
If I turn this knob. . . what happens?

Arnaldo Carvalho de Melo
Red Hat Inc.

acme@{redhat.com,ghostprotocols.net}

Abstract

Characterizing problems in systems with lots of con-
figuration knobs while trying versions of components
can be an error-prone task. System and application
configuration details such as kernel boot options, SMP
affinity, NIC and scheduler settings, /proc and /sys
filesystem entries, lock_stat data, and other items
can prove vital. Software to collect this information in
a database, correlating to application performance num-
bers for automated and visual analysis, is needed to help
in this process.

Work in this direction is presented in this paper, showing
how changes in system tunings compare to previous re-
sults in the database. By automating the collection of
performance numbers together with environment tun-
ings, it helps in noticing trends in system behavior as
system components evolve.

1 Introduction

Characterizing a performance or latency problem,
benchmarking, testing new versions of system compo-
nents or a new machine—all these require storing the re-
sults in a database or spreadsheet for comparisons. Cre-
ating graphics from the collected data also helps in this
process.

The number of system (software and hardware) knobs
keeps growing, and it is easy to overlook one setting and
then have difficulty in reproducing it on another system
with supposedly the same hardware and software com-
ponents, as is common when trying to obtain help from
fellow developers, a company help desk, or the support
services of a vendor.

Automatically recreating a set of tunings after the up-
date of one of the system hardware or software com-
ponents and comparing the results of a series of bench-
marks with previous results is important in the life cycle
of any software.

A small variation in performance, latency, memory us-
age, and several other software metrics after the update
of a component is usually acceptable. It is thus possi-
ble that continuous degradation of a metric is unnoticed
over several development cycles as the base hardware
used also gets upgraded.

This paper will describe efforts in providing software for
reading and storing system settings in a database, inde-
pendently from how these changes were performed, be
it using basic system tools such as chrt or taskset,
or using higher level tools, such as tuna, that will also
be described.

Ways to do live analysis of changes on system compo-
nents such as changing the scheduler policy, priority,
and processor affinity of threads and interrupts will also
be presented; as well as running benchmarks for post
processing, storing results in a database, and then gen-
erating reports showing the sets of tunings that provided
the best results; as well as graphics showing results from
several sets of tunings.

2 Automated Testing

I started working in this area when trying to charac-
terize performance degradations found when trying to
run market data applications on the PREEMPT_RT Real
Time enabled kernels.

Knobs such as enabling or disabling TSO (TCP Seg-
mentation Offload), using private futexes by upgrad-
ing the system C library, disabling or enabling IRQ
balancing, setting the affinity and priority of the hard
IRQ threads, making sure that oprofile, systemtap or
lock_stat[1] were not enabled, trying new patches
by fellow developers, and many others quickly added
up to make me crazy when trying to compare results.

Many times this leads to having to re-run tests already
performed due to forgetting whether one of these many
knobs had been set.

• 67 •

68 • If I turn this knob. . . what happens?

To help in comparing the results, I started working on
a set of software components, mostly written in the
Python language.

Some system interfaces lacked Python bindings, so one
of the first tasks performed was to fill this gap.

Bindings for the interfaces exposed through the schedu-
tils package were written, python-schedutils [3], allow-
ing getting and setting the scheduler policy, real time
priority, and processor affinity of threads.

Another Python binding, python-ethtool [4], allows get-
ting and setting network interface drivers knobs such as
TSO1 and UFO;2 these are hardware assists for common
TCP and UDP operations that can greatly improve per-
formance, but inherently can add delay as the network
stack waits for more application buffers to coalesce into
one big segment to send to the ethernet card in just one
transfer. Disabling these features is one thing usually
tried when characterizing a problem, as it involves soft-
ware implementations both in the OS network stack and
on the NIC firmware—two places where bugs can hap-
pen. Also, the interaction of these two software imple-
mentations can be a source of problems.

There is also a lot of information available in the /proc
filesystem, that despite its initial goals of providing in-
formation about the processes in the system, has been
overloaded with all sorts of system-wide information. A
library that turns several areas of the information found
there into Python dictionaries was also written.

Classes for turning /proc/pid/stats and status
into dictionaries, for instance, are used by the other
components to sample information such as the number
of voluntary and involuntary context switches experi-
enced by threads.

The sysctl information in /proc/sys is also turned
into dictionaries and the ones that are changeable by the
administrator (directly, using a simple echo shell com-
mand, or through higher level tools) are stored in a set of
database tables, one per a selected set of /proc/sys
subdirectories.

