
Effect of readahead and file system block reallocation for LBCAS
(LoopBack Content Addressable Storage)

Kuniyasu Suzaki, Toshiki Yagi, Kengo Iijima, Nguyen Anh Quynh,
Yoshihito Watanabe

National Institute of Advanced Industrial Science and Technology
Alpha Systems Inc.

{k.suzaki,yagi-toshiki,k-iijima,nguyen.anhquynh}@aist.go.jp
watanays@alpha.co.jp

Abstract

Disk pre-fetching, known as “readahead” of Linux ker-
nel, arranges its coverage size by the rate of cache hit.
Fewer readaheads of large window can hide the slow
I/O, especially it is effective for virtual block device of
virtual machine. High cache hit ratio is achieved by in-
creasing locality of reference, namely, file system block
reallocation based on an access profile.

We have developed a data block reallocation tool for
ext2/3, called “ext2/3optimizer”. The relocation is ap-
plied to Linux booting on KVM virtual machine with
a virtual disk called LBCAS (LoopBack Content Ad-
dressable Storage). We compared the effect with the
Linux system call “readahead” which populates the
page cache with data of a file in advance. From
the experiment, we confirmed that the reallocation of
ext2/3optimizer kept larger coverage of readahead and
fewer I/O requests than the system call readahead. The
reallocation also reduced the overhead of LBCAS and
made quick boot.

1 Introduction

We have developed a framework of Internet Disk Im-
age Distributor for anonymous operating systems, called
“OS Circular[1, 2, 3]”. It enables to boot anonymous OS
on any real/virtual machines without installation. The
disk image is distributed by LBCAS (LoopBack Content
Addressable Storage) which manages the virtual disk ef-
ficiently. The transferred OS is maintained periodically

on the server and fixed vulnerable applications. The par-
tial update is managed by LBCAS efficiently and the
user can rollback to old OS.

LBCAS is a kind of loopback block device managed
by CAS (Content Addressable Storage) [4, 5, 6]. CAS
retrieves a data-block with the hash value of its con-
tent. Thus, CAS is a kind of indirect access manage-
ment of physical address. It is used for permanently
information archive because CAS distinguishes every
data-block with hash value and reserves old blocks, al-
though direct physical access overwrites the previous
data. When block contents are same, they are held to-
gether with same hash value and reduce total volume.

Unfortunately, CAS is known as an archive method
which behavior is affected by feature of stored data and
access patterns [5, 6]. The characteristics differ from a
real device and require careful handling. A performance
gap is caused by the coordination of disk pre-fetching
(i.e., page cache) of existing OS. For example, Linux
kernel has the function called “readahead [7, 8]” which
pre-fetches some extra blocks from block device. The
coverage of readahead is changed by heuristics of page
cache. LBCAS should be optimized for the access pat-
terns, namely locality of reference.

In order to increase the locality of reference, we have
developed “ext2/3optimizer [9]” to reallocate the data
block of ext2/3 file system. The reallocation follows the
access profile. The accessed data blocks are arranged
to be in line. In this paper we compare the effect of
ext2/3optimizer with the Linux system call “readahead”
which populates the page cache with data of a file in

• 275 •



276 • Effect of readahead and file system block reallocation for LBCAS

advance.

The remainder of this paper is organized in six sections.
In section 2 the detail of LBCAS is described. Reada-
head and its relation to LBCAS are described in section
3. Section 4 reallocation method is described. The per-
formance is evaluated in section 5. Some related topics
are discussed in section 6 and conclusion is mentioned
in section 7.

2 LBCAS: LoopBack Content Addressable
Storage

LBCAS is made from an existing block device. The
block device is divided by a fixed block size and saved to
each small block file. Saved data are also compressed.
Each block file has a name of SHA-1 of its contents.
The address of block files is managed by mapping ta-
ble. The mapping table has the relation information of
physical address and SHA-1 file name. A virtual block
device is reconstructed with the mapping table file on
a client. Figure 1 shows the creation of block files and
mapping table file “map01.idx”.

Block files are treated as network transparent between
local and remote. Local storage acts as a cache. The
files are measured with SHA-1 hash value of its con-
tents when they are mapped to virtual disk. It keeps the
integrity for Internet block device.

Figure 1: Creation of block files from OS image.

