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Abstract

The EU-funded project XtreemOS implements an open-
source Linux-based grid operating system. Here, check-
pointing (CP) is used to implement fault tolerance and
process migration. We have developed an incremental
CP solution for saving only memory pages that have
been changed since the last CP. We present how we
keep track of memory page modifications between CPs
using Linux-native radix trees and how we handle vir-
tual memory area changes. We also discuss experiment
results with selected examples. Finally, we present a
custom memory event connector transparently reporting
page write-protection fault of processes to a user mode
grid service to adaptively control incremental CP at grid
level.

1 Introduction

Secure and efficient resource sharing between institutes
and companies is increasingly required by research, en-
gineering and industry. Both is provided by grid tech-
nologies implementing distributed computing platforms
e.g. middleware-approaches like Globus [4] or grid-
functionality integrated into native operating systems
such as XtreemOS [3].

Grid-inherent dynamicity as well as the unpredictable
application behaviour require to transparently move
applications from heavily-loaded or close-to-fail grid
nodes to idle and healthy ones. Coping with grid fault
tolerance is an ongoing research topic. Our approach
is based on using existing kernel checkpointers, includ-
ing the latest Linux checkpointer. In this paper we fo-
cus on developing incremental checkpointing in Linux
to speed-up checkpoint time. Once, a grid service is
able to switch between full and incremental checkpoint-
ing, based on monitoring information provided by the
kernel, the best-suited strategy can be applied.

Recent Linux innovations allow applications, running
on one node, to be isolated from each other regarding
resources such as cpus, pids, network, ipcs, file system,
etc. Container concept [12] implementations such as
cgroups [1] allow the same resource identifier to be used
by multiple applications residing in a separate cgroup
container. The container concept pushes server consol-
idation. Furthermore, it is significant for fault toler-
ance to avoid potential resource conflicts at restart. A
checkpointing mechanism is about to be developed and
can be used for process migration and fault tolerance.
Linux container and checkpointer implementations are
required by grid computing in order to support load bal-
ancing and fault tolerance.

This paper is structured as follows: Section 2 provides a
short overview of the XtreemOS project, Section 3 gives
a detailed insight into our concepts and implementation
of incremental checkpointing in Linux including a short
overview of related work, Section 4 presents evaluation
results followed by conclusions and outlook.

2 XtreemOS

The EU funded project XtreemOS aims at providing a
Linux-based open source Grid operating system com-
ing in three flavours for: single PCs, Single System
Images (SSI) cluster and mobile devices. Fundamental
XtreemOS functionalities include native Virtual Organ-
isation (VO) support and fault tolerance that have been
implemented by extending the native operating system.

Basically, applications can transparently exploit re-
sources distributed in the grid spread across adminis-
trative domains. Besides state-of-the-art grid applica-
tions, legacy applications can be run in the grid un-
modified by relying on the POSIX interface provided
by XtreemOS. Developers can easily create new grid
applications, using the functionality provided by dis-
tributed grid services through the XOSAGA API pro-
viding access to security, resource and process manage-

• 201 •



202 • Incremental Checkpointing for Grids

ment. Users are organised in VOs, VO policies can be
created to provide fine grained resource access control.
Furthermore, XtreemOS comes with a grid file system
called XtreemFS [10], allowing for location transparent
file access, file replication and file striping.

XtreemOS ships with an integrated grid checkpoint-
ing mechanism. The components of the XtreemOS
grid checkpointing architecture [13] are shown in Fig-
ure 1. The main concept is to rely on existing ker-
nel checkpointer packages, e.g. Berkeley Labs Check-
point Restart (BLCR) [8], OpenVZ [11], the Linux-
native checkpointer for a single PC [1] and the LinuxSSI
checkpointer [14] for a SSI cluster.

