible at all, we suggest
creating one or multiple threads which will be blocking
on the sigwait() system call. Assuming all other
threads in the application have blocked signals, the sig-
nal handler thread will be the only one processing the
corresponding code. This can lead to better signal re-
sponse time and will make the entire application more
deterministic by eliminating interruptions due to sig-
nals.

9 ioctls

Some applications make heavy use of the ioctl()
system call. This is generally used to acquire control
data or statistics from hardware devices. One aspect
about ioctl() is of critical importance for realtime
applications: the code executed in the kernel is invoked
by default while the Big Kernel Locki (BKL) is held.
The BKL is required in a number of different contexts in
the kernel. Executing the ioctl() system call can end
up delaying other threads or processes, and ultimately
produce a large source of latency in the application.

A special unlocked version of the ioctl() system call
may be provided by some drivers. Whenever that is
true, any ioctl() call will automatically rely on the
unlocked version. For that reason, unlocked ioctls
are generally considered safe for use in realtime envi-
ronments. Do keep in mind, however, that the ioctl
behavior (and the amount of time it takes to return) is ul-
timately dependent on the driver implementation, where
some amount of locking can also happen and where la-
tency may be introduced.

Developers of applications depending on the ioctl()
system call can address latency issues by first assessing
the delay caused by ioctl() in the application itself.
If that delay is not acceptable, we recommend:

1. Verifying if a version of the driver contains a BKL-
free ioctl implementation. If so, use it!

2. Wrap any ioctl() invocation around a low-
priority thread of execution that will not affect the
latency-sensitive parts of the application.

10 References

Arnaldo Carvalho de Melo. Earthquaky kernel
interfaces. http://vger.kernel.org/~acme/
unbehaved.txt. 2008.

Bill O. Gallmeister. POSIX.4 Programmers Guide -
Programming for the Real World. O’Reilly and
Associates, 1995.

The GNU C Library - Memory Allocation
http://www.gnu.org/s/libc/manual/
html_node/Memory-Allocation.html

Philippe Gerum, Karim Yaghmour, Jon Masters, Gilad
Ben-Yossef. Building Embedded Linux Systems.
O’Reilly, 2008.

Real-Time Linux Wiki
http://rt.wiki.kernel.org

Red Hat Enterprise Linux Real Time Wiki
http://rt.et.redhat.com

rtcheck
ftp://ftp.redhat.com/pub/redhat/
linux/enterprise/5Server/en/RHEMRG/
SRPMS/rtcheck-0.7.4-2.el5rt.src.rpm

TLSF: Memory Allocator for Real-Time
http://rtportal.upv.es/rtmalloc/

Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

