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Abstract

In existing Linux IO schedulers there is no way to dif-
ferentiate latency-sensitive IO from the background IO.
This means that jobs which have strong latency require-
ments cannot coexist with batch jobs. In the past various
ad-hoc solutions have been used to limit latencies such
as throttling background workload, periodic syncing to
handle delayed writes, and limiting the queue length.

With increasing CPU and memory speeds we generally
end up having multiple applications on the same ma-
chine sharing the disk. In the absence of differential
service, it is not possible to run a latency-sensitive ap-
plication along with a job doing batch updates. We have
added priorities in the anticipatory IO scheduler so that
an IO submitted by an application can be treated differ-
ently depending on the priority of IO. We are able to
show considerable improvement in the latency of high
priority applications using this mechanism.

1 Introduction

There is an effort within the Linux community to pro-
vide isolation for memory and network resources to run
multiple jobs independently on a single machine. IO
containment has been a difficult problem for various rea-
sons. The non-deterministic nature of storage devices
makes any kind of QoS or isolation a harder problem
for IO as compared to other computing resources. Vari-
ations in an IO stream—like size, placement of data on
platter, or seek distance—have played a major role in
determining throughput and latency. This inability to
quantify the device characteristics leads to inefficiency
when performing any kind of isolation. Even the ap-
plications sharing these resources have vastly different
performance and service quality requirements.

Disk isolation can be done over one or multiple IO
characteristics. For workloads needing different ser-

vice rates—bandwidth scheduling—which may be im-
plemented as a strict bandwidth guarantee or as pro-
portional scheduling, may suffice. Latency bounds are
needed for real-time applications sharing their storage
resources, while allocation of time slices is needed for
shared usage in applications wanting to schedule for
non-deterministic things like rotational delay and seek
time rather than raw throughput. Resource accounting
frameworks may need to limit the number of seeks in a
given container. Relative priority of a request as com-
pared to other outstanding requests is helpful in sepa-
rating latency-sensitive traffic from best-effort traffic. In
context of web searches, we need to serve low-latency
user traffic independent of background index updates.

The Linux mainline has support for four different IO
schedulers [5]. They have mainly aimed towards im-
proving bandwidth by reordering requests, submitting
them in batches, and merging outstanding requests. The
deadline scheduler tries to process all read requests
within a specified time period by selecting expired read
requests from a FIFO list. The anticipatory scheduler
[14] is a non-work-conserving scheduler which reduces
seeks for a sequential workloads. The CFQ sched-
uler allocates requests fairly amongst various processes,
while NO-OP provides basic merging. Apart from CFQ,
which allocates larger time slices to higher priority pro-
cesses, there is no differential service in the current
mainline IO schedulers.

Our current work uses non-work-conserving scheduling
to provide priority-based scheduling by building upon
the anticipatory scheduler. The current implementation
of the anticipatory scheduler solves the problem of de-
ceptive idleness [14] present in applications which issue
synchronous reads. It identifies deceptive idleness as a
condition where due to a short period of computation,
the scheduler incorrectly assumes that the last request-
issuing process has no further requests and dispatches
the requests from another process. These workloads
cause seek-optimizing schedulers to multiplex between
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requests from different processes. Letting the disk re-
main idle for a short period lets the scheduler select the
next nearby request from the same process, thereby in-
creasing disk performance at the cost of a small loss in
utilization. In our work we extend this concept to block
pending requests from a low priority process for a short
duration after submitting a request from a high priority
process. This prevents an incoming high priority request
from being delayed due to a dispatched low priority re-
quest. In addition to this a running batch of low priority
processes can be interrupted on seeing a request of high
priority.

2 Related work

Jassura et al. [1] have used both non-work-conserving
and work-conserving approaches at the user and kernel
levels to provide differentiated levels of service in web
content hosting based on priority. Their main metric for
quality of service for an HTTP request was latency. In
their implementation, a request may be postponed if the
load on the system is already high or if the request is
of lower priority. Their solution was not restricted to a
particular subsystem and was a preliminary step in in-
vestigating QoS mechanisms in web servers. In their
study, they observed that they had to limit the number
of processes to have differentiated performance. An
important finding was that a non-work-conserving ap-
proach is better since in their implementation a work-
conserving approach could not do much differentiation
with a large number of processes. Our approach isolates
latency even with multiple antagonists.

