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Abstract

Recently, many tracing infrastructures, like kprobes, tra-
cepoints, ftrace, etc. have been merged into the main-
line kernel. They seem useful to tell what is going on
inside the kernel in the physical machine. So, it is natu-
ral that we tend to question if can we use them to trace
virtual machines.

In this paper, we introduce VESPER, the framework to
trace guest kernel states from the host utilizing in-tree
tracing stuff in the just same manner as host kernel trac-
ing. In particular, the mechanism of injecting probes to
guest and splicing guest tracing reports onto host to alle-
viate data copy overhead will be focused upon. To ver-
ify the efficiency of VESPER, we take HA cluster with
guests on in-tree hypervisors, KVM, for test cases. By
combining tracepoints with kprobes to monitor guests,
VESPER shows the improvement on fail-over response
latency caused by application-bound as well as system-
wide failure, against conventional heartbeat.

1 Introduction

Tracing issues have recently been focused on Linux ker-
nel community. Kernel Markers and trace points have
already merged into the mainline kernel and various
Ftrace engines have been introduced at the LKML [1].
Those tracing facilities can provide lightweight mecha-
nism to understand the behavior of the kernel compared
to dynamic tracing facilities such as Kprobes which uti-
lize breakpoint. It seems to be reasonable to use the
tracing facilities to debug the kernel. However, we have
been thinking about other use cases for the facilities than
the debugging. Our suggestion is applying the kernel

tracing to the decision maker of fail-over or migration
in the clustering of virtual machines in enterprise server
systems requiring efficient resource utilization and sys-
tem dependability. In a certain system, fail-over re-
sponse latency is the bottleneck for the high availabil-
ity of service, which comes from the polling-way of
heartbeating between cluster nodes. Even in a virtu-
alized environment, a cluster manager such as Heart-
beat [2][3] software delivers messages between cluster
nodes to check their health through network periodically
(known as heartbeat). If any node fails to reply in a cer-
tain time, the manager will assign the service which the
faulty node was providing to another node. This amount
of time before switching to another node is called the
deadtime, key to ascertaining node death in Heartbeat.
With this approach, however, the manager cannot im-
mediately determine faults, nor get detailed information
about faulty nodes; this results in fail-over response la-
tency. But what if the tracing technology is applied to
the heartbeat? This allows the cluster manager to have:

• Prompt notification when corresponding events
happen around a probe.

• Dynamic probe insertion to guarantee service
availability while inserting a probe when using
Kprobes.

• Arbitrary probe insertion to any process address to
hold its versatile probing capability when using tra-
cepoints and etc.

Utilizing this featured technology to examine the health
of a virtual cluster member machine could lead to faster
and more efficient evaluation criteria for system switch-
ing or migration than a simple, periodic message de-
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livery mechanism. Therefore, we have proposed VES-
PER (Virtual Embraced Space Prober)[4] which gathers
guest information effectively in a virtualized environ-
ment, taking advantage of the full features of the tracing
facilities. VESPER simply transfers probes generated in
the host to the targeted guest. The transferred probes do
all the necessary probing work themselves in the guest,
and then VESPER simultaneously obtains the result of
probes through shared memory built across the host and
guest. However, VESPER was only available for the
paravirtualized guests on Xen [5] because it utilized the
Xenbus for the communication between the host and the
guest. To make VESPER more available for the vari-
ous virtualization technology we adopt Virtio [6] pro-
posed as the standard of virtual I/O mechanism in the
Linux community. In this paper, we will describe how
to port VESPER to Virtio and how to inject the probes
into hardware-virtualized guest on KVM [7], which is a
in-tree hypervisor supporting Virtio.

Section 2 briefly describes the mechanism of QEMU [8]
and KVM using Virtio to implement virtual I/O devices.
Section 3 presents the brief description of VESPER ar-
chitecture and implementation of VESPER as a virtual
I/O device in QEMU, while Section 4 discusses trace is-
sues using VESPER. Finally, we conclude this paper in
Section 5.

2 Overview of Virtio in QEMU

Before getting into the porting issue, we briefly describe
how QEMU and KVM works for virtual I/O devices
(called virtio devised hereafter) such as virtio_blk
and virtio_net.