Figure 1: XtreemOS grid checkpointing architecture

The job checkpointer service at the top is responsible
for checkpointing/restarting a job consisting of one or
multiple job-units. A job-unit checkpointer focuses on
saving and restoring a single job-unit. Therefore, it uni-
formly addresses an underlying kernel checkpointer us-
ing the so-called common kernel checkpointer API. This
API is implemented per checkpointer in a separate trans-
lation library. It bridges semantic differences, e.g. each
kernel checkpointer distinguishes from another one by
an individual calling semantic. Furthermore, there are
different process group types supported by the check-
pointers. The translation library must check a process
group precisely matches a job-unit’s processes in order
to enforce checkpoint/restart consistency. The library
is responsible for providing a uniform interface to de-
velopers to transparently register checkpoint/restart call-
backs. The API supports the retrieval of a matching ker-
nel checkpointer for an application at job submission,
because most kernel checkpointers are incapable of sav-
ing and restoring all possible kernel resources. Besides
grid-to-kernel level semantic translations, the API also
provides inter-kernel checkpointer translation regarding
saving/restoring reliable channels by a generic channel

flushing protocol.

3 Incremental Checkpointing in Linux

3.1 Memory page modification detection

Checkpointing overhead can be dramatically reduced by
saving only content that has changed since the previous
checkpoint. The major challenge here is to detect these
content modifications. Generally, there are page-based
and variable based approaches.

Detection of content changes at variable-granularity-
level is described in [7] where a compiler is manually
modified to detect variable changes. Thus, the compiler
is enabled to insert incremental state saving calls before
a variable is changed. In [15] detection of changes vari-
ables is enabled without manual intervention, but via an
executable editing library. Furthermore, special mem-
ory hardware exists that incrementally state saves con-
tained variables [5].

Detection of modified pages can be realised by taking
existing page table entry bits, namely the dirty bit or the
write bit, into account.

The dirty bit is of high importance for the Linux in-
ternal memory management components, especially for
the Page Cache. A set dirty bit indicates to synchronize
cache contained pages with those versions on disk and
the swap partition. Just reading the dirty bit does not
always indicate changed content. After modified cache
contained data are written back to disk, the bit is reset,
thus, a past modification is not visible anymore. Book-
keeping of modified pages includes resetting the dirty
bit to detect new modifications after a taken snapshot,
which is dangerous since it affects Page Cache consis-
tency. In [6] page modification detection is done based
on the dirty bit being mirrored into one of the reserved
entry bits.

Our approach to detect modified pages is write bit fo-
cused. Each time a write-protection page-fault occurs,
the write bit is set. Such exceptions are detected by
the memory management unit. An exception handler
is called and resolves the exception by removing the
write-protection (write bit set to 1). Based on the detec-
tion we record modified pages in a bookkeeping control
structure. At the initial checkpoint all pages of a pro-
gram address space are saved. After each checkpointing
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operation all writable pages are explicitly made write-
protected (write bit is reset to 0). In case an applica-
tion attempts to write on such a page within a check-
point interval, the triggered page-fault handler removes
the write-protection. Thus, detection of modified pages
is enabled during the next checkpointing operation. De-
pending on the application behaviour, generally just a
subset of all application pages needs to be saved. In or-
der to detect future write attempts in subsequent check-
point intervals, the write-protection will be reactivated
by explicitly resetting the page write bit. Special han-
dling of newly added read-only pages and partially writ-
ten pages after a checkpointing operation is detailed un-
der Section 3.3.

During restart the last version of a physical page needs
to be localized out of multiple checkpoint images.
Therefore, a dedicated bookkeeping control structure is
required that keeps track of the last page’s file location
and offset within the checkpoint image file, described in
the following section.

We are conscious about TLB entries, which must be
flushed explicitly after each incremental checkpoint,
since they are not updated with our write bit modifica-
tion. The latter could result in inconsistency. However,
each process context switch anyway results in flushing
the TLB. Taking multiple checkpoints within one sched-
uler time slice is hard to achieve due to its shortness.

3.2 Bookkeeping of modified pages

Physical page content of an application address space
may be spread across multiple incremental checkpoint
images each potentially storing all or just a subset of all
pages. At restart the complete content and its consistent
versions must be loaded.

We use a bookkeeping control structure that keeps track
of page locations and is based on the Linux-native radix
tree. The radix tree provides fast lookup and insertion
operations (O(1)) which are needed to keep the struc-
ture in sync with the process memory structure. In Fig-
ure 2 the localisation of a virtual address-related physi-
cal page is shown.