Seetarami Seelam et al. [23] proposed that throttling
IO streams in high performance computing systems im-
proved I/O performance. In Linux, similar approaches
are sometimes used to limit the latency of a high priority
job while running a throttled background job with de-
creased utilization. By using a non-working-conserving
scheduler we have been able to improve isolation with-
out throttling the IO streams.

Isolation based on time slicing has been used in
CFQ [3], the eclipse operating system [6], and
YFQ [22]. Argon [27] defined insulation as reduced
interference between workloads, allowing sharing with
a bounded loss of efficiency. But its focus was on
throughput efficiency and though usually it reduced av-
erage response times, it could increase the variation in

latency and worst-case response times. Our implemen-
tation of anticipatory priorities insulates both the aver-
age and maximum latency.

Dynamic selection of IO schedulers [21] investigated
the possibility of using runtime switching of IO sched-
ulers to deadline for providing latency bounds while us-
ing CFQ for best throughput traffic. This selection was
based on feedback from the IO system and the work-
load. Such a technique would be difficult to optimize
for competing workloads while incurring no overhead
for scheduler switches.

In order to compensate for the non-deterministic nature
of disks, QoS schedulers rely on conservative estimates
of bandwidth and latency. Some implementations use
weighted fair queuing coupled with admission control.
[7, 11, 15, 16, 19] all use a fair queuing/tag-based ap-
proach. Even though request stream patterns and the
disk characteristics impact the performance of other ap-
plications, these studies either ignore or take a conserva-
tive estimate. Another approach taken in IO schedulers
[19] is to take into account a disk model, but such tech-
niques are not feasible with numerous disk drives, since
most often it is not specified by the manufacturer and,
models are an approximate representation for today’s
complex drives. Latency-bound IO in QoS scheduling
is orthogonal to our problem, since we want prioritized
traffic to be isolated. We don’t want it to be delayed and
scheduled later to satisfy pre-calculated bounds.

The badger Project [13] solved a similar problem of
improving the latency of transaction synchronous re-
quests while improving the throughput of asynchronous
transaction database requests. They realized that the
only latency control available for synchronous requests
with current schedulers was to limit the number of pend-
ing background requests. Since they were focusing on a
database, they chose to implement priorities in the dead-
line scheduler since it is the most-used IO scheduler for
databases [18]. They implemented one FIFO per prior-
ity level where priority was determined when the dead-
line was set and that low priority IO would wait for a
high priority request. This effectively improved the la-
tency of high priority requests in their experiments with
better throughput than the no-priority, rate-throttling ap-
proach. But since priorities determined when the dead-
line was set, the latency was still bound by this deadline.
Our approach has no disk-parameter-agnostic bounds
and the non-work conserving approach achieves tighter
latency bounds [1]. Also, throughput [4] with the antic-
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ipatory scheduler is inherently more than with deadline
schedulers.

ABISS [10] is designed to provide guaranteed reading
and writing bit-rates to applications, with minimal over-
head and low latency. They use a custom priority sched-
uler and have support for CFQ. Their solution could
use anticipatory priorities since it has lower latency for
higher priority jobs than CFQ.

3 Design

The anticipatory IO scheduler [18] is a one-way ele-
vator algorithm with limited backward movement. It
has FIFO expiration times for both reads and writes.
These queues are maintained separately and expiration
times are tunable. This is similar to the deadline IO
scheduler implementation for interrupting the elevator
sweep. Another feature of the anticipatory scheduler is
batching, where bunches of read requests or write re-
quests are submitted together. The anticipatory sched-
uler alternates dispatching read and writes batches to the
driver. Also, the scheduler anticipates when reads are
dispatched to the driver one at a time. At completion, if
the next request is close to the previous request or from
same process, it is dispatched immediately.

