
Application Testing under Realtime Linux

Luis Claudio R. Gonçalves
Red Hat Inc.

lgoncalv@redhat.com

Arnaldo Carvalho de Melo
Red Hat Inc.

acme@redhat.com

Abstract

In the process of validating the realtime kernel and val-
idating third-party applications under this kernel, it was
necessary to build a set of small tools to understand dif-
ferent behavior presented by applications and the kernel
itself.

We have identified several practices and common mis-
takes that could be harmful to performance and deter-
minism in a Linux RT environment. We used systemtap
and other tools to identify these problems and in some
cases, to fix them or test alternatives without touching
the application code.

1 Introduction

This paper talks about experiments conducted on sys-
tems with PREEMPT_RT Realtime enabled kernels.
The main features of the PREEMPT_RT patch were
already described in papers [1] and the Project wiki
page [2].

The main goal of PREEMPT_RT is to offer determin-
ism, predictability to the highest priority tasks in the sys-
tem. The project is moving in a fast pace, and most of
its mature features have already been merged upstream.

In the search for determinism, several well established
entities had been touched and changed. Examples are:

• sleeping spin_locks – in the PREEMPT_RT patch
most spin_locks were converted to rt_mutexes and
can sleep. This leads to better kernel preemption
capabilities.

• threaded interrupts – Interrupt Service Routines are
now threaded. This prevents, for instance, lower
priority tasks doing heavy I/O activity from creat-
ing latencies in higher priority tasks.

• threaded softirqs – each softirq has its thread and so
the system administrator has the ability to change
their priorities in order to favor the ones more im-
portant for his application.

• priority inheritance – avoid priority inversion by
boosting the priority of a lower priority thread
to the priority of the thread waiting for the re-
source, if higher. This is possible, in part, because
rt_mutexes have the concept of ownership.

Sleeping spin_locks and threaded IRQs are bound to-
gether, because it is necessary to have a process context
in order to sleep. This way, interrupt processing had to
be delegated to specialized threads. Sleeping spin_locks
are also building blocks for priority inheritance. These
features are the foundations on which PREEMPT_RT is
built.

Realtime is all about determinism, predictable behav-
ior. There are certain practices in application develop-
ment that may hurt these premises and lead a system to
present a Byzantine behavior.

Along with determinism comes extra flexibility, as en-
tities like interrupt handlers can now be prioritized, al-
lowing the user to tune the environment to better server
particular workloads. User applications can have priori-
ties higher than any IRQ or kernel thread. Of course, ap-
plication errors in such a high priority can lead to prob-
lems. A busy loop could starve disk IRQ or any other
subsystem.

2 About the Tests

Most of the examples presented here are based in experi-
ence acquired while testing customer applications. Most
of the tests happened under the “It runs slower on RT!”
pressure. That alone was enough motivation to find the
root cause of the observed behavior.

• 143 •

144 • Application Testing under Realtime Linux

On one hand, the objective of Realtime is determinism
and sometimes the cost of determinism is a negative im-
pact on performance—other areas such as High Avail-
ability suffer from the same problem. On the other hand,
the hit on performance should be as light as possible and
Realtime, in fact, can improve performance in several
scenarios.

That said, there are four main possibilities for the per-
formance penalties observed:

• Problem in the kernel – a simple example is the
case where a user application was aborting due to
system load reaching the defined limit in the test,
that was caused by a bug in the kernel system load
calculation routine;

• Problem in the application – user application was
multithreaded and not all the threads were running
in the same priorities, or at least in reasonable pri-
orities, causing the lowest priority thread to starve;

• Problem in both – race condition in user applica-
tion that was more likely to be reached in Realtime,
due to system architecture, triggered a kernel bug
in a code path not usually exercised;

• Incorrect comparison – comparing results from
running the test application in tuned environment
versus running the test application in a system with
out of the box settings.

