
Ptrace, Utrace, Uprobes: Lightweight, Dynamic Tracing of User Apps

Jim Keniston
IBM

jkenisto@us.ibm.com

Ananth Mavinakayanahalli
IBM

ananth@in.ibm.com

Prasanna Panchamukhi
IBM

prasanna@in.ibm.com

Vara Prasad
IBM

varap@us.ibm.com

Abstract

The ptrace system-call API, though useful for many
tools such as gdb and strace, generally proves unsat-
isfactory when tracing multithreaded or multi-process
applications, especially in timing-dependent debugging
scenarios. With the utrace kernel API, a kernel-side
instrumentation module can track interesting events in
traced processes. The uprobes kernel API exploits
and extends utrace to provide kprobes-like, breakpoint-
based probing of user applications.

We describe how utrace, uprobes, and kprobes together
provide an instrumentation facility that overcomes some
limitations of ptrace. For attendees, familiarity with a
tracing API such as ptrace or kprobes will be helpful
but not essential.

1 Introduction

For a long time now, debugging user-space applications
has been dependent on the ptrace system call. Though
ptrace has been very useful and will almost certainly
continue to prove its worth, some of the requirements it
imposes on its clients are considered limiting. One im-
portant limitation is performance, which is influenced
by the high context-switch overheads inherent in the
ptrace approach.

The utrace patchset [3] mitigates this to a large extent.
Utrace provides in-kernel callbacks for the same sorts
of events reported by ptrace. The utrace patchset re-
implements ptrace as a client of utrace.

Uprobes is another utrace client. Analogous to kprobes
for the Linux R© kernel, uprobes provides a simple, easy-
to-use API to dynamically instrument user applications.

Details of the design and implementation of uprobes
form the major portion of this paper.

We start by discussing the current situation in the user-
space tracing world. Sections 2 and 3 discuss the var-
ious instrumentation approaches possible and/or avail-
able. Section 4 goes on to discuss the goals that led
to the current uprobes design, while Section 5 details
the implementation. In the later sections, we put forth
some of the challenges, especially with regard to mod-
ifying text and handling of multithreaded applications.
Further, there is a brief discussion on how and where
we envision this infrastructure can be put to use. We fi-
nally conclude with a discussion on where this work is
headed.

2 Ptrace-based Application Tracing

Like many other flavors of UNIX, Linux provides the
ptrace system-call interface for tracing a running pro-
cess. This interface was designed mainly for debugging,
but it has been used for tracing purposes as well. This
section surveys some of the ptrace-based tracing tools
and presents limitations of the ptrace approach for low-
impact tracing.

Ptrace supports the following types of requests:

• Attach to, or detach from, the process being traced
(the “tracee”).

• Read or write the process’s memory, saved regis-
ters, or user area.

• Continue execution of the process, possibly until a
particular type of event occurs (e.g., a system call
is called or returns).

• 215 •



216 • Ptrace, Utrace, Uprobes: Lightweight, Dynamic Tracing of User Apps

Events in the tracee turn into SIGCHLD signals that
are delivered to the tracing process. The associated
siginfo_t specifies the type of event.

2.1 Gdb

gdb is the most widely used application debugger in
Linux, and it runs on other flavors of UNIX as well.
gdb controls the program to be debugged using ptrace
requests. gdb is used mostly as an interactive debugger,
but also provides a batch option through which a series
of gdb commands can be executed, without user inter-
vention, each time a breakpoint is hit. This method of
tracing has significant performance overhead. gdb’s ap-
proach to tracing multithreaded applications is to stop
all threads whenever any thread hits a breakpoint.

2.2 Strace

The strace command provides the ability to trace calls
and returns from all the system calls executed by
the traced process. strace exploits ptrace’s PTRACE_

SYSCALL request, which directs ptrace to continue ex-
ecution of the tracee until the next entry or exit from a
system call. strace handles multithreaded applications
well, and it has significantly less performance overhead
than the gdb scripting method; but performance is still
the number-one complaint about strace. Using strace
to trace itself shows that each system call in the tracee
yields several system calls in strace.

2.3 Ltrace

The ltrace command is similar to strace, but it traces
calls and returns from dynamic library functions. It can
also trace system calls, and extern functions in the traced
program itself. ltrace uses ptrace to place breakpoints at
the entry point and return address of each probed func-
tion. ltrace is a useful tool, but it suffers from the per-
formance limitations inherent in ptrace-based tools. It
also appears not to work for multithreaded programs.