Priority scheduling changes each of these policies to im-
prove response time for a high priority process and pre-
vents starvation of a low priority one. To change these
policies, two data structures are also changed, sort_
list and fifo_list. Changes to these structures
are described below as part of policy changes.

Sort queue: For the one-way elevator, we add two
queues per priority level so that the requests in a given
level can be served independently of requests at any
other level according to their layout on the disk. Instead
of two sort_lists, we now have two sort_list
structs for each level. These lists contain requests in
sorted order according to their layout on disk. A back-
ward seek can still occur when choosing between two
IO requests where one is behind the elevator’s current
position, and the other is in front. As before, if the seek
distance to the request in the back of the elevator is less
than half the seek distance to the request in front of the
elevator, then the request in the back can be chosen.

FIFO queue: Instead of one FIFO queue for each re-
quest direction, we now have two FIFO queues for each

priority level. Only when the requests from a given
priority level are being served, the read or write from
that level expires to interrupt the IO scheduler in its
current one-way sweep or read anticipation. This pre-
vents the starvation of requests in a given priority level.
The expiration times for requests on these lists are tun-
able using the existing parameters read_expire and
write_expire.

Changes to Anticipatory Core: In the vanilla antic-
ipatory scheduler, when a read request completes, the
next request is not dispatched to the driver unless it is
from same process or a nearby request [18]. In the pri-
ority scheduler, the next request will wait if it is from
a process of lower priority, in anticipation of a request
from a process of higher priority. When a request with
higher priority is submitted by the application, it will
break any anticipation happening in the scheduler. This
helps us prioritize a request over a batch of low-priority
requests. It still maintains the earlier statistics on think
time and mean seek distance for the process to decide
if it is worthwhile to wait for a request. The read an-
ticipation can be disabled using antic_expire set to
zero.

Changes to Batch submission: In most IO schedulers,
requests are served in batches where a batch is a set of
requests of one kind (read or write). For a read/write re-
quest, the scheduler submits read requests until there are
more read/write requests to submit and batch time has
not been exceeded. Before scheduling requests for the
alternate direction, the scheduler lets all requests from
the previous batch complete.

In addition to the time limit imposed on batches
by read_batch_expire and write_batch_
expire, the priority scheduler limits the number of re-
quests for a given priority level using tokens associated
with that priority level. Instead of alternately serving
read and write batches, the priority scheduler selects a
particular priority level and submits requests in one di-
rection as long as there are requests in the chosen direc-
tion or there are tokens left for that level. The batching
of requests for a given priority level maintains the lo-
calization per priority level and gets fairly good results
due to inherent batching in processes in a given prior-
ity level. As before, the read and write FIFO expiration
times are checked only when scheduling IO of a batch
for the corresponding (read/write) type.

Handling merges: Merging is another property of vari-
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ous IO schedulers. If a request entering the IO scheduler
is contiguous with a request that is already on the queue,
either to the front or to the back of a request, it is called a
front-merge candidate or a back-merge candidate. If the
size of new request is less than what can be handled by
the hardware, this new request is merged with the one
already in queue. With priorities, a request is merged
with an already existing request if it satisfies the above
criteria and also if it is from the same priority level as the
existing request. Merging of the request with a request
from another level should be possible, but we need to see
if this has any performance gain. Also, there is an issue
of whether we need to change the priority band of the
merged request, especially when dealing with logs and
journalled file systems due to a large number of merges.

Handling writes

Attaching Priority: The priority of a request is derived
from the current context and uses the infrastructure in
the Linux kernel for CFQ. Since writes are submitted
asynchronously, they get submitted in the context of
background threads or the process doing direct reclaim.
A prototype implementation was created to attach prior-
ity to the page struct in submission context. This priority
is transferred to the request during submission.

Writes and Page cache: While serving cached read traf-
fic, an application doing writes could effectively wipe
out the page cache unless it is submitted to the eleva-
tor frequently. One of the possible solutions would be
to throttle the dirty path with feedback from the eleva-
tor regarding available tokens for that priority level. A
second approach would be to do memory isolation of
an antagonist job. Fianlly, one can periodically sync the
dirty page cache. For simplicity we adopted this ap-
proach to eliminate interference from background high-
throughput jobs. We experimented using both periodic
dropping of cache and direct IO for background write
traffic.