2.1 Avoid using sched_yield

A good description on the problem of using sched_
yield on Realtime was written [3]. After discussing
the problem of “trying to help the scheduler,” the author
notes:

One example can be found in recent changes
to the iperf networking benchmark tool, that
when the Linux kernel switched to the CFS
scheduler, exhibited a 30% drop in perfor-
mance. Source code inspection showed that it
was using sched_yield in a loop to check
for a condition to be met. After a fix was
made, the performance drop disappeared and
CPU consumption went down from 100% to
saturate a gigabit network to just 9%. [4]

The use of sched_yield is not recommended in Realtime
and that serves as a good example how systemtap can be
used to identify usage of a certain system call or kernel
function and account the usage:

#! stap

pid, process_name and number of calls
to sched_yield()
global process_list

probe syscall.sched_yield {
p = pid()
e = execname()

if (process_list[p,e])
process_list[p,e] += 1

else
process_list[p,e] = 1

}

probe end {
foreach ([pid+, name] in process_list)

printf ("%s[%d] called sched_yield %d times\n",
name, pid, process_list[pid, name])

}

This systemtap script will run until Ctrl+C is pressed.
Once interrupted, this systemtap script will inform you
of the processes that have called sched_yield() and the
number of times it was called by each process. For ex-
ample:

[root@lab tmp]# stap sched_yield.stp
ping[2848] called sched_yield 14 times

2.2 Bad Priority Assignment

Due to PREEMPT_RT nature, interrupts are threaded
and so are several other kernel subsystems. A user ap-
plication running at the highest available priority, or a
priority high enough to be above certain kernel subsys-
tems, if not carefully crafted, can freeze the system. A
good piece of advice is to avoid running applications at
the highest available priority.

A simple example of this case would be the highest pri-
ority application running a busy loop, creating statistics
that will be sent to disk before the loop ends. That was
what probably happened with the gtod_latency test in
this email thread [5], where disk IRQ thread was unable
to run until gtod_latency finished its busy loop.

The opposite case, where the application under test runs
at the lowest priority, or on a priority so low that any

2008 Linux Symposium, Volume One • 145

other process could preempt it, is also a disaster if the
application is expected to have a high throughput. Ob-
serving /proc/<pid>/status can provide valu-
able information, especially in the nonvoluntary_
ctxt_switches field. This field keeps track of the
number of times this process has been preempted by
other tasks, so a high number in this field would result
in high latencies in process because everytime a pro-
cess gets preempted, its work is interrupted until it gets
rescheduled to run again.

This is the easiest case to observe and fix. However,
sometimes this problem can be hid when several threads
have reasonable priorities except for one with an unac-
ceptable priority. The common way of verifying this is
just a matter of using ps:

[root ~]# ps -emo pid,tid,policy,pri,rtprio,cmd
...
3826 - - - - /usr/lib64/.../firefox-bin

- 3826 TS 19 - -
- 3848 TS 19 - -
- 3849 TS 19 - -
- 3855 TS 19 - -
- 3856 TS 19 - -
- 3857 TS 19 - -
- 3869 TS 19 - -
- 8854 TS 19 - -

...

What is the best priority to use? That depends on various
factors such as what the application does, how it works,
what the most important resource for application is , and
the like. It should be noted here that the system can
be fine-tuned to favor the IRQ or softirq that is most
important for the application.

Another important thought to bear in mind is: what will
be the scheduler policy of use? Will that be SCHED_
FIFO or SCHED_OTHER? Changing scheduler policy
and priorities can enhance performance or turn your ap-
plication into a Denial-of-Service tool.

The tool used to run a given application with the desired
priority and under the desired scheduler policy is chrt.
This tool can also be used to modify priority and sched-
uler policy of running processes. It is also possible for
the application to set these parameters by itself.

For some of the tests, running the test application at a
higher priority and with a better scheduler policy solved
the performance issue.

2.3 Resource Allocation

There is a saying in realtime stating that every needed
resource should be allocated in advance. Dynamic allo-
cations are prone to resource contention and other laten-
cies which are the worst offenders in realtime.