In Virtio, all virtio devices are treated as pci devices
under virtio_pci in the guest. So, virtio devices
need to invoke pci emulator in QEMU. Fortunately,
virtio_init_pci in qemu/hw/virtio.c in
QEMU does necessary works for them. In the pro-
cess of initializing virtual machine hardware, virtio de-
vices invoke virtio_init_pci to register them as
pci devices in QEMU. Then virtio_init_pci allo-
cates VirtQueue, the control block for the shared mem-
ory between the host and the guest in Virtio, for the
devices and invokes pci_register_io_region to
store the configuration information of the devices just
like native pci devices. The different thing from the
native PCI devices is to register callback functions to
each configuration area other than specific data. The

callback functions are the key components to share vir-
tio devices between the host and the guest. Especially
in KVM, I/O accessing of the guest to those io re-
gions occurs VM_EXIT to switch cpu context from the
guest to the host and QEMU at last. As a matter of
fact, virtqueue_ops.kick of virtio_pci, the
communication method in Virtio, in the guest invokes
iowrite16. In the cpu context switch between the
host and guest in KVM, callback functions registered
in the specific area invoke service routines for each de-
vices. Accessing other features data of the device fol-
lows the same processing below.

1. Register Device in QEMU.

Register the device in the PCI bus in QEMU.

2. Register IO Region in QEMU.

Map the allocated IO Region with proper call-
backs.

3. Register VirtQueue in QEMU.

Allocate VirtQueue to handle the shared memory
prepared by the guest in QEMU.

4. Retrieve Device Configuration.

Registered virtio device driver probed in the guest,
the driver executes I/O access to retrieve the device
features.

5. Set virtqueue.

Virtio device driver in the guest allocates
virtqueue and vring memory, the control
block for vring and the shared memory between
the host and the guest, respectively. Then it ex-
ecutes I/O access to the IO Region in QEMU and
sets vring physical address of the guest. In this pro-
cedures, the host and the guest finally establish the
shared memory with vring.

6. Send Request.

Virtio device driver in the guest sends requests
written on the vring by I/O accessing to the IO
Region.

7. Send Response in QEMU.

Callbacks in the IO Region do serve and send back
the result by inject interrupt to the guest via KVM.

In the next section, we describe the detailed implemen-
tation of the VESPER for the Virtio in QEMU and
KVM.
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Figure 1: Architecture of VESPER

3 Implementation of VESPER

For probing the guest, VESPER uses the tracing fa-
cilities to hook into the guest Linux kernel, and uses
relayfs to record probed data in the probe handler of
the tracing facilities. In this section, we take a brief look
at the VESPER architecture and its semantics. Then we
present the implementation of Virtio support in VES-
PER.

3.1 VESPER Architecture

As mentioned before, VESPER uses the tracing facil-
ities to hook into the guest kernel. However, because
they are the probing interface for the local system, they
cannot implant probes into the remote system directly.
Besides, in the typical use case of them, the probe han-
dler in them comes in the form of a kernel module.
Therefore, in using them to hook into the guest kernel,
VESPER should be able to load probing kernel modules,
on which the handlers to probe are implemented, from
the host to the guest. This loading capability of VES-
PER is implemented as split drivers and named Probe
Loader.

In addition, in VESPER, the probing modules use re-
lay buffers to record data in the probe handlers. At this
point, probing modules are in the guest; thus, VESPER
needs to transfer the buffer data from the guest to the
host. This relayed data transfer capability is also imple-
mented as split drivers and named Probe Listener.

Figure 1 is the block diagram of the VESPER compo-
nent.

Communication Layer

Action Layer

Probing Module

Communication Layer

Action Layer

UI Layer user space

kernel space

Host Guest

Figure 2: Layer of VESPER

As just described, VESPER contains two pairs of split
drivers. These drivers are implemented for each VMM
because they strongly depend on the underlying VMM.
So, we divide VESPER into three layers (shown in Fig-
ure 2): UI Layer, Action Layer, and Communication
Layer, in order to localize VMM-dependent code. This
structure lets VESPER run on Xen and KVM by replac-
ing only the VMM architecture-dependent layer—the
Communication Layer.

3.2 VESPER Semantics

In order to implant probes into the guest, VESPER
should load probing modules from the host to the guest.
And then, VESPER sends probed data from the guest to
the host.

Figure 3 illustrates the semantics overview of VESPER.

3.2.1 Module Loading

The first step to probe the guest kernel is to load the
probing module onto the guest.

