
Fixing PCI Suspend and Resume

Rafael J. Wysocki
University of Warsaw, Faculty of Physics, Hoża 69, 00-681 Warsaw

rjw@sisk.pl

Abstract

Interrupt handlers implemented by some PCI device
drivers can misbehave if the device they are supposed
to handle is not in the state they expect it to be in. If this
happens, interrupt storm may occur, potentially leading
to a system lockup. Unfortunately, if the device in ques-
tion uses shared interrupts, this can easily happen during
suspend to RAM, after the device has been put into a low
power state. It is even more likely that this will happen
at resume time, before the device is brought back to the
state it was in before the suspend. On some machines
this leads to intermittent resume failures that are very
difficult to diagnose.

In Linux kernels prior to 2.6.29-rc3 the power manage-
ment core did not do anything to prevent such failures
from happening, but during the 2.6.29 development cy-
cle we started to address the issue. Still, the solution
finally implemented in the 2.6.29 kernel is partial, be-
cause it only covers the devices that support the na-
tive PCI power management and it only affects the re-
sume part of the code. The complete solution, which
has been included into 2.6.30 and which is described
in the present paper, required us to make some rad-
ical changes, including a rearrangement of the major
steps performed by the kernel during suspend and re-
sume. However, not only should it make suspend and
resume much more reliable on a number of systems, but
it should also allow the writers of PCI device drivers to
simplify their code, because some standard PCI device
power management operations will now be carried out
by the core.

1 Introduction

From a computer user’s point of view suspend to RAM
appears to be a relatively simple operation. There is an
event that triggers it, for example a button is pressed
or a laptop lid is closed, and in a few seconds the ma-
chine is put into a state in which power is only provided

to its memory chips in order to preserve their contents.
This state will further be referred to as the memory sleep
state.

Analogously, during resume, after a specific event
which may be pressing of a button, opening a laptop
lid or receiving a magic packet from a network, the sys-
tem is brought from the memory sleep state back to the
working state in a few seconds. The whole operation
does not seem to be very complicated, but at the kernel
level it involves the execution of large amount of code
that is not run in any other circumstances. Moreover, if
one part of this code fails, it usually means that the sys-
tem will not reach the working state again or, even if it
does, its functionality will be adversely affected.

It usually is hard to diagnose such failures, especially
if they happen sufficiently late during suspend or suf-
ficiently early during resume, since in that cases there
is no practical way to get any useful debugging infor-
mation out of the failing machine. Quite often the only
chance to get some insight into the problem is when it
appears as a regression and we are able to identify the
exact change that caused it to appear.

Something like this happened during the 2.6.28 devel-
opment cycle, when resume started to break on one of
the author’s test machines in a reproducible way and it
seemed to be a result of a change of the PCI core code
responsible for allocating PCI resources. It was confus-
ing, because the change in question should not have af-
fected suspend and resume in any way, but in the process
of debugging it Linus Torvalds suggested that it might
be a result of mishandling shared PCI interrupts during
resume. Namely, due to the way in which the major-
ity of PCI device drivers handled suspend and resume,
there was a time window in which an interrupt could ar-
rive before the devices were put into the states they had
been in before the suspend. Then, if one of the involved
interrupt handlers could not cope with this situation, the
system would crash [LINUS1].

• 319 •



320 • Fixing PCI Suspend and Resume

Following this suggestion, we created a patch that made
the PCI power management core code put all devices
supporting the native PCI power management into the
full power state (D0) and restore their standard configu-
ration registers to the pre-suspend state before enabling
the CPU to receive hardware interrupts [PATCH1]. That
indeed made the problem go away on the affected sys-
tem and it was confirmed to fix resume on Linus’ own
machine, so it has been included into the 2.6.29 ker-
nel. Still, the devices that do not support the native PCI
power management might also be affected by the issue
with shared interrupts during resume, and the patch did
not cover the suspend part of the code at all. Thus, we
had to do more to fix the problem completely, but that
turned out to be quite difficult [LINUS2].

The main obstacle was the need to use platform hooks
for changing the power state of PCI devices that did not
support the native power management, because these
hooks could not be executed with interrupts disabled
on the CPU. To overcome it we had to rework the core
kernel’s suspend and resume code so that it prevented
hardware interrupts from reaching device drivers when
PCI devices might not be in the right states without dis-
abling interrupts on the CPU. Moreover, the ACPI spec-
ification1 wants us to put devices into low power states
before calling the platform firmware to prepare itself for
the system power transition and we had to take this into
account as well [ACPI-SPEC]. Consequently, to meet
all of the constraints, we rearranged the major steps
carried out by the kernel during suspend and resume,
which allowed us to develop the complete solution that
is present in 2.6.30.

In what follows we describe the problem in greater de-
tail and show a scenario in which it could manifest it-
self. For this purpose, among other things, we examine
the structure of the kernel’s suspend and resume code,
and explain how it made the observed failures possible.
Next, we present both the partial solution used in 2.6.29
and the final one recently merged into the main kernel
tree. Finally, we discuss the consequences of this for the
authors of PCI device drivers.