Whenever an application requests memory allocation,
the kernel tries to carry this task as fast as possible.
Eventually, these memory pages may not be available
and a certain level system reorganization will be re-
quired, delaying the requested memory delivery. Some-
times not all requested memory pages are ready to use
and when accessed, if not ready, they may trigger a mi-
nor page fault. In this case, the kernel will need to per-
form a few steps to solve the situation. This scenario can
get more complicated, and the requested memory allo-
cation could trigger a major page fault, where the kernel
may need to swap memory pages of another application
in order to free memory pages for the requesting appli-
cation. These latencies can be big enough to hurt the
realtime constraints of the application.

This case can be even worse because it involves I/O ac-
cesses and depending on the system configuration, it
may become a nightmare. Imagine a system using a
network file system where in order to get the requested
memory pages, the system has to flush some buffers
through the network. In the context of realtime appli-
cations that may lead to unbounded latency spikes and
the end of determinism.

Another interesting point is that when a process runs
into a page fault it will be frozen, with all its threads,
until the kernel handles the page fault.

There are several ways to address this case [6], with the
use of mlock() and related functions being the com-
mon solution. Unfortunately, the real solutions here re-
quire changes in the source code.

Information about the amount of minor and major page
faults that already happened to a given application can
be obtained using:

• /proc/<pid>/stat – this file has a huge
amount of data about the process indicated by pid.
There are four fields presenting the number of mi-
nor and major page faults faced by this process
and the number of page faults faced by its child

146 • Application Testing under Realtime Linux

if you have problems hooking on exit_mm, use profile_task_exit instead.

probe kernel.function("exit_mm") {
printf("%s(%d:%d) stats:\n", execname(), pid(), tid())
printf("\tPeakRSS: %dKB \tPeakVM: %dKB\n",

$task->mm->hiwater_rss*4, $task->mm->hiwater_vm*4)
printf("\tSystem Time: %dms \tUser time: %dms\n",

$task->stime, $task->utime)
printf("\tVoluntary Context Switches: %d \tInvoluntary: %d\n",

$task->nvcsw, $task->nivcsw)
printf("\tMinor Page Faults: %d \t Major Page Faults: %d\n",

$task->min_flt, $task->maj_flt)
}

Figure 1: Simple script for observing resource usage by processes

processes. The position of this information may
change from kernel version to kernel version and
it is recommended looking for “contents of the
stat file” in the file filesystems/proc.txt
in your kernel documentation.

• getrusage – this function returns resource usage
information for a given process. Although not all
information fields are available in Linux, page fault
information is present.

• task_struct – the two methods above gather
information from processes’ task_struct. It is
possible to write a simple systemtap script to get
this information directly from the source. Later in
this session, we will present a systemtap script that
gets page faulting information when a given pro-
cess exits.

Some system calls are known to generate page faults;
e.g., fopen calls mmap to allocate memory which can
lead to a page fault. Some are known to present laten-
cies or to have a time resolution that may not be good
enough for some applications such as select timeout
mechanism which uses a jiffie based timer. Careful
thought and engineering can overcome these issues. A
simple approach is to have a separate thread to deal with
file operations and other latency prone tasks.

Creating threads on-the-fly can also be a problem if
there is a constraint for the time between the event that
should trigger thread creation and this new thread han-
dling the event. The same thought is valid for creating
new processes through fork().

As already said, there are several ways to get resource
usage information, such as: gathering information from
/proc/<pid>/status in regular time basis; using
the getrusage infrastructure; or writing a systemtap
script that gathers information. One important point to
keep in mind when choosing the method is when would
be the best moment to get the information. Maximum
memory usage would be best acquired when the process
exits. Time spent in thread creation should be measured
during thread creation. The first two methods are harder
to synchronize with specific events. Systemtap scripts
are more flexible and powerful.