0. Make Module

First of all, one should make a probing module
which uses the tracing facilities and relayfs.

A1. Module Load Command

Execute the probing module insertion via inter-
faces provided by the probe loader. One can also
specify module parameters, if needed.

A2. Obtain Module Information

On the host-side Action Layer of the probe loader,
from user space, VESPER obtains the module in-
formation to insert such as the module’s name, its
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Figure 3: Process Flow of VESPER.

size, and its address with others related to module
parameters, if any.

A3. Send/Receive Request

Through the interface provided by the VMM or
Virtio, the probe loader transfers the probing mod-
ule’s information between the host and guest.

A4. Load Module

In the Action Layer, the probe loader on the guest
side loads the module without userspace help.

A5. Share Relay Buffer

In the Action Layer, the guest’s probe listener gets
relayfs buffer information such as the read index,
buffer ID, etc., from the probe modules; it then ex-
ports the buffer to the host.

A6. Send/Receive Buffer Information

Communication layer of guest probe listener trans-
fer the shared buffer information to host via VMM
interface, if any, or Virtio, and then, host probe lis-
tener receives it.

A7. Setup Relayfs Structure

The Action Layer of the host’s probe listener builds
the relayfs structure based on the information re-
ceived from the guest.

A8. Analyze/Offer Probed Data

One can read probed data through the UI Layer of
the probe listener.

3.2.2 Probing

After finishing the procedures in Section 3.2.1, the host
and guest probe listeners share relay buffers of the prob-
ing module. Consequently, it is not necessary to transfer
all the recorded data from guest to host, but it is nec-
essary to transfer index information about shared relay
buffers, where the data is, to get the start index for the
actual access to relay buffers by host.

B1. Gather Guest Kernel Data

Once loaded, the probing module puts data into the
relay buffer in the probe handler.

B2. Get Index Information

When change occurs in the relay sub-buffer, the ac-
tion layer of the guest probe listener gets the index
information and creates a message to notify host.

B3. Send/Receive Message

Through the communication layer, the host probe
listener is notified of the index data from the guest.

B4. Update Index

The action layer function of the host probe listener
updates the index of relayfs in the host, based on
the received message.
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3.2.3 Module Unloading

Basically, unloading a probing module below is similar
to loading a module. The significant difference is that
it takes two steps in the unloading module process, be-
cause before removing the relay buffer in the handler in
the guest, the exported user interface for the buffer in
host should be dropped.

C1. Module Unload Command

C2. Obtain Module Information

C3. Send/Receive Request

C4. Unload Module (step1)

C5. Stop Sharing Relay Buffer

C6. Send/Receive Buffer Information

C7. Destroy Relayfs Buffer

C8. Unload Module (step2)

In the next section, we describe the detailed implemen-
tation of the probe loader and listener.

3.3 Implementation of VESPER supporting Virtio

As previously described, VESPER consists of two com-
ponents named probe loader and probe listener. Each
component is split into three parts, UI Layer, Action
Layer, and Communication Layer, to confine the de-
pendency on the underlying VMM. In this section, we
present the implementation of VESPER from the view-
point of the Communication Layer supporting Virtio.

3.3.1 Probe Loader

In order to implant the probing module from the host
into the guest memory space, VESPER needs to be able
to transfer the module image somehow. Usually, the
guest sends request. However, in this case, the host
should send the module image and request to implant
it to the guest memory. Therefore, the loader utilizes the
event mechanism of QEMU. Like virtio_console,
the loader attaches the watcher, to poll UI layer, to
QEMU. When the module image is written to UI layer,

QEMU sends the event notification to the loader. Then
the loader dumps the image to vring, established be-
tween the host and the guest, and injects interrupt to the
guest.

In writing the image to the vring, struct iovec
and struct scatterlist translation is needed to
use Virtio facilities. In QEMU, VirtQueueElement
and virtqueue_push in qemu/hw/virtio.c
helpers are prepared for the needs. On the other
hand, the loader in the guest uses sg_set_buf and
sg_init_one to prepare the memory where the host
writes the image. To load the module into the kernel, the
name of module and the size of module are needed in in-
voking load_module in the kernel. So, the header
of the request, struct virtio_loader_inhdr
is attached to inform the guest of the related informa-
tion of the module. From the viewpoint of the guest,
the guest is not able to find out how much memory is
needed to accomplish the the request. So, the guest
prepares only one page for the request and notify the
memory size per request in the header of struct
virtio_loader_outhdr. Then the host sets the
left length of the module onto the header as well. Figure
4 depicts the details.