Workload Description: We have attempted to isolate
latency, in particular we want to improve the latency of
seek-bound (low throughput) search traffic. When this
search traffic is served, in the background, the data that
is being used to serve this search traffic (index) is re-
freshed for more up-to-date results. This interferes with
foreground search traffic. Most of the foreground traf-
fic is random synchronous reads, some of which is sen-
sitive to the amount of cache in the system. We have
synthesized these two workloads to quantify the above
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Figure 1: Random read latency – varying block size

problem.

1. Sequential read of 80% of the file followed by
random reads to achieve good amounts of hits in
undisturbed cache. This is run along with antago-
nist sequential read/write traffic.

2. Random reads with sequential background read/
write.

4 Experimental Results

We evaluated the performance on two different configu-
rations. The first one is a dual-core 2Ghz system with
8GB of RAM. The test disk is a SATA drive with a
capacity of 400G and 8MB onboard cache. The sec-
ond system is a dual-core 2.4Ghz system with 16GB of
RAM and a SATA drive with a capacity of 500G and
8MB onboard cache. Both systems are running a cus-
tomized 2.6.18 kernel with ext2. The experiments were
conducted using synthetic workloads generated using
fio [2]. The tests were run on separate drives not run-
ning any other workload.

1. Random and Sequential Read Latency

The first experiment is designed to measure the la-
tency impact of random reads in the presence of
competing random reads (Figure 1). It measures
the mean and maximum latency of reads for dif-
ferent block sizes. When more than one thread is
running, both use the same block size. The three
cases in this experiment are
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Figure 2: Sequential read latency – varying block size

(a) Single Thread: One thread doing random
reads.

(b) Antagonist: Two threads doing random reads.

(c) Low Priority Antagonist: Two threads doing
random reads at two different priority levels.

When a competing thread is introduced without
any priority (b), the average latency is almost two
times as compared to when a single thread (a) is
running and the max latency is more than double.
On lowering the IO priority of the antagonist (c),
the mean and the maximum latency for the main
job is almost similar to when only a single thread
is running. Changing the priority of the antagonist
has isolated latency of foreground job.

For sequential reads, the results are similar. The
mean latency and the maximum latency are iso-
lated from competing workload on increasing the
IO priority of main thread (Figure 2). In case (b),
the maximum latency is more than 4 times, though
the average latency is almost twice—like in the
case of random reads. Here also, by increasing the
priority of the main thread (c), the effects of an an-
tagonist are minimal.

2. Direct IO

In the second comparison threads are doing random
direct IO (Figure 3). Here also, we have three cases
where:

(a) Single Thread: One thread running doing di-
rect IO.

(b) Antagonist: Two threads doing direct IO at
the same priority level.
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Figure 3: Direct IO latency – varying block size
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Figure 4: Multiple threads in background – block size
4k

(c) Low Priority Antagonist: Two threads doing
direct IO at different priority levels.

In case (c) the latency is reduced, since the prior-
ity scheduler anticipates a high priority IO even if
there is a pending low priority IO in queue. This
means that a high priority IO is not blocked be-
hind a low priority even if the submissions hap-
pened one after the another. In the case of a work-
conserving scheduler, a direct IO submission will
be handed off to the driver and hence the latency
of a high priority job is not isolated from low pri-
ority submissions. For all measured block sizes,
the equal priority antagonist had more than twice
the latency as compared to when a single thread is
running, but when higher priority was assigned to
the main thread, both the average and maximum
latency were reduced to a large extent.
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Figure 5: Multiple threads in background – block size
1m

3. Multiple Background Threads

Figure 4 shows the isolation provided to a high
priority job in the presence of multiple low prior-
ity jobs. It has a thread doing 4k direct IO with
a varying number of antagonist jobs doing direct
IO of the same block size. When the antago-
nist threads run at the same priority as that of the
main thread (No Priority), the latency (both av-
erage and maximum) roughly doubles with each
doubling of the number of antagonists. On as-
signing higher priority to the main thread (Prior-
ity), the latency is fairly constant even when the
number of background threads is increased. Fig-
ure 5 plots the results of changing the number of
background threads when the block size is 1MB.
Irrespective of block size, varying the number of
background threads has little or no effect on the la-
tency of the foreground job. Earlier user-level and
kernel-level approaches to using priorities in both
work-conserving and non-work-conserving sched-
ulers [1] required restricting the number of jobs
to obtain differentiated performance. The current
scheme has no such limitation.