The systemtap script below was used to observe re-
source usage by processes. When a process finishes,
the script prints the maximum amount of real and vir-
tual memory used by the application, CPU time used,
voluntary and involuntary context switches, and how
many page faults occurred during process execution.
The script is simple, and shown in Figure 1.

Two interesting notes about the systemtap script in Fig-
ure 1:

• this script gathers information from processes’
task_struct, and it would be easy to show
more information that may be of interest for the
user if needed.

• when a process finishes, it calls exit() that calls
do_exit(). The script hooks on exit_mm()
that is halfway in do_exit()—meaning that af-
ter the script collects data, there still are a few extra
steps until the process finishes. The only data that
may be different is the system time as the process
will spend more time until it really vanishes.

2008 Linux Symposium, Volume One • 147

This script was key to observe that processes were
spending a long time inside of do_exit—in some
cases, up to 10 seconds. That helped understanding why
performance comparisons carried using the time com-
mand were so horrible on PREEMPT_RT. The urge to
fix this issue was placated by the perception that the pro-
cess is exiting, it is already out of the run queue and its
resources will be freed when needed and when the ker-
nel can do that without disturbing the system.

Resource allocation also comprehends CPU allocation
and CPU isolation. For an application with strict real-
time constraints, that makes perfect sense reserving one
or more CPU in a SMP machine. In some cases it is
enough to be sure that thread A and thread B will run
in different CPU—that can be easily achieved using the
taskset command. Sometimes it is necessary to be
sure that nothing else will run in a given CPU set, only
the application—in this case the best solution is to use
the isolcpus parameter in the kernel boot command
line [7].

When taking in account the fact that PREEMPT-RT
has more kernel threads running simultaneously due to
threaded IRQ and softirq, it is clear that there are more
processes competing for CPU time and that the sched-
uler works harder to accommodate all tasks. CPU iso-
lation is a valuable tool especially when the application
under test does not follow the guidelines discussed in
this paper.

2.4 Using libautocork

What to do when a customer application shows
60% performance degradation when running on PRE-
EMPT_RT? And what if after careful system tuning the
performance degradation is about 40%?

As the application was network based, the first idea was
asking the customer all the information about packet
sizes, interval between packets, socket flags in use, and
everything else that could give clues to solve the issue.
Of course, source code was requested for inspection.
Most of the specific questions were not answered and
access to source code was denied due to internal secu-
rity policies.

Several attempts to reproduce the problem in the labo-
ratory, based on the information available, failed miser-
ably. At this point, tests were carried by the customer

and our main concern was to not abuse or bother a cus-
tomer that was as cooperative and helpful as possible.

Several small systemtap scripts were written to get
socket information, packet size, protocols in use and ev-
erything else. At a certain point Nettaps [8] was created,
a set of tapsets and systemtap scripts collecting ideas
discussed during the tests and a mix of the most relevant
scripts already written. These scripts were sent to the
customer and he was able to provide us valuable infor-
mation on the internals of his application and runtime
information.

The drill.stp [8] script collects information on the
number of times each thread calls writev, poll,
select, and sched_yield. It also collects statistics
on lock contention, per thread and per lock. The last bit
of information provided by this script is detailed infor-
mation on network connections, including buffer size,
packet size, average sizes for both buffers and packets,
the status on Nagle usage, delayed ACK and similar in-
formation. An excerpt from a drill.stp’s test run:

[root@lab nettaps]# stap -I tapset drill.stp
thread: tid name nrwritev nrpoll nrselect
nrsched_yield
thread: 1934 auditd 6 0 6 0
thread: 1935 auditd 0 0 0 0
thread: 2652 sshd 0 0 4 0
thread: 3300 sshd 0 5 0 0
thread: 3301 sshd 0 0 8 0
thread: 3302 sshd 0 1 37 0
lock: tid futex nrcontentions avg min max
lock: 1934 0x000055555576d508 1 43672 43672 43672
lock: 1935 0x000055555576d534 1 1960 1960 1960
connection: tid saddr sport daddr dport nrbf
avgbfsz minbfsz maxbfsz nrpkts avgpktsz minpktsz
maxpktsz nagle da ka wr
connection: 2652 192.168.0.200 22 192.168.0.100
38915 2 392 176 608 2 392 176 608 O 0 0 2
connection: 3300 192.168.0.200 22 192.168.0.100
36042 1 20 20 20 2 10 0 20 O 7 0 5
connection: 3301 192.168.0.200 22 192.168.0.100
36042 7 297 32 744 8 260 0 744 O 7 0 5
connection: 3302 192.168.0.200 22 192.168.0.100
36042 17 58 48 96 15 57 48 96 O 7 0 5

The second script sent to the customer, also part of Net-
taps, was lnlat [8]. This script gathers information
about packet flow, such as time spent by a packet when
traveling from the network interface up to the user space
application waiting for it, time between a user space ap-
plication sending a packet and that packet reaching the
network, network stack latency, and buffer size statis-
tics. Running lnlat produces data like Figure 2.

148 • Application Testing under Realtime Linux

[root@lab nettaps]# stap -I tapset lnlat.stp

latency(ns) buffer size
entry local address port remote address port avg min max avg min max

user_in 10.0.0.152 43667 10.0.0.152 20975 38802 38802 38802 0 0 0
user_in 10.0.0.164 20975 10.0.0.164 52965 37717 37717 37717 0 0 0
user_in 10.0.0.164 51375 10.0.1.234 2222 35590 35590 35590 0 0 0
user_in 10.0.0.164 20975 10.0.0.164 52964 51630 51630 51630 0 0 0
user_in 10.0.0.164 20975 10.0.0.164 52995 32706 32706 32706 0 0 0
user_in 10.0.0.152 20975 10.0.0.152 43687 32676 32676 32676 0 0 0
user_in 10.0.0.152 20975 10.0.0.152 43666 50457 50457 50457 0 0 0
user_in 10.0.0.164 37451 10.0.1.234 2222 40151 36293 44010 0 0 0
tcp_out 10.0.0.164 20975 10.0.0.164 52966 1750 818 8150 48 0 232
tcp_out 10.0.0.164 52966 10.0.0.164 20975 12360 6260 26967 7604 624 16384
tcp_out 10.0.0.152 20975 10.0.0.152 43666 1708 928 2488 20 0 40
tcp_out 10.0.0.152 43666 10.0.0.152 20975 5404 5404 5404 40 40 40
tcp_out 10.0.0.152 20975 10.0.0.152 43668 1710 837 7104 48 0 232
tcp_out 10.0.0.152 43668 10.0.0.152 20975 13161 6734 33385 7604 624 16384
tcp_out 10.0.0.152 20975 10.0.0.162 41931 197615 8602 1154511 2585 496 4344
tcp_out 10.0.0.164 52995 10.0.0.164 20975 1078 853 1589 3 0 40
tcp_out 10.0.0.164 20975 10.0.0.164 52995 3493 1042 6633 713 0 840
tcp_out 10.0.0.164 51371 10.0.1.234 2222 1876 1236 3082 20 0 34
tcp_out 10.0.0.152 43687 10.0.0.152 20975 1144 864 1707 3 0 40
tcp_out 10.0.0.152 20975 10.0.0.152 43687 3461 850 6736 713 0 840
tcp_out 10.0.0.164 20975 10.0.0.164 52965 1478 931 2025 20 0 40

Figure 2: Output from stap -I tapset lnlat.stp

Analyzing information received from the customer, that
was not the one in the examples just shown, we were
able to understand that:

• customer application was TCP/IP based;

• customer application was using the default NAGLE
algorithm [9];

• sending millions of small-sized packets;

• sending packets in a burst, without inter-packet in-
terval.

Being the most used transport protocol poses a fantastic
challenge for TCP to meet many different needs. Sev-
eral heuristics were introduced over time as new appli-
cation use cases and new hardware features appeared
and as well kernel architecture optimizations were im-
plemented. In an impressive way, default TCP/IP set-
tings are able to satisfy most users.