3.3.2 Probe Listener

The Probe Listener should retrieve the probed data from
the guest and make it available to user-space applica-
tions in the host. Probing modules use relayfs to record
the probed data which describes the behavior of the
guest kernel around the probe points.

Relayfs in the guest tends to allocate its buffers by
pages, and the listener sets their physical address to
vring to share them with the host. So, the listener in
QEMU can see the all data on the buffers. However,
those data should be copied to the relayfs in the host
kernel to keep user interface to the relayfs for user appli-
cation utilizing the probed data on the host. In addition,
even QEMU and the relayfs can share the buffers, they
should share the control information such as the read
index and padding value to access proper data as well.
Our design decision to tackle these problems is :

1. QEMU mmaps the buffers pages notified by
vring into the action layer of the listener in the
host. The action layer creates relayfs rchan with
the buffers.
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typedef struct VirtIOLoader
{

VirtIODevice vdev;
VirtQueue *vq;

};

typedef struct VirtIOLoaderReq
{

VirtIOVsp *dev;
VirtQueueElement elem;
struct virtio_loader_inhdr *in;
struct virtio_loader_outhdr *out;

};

struct virtio_loader_outhdr
{

uint32_t type;
uint8_t max_size_per_req;
uint8_t status;

};

struct virtio_loader_inhdr
{

uint32_t type;
uint8_t mod_name[];
uint64_t mod_size;
uint64_t left_len;

};

Figure 4: Prototype of the device of ProbeLoader

2. Every time the relayfs in the guest updates the read
index, the guest will notify the index via Virtio.
QEMU will access the action layer in the host to
inform it. Then the action layer updates its index
of the rchan.

As a result, Probe Listener consists of two components,
which are a buffer share function and an index update
function, and it is implemented as split drivers, just like
Probe Loader.

3.3.3 Buffer Share Function

As mentioned before, because the probing module
records probed data into relay buffers, Probe Listener
shares them between the host and the guest. Sharing the
buffers is implemented by using Virtio like the module
transfer function in Probe Loader. Similarly, informa-
tion about which buffers need to be shared is provided
from the guest to the host by using Virtio.

Once the relay buffers are exported by the guest and
their information is received by the host, the relayfs
structure is built on the host to provide probed data in the
buffers to user-space applications. At this time, Probe
Listener in the host does not call relay_open to cre-
ate a rchan structure, which is a control structure of
relayfs. This is because Probe Listener does not need
to newly allocate the pages for the relay buffers, but
should just map the pages exported by the guest through
QEMU. Therefore, Probe Listener sets up the rchan
structure manually. After rchan is set up, the interface
to read this relay buffers is created on /sys/kernel/

debug/vesper/domid/modname/ like other subsys-
tems which use relayfs. User applications can read this
interface directly.

Finally, to stop sharing the buffer, the probe listener ex-
ecutes the above process in reverse. Removing the relay
structure is done at first, and then exporting relay buffers
is stopped.

3.3.4 Index Update Function

When the probe listener shares the relay buffers between
the host and the guest, it must synchronize some buffer
information such as the read index between both rchan
structures. If it does not, the user application on the host
cannot read the probed data correctly. Probe Listener
uses Virtio for the information transfer. The guest’s
probe listener creates a message including the informa-
tion, pushes it to vring, and then notifies the host’s
probe listener in QEMU. The host’s probe listener gets
the message from vring and accesses the action layer
in the host to update its own relay buffer information
with the message.

Ideally, probe listener should update that information
immediately whenever the guest rchan is changed.
However, message passing by vring is too expensive
to update each time due to the intervention of the inter-
rupt mechanism to notify host of the existence of pend-
ing messages. Hence, Probe Listener updates the buffer
information when switching to sub-buffer occurs. In do-
ing so, probe listener updates the buffer control infor-
mation, and the user application can get the latest data
probed from the guest.

Figure 5 depicts the definition of the device for Probe
Listener.
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Figure 6: Test environment to demonstrate the usability of VESPER.