2.4 Ptrace Limitations

If gdb, strace, and ltrace don’t give you the type of in-
formation you’re looking for, you might consider writ-
ing your own ptrace-based tracing tool. But consider the
following ptrace limitations first:

• Ptrace is not a POSIX system call. Its behavior
varies from operating system to operating system,
and has even varied from version to version in
Linux. Vital operational details (“Why do I get two
SIGCHLDs here? Am I supposed to pass the pro-
cess a SIGCONT or no signal at all here?”) are not
documented, and are not easily gleaned from the
kernel source.

• The amount of perseverence and/or luck you need
to get a working program goes up as you try to
monitor more than one process or more than one
thread.

• Overheads associated with accessing the tracee’s
memory and registers are enormous—on the order
of 10x to 100x or more, compared with equivalent
in-kernel access. Ptrace’s PEEK-and-POKE inter-
face provides very low bandwidth and incurs nu-
merous context switches.

• In order to trace a process, the tracer must become
the tracee’s parent. To attach to an already run-
ning process, then, the tracer must muck with the
tracee’s lineage. Also, if you decide you want to
apply more instrumentation to the same process,
you have to detach the tracer already in place.

3 Kernel-based Tracing

In the early days of Linux, the kernel code base was
manageable and most people working on the kernel
knew their core areas intimately. There was a definite
pushback from the kernel community towards including
any tracing and/or debugging features in the mainline
kernel.

Over time, Linux became more popular and the num-
ber of kernel contributors increased. A need for a flexi-
ble tracing infrastructure was recognized. To that end, a
number of projects sprung up and have achieved varied
degrees of success.

We will look at a few of these projects in this section.
Most of them are based on the kernel-module approach.

3.1 Kernel-module approach

The common thread among the following approaches
is that the instrumentation code needs to run in kernel



2007 Linux Symposium, Volume One • 217

mode. Since we wouldn’t want to burden the kernel at
times when the instrumentation isn’t in use, such code
is introduced only when needed, in the form of a kernel
module.

3.1.1 Kprobes

Kprobes [2] is perhaps the most widely accepted of all
dynamic instrumentation mechanisms currently avail-
able for the Linux kernel. Kprobes traces its roots back
to DProbes (discussed later). In fact, the first version of
kprobes was a patch created by just taking the minimal,
kernel-only portions of the DProbes framework.

Kprobes allows a user to dynamically insert “probes”
into specific locations in the Linux kernel. The user
specifies “handlers” (instrumentation functions) that run
before and/or after the probed instruction is executed.
When a probepoint (which typically is an architecture-
specific breakpoint instruction) is hit, control is passed
to the kprobes infrastructure, which takes care of execut-
ing the user-specified handlers. [2] provides an in-depth
treatment of the kprobes infrastructure (which, inciden-
tally, includes jprobes and function-return probes).

The kernel-module approach was a natural choice for
kprobes: after all, the goal is to access and instrument
the Linux kernel. Given the privilege and safety re-
quirements necessary to access kernel data structures,
the kernel-module approach works very well.

3.1.2 Utrace

A relatively new entrant to this instrumentation space
is utrace. This infrastructure is intended to serve as an
abstraction layer to write the next generation of user-
space tracing and debugging applications.

One of the primary grouses kernel hackers have had
about ptrace is the lack of separation/layering of
code between architecture-specific and -agnostic parts.
Utrace aims to mitigate this situation. Ptrace is now but
one of the clients of utrace.

Utrace, at a very basic level, is an infrastructure to mon-
itor individual Linux “threads”—each represented by a
task_struct in the kernel. An “engine” is utrace’s
basic control unit. Typically, each utrace client estab-
lishes an engine for each thread of interest. Utrace pro-
vides three basic facilities on a per-engine basis:

• Event reporting: Utrace clients register callbacks
to be run when the thread encounters specific
events of interest. These include system call en-
try/exit, signals, exec, clone, exit, etc.

• Thread control: Utrace clients can inject signals,
request that a thread be stopped from running in
user-space, single-step, block-step, etc.

• Thread machine state access: While in a callback,
a client can inspect and/or modify the thread’s core
state, including the registers and u-area.

Utrace works by placing tracepoints at strategic points in
kernel code. For traced threads, these tracepoints yield
calls into the registered utrace clients. These callbacks,
though happening in the context of a user process, hap-
pen when the process is executing in kernel mode. In
other words, utrace clients run in the kernel. Ptrace is
one utrace client that lives in the kernel. Other clients—
especially those used for ad hoc instrumentation—may
be implemented as kernel modules.