Figure 2 shows the diagram of LBCAS structure. A
loopback file is re-constructed with downloaded block
files on a client. The main program is implemented as
a part of FUSE (File system in USEr space [10]) wrap-
per program. LBCAS has two level of cache to pre-
vent redundant download and uncompression, which is

Figure 2: Creation of block files from OS image.

called “storage cache” and “memory cache”. The detail
of cache is described in next subsection.

A client has to obtain a mapping table file in security.
The mapping table file is used to setup LBCAS. When a
read request is issued, LBCAS driver searches a relevant
block file with the mapping table. If a relevant file ex-
ists on a storage cache, the file is used. If not, the file is
downloaded from a HTTP server with “libcurl”. Each
downloaded file is uncompressed by “libz” and mea-
sured with the SHA-1 value by “libcrypto”. The mea-
surement of SHA-1 value of block file is logged. Even
if a block file is broken or falsified, the block is detected.
Figure 3 shows the case to detect a falsified block file.

2.1 Two level of Cache

Current LBCAS has two level of cache, which is called
“storage cache” and “memory cache”.

Storage cache saves the downloaded block files at a lo-
cal storage. It eliminates the download of same block
file. If the necessary block files are saved at storage
cache, the LBCAS works without network connection.
The volume of storage cache is managed by water mark
algorithm of LIFO in current implementation. The latest
downloaded block files are removed when the volume is
over the water mark, because aged block files might be
used for boot time.

Memory cache saves the uncompressed block file at the
memory of LBCAS driver. It eliminates uncompression



2009 Linux Symposium • 277

Figure 3: Log of LBCAS. The upper shows the correct
downloading of block files and the lower shows a falsi-
fied block file is detected. “missed” indicates download-
ing a block file. “hits” indicated finding a block file at
local storage.

when same block file is accessed in succession. Memory
cache saves 1 block file and the coverage is the size of
block file. It should be coordinated with the page cache
of existing OS.

2.2 Partial Update by Adding Block Files

The update of LBCAS is achieved by adding block files
and renewing the mapping table file. The rest block files
are reusable. To achieve this function, the file system
on LBCAS has to treat block-unit update as ext2/3 file
system. ISO9660 file system is not suitable because par-
tial update of ISO9660 changes the location of following
blocks.

The updated block is saved to a file with new file name
of SHA-1. Collision of file name will be rarely hap-
pened. Even if a collision happens, we can check and
fix it before uploading the block files on the servers. We
can rollback to the previous file system if the old map-
ping table and block files exist.

2.3 Issues of Performance and Behavior on LBCAS

The behavior of CAS is affected by feature of stored
data and access patterns [5, 6].

The block size of CAS causes problems of fragmenta-
tion and boundary. One problem comes from the size

mismatch of the block size of file system. Most file sys-
tem assumes their block size is 4KB but LBCAS uses
larger block size because of efficiency of loopback de-
vice and network download. It results in low occupancy
rate, redundant download and unnecessary uncompres-
sion.

When the occupancy, which is a ratio of effective data in
a block file, is low, the overhead of LBCAS is not neg-
ligible. The block size of LBCAS should be considered
the occupancy. The problem is closely related to locality
of reference on transferred OS.

When a read request crosses over the boundary of CAS,
CAS requires multiple blocks. If the block size of CAS
is too small and requires many blocks for an I/O request,
performance gap stands out. The block size of CAS
must be balanced to I/O request size. The problem is
related to the window size of pre-fetching.

3 Readahead(Disk Pre-fetching)

Figure 4: Behavior of readahead on LBCAS

Most operating systems have the function of page cache
to reduce I/O operation. When a read request is issued,
the kernel reads extra data and saves them to main mem-
ory (page cache). It reduces the number of I/O operation
and hides the I/O delay. The function in Linux kernel
is called “readahead [7, 8]”. The coverage of reada-
head is extended or shrank by the profile of cache hit
and miss-hit. Figure 4 shows the action of readahead on
LBCAS. When a readahead operation is issued, some
block files are downloaded and mapped to the loopback
device. When a same block file is required sequentially,



278 • Effect of readahead and file system block reallocation for LBCAS

the block file is stored on the memory cache of LBCAS
and the uncompression is eliminated. When page cache
does not hit, the next readahead shrink the coverage size.
The suitable size of coverage achieves efficient usage of
cache memory and I/O request.