4. Rate-limited Background Load

Sometimes in order to limit the latency of a typi-
cal latency-sensitive job which is not throughput-
bound, the background thread needs to be rate lim-
ited. This reduces the probability of interference
of IO from an antagonist on the main workload.
Due to this, the utilization of the disk drive is re-
duced by a large extent. Figure 6 plots latency
of the foreground job while the throughput of the
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Figure 6: Rate-limited Background Load

background job is increased. In this experiment,
both jobs are requesting 64k-sized buffered reads
sequentially to two different 2GB files on a 400GB
drive for 300 seconds. The foreground job is do-
ing reads at a fixed rate of 4096 kBps, while the
throughput of the background job is varied from
100 kBps to the drive’s maximum capacity. In ab-
sence of any priority (No_Priority), both the mean
and the maximum latency of the foreground job are
affected when the throughput of the background
job increases to around 4096kBps. But when the
foreground job is run at a higher priority (Prior-
ity), its latency is not affected with the increase in
the rate of background job. Even when the back-
ground load is run at its maximum throughput of
~66 MBps, the foreground job is isolated. The
drive is now able to service 16 times more back-
ground traffic, thus increasing its utilization.

Note: The next few experiments describe the per-
formance of random reads in the presence of back-
ground traffic, as described in workload descrip-
tion. The first two experiments simulate a condi-
tion where these random reads are partly served
from cache and there is sequential logging traffic
competing with the foreground load. Various meth-
ods of doing sequential traffic are compared, with
and without priority, to find out the best possible
method which reduces the latency of random reads
and which has good throughput.

Legend:

(a) no-load: Base case with no background log-
ging traffic.

(b) direct-64k: Direct IO of block size 64k in
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background.

(c) buf: 64k-sized sequential buffered IO in
background.

(d) buf-fadv: 64k-sized sequential buffered IO
where the cache is dropped using FADVISE_

DONT_NEED [17] after every 16MB.

(e) buf-prio: 64k-sized sequential buffered log-
ging traffic running at lower priority.

(f) buf-prio-fadv: In addition to lower prior-
ity, sequential buffered antagonist has cache
for the antagonist being dropped after every
16MB.

(g) direct-64k-prio: Direct IO of block size 64k
at lower priority.

(h) buf-sync-16m: 64k sequential buffered back-
ground IO with sync every 16MB.

Type mean max std dev b/w
- (msec) (msec) - MB/s

no-load 5.97 149 7.81 -
direct-64k 33.97 373 83.34 1.9

buf 111.78 528 160.05 0.6
buf-fadv 40.67 784 97.00 1.6
buf-prio 9.34 182 12.42 6.7

buf-prio-fadv 7.74 112 11.05 8.1
direct-64k-prio 7.48 116 10.32 8.3

Table 1: Random cached reads with background se-
quential reads

5. Random Cached Reads With Background Reads

In this setup, 8GB of the 10GB file is read se-
quentially into memory and will form cache for the
foreground thread doing 64k random reads. Ta-
ble 1 shows the mean, max, and standard devia-
tion of latency as well as the average bandwidth
of the foreground job for various kinds of reads in
the background. A random read in the presence
of cached data performs worse when a sequential
buffered read traffic (c) is running in background,
since the logging traffic quickly destroys the cache
and, in the absence of priority, competes with the
foreground random traffic. Lower mean latency
when using fadvise (d) confirms that the ma-
jor portion of increase in latency for the buffered
case comes from the cache being wiped out. Us-
ing lower priority either with buffered (e) or direct
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Figure 7: Foreground Cached Random reads – Back-
ground sequential reads

(g) reads in the background reduces both the aver-
age and tails of the foreground job. Reads which
constantly drop cache and run at lower priority (f)
further reduce the average and tails. Direct IO at
lower priority (g) and buffered with cache drop (f)
perform the best as they reduce the latency and
at the same time increase bandwidth of the fore-
ground job. Direct (g) is marginally better than (f).