3.1.3 Uprobes

Uprobes is another client of utrace. As such, uprobes
can be seen as a flexible user-space probing mecha-
nism that comes with all the power, but not all the con-
straints, of ptrace. Just as kprobes creates and manages
probepoints in kernel code, uprobes creates and man-
ages probepoints in user applications. The uprobes in-
frastructure, like ptrace, lives in the kernel.

A uprobes user writes a kernel module, specifying for
each desired probepoint the process and virtual address
to be probed and the handler to run when the probepoint
is hit.

A uprobes-based module can also use the utrace and/or
kprobes APIs. Thus a single instrumentation module
can collect and correlate information from the user ap-
plication(s), shared libraries, the kernel/user interfaces,
and the kernel itself.

3.1.4 SystemTap

SystemTap [4] provides a mechanism to use the kernel
(and later, user) instrumentation tools, through a simple



218 • Ptrace, Utrace, Uprobes: Lightweight, Dynamic Tracing of User Apps

awk-like event/action scripting language. A SystemTap
script specifies code points to probe, and for each, the
instrumentation code to run when the probepoint is hit.
The scripting language provides facilities to aggregate,
collate, filter, present, and analyze trace data in a manner
that is intuitive to the user.

From a user’s script, the stap command produces and
loads a kernel module containing calls to the kprobes
API. Trace data from this module is passed to user space
using efficient mechanisms (such as relay channels), and
the SystemTap post-processing infrastructure takes care
of deciphering and presenting the gathered information
in the format requested by the user, on the stap com-
mand’s standard output.

SystemTap can be viewed as a wrapper that enables easy
use of kernel instrumentation mechanisms, including,
but not limited to, kprobes. Plans are afoot to exploit
utrace, uprobes, the “markers” static tracing infrastruc-
ture, and a performance-monitoring-hardware infras-
tructure (perfmon), as they become part of the mainline
kernel.

3.2 Interpreter-based approaches

Two more instrumentation tools, DProbes and DTrace,
bear mention. Both tools endeavor to provide integrated
tracing support for user applications and kernel code.

DProbes [1] traces its roots to IBM’s OS/2 R© operating
system, but has never found a foothold in Linux, ex-
cept as the forebear of kprobes. DProbes instrumenta-
tion is written in the RPN programming language, the
assembly language for a virtual machine whose inter-
preter resides in the kernel. For the i386 architecture,
the DProbes C Compiler (dpcc) translates instrumenta-
tion in a C-like language into RPN. Like kprobes and
uprobes, DProbes allows the insertion of probepoints
anywhere in user or kernel code.

DTrace is in use on Solaris and FreeBSD. Instrumenta-
tion is written in the D programming language, which
provides aggregation and presentation facilities similar
to those of SystemTap. As with DProbes, DTrace instru-
mentation runs on an interpreter in the kernel. DTrace
kernel probepoints are limited to a large but predefined
set. A DTrace probe handler is limited to a single basic
block (no ifs or loops).

Tool Event Counted Overhead (usec)
per Event

ltrace -c function calls 22
gdb -batch function calls 265
strace -c system calls 25
kprobes function calls 0.25
uprobes function calls 3.4
utrace system calls 0.16

Table 1: Performance of ptrace-based tools (top) vs. ad
hoc kernel modules (bottom)

3.3 Advantages of kernel-based application tracing

• Kernel-based instrumentation is inherently fast.
Table 1 shows comparative performance numbers
of ptrace-based tools vs. kernel modules using
kprobes, uprobes, and utrace. These measurements
were taken on a Pentium R© M (1495 MHz) running
the utrace implementation of ptrace.

• Most systemic problems faced by field engineers
involve numerous components. Problems can per-
colate from a user-space application all the way up
to a core kernel component, such as the block layer
or the networking stack. Providing a unified view
of the flow of control and/or data across user space
and kernel is possible only via kernel-based trac-
ing.

• Kernel code runs at the highest privilege and as
such, can access all kernel data structures. In ad-
dition, the kernel has complete freedom and access
to the process address space of all user-space pro-
cesses. By using safe mechanisms provided in ker-
nel to access process address spaces, information
related to the application’s data can be gleaned eas-
ily.

• Ptrace, long the standard method for user-space in-
strumentation, has a number of shortcomings, as
discussed in Section 2.4.

3.4 Drawbacks of kernel-based application tracing

• The kernel runs at a higher privilege level and in
a more restricted environment than applications.
Assumptions and programming constructs that are
valid for user space don’t necessarily hold for the
kernel.