2 Description of the problem

To understand the problem and the approach used to fix
it, one needs to know how the kernel’s suspend and re-
sume code works, but that has been presented elsewhere

1ACPI 2.0 or later.

disable non-boot CPUs

disable interrupts

late suspend of devices

plat form enter

platform prepare

set f i rmware waking vector
_PSW (Prepare wake devices)

_PTS (Prepare to Sleep)
_SST (System indictor status)

suspend system devices

regular suspend of devices

Mishandled
interrupts
possible

Figure 1: Suspend code structure (2.6.29).

and we are not going to repeat this entire discussion
[S2RAM]. Still, we need to recall the parts of it the
problem description below is based on.

In the 2.6.29 and earlier kernels there are two phases
of suspending devices. The first of them, that fur-
ther will be referred to as the regular suspend of de-
vices, is carried out right before invoking the plat-
form .prepare() callback which executes the _PTS
global control method on ACPI systems. After
.prepare() has returned, the non-boot CPUs are put
off line2 and interrupts are disabled on the only remain-
ing active CPU. Then, the second phase of suspending
devices, that we will refer to as the late suspend of de-
vices, is performed. Next, the special system devices
called sysdevs, such as the local APIC of the boot pro-
cessor and I/O-APICs, are suspended and the platform
is called to put the system into the memory sleep state
[S2RAM]. The structure of the suspend code in the
2.6.29 and earlier kernels is schematically shown in Fig-
ure 1.

The resume part of the code is organized analogously.
First, sysdevs are resumed right after the platform
firmware has returned control to the kernel. Next, the
kernel carries out the first phase of resuming devices

2This is accomplished with the help of the CPU hotplug infras-
tructure.



2009 Linux Symposium • 321

resume at wake vector

initialize boot CPU

resume system devices

early resume of devices

enable non-boot CPUs

platform f inish

regular resume of devices

_WAK (platform wake-up)

enable interrupts

Mishandled
interrupts
possible

Figure 2: Resume code structure (2.6.29).

that we will refer to as the early resume of devices. After
that, interrupts are enabled on the only active CPU and
the other CPUs are brought back on line. Subsequently,
the platform .finish() callback is run which causes
the _WAK global control method to be executed on ACPI
systems. Then, the kernel starts the second phase of re-
suming devices, that further will be referred to as the
regular resume of devices [S2RAM]. The structure of
the resume code in the 2.6.29 and earlier kernels is
schematically illustrated in Figure 2.

Thus, in principle, every PCI device driver can imple-
ment two suspend callbacks, a regular one, to be called
before the platform .prepare() routine, and a late
one, to be executed with interrupts disabled. It can
also define two analogous resume callbacks, an early
one, to be executed with interrupts disabled, and a regu-
lar one, to be executed after the platform .finish()
callback. However, according to the ACPI specifica-
tion devices should be put into low power state before
the _PTS global control method is run [ACPI-SPEC],
so the vast majority of drivers implement the regular
suspend and resume callbacks only. The late suspend
and early resume callbacks are only provided by a few
drivers for special purposes. Accordingly, during sus-
pend and analogously during resume there is a time in-

terval in which devices may not be operational or even
accessible to their drivers, but the processors can receive
interrupts. Then, interrupt handlers may be invoked,
even if their devices do not generate any interrupts and
if they are not prepared to cope with that situation, the
consequences may be dire [LINUS3]. The time intervals
in which this is possible during suspend and resume are
marked in Figures 1 and 2, respectively, with a vertical
line on the left-hand side.

Of course, a PCI device in a low-power state cannot
generate interrupts. Yet, if that device uses shared in-
terrupts, then its driver’s interrupt handler may be in-
voked as a result of an interrupt generated by one of the
other devices sharing an interrupt vector with it. More-
over, this actually is quite probable, because the sus-
pend and resume callbacks provided by device drivers
are executed sequentially [S2RAM], so it is guaranteed
that one of the devices sharing the interrupt vector will
be suspended earlier and resumed later than the other
ones3. Therefore, if one of these devices is handled by
a driver with an interrupt handler that is not designed
to work correctly even if the device is not in the right
state, things are likely to go wrong. Namely, if the de-
vice that has not been suspended yet or that has already
been resumed generates an interrupt, the other devices’
interrupt handlers will be invoked, and if they fail, the
system is going to crash.

This generally is more likely to happen during resume.
Specifically, while during suspend the devices are ei-
ther fully operational or in low power states, so they
behave more or less in accordance with the drivers’ ex-
pectations, during resume they are usually in D0 (full
power state), but they need not have been initialized
yet. Then, before they eventually get initialized, they
may respond to the drivers’ attempts to access them in
a confusing way. Furthermore, during resume interrupts
may be generated as a result of a chipset glitch or some-
thing similar and that also may confuse interrupt han-
dlers that are not prepared to cope with devices in unex-
pected states.

Certainly, if every interrupt handler had been able to
cope with an already suspended or not yet resumed de-
vice, the problem would not have manifested itself. Un-
fortunately, this evidently is not the case and it would
not have been practical to try to fix all of the affected

3The order of resuming devices is reverse with respect to the
order of suspending them.



322 • Fixing PCI Suspend and Resume

drivers [LINUS2]. For this reason the power manage-
ment core (PM core) code had to be modified to prevent
the problem from happening.