A tool that collects the state of this subset of sysctl set-
tings and assigns a unique numeric identifier was also
written.

1TCP Segmentation Offload
2UDP Fragmentation Offload

This tool initially was used to store more than just sysctl
settings, with extra information such as if system anal-
ysis tools such as lock_stat, oprofile, or systemtap
were in use, or the options passed through the kernel
command line.

The tool is being rewritten so that it can be used just
for sysctls, with another like-minded tool to be made
available for other, non-sysctl knobs.

To better illustrate the use of such tool, here are some
examples:

$ tuneit --show 1
tcp_congestion_control: bic
kcmd_idle: None
lock_stat: False
tso: lo=0,eth0=1
app_sched: SCHED_RR
app_affinity: ff
systemtap: False
vsyscall64: 1
kcmd_maxcpus: None
irqbalance: True
app_rtprio: 51
oprofile: False
$

This shows the set of tunings recorded in the database
associated with the unique numeric identifier 1.

To see what changed from the first set of tunings to the
second one:

$ tuneit --diff 1,2
Tunings#: 1
tso: lo=0,eth0=1

Tunings#: 2
tso: lo=0,eth0=0

$

Only TSO was changed, being enabled on the first set
of tunings for the eth0 interface and disabled on the
second set of tunings.

This tool can be used as well for identifying the sets of
tunings where a knob had a particular value. For in-
stance:

$ tuneit --query "vsyscall64=0"
71,111

Some work was done on allowing this tool to be used
for replaying a specific set of tunings:

$ cat /proc/sys/kernel/vsyscall64
1
$ tuneit --replay 71
$ cat /proc/sys/kernel/vsyscall64
0
$

2008 Linux Symposium, Volume Two • 69

The settings that can not be replayed at run time, such as
kernel command line options or the presence of kernel
features such as lock_stat, will instead generate a
warning, so that the user is aware when comparing the
ensuing results.

Currently this suite also checks if lock_stat is en-
abled in the kernel, resetting it before running the bench-
marks, and storing the contents of /proc/lock_
stat immediately after its completion, so that later
on they can be examined. The same procedure will be
implemented for oprofile, when requested, so that one
more of the best practices used by performance workers
can be automated, avoiding cases where such valuable
information gets lost, even having been collected.

Other tools in this suite are used to collect other relevant
information such as details about the machine and the
system components installed in it:

[root@doppio ait]# ./ait-get-sysinfo
arch: x86_64
cpu_model: Intel(R) Core(TM)2 CPU

T7200 @ 2.00GHz
futex_performance_hack: None
irqbalance: False
kcmd_idle: None
kcmd_isolcpus: None
kcmd_maxcpus: None
kcmd_nohz: None
kernel_release: 2.6.25-rc8
lock_stat: False
nic_kthread_affinities: eth0=3
nic_kthread_rtprios:
nodename: doppio.ghostprotocols.net
nr_cpus: 2
oprofile: False
softirq_net_rx_prio:
softirq_net_tx_prio:
systemtap: False
tcp_congestion_control: bic
tcp_dsack: 1
tcp_sack: 1
tcp_window_scaling: 1
tso: lo=0,eth0=1,pan0=1
ufo: lo=0
vendor_id: GenuineIntel
vsyscall64: 0
[root@doppio ait]#

Existing tools such as sysreport will probably be used in
the future, as they provide more information, although
they take a considerably longer time to collect it.

Finally, to provide the information required for the
reporting tools, the benchmark results are stored in

the database, correlated with all the above information
about the system hardware, software, and the respective
settings of both.

One can report the best results in a textual form:

$ rit.py db perf4-1.lab.redhat.com \
perf7-1.lab.redhat.com

server: perf4-1.lab.redhat.com

client: perf7-1.lab.redhat.com

latest report info:
report id: 504
kernel: 2.6.18-53.1.14.el5
max rate: 25000

max rates per kernel release:

2.6.18-88.el5 : 100000
2.6.24-17.el5rt : 97000
2.6.24-20.el5rt : 100000
2.6.24-21.el5rt : 94000
2.6.24-22.el5rt : 64000
2.6.24.1-24.el5rt : 100000
2.6.24.3-rt3.rwmult2: 100000
2.6.24.4-30nommapsem: 100000
2.6.24.4-41.el5rt : 97000

rate: 1000

Shared System tunings:

ufo: lo=0,eth0=0,eth1=0,eth2=0
softirq_net_tx_pri: 90,...,90
softirq_net_rx_pri: 90,...,90
app_rtprio: 0
irqbalance: False
app_affinity: ff
app_sched: SCHED_OTHER
kcmd_isolcpus: None
nic_kth_aff: eth1=ff;eth2=ff
nic_kth_rtpri: eth1=95;eth2=95
oprofile: False
systemtap: False
kcmd_maxcpus: None
futex_performance_hack: 0
kcmd_idle: poll
lock_stat: False
tcp_congestion_control: bic
client: perf7-1.lab.redhat.com

70 • If I turn this knob. . . what happens?