The readahead causes performance gaps on LBCAS,
when the extra coverage crosses over the boundary of
LBCAS block (Figure 5). The third read request in the
figure crosses over the boundary, and extra block file
is downloaded which is never used. It causes big per-
formance penalty compared to real block device. The
problem is cased by un-contiguous of necessary blocks.

The un-contiguous blocks are improved by
ext2/3optimizer described in next subsection. High hit
ratio of page cache and large coverage of readahead
means the less I/O requests. The access pattern will be
efficient on the LBCAS.

Figure 5: Behavior of readahead on LBCAS

3.1 system call “readahead”

Linux kernel has the system call “readahead” from
2.4.13. The system call populates the page cache with
data of a file. It is not directly related to the disk
pre-fetching but it can achieve the same function from
user space, because subsequent reads from that file
will not block on disk I/O. Linux distributions have
a tool to utilize the readahead system call to make
quick boot. The files opened at boot time are listed at
“/etc/readahead/boot” and the data of the files are popu-
lated on the page cache in advance at boot time.

Unfortunately it requires much memory and has no dy-
namic flow control. The speed-up depends on individual

machine. In this paper we confirm the effect on a virtual
machine.

4 Block reallocation of File System

Most file systems have defragmentation tools to reallo-
cate blocks of file system. For examples, defrag and
ext2resize are tools for ext2. The tools however real-
locate blocks from the view of continuation of file and
expansion of spare space. Quick access is a side effect
of continuation of file.

Figure 6: Access profiling and reallocation which in-
crease cache hit ratio and coverage of readahead.

In order to solve the problem, we developed
“ext2/3optimizer” [9], which was called ext2optimizer.
Ext2/3optimizer takes the profile of accessed blocks of
ext2/3 and reallocates the blocks in line. Figure 6 shows
the image of profiling and reallocation. The reallocation
increases the cache hit ratio and expands the coverage
size of readahead. The effect is described in next sec-
tion.

Ext2/3optimizer change pointers of data blocks of i-
node only. It aggregates the data blocks at the head
of device and increase locality of reference. The other
structure of ext2/3, namely meta-data of ext2/3, is re-
served. Figure 7 shows the image of reallocation of
ext2/3optimizer.

Block size mismatch problem between file system and
LBCAS is reduced by the aggregation of data blocks,
because it increases the occupancy of effective data in
a block file. Figure 7 shows the higher occupancy re-
duces the necessary block files. In this case the data on
3 block files is aggregated in 1 block file. The effect is
also described in next section.



2009 Linux Symposium • 279

Figure 7: Reallocation of ext2/3optimizer.

5 Performance of ext2/3optimizer and user-
level readahead on LBCAS

We compared the effect of ext2/3optimizer and user-
level readahead (system call readahead) on LBCAS was
evaluated. We applied both of them to the gust OS on
KVM virtual machine [11] (version 60) with LBCAS,
which shows the feasibility of OS migration. Ubuntu
9.04 (Linux kernel 2.6.28) was used for the transferred
OS. Ubuntu was installed on 8GB loopback file with
ext3 file system on KVM using normal installer. The
total volume was 1.98GB. The block files of LBCAS
were made from the loopback file.

The access pattern of boot procedure is random and does
not read whole contents in a file. Sparse access will be
increased, and the coverage of readahead will be nar-
row. As a consequence, the occupancy of block file will
be low and the efficiency of LBCAS becomes worse.
In this section we confirmed the characteristics and ap-
plied optimizations for it. From after we refer user-level
readahead as “u-readahead” in order to distinguish the
disk pre-fetch readahead.

5.1 Block Reallocation: ext2/3optimizer

Figure 8 shows the data allocation on ext3, which
is visualized by DAVL (Disk Allocation Viewer for
Linux) [12]. The left figure shows the original data al-
location, and right figure shows the data allocation opti-
mized by ext2/3 optimizer.