Each tree node is identified by a virtual address. A
node entry stores the version of a dedicated incremen-
tal checkpoint image file (e.g., pages_5.bin for the fifth
incremental checkpoint) containing the latest version of

Figure 2: Bookkeeping control structure for modified
pages

the page, and the offset in this file, since more than one
page may be modified between two incremental check-
points. The incremental checkpoint image file stores
data blocks each containing a virtual address, page pro-
tection flags and the page content itself. Of course, all
node entries are also saved to disk at each incremental
checkpoint.

During a checkpointing operation the bookkeeping con-
trol structure is updated. That means, bookkeeping en-
tries targeting not yet referenced pages are added, file
locations and offsets of pages that are present and modi-
fied and already referenced are being updated and saved
to disk.

At restart the bookkeeping control structure is read from
disk. Its data is used to localize memory pages out of
multiple incremental checkpoint files to restore a pro-
cess’ address space.

The mere write-bit based page modification approach
alone is not able to keep the bookkeeping control struc-
ture in sync with the process memory structure, espe-
cially if memory pages have been removed. A require-
ment is to delete such structure entries to avoid wasting
memory. Reading from and writing structure content to
disk decreases checkpointing performance.Another is-
sue is the unawareness of newly mapped read-only data
that cannot be detected and will lead to inconsistency
at restart because the appropriate page content is miss-
ing. The solution for both cases is detailed in the next
section.

3.3 Challenge: memory region changes

Virtual pages belong to a bigger logical unit called mem-
ory region or virtual memory area (VMA). Memory re-
gions can be seen as an overlay structure of continuous
virtual pages. At one time one virtual address belongs
to exactly on memory region. Over time one virtual ad-
dress may be reassigned to a new memory region. They
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are implicitly created from user space (e.g. mmap sys-
tem call) and are created/managed by internal memory
management mechanisms.

Memory region changes in connection with read-only
and writable pages must be taken into account when
managing the book keeping control structure. Two
criteria must be fulfilled, proper assignment of pages
to memory regions, which can be influenced by dy-
namic region creation/removal, and clean management
of bookkeeping control structure entries, outdated en-
tries must be deleted. If the later contains inappropriate
content, a restart may fail or result in inconsistency. Ac-
cording to Linux memory region management [2] four
cases of memory region changes can occur:

Rule 1 (region extension): if a new range of addresses
is to be added to a process, the kernel first tries to en-
large an existing memory region. This requires virtual
address holes or free address blocks in the process’ ad-
dress space and access rights of the existing region and
the additional addresses being equal.

Rule 2 (region creation): if a new memory region is
created and attached to the process’ address space, the
kernel tries to merge neighbouring regions, as far as they
share the same access rights.

Rule 3 (region shortening): a certain address block can
be removed from a region. If this address block resides
at the beginning or end of a region, the region is short-
ened.

Rule 4 (region splitting): if the address block to be
removed resides within an existing region, the region is
split into two smaller regions.

The following examples demonstrate the need for an ad-
ditional criteria than only checking the write bit in order
to detect memory region changes, and thus page content
changes.

Case 1: An application maps file A in a separate mem-
ory region 2. The application gets checkpointed, after-
wards file A gets unmapped, memory region 2 vanishes.
The application maps file B, accidentally having same
size and using the virtual address block of former region
2. A new memory region 2 will be created.

In case file B has been mapped as read-only a new in-
cremental checkpoint does not include the new memory
region 2 content, since no write bit has been set (see

Figure 3: Region2 content with fileB has never been
saved, restore old content of fileA

Figure 3). At restart memory region 2 will be recreated
containing file A (old memory region 2) content which
is wrong.

Figure 4: fileB was partially written to, restore mix of
old and new content

In case file B has been mapped as writable and if it has
been partially written to, a new incremental checkpoint
results in saving just the pages of region 2 with the write
bit being set (see Figure 4). After restart memory region
2 represents a mixture of file A and file B content which
is wrong.

Case 2: this scenario is similar to the first one of case 1.
However, a smaller file B is mapped, and thus a smaller
memory region 2 will be created, resulting in a hole of
the virtual addresses between new region 2 and region
3.

Figure 5: Region2 content with fileB has never been
saved, restore part of fileA

In case file B is mapped read-only, no content of re-
gion 2 will be saved because no write bit is set (see
Figure 5). The reduction of virtual addresses of new
memory region 2 is not reflected in the bookkeeping
control structure. At restart parts of old memory region
2 will be recreated in the new address range of region
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2. These bookkeeping control structure contains more
entries than supposed to be which may result in wasted
memory space.