3 Preliminary fix

To fix the problem described in Section 2, we used the
observation that it would not appear during resume if the
standard configuration registers of PCI devices were re-
stored to the pre-suspend state before enabling the CPUs
to receive hardware interrupts. Analogously, during sus-
pend the problem could not happen if devices were put
into low power states after disabling interrupts on the
boot CPU, but this turned out to be more difficult to im-
plement, so we first focused on the resume fix.

To implement it, we had to make the PM core re-
store the standard configuration registers of PCI de-
vices in the early phase of resume, before executing
the early resume callbacks provided by PCI device
drivers. Fortunately, that was not too difficult to achieve,
thanks to the organization of the device resume code.
Namely, the lowest-level resume code4 does not exe-
cute the drivers’ resume callbacks directly [S2RAM].
Instead, it invokes the resume callbacks defined by the
pci_bus_type bus type driver5, which in turn are
responsible for executing the drivers’ callbacks. More
precisely, the pci_bus_type bus type implements a
dev_pm_ops object, called pci_dev_pm_ops, that
points to a set of power management callbacks exe-
cuted by the lowest-level power management code in
various phases of suspend and resume6. In particu-
lar, the pci_pm_resume_noirq() routine is called
during the early resume of devices and it is responsi-
ble for executing the early resume callback provided
by each PCI device driver. Thus, it was sufficient to
make pci_pm_resume_noirq() restore the stan-
dard configuration registers of each PCI device before
executing the early resume callback provided by its
driver, if there was one.

For this purpose, however, we had to ensure the acces-
sibility of the device’s standard configuration registers
before attempting to restore their pre-suspend values.
Of course, in theory, the configuration space of a PCI
device should be accessible in any power state, except

4Located in drivers/base/power/main.c
5Defined in drivers/pci/pci-driver.c
6It also points to several hibernation-specific callbacks, but they

are out of the scope of the present discussion.

for D3cold [PCI-PM]; but in practice it is better to put
all devices into D0 before restoring their configuration
registers. Still, we could not use pci_set_power_
state() to do that, because this function might sleep
and therefore it would not be valid to call it with inter-
rupts disabled.

There are two reasons why pci_set_power_
state() may sleep. First, when changing the power
state of a device from D3 to D0 there is the manda-
tory 10 ms delay, necessary to allow the device to
actually enter the full power state [PCI-PM], and it
is implemented in pci_set_power_state() with
the help of msleep(). Second, pci_set_power_
state() executes a platform callback that in princi-
ple may be necessary to set up some power resources
(e.g. power planes, reference clock) required to power
up the device and this callback may sleep. Thus, dur-
ing the early resume of devices we could only use
the native PCI power management mechanism, im-
plemented in pci_raw_set_power_state(), for
putting devices into D0. Moreover, to be able to
prevent pci_raw_set_power_state() from call-
ing msleep() with interrupts disabled we had to
add a new parameter to it. Accordingly, the func-
tion called pci_restore_standard_config(),
shown in Figure 3, was introduced and pci_pm_
resume_noirq() was modified to call it before exe-
cuting the device driver’s resume callback [PATCH1].

Since the configuration spaces of PCI devices were
going to be restored during the early resume, it was
necessary to make sure that they would be saved dur-
ing suspend. For this reason pci_pm_suspend()
was modified to execute pci_save_state() be-
fore returning to the caller. However, it could not
do that unconditionally, because many device drivers
saved the PCI configuration spaces of their devices by
themselves before putting the devices into low power
states (usually D3hot). Of course, in that case, the
contents of PCI configuration registers saved by the
driver before the device was put into the low power
state should not be replaced by their contents saved
by pci_pm_suspend() when the device was al-
ready in that state. Therefore, the state_saved
flag was added to the pci_dev structure and pci_
save_state() was changed to set this flag on ev-
ery execution, so that pci_pm_suspend() could use
it do decide whether or not to save the PCI config-
uration registers of given device. This flag was also



2009 Linux Symposium • 323

int pci restore standard config(struct pci dev ∗dev)
{

pci power t prev state;
int error;

pci update current state(dev, PCI D0);

prev state = dev−>current state;
if (prev state == PCI D0)

goto Restore;

error = pci raw set power state(dev, PCI D0, false);
if (error)

return error;

/∗
∗ This assumes that we won’t get a bus in B2 or B3
∗ from the BIOS, but we’ve made this assumption
∗ forever and it appears to be universally satisfied.
∗/
switch(prev state) {
case PCI D3cold:
case PCI D3hot:

mdelay(pci pm d3 delay);
break;

case PCI D2:
udelay(PCI PM D2 DELAY);
break;

}

pci update current state(dev, PCI D0);

Restore:
return dev−>state saved ?

pci restore state(dev) : 0;
}

Figure 3: Function called during early resume to restore
configuration space of a PCI device (2.6.29).

used by pci_restore_standard_config() to
decide whether or not the device’s configuration space
ought to be restored [PATCH1].