The green plots in the figure indicate the allocation of
meta data of ext3 which was arranged at the right edge.
We confirmed that ext2/3optimizer keeps the structure

Figure 8: Visualization of data-allocation on ext3 (left
is normal and right is ext2/3optimizer) by DAVL.

of ext3. The blue plots indicate the contiguous allo-
cation of data block of file and the yellow plots indi-
cate the non-contiguous allocation. We confirmed that
ext2/3optimizer reallocates non-contiguous data at the
head of disk. It was the result that ext2/3optimizer ex-
ploited the profiled data blocks and aggregated them
to the head of the disk. As the result, ext2/3optimizer
increased fragmentation from the view of file. DVAL
showed that normal ext3 had 0.21% fragmentation but
the ext3 optimized by ext2/3optimizer had 1.11%. The
relocation however was good for page cache. The cov-
erage of readahead was expected to keep large and oc-
cupancy of block file of LBCAS would be high.

Figure 9 shows the access trace of the boot procedure.
The x axis indicates the physical address and y axis indi-
cates the elapsed time. The red “+” plots indicate the ac-
cess on the normal ext3 and the blue “X” plots indicate
the access on the ext3 optimized by ext2/3optimizer.
The figure showed that the accesses to the normal were
scattered. The locality of reference was not good and the
effect of page cache and the occupancy of block file of
LBCAS would be low. On the other hand, the access to
the ext2/3optimizer increased the locality of reference,
because the most accesses were the head of disk. The
rest spread accesses were the meta data and the volume
was little.



280 • Effect of readahead and file system block reallocation for LBCAS

Figure 9: Access trace of boot procedure (RED “+” indi-
cates normal and BLUE “X” indicates ext2/3optimizer.)

5.2 User level readahead: system call “readahead”

Ubuntu has the mechanism to populate the page cache
with files required at boot time. The files are described
at “/etc/readahead/boot” and “/etc/readahead/desktop”.
The former file listed 937 files and the total volume
was 54.1MB. The latter file listed 281 files and the to-
tal volume was 25.0MB. the listed files are not all files
required boot time. Ubuntu 9.04 requires 2,250 files
(203MB) and the half of them are populated on the page
cache before they are truly required.

Figure 10 shows the log of bootchart [13], which visu-
alizes the behavior of CPU, I/O, and creation of pro-
cess at boot time. We confirmed that the same processes
were executed at boot time on normal, u-readahead and
ext2/3optimizer. The result of u-readahead shows the
utilization of I/O increased when u-readahead started. It
caused the spike of I/O but the subsequent I/O was little.
On the other hand, the I/O was issued on-demand on the
normal and ext2/3optimizer. The I/O of ext2/3optimizer
was less than the normal. The detail is described in Sec-
tion 5.3.

Table 1 shows the utilization of CPU and I/O on normal,
u-readahead and ext2/3optimizer on 64KB, 128KB,
256KB and 512KB LBCAS. The results shows the u-
readahead had higher I/O utilization. It was caused
by the redundant read request, because u-readahead
read the whole data of files. The I/O utilization of u-
readahead was 5-2 times higher than ext2/3optimizer.

The results of 512KB LBCAS showed bad I/O utiliza-
tion on any case. It was caused by the slow response of
512KB LBCAS.

5.3 Effect of readahead

Figure 11 shows the Frequency for each readahead cov-
erage size on normal, u-readahead, and ext2/3optimizer.

The figure shows that ext2/3optimizer reduced the small
I/O requests. As the result, the frequency of I/O request
was reduced to 2,129 from 6,379 and the coverage of
readahead was changed to 67KB from 33KB. The to-
tal I/O was 140MB and 208MB on ext2/3optimizer and
normal respectively. The I/O request is 2 times wider
and the frequency of I/O request is 1/3. The effect of
frequency is not the inverse of magnification of I/O. The
results indicated that the locality of reference is much
improved.

On the other hand, u-readahead showed same tendency
with normal. The small requests were reduced and the
big request were increased a little bit. The total I/O of
u-readahead was increased to 231MB from 208MB of
the normal. The coverage of readahead was expanded
to 41KB but it was small than ext2/3optimizer. The re-
sult came from that the u-readahead could not decrease
the small I/O, which was cased by the locality of refer-
ence. The frequency of I/O was 5,827, which was less
than normal 6,379, although the total I/O was increased.
The results indicated that ext2/3optimizer was much ef-
fective than u-readahead from the view of disk pre-fetch
readahead.

5.4 Total performance

Figure 12 shows the detail of Ubuntu boot time on KVM
from LBCAS. The upper figure shows the ratio of time
consumed by LBCAS for each block size. The lower
figure shows the consumed time in LBCAS, which was
consisted of download time, file read time from storage
cache, uncompression time, and time for others.