Figure 6: FileB was partially written to, restore mix of
old and new content

In case file B has been mapped as writable, and if it
has been partially written to, a mixture of old and new
region 2 content will be reestablished at restart (see Fig-
ure 6). Furthermore, the bookkeeping contains out-of-
date data, since it does not reflect a memory region
shrinkage.

Case 3: three regions exist, a memory hole exists be-
tween region 2 and three. At checkpoint time the com-
plete content of all regions is saved. Afterwards, re-
gion 2, which maps file A, gets unmapped, a new file B,
which is bigger than the previous file A is mapped. New
region 2 is placed between region 1 and 3, no memory
hole between 1 and 2, as well as 2 and 3 exists.

Figure 7: Region2 content with fileB has never been
saved, restore fileA and unassigned space

In case file B is mapped read-only, no new region 2 re-
lated content is saved at an incremental checkpoint. Es-
pecially the additional virtual addresses of new region
2 opposite to old region 2, are not taken into account,
since no write bit is set. At restart, region 2 contains file
A (old region 2) content. Since the bookkeeping control
structure is not aware of additional virtual addresses of
new region 2 restart is likely to fail or causes inconsis-
tency.

In case file B is mapped writable, and if it has been par-
tially written to, a mixture of old and new content will
be reestablished at restart for the address block covered
by old region 2. Regarding the additional addresses of

Figure 8: fileB was partially written to, restore mix of
old and new content and unassigned space

new region 2, the same effects are expected as explained
shortly before.

Case 4: in the center of memory region 1 an address
block is being write-protected having different access
rights than the surrounding region 1 parts. Conse-
quently, the Linux memory management enforces re-
gion 1 to be split into three parts. Region 1, 2 and 3,
with region 2 containing the pages the mprotect call has
been applied to.

In case the write-protected region 2 is not written to,
or is partially written to, the same effects as described
under Case 1 occur.

Case 5: region 1 contains an address block at the end
or at the beginning which gets removed. The region
got shortened. In case region 2 is read-only, the ap-
propriate bookkeeping control structure entries of the
removed address block are not removed. Then, a new
region gets created partially or fully covering the previ-
ously removed address block.

In case the new region is read-only, or has been partially
written to, effects as detailed under Case 1 occur.

3.4 Solution: Memory region modification monitor

The special cases mentioned under Section 3.3 occur
in combination of memory region modifications with
read-only and writable content, e.g. such as shared seg-
ments, or anonymous memory region content or mem-
ory mapped files.

To tackle these issues we introduce an additional logical
layer of modification detection—a memory region mod-
ification monitor. This monitor keeps track of memory
region changes and thus complements the mere write-bit
focused approach of memory page modification detec-
tion. Based on monitor data the bookkeeping control
structure can be kept in sync with the actual memory
structure of a process at checkpoint time. It is sufficient
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to update the corresponding book keeping structure en-
tries once, at checkpoint time, instead at each region
modification event.

The monitor records region removals and additions. Af-
ter each checkpoint, monitor data will be flushed. At
checkpoint time the monitor entries are used to manage
the bookkeeping control structure. Its entries are com-
pared to control structures entries. In case a region has
been removed, the start and end address of each moni-
tor entry is used to delete appropriate bookkeeping con-
trol structure entries. This ensures control structure effi-
ciency and consistency. In case a region has been added,
relevant bookkeeping control structure entries are added
and/or updated to reference appropriate checkpoint im-
age contained pages. This allows whole new regions to
be saved initially at the first incremental checkpoint af-
ter their creation.

Our monitor supports detection of mmap and mun-
map calls. Therefore, we insert a monitor notifica-
tion function into the kernel functions do_mmap and
do_munmap. Per mmap call the start and end address of
an affected memory region are inserted into the memory
region modification monitor. A detected munmap call
results in deleting the appropriate entry of the monitor.

For example, region creation detection, via the mmap
call, results in initially saving the whole physical page
content at the next checkpoint. Issues as listed under
Section 3.3 can be avoided.

The memory region modification monitor has a similar
structure as the bookkeeping structure.