As one example of the heuristics in use, TCP delays
sending small buffers, trying to coalesce several before
generating a network packet. This normally is very ef-
fective, but in some cases this heuristic is not the better
fit.

Applications that want lower latency for the packets to
be sent, especially when working with small packets,
will be harmed by this TCP heuristic. There is a knob for
applications that want to avoid this algorithm, a socket
option called TCP_NODELAY. Applications can use it
through setsockopt sockets API:

int one = 1;

setsockopt(descriptor, SOL_TCP, TCP_NODELAY,

&one, sizeof(one));

But for this to be used effectively, applications must
avoid doing small, logically related buffer writes as this
will make TCP send these multiple buffers as individual
packets, and TCP_NODELAY can interact with receiver
optimization heuristics, such as ACK piggybacking, and
result in poor overall performance. In other words, both
sender and receiver have to be in tune.

There are several sources of latency for TCP connec-
tions [10] and sometimes the solutions applied to a given
operating system network stack may not be the best one
for another. This becomes clear when working with ap-
plications ported from one operating system to another.

It was suggested to the customer using TCP_NODELAY
to solve, at least partially, the performance drop. But the
customer argued that even though the change seemed to

2008 Linux Symposium, Volume One • 149

be simple, touching the code was not an option. If we
could prove him that a considerable performance gain
would be perceived he could try convincing his man-
agers.

Using ideas discussed when trying to correlate data ob-
tained from the Futex Contention systemtap example
script [11] and the actual locks in the application, a
Glibc stub was written to set TCP_NODELAY on the
sockets used by a given application. The results were
satisfactory but the behavior of TCP_NODELAYwas not
the optimal way of enhancing these connections. Then
libautocork [12] was written.

The TCP socket option called TCP_CORK is a less
known option, present in a similar fashion in several OS
kernels, sometimes under a different name. The purpose
of this option is to put a cork in the socket, preventing
packets from being sent through this socket. When the
application decides it is time to send the packet or pack-
ets, it just removes the cork.

Applying the cork to a socket is just a matter of setting
TCP_CORK with a value of 1, as in this excerpt of code:

int one = 1;

setsockopt(descriptor, SOL_TCP, TCP_CORK,

&one, sizeof(one));

That tells TCP to wait for the application to remove
the cork before sending any packets, just appending the
buffers it receives to the socket in-kernel buffers. That
allows applications to build a packet in kernel space,
something that can be required when using different li-
braries that provide abstractions for layers.

One example is on the SMB networking protocol code,
where headers are sent together with a data payload, and
better performance is obtained if the header and payload
are bundled in as few packets as possible.

When the logical packet was built in the kernel by the
various components of the application, it is time to re-
move the cork and send the packet. It is important to
note that the kernel does not have a way to identify, on
behalf of the application, that the packet is ready and
must be sent. To remove the cork the application uses:

int zero = 0;

setsockopt(descriptor, SOL_TCP, TCP_CORK,

&zero, sizeof(zero));

That makes TCP send the accumulated logical packet
right away, without waiting for any further packets from
the application, something that it would do in other
cases, to fully use the network maximum packet size
available.

In order to verify the impact of TCP_CORK on the cus-
tomer application, without access to source code, we de-
cided writing a library to be preloaded and interfere in a
few socket related operations. There were other options,
such as a systemtap script to touch the system calls re-
lated to the functions intercepted by libautocork but the
preloaded library offered lower overhead and was sim-
pler to write.

Using libautocork is just a matter of:

LD_PRELOAD=libautocork.so ./customer_app

Libautocork applies the cork to the sockets and automat-
ically removes it whenever the application waits for an
answer to what has been sent. The removal of the cork
happens when the application calls recv, recvmsg,
select and similar functions.