Figure 7 shows the distribution of per-IO latency of
the main thread. Even though Table 1 shows that
buffered read running with lower priority alone (e)
has a slightly longer tail as compared to when pri-
ority is used along with fadvise (f) or direct IO
(g) for background threads, the graph clearly shows
that running a lower priority read antagonist in all
three cases (running alone (e), with fadvise (f),
and with direct IO (g)) has almost similar distribu-
tion. Running fadvise alone (d) has a very long
tail due to contention in the scheduler.

6. Random Cached Reads With Background Writes

Similar to the last experiment, here also 8GB from
a 10GB file are pre-cached into memory sequen-
tially, followed by the main thread performing 64k
random reads. In this case, the background load
is sequential writes of various kinds, unlike in last
experiment, where we were reading in the back-
ground. Here, direct IO (b) performs the worst
due to contention in scheduler. Sequential (c) is a
lot better, but dropping cache periodically; (d) im-
proves the average latency further. Since the back-
ground writes can quickly wipe the cache, using
priority alone (e) does not reduce the average as
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Type mean max std dev b/w
- (msec) (msec) - MB/s

no-load 6.0 102 7.86 -
direct-64k 36.60 508 88.29 1.7

buf 12.89 891 30.83i 4.8
buf-fadv 7.49 236 15.68 8.3
buf-prio 12.15 258 15.10 5.1

buf-prio-fadv 8.17 133 12.06 7.6
buf-sync-16m 9.36 349 17.45 6.7
direct-64k-prio 6.27 99 8.60 9.9

Table 2: Random cached reads with background se-
quential writes
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ground sequential writes

compared to buffered writes without priority (c).
Similar to the results of the last experiment, lower
priority direct writes (g) or buffered writes along
with dropping cache (f) give the best performance
both for latency (mean or max) and bandwidth. Us-
ing priority moves direct IO (g) from being the
worst antagonist to least intrusive antagonist. Also,
it reduces the tail for both direct (g) and buffered
(f) logging traffic. Figure 8 has per-IO latency dis-
tribution for the main thread and shows the long
tail of buf-fadv approach. Though Table 2 shows a
higher value of max for buf-prio, Figure 8 clearly
shows that for all cases using priority (e, f, g), the
tails end around 100msec. Doing sync alone (h)
does not perform as well as fadvise (d) due to
cache effects.

7. Random Reads With Background Reads

Unlike the previous two experiments, there is no
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sequential caching read in the next two experi-
ments. In Table 3 we measure the latency and
throughput of a thread doing 64k random reads
with different kinds of antagonists reading se-
quentially. Unlike in the case of caching reads,
fadvise does not help here, both mean and max-
imum latency when using fadvise (d) is almost
similar to buffered reads (c). Using priority (e) re-
duces the average and maximum latency by elimi-
nating contention in the scheduler queues. It helps
in increasing bandwidth and reducing latency for
both direct (g) as well as buffered IO (e). Direct
IO seems to be slightly better, but the difference
between it and buffered IO is within experimental
noise. Figure 9 shows the per-IO latency distribu-
tion and in all cases where priority is used (e, f, g),
tails are shortened by a large amount.