The changes described above caused the standard con-
figuration registers of PCI devices supporting the na-
tive PCI power management to be saved during sus-
pend and restored during early resume with interrupts
disabled on the CPU. That turned out to fix the problem
described in Section 2 on a number of test machines,
but it obviously did not cover devices requiring addi-
tional power resources controlled by the platform to be
set up for putting them into D0. It also did not cover the
suspend-specific part of the problem in which interrupt
handlers might be invoked although their devices had al-
ready been put into low power states. Still, both of these
shortcomings were related to the fact that the platform
hooks necessary to change the power state of some de-
vices could not be executed with interrupts disabled and

we were not able to use pci_set_power_state()
during the late suspend and early resume of devices.
Hence, to remove the limitations, it was necessary to
either modify the platform hooks so that they could be
executed with interrupts disabled, or change the suspend
and resume code so that interrupts were enabled on the
CPU during the late and early phases of device suspend
and resume, respectively [LINUS4].

4 Complete solution

By using the approach presented in Section 3 we were
able to partially fix the problem described in Section 2
for devices that supported the PCI native power man-
agement. Still, more in-depth changes were necessary
to fix it completely and for all devices. Namely, for this
purpose we had to make it possible to execute platform
callbacks used for changing the power states of devices
during the late phase of suspend and the early phase of
resume.

There were two possible ways to achieve this goal. First,
the platform callbacks, most importantly the ACPI ones,
could be modified so that executing them with inter-
rupts disabled was valid, which would have been the
case if they had not taken any mutexes and generally if
they had avoided using functions that might sleep. This,
however, turned out to be impractical due to the com-
plexity of the ACPI code and to the fact that substantial
part of it, known as ACPICA7, was shared with some
other operating systems, like BSD [ACPICA]. Sec-
ond, the core suspend and resume code could be mod-
ified so that the CPUs were able to receive hardware
interrupts while executing the late suspend and early
resume callbacks provided by device drivers. Specif-
ically, as suggested by Linus Torvalds, instead of dis-
abling interrupts on the CPU before the late suspend of
devices, we could prevent device drivers from receiving
interrupts by running irq_disable() for all inter-
rupt vectors except for the timer ones [LINUS5]. Then,
even though the CPUs would be able to receive and
acknowledge hardware interrupts, the interrupts would
be disabled from the drivers’ point of view. More-
over, since timer interrupts would still be handled nor-
mally, it would be valid to call the potentially sleeping
functions from the device drivers’ late suspend routines
and if we did the analogous change in the resume part

7ACPI Common Architecture.



324 • Fixing PCI Suspend and Resume

of the code, we would be able to invoke these func-
tions from the drivers’ early resume callbacks and from
pci_restore_standard_config() as well.

This approach was used in the 2.6.30-rc3 and later ker-
nels. It allowed us to put PCI devices into D0 from
within pci_restore_standard_config() with
the help of pci_set_power_state() which
caused the platform callback changing the device’s
power state to be called as appropriate. Analogously,
we could use pci_set_power_state() to put PCI
devices into low power states during the late suspend
of devices. Still, at the same time we wanted to pre-
serve the suspend and resume code ordering follow-
ing from the ACPI specification8 stating that devices
ought to be put into low power states before the execu-
tion of the _PTS global control method which, in turn,
ought to happen before disabling the non-boot CPUs
[ACPI-SPEC]. Similarly, during resume we were sup-
posed to enable the non-boot CPUs before executing
the _WAK ACPI global control method which, in turn,
ought to happen before putting devices into D0. Thus,
we proposed to make device drivers’ late suspend call-
backs be executed before the platform .prepare()
callback and, analogously, their early resume callbacks
be executed after the platform .finish() callback. In
principle, this change should not matter to device drivers
and it would allow us to avoid some otherwise inevitable
complications related to reordering ACPI callbacks with
respect to one another [RJW1].

Unfortunately, it turned out that some platforms, like
for example ARM PXA, used the .prepare() and
.finish() callbacks to communicate with power
control devices over an I2C bus the controller of which
is effectively turned off and on during the late suspend
and early resume of devices, respectively [RMK]. As a
result, suspend and resume would not have worked on
these platforms if the .prepare() and .finish()
callbacks had been executed, respectively, after the late
suspend and before the early resume of devices. For
this reason we decided to introduce two additional plat-
form callbacks for suspend and resume, .prepare_
late() and .wake(), to be executed in these two
places and we used them for running the code that was
previously run in .prepare() and .finish(), re-
spectively, on ACPI systems [RJW2].

Consequently, in the 2.6.30-rc3 and later kernels the or-
dering of the suspend and resume code is different from

8ACPI 2.0 or later.

its ordering in the 2.6.29 and earlier kernels. Now, after
the first phase of suspending devices (i.e. regular sus-
pend) and the execution of the .prepare() platform
callback, device drivers are prevented from receiving
hardware interrupts which is immediately followed by
the second phase of suspending devices (i.e. late sus-
pend). Then, the platform .prepare_late() call-
back is executed, the non-boot CPUs are disabled and
interrupts are disabled on the only on-line CPU. Finally,
sysdevs are suspended and the platform is called to put
the system into the memory sleep state. Analogously,
during resume, after the platform firmware has trans-
ferred control to the kernel, sysdevs are resumed, in-
terrupts are enabled on the only on-line CPU and the
other CPUs are brought back on line. Next, the plat-
form .wake() callback is executed and device drivers’
early resume callbacks are run. Finally, device drivers
are allowed to receive hardware interrupts, the platform
.finish() callback is executed and the regular re-
sume of devices is carried out. The structure of the sus-
pend and resume code in the 2.6.30-rc3 and later kernels
is illustrated in Figure 4.