2007 Linux Symposium, Volume One • 219

• Not everybody is a kernel developer. It’s not pru-
dent to expect someone to always write “correct”
kernel code. And, while dealing with the kernel,
one mistake may be too many. Most application
developers and system administrators, understand-
ably, are hesitant to write kernel modules.

• The kernel has access to user-space data, but can’t
easily get at all the information (e.g., symbol table,
debug information) to decode it. This information
must be provided in or communicated to the kernel
module, or the kernel must rely on post-processing
in user space.

SystemTap goes a long way in mitigating these draw-
backs. For kernel tracing, SystemTap uses the running
kernel’s debug information to determine source file, line
number, location of variables, and the like. For applica-
tions that adhere to the DWARF format, it wouldn’t be
hard for SystemTap to provide address/symbol resolu-
tion.

4 Uprobes Design Goals

The idea of user-space probes has been around for years,
and in fact there have been a variety of proposed imple-
mentations. For the current, utrace-based implementa-
tion, the design goals were as follows:

• Support the kernel-module approach. Uprobes fol-
lows the kprobes model of dynamic instrumenta-
tion: the uprobes user creates an ad hoc kernel
module that defines the processes to be probed, the
probepoints to establish, and the kernel-mode in-
strumentation handlers to run when probepoints are
hit. The module’s init function establishes the
probes, and its cleanup function removes them.

• Interoperate with kprobes and utrace. An instru-
mentation module can establish probepoints in the
kernel (via kprobes) as well as in user-mode pro-
grams. A uprobe or utrace handler can dynamically
establish or remove kprobes, uprobes, or utrace-
event callbacks.

• Minimize limitations on the types of applications
that can be probed and the way in which they
can be probed. In particular, a uprobes-based in-
strumentation module can probe any number of

processes of any type (related or unrelated), and
can probe multithreaded applications of all sorts.
Probes can be established or removed at any stage
in a process’s lifetime. Multiple instrumentation
modules can probe the same processes (and even
the same probepoints) simultaneously.

• Probe processes, not executables. In earlier ver-
sions of uprobes, a probepoint referred to a partic-
ular instruction in a specified executable or shared
library. Thus a probepoint affected all processes
(current and future) running that executable. This
made it relatively easy to probe a process right
from exec time, but the implications of this im-
plementation (e.g., inconsistency between the in-
memory and on-disk images of a probed page)
were unacceptable. Like ptrace, uprobes now
probes per-process, and uses access_process_
vm() to ensure that a probed process gets its own
copy of the probed page when a probepoint is in-
serted.

• Handlers can sleep. As discussed later in Sec-
tion 5, uprobes learns of each breakpoint hit via
utrace’s signal-callback mechanism. As a result,
the user-specified handler runs in a context where it
can safely sleep. Thus, the handler can access any
part of the probed process’s address space, resident
or not, and can undertake other operations (such as
registering and unregistering probes) that a kprobe
handler cannot. Compared with earlier implemen-
tations of uprobes, this provides more flexibility at
the cost of some additional per-hit overhead.

• Performance. Since a uprobe handler runs in the
context of the probed process, ptrace’s context
switches between the probed process and the in-
strumentation parent on every event are eliminated.
The result is significantly less overhead per probe
hit than in ptrace, though significantly more than in
kprobes.

• Safe from user-mode interference. Both uprobes
and the instrumentation author must account for the
possibility of unexpected tinkering with the probed
process’s memory—e.g., by the probed process it-
self or by a malicious ptrace-based program—and
ensure that while the sabotaged process may crash,
the kernel’s operation is not affected.

• Minimize intrusion on existing Linux code. For
hooks into a process’s events of interest, uprobes



220 • Ptrace, Utrace, Uprobes: Lightweight, Dynamic Tracing of User Apps

uses those provided by utrace. Uprobes creates
per-task and per-process data structures, but main-
tains them independently of the corresponding data
structures in the core kernel and in utrace. As a
result, at this writing, the base uprobes patch, in-
cluding i386 support, includes only a few lines of
patches against the mainline kernel source.

• Portable to multiple architectures. At the time of
this writing, uprobes runs on the i386 architec-
ture. Ports are underway to PowerPC, x86_64, and
zLinux (s390x). Except for the code for single-
stepping out of line, which you need (adapting
from kprobes, typically) if you don’t want to miss
probepoints in multithreaded applications, a typi-
cal uprobes port is on the order of 50 lines.

5 Uprobes Implementation
Overview

Uprobes can be thought of as containing the following
overlapping pieces:

• data structures;

• the register/unregister API;

• utrace callbacks; and

• architecture-specific code.