2.5 Comparing Apples to Apples

System configuration plays an important role in perfor-
mance test results. In addition, it is important to com-
pare results in the same environment, changing the min-
imal set of elements possible.

When a little knob is changed, the system may behave
in a completely different way during the test. As these
knobs vary from /proc/sys writable files to device
drivers parameters in modules, it may be a hard job to
record the exact environment where a test has been con-
ducted. Even the default values for knobs that were not
touched may vary from kernel version to kernel version.

Depending on the nature of the application under test,
some knobs have no effect on the test. Some knobs may
have a visible effect on the results. Determining all the
available knobs and their values and eventually record-
ing these values to replay a test or perform another test
in the same environment is surely a difficult task.

Some effort has been done to address this need and
projects like Tuna [13] and AIT are good examples of
such tools. The authors recommend using similar tools
to ease the task of comparing results, defining best con-
figurations and even identifying regressions.

150 • Application Testing under Realtime Linux

2.6 Conclusion

Testing applications under PREEMPT_RT was, most of
time, a refreshing and enlightening task. Understand-
ing why a given application presented such a different
behavior or performance just by changing the kernel or
why some race conditions and bugs were more likely to
be triggered under PREEMPT_RT was really insightful.
In fact, even kernel subsystems and device drivers had
bugs and race conditions uncovered by PREEMPT_RT.
The bugs were there all the time, but PREEMPT_RT
was more likely to trigger them—this way, several bugs
were found and fixed.

On the other hand, seeing all the theories about a given
problem falling apart, being unable to reproduce a bug,
having to solve a negative performance hit presented
by an application without access to information or the
source code was sometimes hard to manage. It was
even harder to reproduce the exact test environment or
the best configuration found without a tool. These mo-
ments required creativity and revived the joy of coding
and hacking.

The authors hope the reader will benefit from the system
tuning and development techniques briefly described in
this paper. Hopefully, the readers will even feel in-
spired by the testing ideas explained through the text
and endure the process of creating their own test devices
and tools or even automating “bad coding techniques”
checking. We hope that ultimately, the reader will find
the tools presented here helpful and use them to solve
his/her problems.

References

[1] Steven Rostedt and Darren V. Hart, “Internals of
the RT Patch,” Proceedings of the Linux
Symposium, Ottawa, Ontario, Canada, 2007, pp.
161–172.

[2] Real-Time Linux Wiki,
http://rt.wiki.kernel.org

[3] Arnaldo Carvalho de Melo, Techniques that can
have its behavior changed when the kernel is
replaced,
http://oops.ghostprotocols.net:
81/acme/unbehaved.txt

[4] Ingo Molnar, Re: Network slowdown due to CFS,
http:
//lkml.org/lkml/2007/9/26/132

[5] http://www.mail-archive.com/
linux-rt-users@vger.kernel.org/
msg02364.html

[6] HOWTO: Build an RT-application, http:
//rt.wiki.kernel.org/index.php/
HOWTO:_Build_an_RT-application

[7] Kernel boot parameters, Documentation/
kernel-parameters.txt

[8] Nettaps,
http://oops.ghostprotocols.net:
81/acme/nettaps.tar.bz2

[9] Wikipedia, Nagle’s algorithm,
http://en.wikipedia.org/wiki/
Nagle’s_algorithm

[10] Robert A. Van Valois, Todd L. Montgomery,
Steven R. Wright, and Eric Bowden, Topics in
High-Performance Messaging,
http://www.29west.com/docs/THPM/
thpm.html#TCP-LATENCY

[11] Systemtap War Stories: Futex Contention,
http://sourceware.org/systemtap/
wiki/WSFutexContention

[12] Libautocork,
http://git.kernel.org/?p=linux/
kernel/git/acme/libautocork.git;
a=blob_plain;f=tcp_nodelay.txt

[13] Arnaldo Carvalho de Melo, “If I turn this
knob. . . what happens?,” Proceedings of the Linux
Symposium, Ottawa, Ontario, Canada, 2008.

Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

