
Secondary Arches, enabling Fedora to run everywhere

Dennis Gilmore
Fedora Project OLPC

dgilmore@fedoraproject.org

Abstract

There are many different types of CPU out there. From
SPARC to Alpha, Arm to s390. Most people run i386
or x86_64; how can you get a distro for your favorite
exotic preference? Fedora has been doing a lot of work
to allow interested people to build and support the archi-
tecture of their choice. Work has been going on for arm,
alpha, ia64, s390, and SPARC.

This paper will cover what has been done to enable mo-
tivated people to bring up and support new architectures.
The same tools used to make Fedora can be used to layer
products on top of Fedora also. If you’re interested in
MIPS, PA-RISC, or just want to know what is involved
in putting together a distro, this paper is also for you.

1 What is a secondary architecture?

Any architecture that is not mainstream? Fringe archi-
tectures? Anything not x86 or x86_64?

Fedora is starting by saying that it is anything that is not
x86 or x86_64 based, however ppc is currently a special
case. We are building ppc and ppc64 with the primary
architectures, however the release engineering for it is
being done by the Fedora community. This is also not
to say that the way things are done now is the way they
will always be. For instance if one architecture started
building up market share then it would be evaluated for
primary architecture inclusion.

The secondary architecture team is responsible for pro-
viding all of the building and hosting resources. The
team also gets full access to Fedora cvs. The same
source cvs checkout will be used to build across all ar-
chitectures.

Fedora package maintainers are encouraged to look
at and fix build failures on secondary architectures.
Howver, they are not required to do so. We understand

that there are people who have no interest in support-
ing secondary architectures. The architecture teams are
there to ensure things get fixed, and to provide architec-
ture specific knowledge to interested maintainers.

We are actively looking for sponsorship of a master mir-
ror for secondary architectures to reduce the barrier of
entry for all. While the barrier of entry is high for a
new Secondary Architecure it will ensure that the peo-
ple proposing the architecture are commited to ensuring
that it is a success.

The initial proposal was written by Tom Callaway with
the following purpose. As an open community, Fedora
encourages motivated individuals who care about ar-
chitectures which are currently unsupported [1]. With
the ultimate goal of supporting as many architectures as
people want to support.

2 Why support secondary architectures?

The more architectures that you build the same code on,
the more portable the code base. Lots of people make
a claim that their code is portable because they write to
standards, such as POSIX. Many times they really have
no idea if their code is truely portable.

What is portable code? The same code running in differ-
ent places. We are testing portability by building on big
endian CPUs, little endian CPUs, CPUs with different
instruction sets. We could also test portablity by build-
ing on different OS’s such as FreeBSD, Darwin, or Hurd
on the same CPU.

We also scratch people’s itches. If you want to know
more about Linux and how a distribution is put together,
then working on a secondary architecture is a great place
to start.

3 Who is doing secondary architectures?

• HP, Intel, SGI, and Red Hat for Itanium

• 137 •



138 • Secondary Arches, enabling Fedora to run everywhere

• Red Hat and IBM for S390

• Marvell for ARM

• Fedora Community for SPARC

• Fedora Community for ALPHA

Lots of different parts of the Fedora community are
working on actively ensuring the success of Secondary
Architectures. Secondary architectures are not a new
idea. Aurora SPARC Linux, Alpha Core, and RHEL
have been doing it for years. This is a new process
that simplifies and speeds up getting other architectures
built.

4 How do Secondary Architectures work?

All packages will be built on the primary hub first. Once
a package has been succesfully been built it will be
queued on the secondary hub. There is a many-to-one
relationship between primary and secondary hubs.

Initially all automated communication is one way. A
long term goal is to push builds back up to the primary
architecture hub. kojisd is a new tool that has been
written to enable automatic builds on secondary hubs.
kojisd ensures that the secondary hubs have the same
or newer build of everything used in the buildroot as
what was used on the primary hub. Architecture teams
are responsible for ensuring that bugs get fixed, and do-
ing the release enginering.