To make suspend and resume work as described in
the previous paragraph, we needed a reversible mech-
anism for preventing device drivers from receiving in-
terrupts after the regular suspend of devices. For this
purpose we had to make some changes to the generic
interrupt management code.9 Roughly, we wanted
irq_disable() to be called for every interrupt vec-
tor, except for the timer ones, right after the comple-
tion of the regular suspend of devices, but we also
needed to ensure that irq_enable() would be called
for these interrupt vectors during resume. Thus the
IRQ_SUSPENDED interrupt status flags was introduced
and used to mark the interrupt vectors disabled dur-
ing suspend, so that they could be re-enabled during
resume. Moreover, we had to take the locking and
reference counting done by the interrupt management
code into account, so we introduced the helper function
__disable_irq() complementary to __enable_
irq() and we made both of these functions take an
additional Boolean parameter specifying whether or not
they were called by the kernel’s core suspend and re-
sume code. [It calls them via suspend_device_
irqs() and resume_device_irqs() shown in
Figures 5 and 6, respectively.]

In addition, the fact that some platforms used wake-up

9Located in kernel/irq/manage.c.



2009 Linux Symposium • 325

disable non-boot CPUs

disable interrupts

late suspend of devices

plat form enter

platform prepare

set f i rmware waking vector
_PSW (Prepare wake devices)

_PTS (Prepare to Sleep)
_SST (System indictor status)

suspend system devices

regular suspend of devices

suspend_device_irqs()

platform prepare late

resume at wake vector

initialize boot CPU

resume system devices

early resume of devices

enable non-boot CPUs

platform f inish

regular resume of devices

_WAK (Platform wake-up)

enable interrupts

platform wake

resume_device_irqs()

Figure 4: Suspend (left) and resume (right) code structure (2.6.30-rc3 and later).

interrupts to abort suspend, if necessary, had to be taken
into consideration. Specifically, in the 2.6.29 and ear-
lier kernels it was possible to mark an interrupt vector
with the IRQ_WAKEUP status flag and make the plat-
form abort suspend if that interrupt was pending after
sysdevs had been suspended10. However, that might not
work any more after introducing suspend_device_
irqs() and resume_device_irqs() and rear-
ranging the core suspend and resume code as described
above, because the wake-up interrupts generated after
the late suspend of devices would be acknowledged by
one of the CPUs. In that case they would not appear
to the platform code as pending, since they had been
acknowledged by the CPU and the suspend would not
be aborted. That would have been a significant change

10The x86 architecture has never used wake-up interrupts.

of behavior relative to the 2.6.29 kernel and we had
to avoid it. For this purpose we used the observation
that the IRQ_PENDING flag was set for interrupts ac-
knowledged by the CPUs after suspend_device_
irqs() had run, so it was sufficient to check this
flag along with IRQ_WAKEUP after putting the non-
boot CPUs off line and disabling interrupts on the re-
maining active one. Therefore, we introduced the func-
tion check_wakeup_irqs() shown in Figure 7 and
made sysdev_suspend() call it and fail if the error
code was returned [RJW3].

With all of the above modifications in place we could
change pci_restore_standard_config() so
that it used pci_set_power_state() to put de-
vices into D0 before attempting to restore their stan-
dard PCI configuration registers with the help of pci_



326 • Fixing PCI Suspend and Resume

void suspend device irqs(void) {
struct irq desc ∗desc;
int irq;

for each irq desc(irq, desc) {
unsigned long flags;

spin lock irqsave(&desc−>lock, flags);
disable irq(desc, irq, true);

spin unlock irqrestore(&desc−>lock, flags);
}

for each irq desc(irq, desc)
if (desc−>status & IRQ SUSPENDED)
synchronize irq(irq);

}

Figure 5: Function called during suspend to prevent de-
vice drivers from receiving interrupts (2.6.30-rc3 and
later)

void resume device irqs(void) {
struct irq desc ∗desc;
int irq;

for each irq desc(irq, desc) {
unsigned long flags;

if (!(desc−>status & IRQ SUSPENDED))
continue;

spin lock irqsave(&desc−>lock, flags);
enable irq(desc, irq, true);

spin unlock irqrestore(&desc−>lock, flags);
}

}

Figure 6: Function called during resume to allow device
drivers to receive interrupts (2.6.30-rc3 and later)

restore_state() [RJW4]. As a result, it has been
substantially simplified11 as shown in Figure 8. We also
changed the suspend callbacks of the pci_bus_type
driver so that the late suspend callback saved the con-
figuration spaces of the devices for which they were
not saved by the drivers [RJW5]. This made it possi-
ble to develop a working PCI device driver supporting
power management that would not touch the standard
PCI configuration registers of the device in its suspend
and resume callbacks allowing the PCI PM core to han-
dle them as appropriate [RJW6].