Figure 1: Solid line: libc-2.7.90 (uses private futexes), Dashed line: libc-2.5

Different system tunings:

env|tun|kernel |avglat| tso|vsc64|nhz
128|105| .24-22rt|249.38|eth2=1| 1 | 0
135|109| .24-20rt|252.41|eth2=1| 1 |off
127|104| .24-22rt|254.34|eth2=0| 1 | 0
136|109|24.1-24rt|258.53|eth2=1| 1 |off
134|108| .24-21rt|259.54|eth2=1| 1 |off
133|108|24.1-24rt|262.04|eth2=1| 1 |off
138|111|24.1-24rt|265.08|eth2=1| 0 |off
129|106| .24-22rt|266.51|eth2=1| 1 | on
130|106| .24-17rt|266.51|eth2=1| 1 | on
132|108| .24-17rt|267.97|eth2=1| 1 |off

The common set of tunings for all the 10 best test results
is shown, followed by what really changed, and then the
average latencies, the metric in this particular test.

Another result that can be generated is a set of graphs
that show several benchmark results for visual compar-
ison, as in Figure 1. This compares two versions of the
system C library, one that uses private futexes and an
older one that does not, on a system with 8 cores.

Another graphical report, this time with more than just
two test results, is found in Figure 2, where the dia-
monds and squares lines are the ones with the old glibc,

and all the tests have lock_stat on. The html file
that includes these graphics has a link for the respective
/proc/lock_stat data, where we can see that there
is contention for mmap_sem, illustrated in Figure 3.

3 tuna

Also written was tuna [2], a tool to allow tweaking
scheduler parameters, performing techniques such as
CPU isolation.

It has three main boxes, one that shows the load for each
CPU in the system, another with the interrupt sources,
and the last one displaying the threads in the system.

Users can drag interrupt sources and threads into a CPU,
setting the affinity of the dragged entities to that CPU.

Tuna also allows the user to right click on a CPU and
isolate it, removing it from the CPU affinity masks of
all threads and interrupt sources. It is also possible to do
the opposite operation, including a CPU into the affinity
masks of all interrupt sources and threads in the system.

2008 Linux Symposium, Volume Two • 71

Figure 2: Diamonds and Squares: libc-2.5, Others: libc-2.7.90 (uses private futexes)

Usually the sequence is to isolate a CPU and then move
some specific threads to that CPU so as to keep the iso-
lated CPU cache hot, reducing accesses to main memory
for a critical thread or set of threads.

More work is required to group cores per socket, for
CPUs where caches are shared by the cores in a multi-
core CPU socket. It then will be possible to move
threads or interrupt sources to a socket and not just to
a core.

The infrastructure put in place for multi-core CPUs will
also allow creating groups that include not just cores
in a socket, but any arbitrary grouping that is deemed
useful for a particular purpose. That would permit ar-
rangements such as dedicating two cores in a socket to a
particular purpose, and the other two (assuming a quad-
core CPU) for other purposes.

This will also help on big NUMA systems that have dif-
ferent costs for accessing memory that is one or more
hops away from a particular core.

While it is understood that a general-purpose kernel tries
hard to cope with all the underlying details on multi-

core systems and NUMA topologies, it is generally con-
sidered useful to have such functionality for experi-
mentation. As the complexity of such systems grows,
a tool that exploits GUI facilities and provides higher
level, simpler interfaces for performing these operations
should be of help.

In trying to help a wider audience to understand more
about the components in the kernel, tuna provides
context-sensitive help, so far only for kernel threads.
Right clicking on a kernel thread line in the threads box
and clicking on the What is This? option opens up a win-
dow with information about it.

It is also possible to filter out kernel threads or user
threads and sort by all the columns, and in the future it
should be possible to add more columns from the fields
found in the dictionaries built from the /proc files.

Most of the operations available in the GUI are also
available on the command line, allowing its use in sys-
tems without graphical libraries.