Figure 9: Memory region monitor structure

Its entries are organised in a radix tree providing fast
access for entry removal, addition and retrieval. Each
entry contains the memory regions start and end address
of the covered virtual address range. The structure is
shown in Figure 9.

4 Incremental grid checkpointing

In order to realise one flavour of adaptive checkpointing,
our incremental checkpointing enhanced kernel check-
pointer has been integrated into the XtreemOS grid
checkpointing architecture.

For the job checkpointer service to know when it is best
to use a full or incremental checkpointing, the number
of modified pages of an application must be computed.
Therefore, the job checkpointer service has been en-
abled to detect page modifications in a transparent man-
ner for a given set of processes. Without modifying ap-
plications, the service can self-decide which checkpoint
approach to be used by keeping efficiency.

Reporting page modifications from the kernel space to
the user space domain has been achieved by setting up a
new Linux Connector [9]. The service registers at a so-
called memory event connector (MEC) at kernel-level to
be informed about do_page_fault calls triggered by se-
lected processes. The service receives MEC messages
at user space and performs accounting on page faults on
a per process base. In case the collected data exceed a
certain threshold, the job checkpointing service enforces
full checkpointing. Otherwise, incremental checkpoint-
ing is used.

5 Measurements

The testbed consists of 2 nodes with Intel Core 2 Duo
E6850 processors (3 GHz) with 2048 MB DDR2-RAM
and being interconnected with gigabit network. A mas-
ter node runs a tftpboot and a NFS server providing a
LinuxSSI image and a Linux environment including the
directory for checkpoint image storage to a client node.

Our test application allocates 1 MB of RAM and writes
integer values to random locations in 1 millisecond in-
tervals.

Figure 10 shows the checkpoint duration of full and in-
cremental checkpointing if checkpoints are issued in one
second intervals.

Both data sets indicate incremental checkpointing tak-
ing shorter time especially after the initial checkpoint.
Figure 11 shows the resulting image size of full and in-
cremental checkpoints. It appears that one incremen-
tal checkpoint image file is smaller than a full check-
point image, especially after the initial checkpoint. Effi-
ciency of incremental checkpointing relies on the write
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Figure 10: Full and incremental checkpointing duration

Figure 11: Image size of full and incremental check-
pointing

behaviour of an application. Since an additional control
structure and a region monitor need to be maintained,
incremental checkpointing may become inappropriate,
especially the more pages have been changed per check-
point interval. It is the task of the grid service to figure
out the best-suited strategy.

Furthermore, restarting from an incremental checkpoint
may result in accessing more than one image file oppo-
site to just one file with full checkpointing. Increased
I/O overhead, caused by reading from multiple files, is
likely decrease restart performance.

6 Conclusion and Outlook

We described the integration of incremental checkpoint-
ing into a Linux-based kernel checkpointer. Our basic

approach to detect modified pages, which is the most
significant prerequisite to be met for incremental check-
pointing, is write bit based. We use the write bit of pages
to detect whether pages have been modified and thus
need to be saved. Modification of the write bit does not
interfere with other Linux memory management func-
tionality, e.g. the Page Cache.

Furthermore, we classified five generic and common
scenarios of Linux memory region behaviour, where
page content modifications cannot be detected with a
mere write bit focused approach. Basically, combina-
tions of memory region creation and removal in con-
nection with read-only and writable content can lead to
inconsistency and failure at restart.

We implemented a memory region modification monitor
that takes region changes into account in order to save
appropriate content at each incremental checkpoint and
avoid the scenarios described under Section 3.3.

Efficient Linux native structures, such as a radix tree,
have been used to implement a page-modification book-
keeping control structure and the memory region modi-
fication monitor enabling fast management of incremen-
tal checkpointing-specific data at checkpoint and restart.

We profit from recent innovations, namely the generic
connector concept. A custom memory event connector
(MEC) informs a user-space component of page modi-
fications, which improves the symbiosis of kernel- and
grid-level checkpointing components.

We are conscious of further events to be monitored re-
garding region resizings, e.g. caused by do_mremap.
Besides, we will focus on saving pages contained in
the swap area as well. Additionally, we plan to re-
alise concurrent checkpointing to provide more kernel-
based functionalities that support adaptive checkpoint-
ing at grid level.
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