11It also has been moved to drivers/pci/pci-driver.c.

int check wakeup irqs(void) {
struct irq desc ∗desc;
int irq;

for each irq desc(irq, desc)
if ((desc−>status & IRQ WAKEUP)

&& (desc−>status & IRQ PENDING))
return −EBUSY;

return 0;
}

Figure 7: Function called to check for wake-up inter-
rupts right before suspending sysdevs (2.6.30-rc3 and
later)

static int pci restore standard config(struct pci dev
∗pci dev) {

pci update current state(pci dev, PCI UNKNOWN);

if (pci dev−>current state != PCI D0) {
int error = pci set power state(pci dev, PCI D0);
if (error)
return error;

}

return pci dev−>state saved ?
pci restore state(pci dev) : 0;

}

Figure 8: Function called during early resume to re-
store configuration space of a PCI device (2.6.30-rc3
and later)

5 Consequences

Using the approach presented in Section 4 has profound
consequences for the writers of PCI device drivers want-
ing to support suspend and resume.12 Namely, it allows
them to let the PCI power management (PM) core take
care of the “ugly” details related to PCI power manage-
ment, such as the saving and restoration of the standard
configuration registers, putting the device into a low
power state during suspend and into D0 during resume,
and preparing it to wake up the system from the memory
sleep state, if desired. Since PCI device drivers have tra-
ditionally had problems with getting these things right,
allowing them to leave it all to the core appears to be a
big improvement. Of course, the drivers can still power
manage the devices by themselves, which may even be

12In our not so humble opinion, every new PCI device driver
ought to support suspend and resume.



2009 Linux Symposium • 327

necessary in some more complicated cases, but gener-
ally it is better if their authors avoid doing that, unless
they know very well what they are doing.

In general, PCI device drivers can implement suspend
and resume callbacks in two different ways. First,
they can implement the .suspend(), .suspend_
late(), .resume(), and .resume_early()
callbacks available in the pci_driver structure, as
shown in Figure 9. In that case, as indicated by the
names of the callbacks, .suspend() will be executed
in the first phase of suspending devices (regular sus-
pend), .suspend_late() will be executed in the
second phase of suspending devices (late suspend) and
analogously for the resume callbacks. Drivers do not
have to implement all of these callbacks, but if at least
one of them is implemented, the PCI PM core will re-
gard the driver as a “legacy” one and will apply spe-
cial rules to the device handled by it. In particular,
such a device will not be power managed by the PCI
PM core during suspend and it will not be prepared by
the core to wake up the system. Apart from this, the
suspend and resume callbacks defined in pci_driver
are used for hibernation as well as for suspend to RAM.
Accordingly, the suspend callbacks take an additional
argument of type pm_message_t specifying the con-
text in which they are called (suspend to RAM or hi-
bernation), but the resume callbacks do not take any
additional arguments, so it is the driver’s responsibility
to preserve the context information over the suspend-
resume (or hibernation-resume) cycle if needed.

struct pci driver {
...
int (∗suspend) (struct pci dev ∗dev, pm message t state);
int (∗suspend late) (struct pci dev ∗dev, pm message t state);
int (∗resume early) (struct pci dev ∗dev);
int (∗resume) (struct pci dev ∗dev);
...

};

Figure 9: Members of struct pci_driver used
during suspend to RAM and resume

The second way to implement suspend and resume call-
backs in a PCI device driver is to use a dev_pm_ops
object pointed to by the driver.pm member of the
pci_driver structure.13 This object, if present, con-
tains pointers to several power management callbacks
that can be implemented by a device driver. The major-
ity of them are hibernation-specific and we are not going

13The struct dev_pm_ops structure is defined in
include/linux/pm.h.

to discuss them here, but the ones shown in Figure 10
are used during suspend to RAM and resume. Still, the
first two of them, .prepare() and .complete(),
are only of interest to the authors of complicated drivers
involving the management of children devices that may
be registered and unregistered at any time, so we will
not discuss them either. The remaining four callbacks
are direct counterparts of the “legacy” ones discussed
in the previous paragraph, where the _noirq suffix in
the name means that the callback is a “late” or “early”
one. In other words, .suspend_noirq() plays the
role of .suspend_late() discussed previously and
analogously for .resume_noirq().

struct dev pm ops {
int (∗prepare)(struct device ∗dev);
void (∗complete)(struct device ∗dev);
int (∗suspend)(struct device ∗dev);
int (∗resume)(struct device ∗dev);
...
int (∗suspend noirq)(struct device ∗dev);
int (∗resume noirq)(struct device ∗dev);
...

};

Figure 10: Members of struct dev_pm_ops used
during suspend to RAM and resume

As already stated, a PCI device driver implementing the
“legacy” suspend and resume callbacks has to take care
of putting the device into a low power state and, if neces-
sary, preparing it to wake up the system during suspend,
although it need not put the device into D0 during re-
sume, since the PCI PM core is going to do that anyway
via pci_restore_standard_config(). More-
over, during suspend the device should be put into the
low power state by .suspend_late(), since other-
wise the problem described in Section 2 may appear.
In turn, a PCI device driver supporting suspend and re-
sume through a dev_pm_ops object need not power
manage the device during suspend and resume at all.
However, if its author decides to put device into a low
power state14 and prepare it for waking up the sys-
tem during suspend, these operations should be carried
out in .suspend_noirq() to avoid the problem de-
scribed in Section 2. Thus, it is possible to consider the
“late” and “early” callbacks as the ones in which the ac-
tual power management of the device takes place, while

14The standard PCI configuration registers of the device must be
saved before that happens, since otherwise the restoration of their
contents during resume may lead to undefined behavior.