72 • If I turn this knob. . . what happens?

lock_stat version 0.2

class name con-bounces contentions waittim-min waittime-max waittime-total

mm->mmap_sem-W 198626 265946 0.94 53724.80 17407373.03
mm->mmap_sem-R 21179643 49780404 0.74 299766.89 8739012694.54

mm->mmap_sem 50039855 [<ffffffff802626ca>] rt_down_read+0xb/0xd
mm->mmap_sem 4126 [<ffffffff80292c68>] sys_mprotect+0xce/0x22e
mm->mmap_sem 0 [<ffffffff80211e7e>] sys_mmap+0xcf/0x119
mm->mmap_sem 0 [<ffffffff80291014>] sys_munmap+0x32/0x59

...

lock->wait_lock 39064428 40206507 0.94 316.86 56173839.20

lock->wait_lock 3584410 [<ffffffff804a1aed>] rt_spin_lock_slowunlock+0xf/0x5c
lock->wait_lock 8990657 [<ffffffff804a1bde>] rt_spin_lock_slowlock+0x21/0x19e
lock->wait_lock 3742935 [<ffffffff80262383>] rt_mutex_slowtrylock+0x18/0x79
lock->wait_lock 205398 [<ffffffff80262812>] rt_up_read+0x26/0x66

...

dev->queue_lock#2 5918095 8546238 0.86 99690.79 506180455.19

dev->queue_lock#2 1385877 [<ffffffff8043db2c>] __qdisc_run+0xa4/0x185
dev->queue_lock#2 7160361 [<ffffffff8042ddae>] dev_queue_xmit+0x12d/0x29f
dev->queue_lock#2 0 [<ffffffff8042d45d>] net_tx_action+0xbc/0xf3

Figure 3: Edited lock_stat data showing mmap_sem contention in report 354

4 Oscilloscope

The companion to tuna is an oscilloscope application.
It should be fed with a stream of values that will be plot-
ted on the screen together with a histogram.

The goal here is to be able to instantly see how a sig-
nal generator, such as cyclictest, signaltest,
or even ping, reacts when (for instance) its scheduling
policy or real time priority is changed, be it using tuna
or plain chrt.

If the ftrace [5] feature is built into the running
kernel, the oscilloscope classes will take snapshots
of /sys/kernel/debug/tracing/trace and asso-
ciate it with the position on the screen where the sam-
ple appears. So when the user clicks on the vicinity of
such a sample, it will pop up a window with the ftrace-
collected functions, usually what happened in the kernel
while preemption and interrupts were disabled, causing
the latency spike.

5 Future Directions

Integration with qpid [6] is planned, to get or set param-
eters on remote machines.

When this integration is complete, tuna will be just
one of the interfaces to change knobs, another one be-
ing the AMQP Management Console, part of the qpid
project [6].

Being able to use inventory systems for data about the
systems used in the tests is also something to be consid-
ered.

The tuneit tool described earlier in this paper will be
augmented to allow starting a tuning session. There it
will look at all threads and interrupt sources in the sys-
tem, recording the current scheduler policy, real time
priority, and affinities. Then, after a tuna, plain chrt
and taskset, or any other method, it will compare the
new settings and record the changes in the database, al-
lowing the settings to be replayed on the same machine
or on another.

2008 Linux Symposium, Volume Two • 73

6 Conclusion

The activities that this paper describes should be famil-
iar to many readers; ad-hoc ways to accomplish these
goals probably have been performed by most.

I hope that by describing his efforts in this direction and
talking about requirements for further usability encour-
ages interested people to join forces with him in working
on improving this infrastructure for wider use, saving
work for people with similar needs.

Test results for more benchmarks (such as AMQP [6],
netperf, and other open source benchmarks) will be per-
formed and should be publicly available by July, in time
for OLS 2008.

References

[1] lock stat documentation in the kernel sources
Documentation/lockstat.txt

[2] tuna git repository http://git.kernel.org/

?p=linux/kernel/git/acme/tuna.git

[3] python-schedutils git repository http:

//git.kernel.org/?p=linux/kernel/

git/acme/python-schedutils.git

[4] python-ethtool git repository
http://git.kernel.org/?p=linux/

kernel/git/acme/python-ethtool.git

[5] ftrace tracing infrastructure
http://lwn.net/Articles/270971/

[6] qpid project
http://cwiki.apache.org/qpid/

74 • If I turn this knob. . . what happens?

Proceedings of the
Linux Symposium

Volume Two

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