From the upper figure, we confirmed that
ext2/3optimizer was effective for LBCAS at any
block size. The LBCAS consuming time was more than
20% on normal, but it was reduced to less than 14% on
ext2/3 optimizer. Although the total I/O on u-readahead
was more than the normal, the boot time on u-readahead



2009 Linux Symposium • 281

Figure 11: Frequency for each readahead coverage size.

was almost same result on normal, The result indicated
the page cache populated by u-readahead but it was not
effective on KVM.

The lower figure shows the time consuming components
of LBCAS. The result shows the most time was con-
sumed by download and uncompression. The download
time was longer than the uncompression time at small
LBCAS but it was changed at large LBCAS. It was
caused by the locality of reference because the small
LBCAS was effective from the view of occupancy but
it required many block files. On large LBCAS the time
of uncompression was increased because of low occu-
pancy in a block file, but the time of download became
short because the number of download was fewer and
cached on the storage cache. On the 512KB LBCAS the
time of uncompression was increased and the total time
of LBCAS was the worst.

Table 2 shows the volume transitions at each processing
level. The upper table shows the total volume requested
from transferred OS: the volume of files which opened
by the boot procedure, the block volume which is purely
required by the boot procedure, the volume accessed to
LBCAS (it includes redundant data covered by reada-
head). The bottom table shows the status of LBCAS for
each block size: the volume of downloaded block files,
the volume of uncompressed block files, and the occu-
pancy of effective data in the LBCAS.

From the result, we know that the purely used block was
63% (127MB/203MB) of volume of opened files at boot

Figure 12: The ratio of consumed time. Upper indicates
the ratio of LBCAS in boot procedure. Lower indicates
the contents ratio of LBCAS.

time. It meant that 37% was not used and it caused in-
efficient access request of readahead. The readahead for
normal ext2 required 208MB access to the LBCAS. The
result shows the 81MB (208MB - 127MB) was redun-
dant access. The u-readahead made much worse and
104MB was redundant access. The problem was solved
by ext2/3optimizer significantly. The readahead for
ext2/3optimize required 140MB. The ext2/3optimizer
made 67% better than the normal.

The bottom table shows the status of LBCAS. We con-
firmed that downloaded files were less than 56MB at any
LBCAS size on ext2/3optimizer. However, the normal
of 512KB LBCAS requires 144MB, which is 1.67 much
larger than 64KB LBCAS (86.1MB). It was caused by
bad locality of reference. On ext2/3optimize, the oc-
cupancy was almost same on any LBCAS size but it
was decreased from 51.5% at 64KB LBCAS to 26.9%
at 512KB LBCAS on normal. The result indicated that
block reallocation was necessary for LBCAS.

Table 3 shows the frequency of each function of LB-
CAS for normal, u-readahead, and ext2/3optimizer. I/O
requests were issued by guest OS and the frequency was
independent of LBCAS. The rest columns indicated the
function of LBCAS. The number of uncompress is sum-
mation of the number of download and storage cache.
The summation of uncompress and memory cache is the
total used files on the LBCAS.



282 • Effect of readahead and file system block reallocation for LBCAS

The results showed storage cache and memory cache
worked well. Especially the two caches were effec-
tive on large LBCAS size. The frequency of storage
cache and memory cache were more than the frequency
of download and uncompression.

The uncompression of ext2/3optimizer was less than
half of normal case at each LBCAS size. The result cor-
responds to time of uncompression at the Figure 12. The
decrease affected the performance of LBCAS.

Figure 13 shows the amount of downloaded block file
at boot time. The LBCAS size was 256KB. The result
shows the ext2/3optimizer reduced the amount of down-
load and made quick boot. The u-readahead downloads
many block files around 15 second because it populated
the page cache with listed files. It increased the total
download but made quick boot. However the boot time
of u-readahead was slower than ext2/3optimizer.

Figure 13: Amount of Downloaded Block File (256KB)
at boot time.

6 Discussions

The data blocks are reallocated in order to be in line ac-
cording to the access profile. It results in keeping large
coverage of readahead at the boot procedure. It makes
quick boot but the data blocks are fragmented from the
view of file. The optimization is too tight and it would
not fit to another access pattern. If the reallocated data
blocks are used in another application, the access pattern
can not get large coverage of readahead. However, boot
procedure is special and several files are used at boot
procedure only. We have to estimate the special files
and its ratio, which are not used for other applications.