8. Random reads with background writes

Type mean max std dev b/w
- (msec) (msec) - KB/s

no-load 8.91 32 9.34 6959
direct-64k 93.46 579 138.14 714

buf 115.29 506 161.29 577
buf-fadv 113.87 507 161.08 583
buf-prio 11.88 47 13.59 5294

buf-prio-fadv 11.47 63 13.05 5475
direct-64k-prio 11.13 46 12.34 5633

Table 3: Random reads with background sequential
reads
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Type mean max std dev b/w
- (msec) (msec) - KB/s

no-load 9.16 105 9.66 6782
direct-64k 100.94 512 145.47 654

buf 12.93 698 30.01 4939
buf-fadv 11.39 408 19.36 5516
buf-prio 13.09 155 15.66 4825

buf-prio-fadv 12.53 325 15.03 5033
buf-sync-16m 11.47 218 19.14 5482
direct-64k-prio 9.66 96 10.67 6450

Table 4: Random reads with background sequential
writes

Table 4 has the results of running a 64k random
read thread along with various kinds of sequential
write threads running in the background doing 64k-
sized IO. This is similar to experiment 6, but with
no caching reads. Unlike experiment 6, buffered
writes (c) in the background are better than direct
IO (b), since in this case wiping the cache does
not have an impact on the foreground random read
thread. Using direct IO (b) without priority causes
heavy contention in the scheduler, unlike the nor-
mal write requests. In fact, using priority (e) or
fadvise (d) has negligible impact on the mean
latency, though the latency tail is reduced to a large
extent by using priority. The large maximum la-
tency in Table 4 when using both fadvise and
priority (f) is due to an outlier. Looking at Fig-
ure 10 it is clear that using priority eliminates long
tails for all kinds of logging workloads (e, f, g).
And like experiment 6, direct IO has changed from
being the worst antagonist to the least intrusive one.

5 Conclusion and Future Work

Using priorities in a non-work-conserving scheduler,
we have been able to isolate latency of both buffered
and direct high-priority synchronous requests. In-
creasing the number of background jobs has small/
negligible impact on latency. Even though we tagged
asynchronous requests, multiple writers still perform
non-deterministically. For our example workload’s
(1) cache-sensitive reads, interference from background
reads can be effectively isolated using priority. In the
case of background writes, using priority along with
cache drop hints or direct IO reduces the average. For
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Figure 10: Foreground Random reads – Background se-
quential writes

random reads (2), priority is able to handle reads/writes
as antagonists. Using priority we can effectively elimi-
nate tails in all cases.

In our solution we either bypassed cache (direct IO) or
used explicit hints to drop cache (fadvise) for back-
ground writes, but in a generic solution apart from feed-
back controlled IO throttling, we need prioritized sub-
mission in background writes like pdflush. Though
we used page struct as a prototype to tag asyn-
chronous priorities, in context of cgroups we could
use ioprio of a control group associated with the page
as proposed by Fernando [8]. Another non-container so-
lution would be to use io_context to hold this infor-
mation.

There is a push to create an IO subsystem controller for
dividing available bandwidth among various cgroups.
The Linux kernel mailing list had a proposal to limit
the bandwidth [20] based on values configured in a
control group filesystem. [28] [12] [25][9] are propor-
tional bandwidth-scheduling solutions, while [12] is an
IO scheduler solution, [25] is the solution in the device-
mapper driver. [26][24] are attempts in the cfq sched-
uler to add fairness control per group rather than per
process. While we agree that dividing bandwidth pro-
portionally is needed for I/O controller, we would also
like to be able to attach priority to a process or control
group. This is a more feasible solution than adding la-
tency and bandwidth requirements to a control group.
In this solution, a group having higher priority would be
given preference within its quota of bandwidth.

Proposed interface for such a scheduling scheme
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1. Using cgroup interface: Add blockio.bandwidth
and blockio.priority files per cgroup.

/dev/cgroup/group1/blockio.bandwidth 20

/dev/cgroup/group1/blockio.priority 0

/dev/cgroup/group1/blockio.prios_allowed BE(2–
4)

In this scheme, all processes submitting IO within
group1 get 20% of available bandwidth, while
being the highest priority (0) they are served be-
fore processes from any other group. Moreover,
processes in group1 are allowed to use only best-
effort levels 2–4.

2. Using ionice approach: When not using cgroups,
for per-process bandwidth/latency control,
ioprio_set() / ioprio_get() can be used
to specify bandwidth as well. This is overloading
of the current definition used by CFQ, but we
could add another class not conflicting with ones
defined now.
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