328 • Fixing PCI Suspend and Resume

the remaining “regular” callbacks can be regarded as
the ones causing the driver to stop—.suspend()—or
start—.resume()—using the device without chang-
ing the power state and related properties of it. Of
course, in the kernels preceding 2.6.30-rc1 it was im-
possible to classify the suspend and resume callbacks
provided by device drivers this way.

As follows from the above discussion, it is recom-
mended and in the majority of cases more convenient to
support suspend and resume by using a dev_pm_ops
object rather then by implementing the “legacy” sus-
pend and resume callbacks. Thus, it seems reason-
able to give an example showing how to replace the
“legacy” callbacks by a dev_pm_ops object in an ex-
isting driver and clearly illustrating the benefit of do-
ing so. For this purpose consider the suspend and re-
sume callbacks implemented by the r8169 network
driver shown in Figures 11 and 12, respectively, and
observe that the PCI-specific operations carried out by
rtl8169_suspend() should in fact be moved to a
“late” suspend callback. Still, that will not be neces-
sary if the driver provides the support for suspend and
resume through a dev_pm_ops object.

static int rtl8169 suspend(struct pci dev ∗pdev, pm message t state)
{

struct net device ∗dev = pci get drvdata(pdev);
struct rtl8169 private ∗tp = netdev priv(dev);
void iomem ∗ioaddr = tp−>mmio addr;

if (!netif running(dev))
goto out pci suspend;

netif device detach(dev);
netif stop queue(dev);

spin lock irq(&tp−>lock);
rtl8169 asic down(ioaddr);
rtl8169 rx missed(dev, ioaddr);
spin unlock irq(&tp−>lock);

out pci suspend:
pci save state(pdev);
pci enable wake(pdev, pci choose state(pdev, state),

(tp−>features & RTL FEATURE WOL) ? 1 : 0);
pci set power state(pdev, pci choose state(pdev, state));

return 0;
}

Figure 11: Suspend callback of the r8169 driver
(2.6.29)

To replace the “legacy” callbacks provided by the
r8169 driver with an implementation based on a dev_
pm_ops object one can move the non-PCI part of
rtl8169_suspend() to a separate function, like the
one shown in Figure 13, and drop all of the PCI-specific

static int rtl8169 resume(struct pci dev ∗pdev) {
struct net device ∗dev = pci get drvdata(pdev);

pci set power state(pdev, PCI D0);
pci restore state(pdev);
pci enable wake(pdev, PCI D0, 0);

if (!netif running(dev))
goto out;

netif device attach(dev);

rtl8169 schedule work(dev, rtl8169 reset task);
out:

return 0;
}

Figure 12: Resume callback of the r8169 driver
(2.6.29)

operations from both the suspend and resume routines.
Of course, the dev_pm_ops object has to be defined
too, but this is really straightforward as illustrated by the
code in Figure 14 showing a possible implementation
of it for the r8169 driver15. Finally, the driver.pm
member of the driver’s pci_driver object has to be
made point to the dev_pm_ops object defined by the
driver, like the rtl8169_pm_ops object shown in
Figure 14 in this particular case.

static void rtl8169 net suspend(struct net device ∗dev) {
struct rtl8169 private ∗tp = netdev priv(dev);
void iomem ∗ioaddr = tp−>mmio addr;

if (!netif running(dev))
return;

netif device detach(dev);
netif stop queue(dev);

spin lock irq(&tp−>lock);
rtl8169 asic down(ioaddr);
rtl8169 rx missed(dev, ioaddr);
spin unlock irq(&tp−>lock);

}

Figure 13: Non-PCI part of the r8169 driver’s suspend
callback.

The benefit of implementing suspend and resume sup-
port in the new way, as illustrated in Figures 13 and
14, to the r8169 driver is that it need not worry about
the PCI-specific handling of the device during suspend

15This particular definition means that the suspend and resume
callbacks are going to be used for hibernation as well as for suspend
to RAM and the PCI PM core is supposed to take care of the PCI-
specific handling of the device in both cases.



2009 Linux Symposium • 329

static int rtl8169 suspend(struct device ∗device) {
struct pci dev ∗pdev = to pci dev(device);
struct net device ∗dev = pci get drvdata(pdev);

rtl8169 net suspend(dev);

return 0;
}

static int rtl8169 resume(struct device ∗device) {
struct pci dev ∗pdev = to pci dev(device);
struct net device ∗dev = pci get drvdata(pdev);

if (!netif running(dev))
goto out;

netif device attach(dev);

rtl8169 schedule work(dev, rtl8169 reset task);
out:

return 0;
}

static struct dev pm ops rtl8169 pm ops = {
.suspend = rtl8169 suspend,
.resume = rtl8169 resume,
.freeze = rtl8169 suspend,
.thaw = rtl8169 resume,
.poweroff = rtl8169 suspend,
.restore = rtl8169 resume,

};

Figure 14: Simplified suspend and resume support for
the r8169 driver

and resume and it need not implement any “late” and
”early” callbacks. Moreover, it can use the same simpli-
fied “regular” callbacks for both suspend to RAM and
hibernation allowing the PCI PM core to take care of
the PCI-specific operations that ought to be carried out
in any of these cases. In fact, if that implementation
of suspend and resume support is used, the driver only
needs to stop using the device during the regular sus-
pend of devices and start using it during the regular re-
sume of devices without doing anything else. This turns
out out be the case for the majority of PCI device drivers
currently in the kernel tree.