5 Architecture resources needed (provided by
architecture team)

• 1TB disk space per architecture
This will be an ever growing amount of disk. koji
has a garbage collection mechanism to clean up
old builds, however Fedora builds a huge number
of packages, the number of builds will continue
to grow as new packages are added. For Fedora-
9 there were ~20000 builds.

• web server
Used for the koji frontend and hub, running
apache with mod_python, the hub uses xmlrpc for
all communication. Fedora provides a SSL cert to
be used for user authentication. This allows users
to use the same credentials and work on any archi-
tecture.

Figure 1: previous workflow

• Database server
Postgresql server, depending on the hardware, this
can run on the web server. Ideally this is a ded-
icated server. Some tables like the rpmfiles table
contain over 90,000,000 rows in the Fedora instal-
lation. Fedora is able to provide scripts to enable
backups of the database. Postgres 8.3 is recom-
mended due to it having working autovacuum sup-
port.

• builders
At least one but preferably more, they need to have
read only access to the file system that koji stores
its packages on, this can be via http, nfs, iscsi, etc.
In order to run createrepo tasks, at least one builder
needs the local access to the koji file system.

• bandwidth
Pushing up images, rawhide, and updates takes up
bandwidth, uploading 30 to 60 gigabytes for a re-
lease at 1 mbit/s takes a long time.



2008 Linux Symposium, Volume One • 139

Figure 2: new workflow workflow

• mirrors
Right now we are unable to provide mirrors. We
are working on enabling hosting and mirroring of
release trees. Secondary architectures will always
be responsible for hosting their own infrastructure.

• Sand Box Machines (optional but recommended)
Gives a workspace for Fedora maintainers to do
test builds and debug failures using mock. This

will be an environment that will help people who
want to help but don’t have access to hardware.

6 Fedora Provided Resources

• Package CVS
Every package built for all architectures must come
from Fedora cvs. This will ensure that we can be in
compliance with the GPL, everyone will also know
where to go.

• User authentication
All users on secondary architecture hubs are iden-
tified by using the same certificates, there is seam-
less SSL authentication across all secondary archi-
tecture hubs.

• Packagers
Fedora has 596 packagers maintaining over 6000
source packages. Many, but not all of these peo-
ple, will help fix bugs on secondary arches for the
packages they maintain.

• Framework
There is an existing framework and mechanism to
support new contributors and contributions. Pack-
age management, workflow management, and user
support are all taken care of, greatly lowering the
barrier to entry of starting your own distribution
project. Fedora has resources for hosting upstream
projects called fedorahosted. As well as VoIP and
mailing lists for communications. Fedora uses
freenode for irc communications.

• Best practice guidelines
Fedora has a set of packaging guidelines
http://fedoraproject.org/wiki/
Packaging/Guidelines which are con-
stantly evolving and growing as new types of
software are added to package repositories. Fedora
is at the forefront of Linux development. Many
things like selinux, xen, gcj, OpenJDK and Net-
workManager shipped first in Fedora. Fedora is
also heavliy involved in upstream development of
many technologies. New gnome releases regularly
ship first in Fedora.

• Release engineering tools and support
Fedora’s insistance that everything be open means
that not a single proprietary tool is used to pro-
duce the distribution. In the past the hardest part



140 • Secondary Arches, enabling Fedora to run everywhere

in doing your own release was getting tools to do
composes. With the merge of Core and Extras Red
Hat’s previous tools were dropped and new open
source tools were created. Fedora Release Engi-
neering is entirely done in the open, and release en-
gineering team members are available to help with
issues. As things move forward we will have new
problems to tackle, being open we will be able to
resolve them all.

7 Existing Fedora Tools

• koji
http://koji.fedorahosted.org
Terminology

In Koji, it is sometimes necessary to distinguish be-
tween the package in general, a specific build of
a package, and the various rpm files created by
a build. When precision is needed, these terms
should be interpreted as follows:

Package:

– The name of a source rpm. This refers to
the package in general and not any particu-
lar build or subpackage. For example: kernel,
glibc, etc.