Most reallocation tools aim to reduce fragmentation and
quick access is side effect. Unfortunately the effect of
quick access looks to be insufficient, even if the File
System has no fragmentation. The original disk image
used in section 5 was first install image and there are few
fragmentation. The trace of boot procedure, however,
showed discrete access. In order to make quick access
we should reallocate blocks based on access profile.

A feature of CAS is sharing of block with same hash
value. It reduces the total volume of contents. The shar-
ing is not effective on a single OS image but it is ef-
fective on some Linux distributions [14] and multi user
environment [15]. [14] told the CAS block sharing on
Fedora, Ubuntu, and OpenSuse was 10% - 30%. Al-
though our paper does not describe the effect of sharing,
the ext2/3optimizer will reduce the effect because it re-
allocates most of data blocks in ext2/3 file system. If
the sharing is important factor, the reallocation tool has
to consider the sharing as far as possible.

7 Conclusions

We offered an virtual block device called “LBCAS”,
which manages each block by indirect mapping of SHA-
1 value of its contents. The performance was affected by
the number of I/O request which is issued by readahead
of disk pre-fetching. The number of I/O request is re-
lated to the coverage size of readahead. The coverage is
expanded by high hit ratio of page cache The hit ratio is
increased by locality of reference.

We developed ext2/3optimizer to reallocate the data
block of ext2/3 according to the access profile. We
applied ext2/3optimizer on Ubuntu 9.04 according to
the access profile of boot procedure. We compared the
effect with the user-land readahead which uses Linux
system call “readahead” and populates the page cache
with data of files in advance. As the result, the cov-
erage of readahead expanded to double and the I/O re-
quests reduced in half on ext2/3optimizer. The user-land
readahead could also expand the coverage of readahead
and reduce the I/O requests but the effect was less than
ext2/3optimizer.

The key was the locality of reference which is improved
by ext2/3optimizer. The effect of locality of reference
also reduced the necessary block files on LBCAS at
boot time. The result showed that the optimization was
necessary for the OS migration with LBCAS, which is
aimed of the OS Circular project.



2009 Linux Symposium • 283

The source code of tools are available at the project
home page.

References

[1] http://openlab.jp/oscircular/

[2] K. Suzaki, OS Circular: Internet bootable OS
Archive, LinuxConf.Australia, January, 2009.

[3] K. Suzaki, T. Yagi, K. Iijima, and N.A. Quynh,
OS Circular: Internet Client for Reference,
Proceedings of the 21st Large Installation System
Administration Conference, pp. 105–116, Dallas
TX, November, 2007.

[4] S. Quinlan and S. Dorward, Venti: A New
Approach to Archival Storage, Proceedings of the
1st USENIX Conference on File and Storage
Technologies, Monterey CA, January, 2002.

[5] N. Tolia, M. Kozuch, M. Satyanarayanan,
B. Karp, T. Bressoud, and A. Perrig,
Opportunistic use of content addressable storage
for distributed file systems, Proceedings on
USENIX Annual Technical Conference, pages
127–140, San Antonio, TX, June 2003.

[6] Mechiel Lukkein, Venti analysis and memventi
implementation, Master’s thesis of University of
Twente, 2008.

[7] WU. Fengguang, XI. Hongsheng, and
XU. Chenfeng, On the design of a new Linux
readahead framework, ACM SIGOPS Operating
Systems Review, Volume 42, Issue 5, pp. 75–84,
July, 2008.

[8] WU. Fengguang, XI. Hongsheng, J. Li, and
N. Zou, Linux readahead: less tricks for more,
Proceedings of the Linux Symposium, Vol.2,
pages 273–284, 2007.

[9] K. Kitagawa, H. Tan, D. Abe, D. Chiba,
K. Suzaki, K. Iijima, and T. Yagi, File System
(Ext2) Optimization for Compressed Loopback
Device, 13th International Linux System
Technology Conference, pp. 25–33, Nurnberg
Germany, September, 2006.

[10] http://fuse.sourceforge.net/

[11] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori, kvm: the Linux Virtual Machine
Monitor, Proceedings of Linux Symposium 2007,
Volume 1, pages 225–230, June 2007.