6 Conclusion

By using the approach presented in Sections 3 and 4 to
solve the problem described in Section 2 we made it pos-
sible to significantly simplify suspend and resume call-
backs provided by PCI device drivers. In particular, as
shown in Section 5, a PCI device driver’s suspend and
resume callbacks can be implemented in such a way that
all of the PCI-specific operations related to the power

management of the device will be carried out by the PCI
PM core.

Since the PCI PM core is now going to put every PCI
device into D0 and restore its standard configuration
registers during the early resume of devices, PCI de-
vice drivers need not do that any more. Therefore, it
would be reasonable to remove these operations from all
of the existing resume callbacks provided by PCI device
drivers. Moreover, the drivers that put devices into low
power states in their regular suspend callbacks should
be modified to do it in their late suspend callbacks. Still,
it may be even more beneficial to use a dev_pm_ops
object for implementing suspend and resume support,
as illustrated in Section 5, in which case the driver can
leave the PCI-specific power management of the device
to the PCI PM core.

The changes discussed in Sections 3 and 4 also made it
possible to look at the device drivers’ suspend and re-
sume callbacks from a new perspective. Namely, the
“regular” suspend callback, executed in the first phase
of suspend, can be regarded as the one that should make
the driver stop using the device, while the “late” suspend
callback can be treated as the one preparing the device
to wake up the system, if necessary, and putting it into a
low power state. Analogously, the “early” resume call-
back, executed during the early resume of devices, can
be regarded as the one that should put the device into the
full power state and restore its pre-suspend configura-
tion, while the “regular” resume callback can be treated
as the one preparing the driver to use the device again.
Of course, for PCI devices some or even all of the tasks
of the “late” suspend and “early” resume callbacks can
be completed by the PCI PM core, as described above.

7 Acknowledgements

The author thanks Linus Torvalds for his help and sup-
port of the work presented in this paper, Ingo Molnar
and Thomas Gleixner for their help with the modifica-
tions of the core interrupt management code and Jesse
Barnes for his help with the PCI part. He also thanks
everyone who commented and tested patches or con-
tributed to the work presented in this paper in any other
way.

References

[LINUS1] L. Torvalds, Re: Regression from 2.6.26:
Hibernation (possibly suspend) broken (http:



330 • Fixing PCI Suspend and Resume

//marc.info/?l=linux-kernel&m=
122852860315385&w=4).

[PATCH1] R. J. Wysocki, PCI PM: Restore standard
config registers of all devices early
(http://marc.info/?l=linux-pci&m=
123213931514157&w=2).

[LINUS2] L. Torvalds, Re: PCI PM: Restore standard
config registers of all devices early (http:
//marc.info/?l=linux-kernel&m=
123360797907858&w=2).

[ACPI-SPEC] Advanced Configuration and Power
Interface Specification
(http://www.acpi.info).

[S2RAM] L. Brown, R. J. Wysocki, Suspend to RAM
in Linux (Proceedings of the Linux Symposium,
Ottawa 2008
http://ols.fedoraproject.org/OLS/
Reprints-2008/brown-reprint.pdf).

[LINUS3] L. Torvalds, Re: What should PCI core do
during suspend-resume? (http:
//marc.info/?l=linux-netdev&m=
123343922809244&w=2).

[PCI-PM] PCI Bus Power Management Interface
Specification (http://www.pcisig.com/
specifications/conventional/).

[LINUS4] L. Torvalds, Re: PCI PM: Restore standard
config registers of all devices early (http:
//marc.info/?l=linux-kernel&m=
123361303317554&w=2).

[ACPICA] ACPICA project home page
(http://acpica.org).

[LINUS5] L. Torvalds, Re: PCI PM: Restore standard
config registers of all devices early (http:
//marc.info/?l=linux-kernel&m=
123361270416948&w=2).

[RJW1] R. J. Wysocki, Re: PCI PM: Restore standard
config registers of all devices early (http:
//marc.info/?l=linux-kernel&m=
123365338201811&w=2).

[RMK] R. King, 900af0d breaks some embedded
suspend/resume (http:
//marc.info/?l=linux-kernel&m=
124026014415587&w=2).

[RJW2] R. J. Wysocki, PM/Suspend: Introduce two
new platform callbacks to avoid breakage
(http:
//marc.info/?l=linux-kernel&m=
124022459914679&w=2).

[RJW3] R. J. Wysocki, PM: Introduce functions for
suspending and resuming device interrupts
(http:
//marc.info/?l=linux-kernel&m=
123703066215140&w=2).

[RJW4] R. J. Wysocki, PCI PM: Use
pci_set_power_state during early resume
(http:
//marc.info/?l=linux-kernel&m=
123703114515664&w=2).

[RJW5] R. J. Wysocki, PCI PM: Put devices into low
power states during late suspend (rev. 2) (http:
//marc.info/?l=linux-kernel&m=
123703114515667&w=2).

[RJW6] R. J. Wysocki, NET/r8169: Rework suspend
and resume (http:
//marc.info/?l=linux-kernel&m=
123895686321519&w=4).



Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