Build:

– A particular build of a package. This refers
to the entire build: all arches and sub-
packages. For example: kernel-2.6.9-34.EL,
glibc-2.3.4-2.19.

RPM:

– A particular rpm. A specific arch and
subpackage of a build. For example:
kernel-2.6.9-34.EL.x86_64, kernel-devel-
2.6.9-34.EL.s390, glibc-2.3.4-2.19.i686,
glibc-common-2.3.4-2.19.ia64.

Koji Components

Koji is comprised of several components:

– koji-hub is the center of all Koji operations.
It is an XML-RPC server running under
mod_python in Apache. koji-hub is passive
in that it only receives XML-RPC calls and
relies upon the build daemons and other com-
ponents to initiate communication. koji-hub

is the only component that has direct access
to the database and is one of the two compo-
nents that have write access to the file system.

– kojid is the build daemon that runs on each
of the build machines. Its primary responsi-
bility is polling for incoming build requests
and handling them accordingly. Koji also has
support for tasks other than building. Creat-
ing install images is one example. kojid is
responsible for handling these tasks as well.
kojid uses mock for building. It also creates a
fresh buildroot for every build. kojid is writ-
ten in Python and communicates with koji-
hub via XML-RPC.

– koji-web is a set of scripts that run in
mod_python and use the Cheetah templating
engine to provide an web interface to Koji.
koji-web exposes a lot of information and
also provides a means for certain operations,
such as cancelling builds.

– koji is a CLI written in Python that provides
many hooks into Koji. It allows the user to
query much of the data as well as perform ac-
tions such as build initiation.

– kojira is a daemon that keeps the build root
repodata updated.

Koji organizes packages using tags. In Koji a tag is
roughly analogous to a beehive collection instance,
but differ in a number of ways:

– Tags are tracked in the database but not on
disk.

– Tags support multiple inheritance.

– Each tag has its own list of valid packages
(inheritable.)

– Package ownership can be set per-tag (inher-
itable.)

– Tag inheritance is more configurable.

– When you build you specify a target rather
than a tag.

A build target specifies where a package should be
built and how it should be tagged afterwards. This
allows target names to remain fixed as tags change
through releases [2].

• mash
http://mash.fedorahosted.org



2008 Linux Symposium, Volume One • 141

mash is a tool that creates repositories from koji
tags, and solves them for multilib dependencies.

• pungi
http://pungi.fedorahosted.org
The pungi project is two things. First and foremost
it is a free opensource tool to spin Fedora installa-
tion trees and isos. It will be used to produce Fe-
dora releases from Fedora 7 on, until it is replaced
by something better. Secondly, pungi is a set of
python libraries to build various compose-like tools
on top of. Pungi provides a library with various
functions to find, depsolve, and gather packages
into a given location. It provides a second library
with various functions to run various Anaconda
tools on the gathered packages and create isos from
the results.

• livecd-tools
livecd-tools lives in a git repo at http://
fedorahosted.org/. In a nutshell, the livecd-
creator program

– Sets up a file for the ext3 file system that will
contain all the data comprising the live CD.

– Loopback mounts that file into the file system
so there is an installation root.

– Bind mounts certain kernel file systems (/dev,
/dev/pts, /proc, /sys, /selinux) inside the in-
stallation root.

– Uses a configuration file to define the re-
quested packages and default configuration
options. The format of this file is the same as
is used for installing a system via kickstart.

– Installs, using yum, the requested packages
into the installation using the given reposito-
ries.

– Optionally runs scripts as specified by the live
CD configuration file.

– Relabels the entire installation root (for
SELinux.)

– Creates a live CD specific initramfs that
matches the installed kernel.

– Unmounts the kernel file systems mounted in-
side the installation root.

– Unmounts the installation root.

– Creates a squashfs file system containing
only the ext3 file (compression.)