4 Tracing and evaluation

We have two different tracing facilities. one is for static
tracing technology, tracepoints representatively and the
other is for dynamic tracing technology, Kprobes. each
technology has advantages and disadvantages compared
to each other. The static tracing tends to show lower
overhead than the dynamic tracing. However, the static
tracing requires the kernel recompiling. So, we choose
the proper tracing technology case by case. In our test
environment, Figure 6, we use trace points to monitor
system-wide figures like memory pressures, scheduling
and etc. On the other hand, we use Kprobes to monitor
application-specific figures like "signal" to the specific
application.

In the environment, we prepare two physical machines.
We set up two guests as resources managed by the LRM
(Local Resource Manager) of Heartbeat on each physi-
cal machine. On each physical machine, the webserver
is on the one guest, we say VM1; it is actively perform-
ing web service. On the other hand, the webserver in the
other guest, we say VM2, is inactive.

When something wrong happens to VM1, Heartbeat
lets VM2 take over all of roles which VM1 was per-
forming. However, one physical machine, P1, has
Heartbeat’s LRM without involvement of VESPER to
show how Heartbeat works in the usual way. However,
the other physical machine, P2, has LRM cooperating
with VESPER. To evaluate VESPER, we insert Kprobes
around send_sigal and trace points probe around
out_of_memory. Then, we send SIGTERM to the

webserver at first. Kprobes thus inserted will put clues
like the callstack to the SIGTERM on the relayfs. Then,
we measure the recovery time on P1 and P2. We can
easily expect that P2 will recognize what happened to
VM1 of P2 as soon as the webserver is gone, because of
the prompt notification done by VESPER. For the next,
we execute a test program allocating a huge memory to
occur OOM. Also, we measure the recovery time on P1
and P2. In this case, P1 did not recognize OOM because
the test program is killed.

Through the experiment, we could verify better perfor-
mance on response latency with VESPER.

However, special care should be taken with two issues
regarding probes. One is what probe points are suitable
for proper monitoring. If the targeted, necessary probe
points miss, no more improvement over usual Heart-
beat can be expected. Actually, the problem on where
probe points should be inserted seems very tricky to
handle, because highly experienced developers or sys-
tem administrators on kernel context and applications
running on the server are required to select optimal
probe points. The other is about overhead produced by
the execution of probes especially in dynamic tracing
tracing technology. One should adjust the overhead ac-
cording to the required service performance. Both is-
sues exclude each other. More probes inserted to hit
fine-grained events cause more overhead in probing, ob-
viously. Some mechanism to help one select optimal
probes could be needed. Some suggestions for these is-
sues will be mentioned as future works of VESPER in
the next section.
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typedef struct VirtIOListener
{

VirtIODevice vdev;
VirtQueue *vq;

};

typedef struct VirtIOListenerReq
{

VirtIOVsp *dev;
VirtQueueElement elem;
struct virtio_listener_inhdr *in;
struct virtio_listener_outhdr *out;

};

struct virtio_listener_outhdr
{

uint32_t type;
unit8_t guestid;
target_phys_addr_t buf_addr;
uint8_t mod_name[];
uint64_t buf_size;

};

struct virtio_listener_inhdr
{

uint8_t status;
};

Figure 5: Prototype of the device of ProbeListener

5 Conclusion and future works

In this paper, we expanded VESPER to Virtio on KVM
as a framework to insert probes in virtualized environ-
ments and discussed what topics VESPER can solve
in clustering computing. After that, we described the
design and the implementation of VESPER. Then we
suggested a test bed to show the performance improve-
ment on fail-over response latency. Finally we discussed
some considerations on places and overhead of probing.
To address these considerations, we have some plans for
future VESPER developments.

5.1 Probing aid subsystem

For the ease use of cluster manager or other applications,
we plan to develop a probing aid subsystem. Probing
points could be classified into several groups based on
their functionality. The subsystem thus can pre-define
several groups of probe points and abstract them to
its clients or application—like memory group, network
group, block-io group, etc. The clients just select one

of groups, and the subsystem will generate all needed
probes relayed to VESPER. Also, fine-grained selection
from several groups will be supported by the subsystem.

5.2 Precaution capability on collapse of the host

If the host collapsed, all services running on the guests
would be lost. It is obviously a big problem. Therefore,
VESPER should probe the host simultaneously to check
whether the host is in good condition. When VESPER
catches a sign of the host’s collapse, the cluster manager
notified by VESPER could take necessary action, such
as live migration to other host.
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