[12] http:
//sourceforge.net/projects/davl/

[13] http://www.bootchart.org/

[14] A. Liguori, E.V. Hensbergen, Experiences with
Content Addressable Storage and Virtual Disks,
First Workshop on I/O Virtualization (WIOV),
December, 2008.

[15] P. Nath, M.A. Kozuch, D.R. O’Hallaron,
J. Harkes, M. Satyanarayanan, N. Tolia, and
M. Toups, Design Tradeoffs in Applying Content
Addressable Storage to Enterprise-scale Systems
Based on Virtual Machines, USENIX Annual
Technical Conference, pp. 71–84, Boston MA,
2006.



284 • Effect of readahead and file system block reallocation for LBCAS

Figure 10: BootChart. The visualization of CPU utilization, I/O utilization and created processes at boot time. The
left is normal, the middle is u-readahead, and the right is ext2/3optimizer.



2009 Linux Symposium • 285

LBCAS size normal u-readahead ext2/3opt
CPU (%) I/O (%) CPU (%) I/O (%) CPU (%) I/O (%)

64KB 87.8 12.2 74.1 25.9 94.9 5.1
128KB 84.9 15.1 81.1 18.9 94.4 5.6
256KB 86.0 14.0 79.4 20.6 93.7 6.3
512KB 78.7 21.3 74.3 25.7 89.0 11.0

Table 1: Utilization of CPU and I/O, which was taken by BootChart.

Normal u-readahead ext2/3optimizer
Volume of files (number, average) 203MB (2248 Av:92KB)
Volume of requested blocks 127MB
Volume of required access which includes the
coverage of Readahead (average number of ac-
cess and size of readahead)

208MB (6,379
Av:33KB)

231MB(5,827 Av:41KB) 140MB(2,129 Av:67KB)

LBCAS size Downloaded size MB (Uncompressed size MB), Occupancy %
64KB 86.1(247), 51.5% 93.4(272), 46.9% 55.3(144), 88.7%
128KB 96.8(290), 43.9% 104(315), 40.3% 55.3(149), 85.3%
256KB 114(358), 35.5% 123(386), 35.0% 55.6(159), 80.0%
512KB 144(474), 26.9% 153(508), 25.1% 55.6(176), 71.8%

Table 2: Volume transitions at each processing level. The upper table indicates the volume transition on guest OS.
The bottom table indicates the volume transition on LBCAS.



286 • Effect of readahead and file system block reallocation for LBCAS

Normal Requests Download Storage Cache Uncompress Memory Cache Files per request
(Av. size 33KB) (D) (S) (U)=(D)+(S) (M) (R)=(1)+(2)+(3)
(R) (U)+(M)=(1)+(2)*2+(3)*3

64K 6,338 3,958 1,663 5,621 3,647 (1) 4,148
(2) 1,450
(3) 740

128K 6,381 2,321 1,729 4,050 3,793 (1) 4,919
(2) 1,462

256K 6,379 1,435 1,748 3,183 3,908 (1) 5,667
(2) 712

512K 6,395 948 1,769 2,717 4,019 (1) 6,054
(2) 341

u-readahead (Av: size 41KB)
64K 5,825 4,344 1,172 5,516 3,626 (1) 3,537

(2) 1,259
(3) 1029

128K 5,834 2,526 1,200 3,726 3,761 (1)4,181
(2) 1,653

256K 5,827 1,544 1,179 2,723 3,908 (1) 5,023
(2) 804

512K 5,822 1,015 1,172 2,187 4,023 (1) 5,434
(2) 388

ext2/3opt (Av: size 67KB)
64K 2,165 2,296 626 2,922 1,311 (1) 941

(2) 380
(3) 844

128K 2,148 1,189 593 1,782 1,398 (1) 1,116
(2) 1,032

256K 2,129 634 576 1,210 1,409 (1) 1,639
(2) 490

512K 2,132 353 517 870 1,520 (1) 1,874
(2) 258

Table 3: Frequency of function of LBCAS. Upper table shows the normal case. Lower table shows the
ext2/3optimizer case. “Requests” indicates the number of I/O issued by guest OS. The rest columns show the
frequency of each function of LBCAS. “Files per request” indicates the frequency of downloads for files per a
request.



Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