– Configures the boot loader.

– Creates an iso9660 bootable CD.

8 New Tools Needed

• kojisd
kojisd is a new tool written to monitor one hub
and on success of tasks to repeat the task on a sec-
ond hub. There are two things that we want to do.
Maintain tags/targets and build packages using a
buildroot which is as identical as possible. Due to
the high possibility during rampup that packages
will fail we are saying that if we have a newer build
on the secondary hub then that’s ok. It also sim-
plifies buildroot management. We can follow the
same principles that the primary hub does. The one
thing we add is to ensure that for instance things
depending on a specific version of xulrunner are
built against that version since build timings will
vary on different architectures.

Many options in kojisd are configurable. For in-
stance you can choose to import packages based on
architecture, and whitelist/blacklist targets to build
for. For Secondary Architecture purposes we will
be importing noarch packages. For someone layer-
ing products on top of Fedora they can import all
builds.

9 Secondary architecture Teams

We currently have teams working on ARM, Alpha, Ita-
nium, S390, and SPARC.

9.1 ARM

• Hub: Not yet available.

• Team Page: http://fedoraproject.org/
wiki/Architectures/Arm

Arm is being lead by Lennert Buytenhek. The base-
line ARM CPU architecture that we have chosen to sup-
port is ARMv5, Little Endian, Soft-Float, EABI. We be-
lieve that this provides a nice baseline and that the pre-
built packages and root file system images will be usable
on many of the modern ARM CPUs, including XScale,
ARM926, and ARM-11, etc.



142 • Secondary Arches, enabling Fedora to run everywhere

9.2 Alpha

• Hub: http://alpha.koji.fedoraproject.

org

• Team Page: http://fedoraproject.org/
wiki/Architectures/Alpha

The Alpha team is being lead by Oliver Falk and has Jay
Estabrook as a member. Fedora Alpha started out as the
AlphaCore Linux Project, when Red Hat stopped sup-
port for Alpha with Red Hat Linux 7.1. Fedora Alpha is
the continuation of the AlphaCore efforts, in an official
capacity as part of the Fedora Project.

9.3 Itanium

• Hub: http://ia64.koji.fedoraproject.

org

• Team Page: http://fedoraproject.org/
wiki/Architectures/IA64

The IA64 team is being lead by Doug Chapman, and has
Tim Yamin, Prarit Bhargava, Yi Zhan, Jes Sorensen, and
George Beshers as members. The IA64 work is based
on unofficial releases composed from builds as a side
effect of Fedora’s buildsystem before the merge. It was
maintained in sorts after and is now becoming official.

9.4 S390

• Hub: http://s390.koji.fedoraproject.

org

• Team Page: http://fedoraproject.org/
wiki/Architectures/s390x

The S390 team is being lead by Brad Hinson and has
Brock Organ as a member. The work on s390 is being
based on RHEL5.

9.5 SPARC

• Hub: http://sparc.koji.fedoraproject.

org

• Team Page: http://fedoraproject.org/

wiki/Architectures/SPARC

The SPARC team is lead by Tom Callaway, and has
Peter Jones, Patrick Laughton, and I as members. We
have a wide range of SPARC hardware. Fedora, unlike
Aurora SPARC Linux, will support only UltraSPARC
and higher hardware due to lack of an upsteam kernel
maintainer for older SPARC. All user land is being built
for sparcv9 and sparc64, with sparcv9 recommended for
use.

10 How can the Secondary Architecture work
help layering products on top of Fedora?

Using the tools written for secondary architectures, you
are able to pull into your own koji setup builds from
Fedora as they happen. Using a trigger mechanisim you
are able to build your own packages when new packages
are built in Fedora.

References

[1] Fedora Secondary Architecure proposal,
http://fedoraproject.org/wiki/
TomCallaway/
SecondaryArchitectures.

[2] Fedora wiki Describing koji. http:
//fedoraproject.org/wiki/Koji.



Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