In this section, we’ll describe each of these pieces
briefly.

5.1 Data structures

Uprobes creates the following internal data structures:

• uprobe_process – one for each probed pro-
cess;

• uprobe_task – one for each thread (task) in a
probed process; and

• uprobe_kimg (Kernel IMaGe) – one for each
probepoint in a probed process. (Multiple uprobes
at the same address map to the same uprobe_
kimg.)

Each uprobe_task and uprobe_kimg is owned
by its uprobe_process. Data structures associated
with return probes (uretprobes) and single-stepping out
of line are described later.

5.2 The register/unregister API

The fundamental API functions are register_
uprobe() and unregister_uprobe(), each of
which takes a pointer to a uprobe object defined in the
instrumentation module. A uprobe object specifies the
pid and virtual address of the probepoint, and the han-
dler function to be run when the probepoint is hit.

The register_uprobe() function finds the
uprobe_process specified by the pid, or creates
the uprobe_process and uprobe_task(s) if
they don’t already exist. register_uprobe() then
creates a uprobe_kimg for the probepoint, queues
it for insertion, requests (via utrace) that the probed
process “quiesce,” sleeps until the insertion takes place,
and then returns. (If there’s already a probepoint at the
specified address, register_uprobe() just adds
the uprobe to that uprobe_kimg and returns.)

Note that since all threads in a process share the same
text, there’s no way to register a uprobe for a particular
thread in a multithreaded process.

Once all threads in the probed process have quiesced,
the last thread to quiesce inserts a breakpoint instruction
at the specified probepoint, rouses the quiesced threads,
and wakes up register_uprobe().

unregister_uprobe() works in reverse: Queue
the uprobe_kimg for removal, quiesce the probed
process, sleep until the probepoint has been removed,
and delete the uprobe_kimg. If this was the
last uprobe_kimg for the process, unregister_
uprobe() tears down the entire uprobe_process,
along with its uprobe_tasks.

5.3 Utrace callbacks

Aside from registration and unregistration, everything in
uprobes happens as the result of a utrace callback. When
a uprobe_task is created, uprobes calls utrace_
attach() to create an engine for that thread, and lis-
tens for the following events in that task:

• breakpoint signal (SIGTRAP on most architec-
tures): Utrace notifies uprobes when the probed
task hits a breakpoint. Uprobes determines which
probepoint (if any) was hit, runs the associated
probe handler(s), and directs utrace to single-step
the probed instruction.



2007 Linux Symposium, Volume One • 221

• single-step signal (SIGTRAP on most architec-
tures): Utrace notifies uprobes after the probed in-
struction has been single-stepped. Uprobes does
any necessary post-single-step work (discussed in
later sections), and directs utrace to continue exe-
cution of the probed task.

• fork/clone: Utrace notifies uprobes when a probed
task forks a new process or clones a new thread.
When a new thread is cloned for the probed pro-
cess, uprobes adds a new uprobe_task to the
uprobe_process, complete with an appropri-
ately programmed utrace engine. In the case
of fork(), uprobes doesn’t attempt to preserve
probepoints in the child process, since each uprobe
object refers to only one process. Rather, uprobes
iterates through all the probe addresses in the par-
ent and removes the breakpoint instructions in the
child.

• exit: Utrace notifies uprobes when a probed
task exits. Uprobes deletes the corresponding
uprobe_task. If this was the last uprobe_
task for the process, uprobes tears down the en-
tire uprobe_process. (Since the process is ex-
iting, there’s no need to remove breakpoints.)

• exec: Utrace notifies uprobes when a probed task
execs a new program. (Utrace reports exit events
for any other threads in the process.) Since probe-
points in the old program are irrelevant in the new
program, uprobes tears down the entire uprobe_
process. (Again, there’s no need to remove
breakpoints.)

• quiesce: Uprobes listens for the above-listed events
all the time. By contrast, uprobes listens for qui-
esce events only while it’s waiting for the probed
process to quiesce, in preparation for insertion or
removal of a breakpoint instruction. (See Sec-
tion 6.2).

5.4 Architecture-specific code

Most components of the architecture-specific code for
uprobes are simple macros and inline functions. Sup-
port for return probes (uretprobes) typically adds 10–40
lines. By far the majority of the architecture-specific
code relates to “fix-ups” necessitated by the fact that we
single-step a copy of the probed instruction, rather than
single-stepping it in place. See “Tracing multithreaded
applications: SSOL” in the next section.

6 Uprobes Implementation Notes

6.1 Tracing multithreaded applications: SSOL

Like some other tracing and debugging tools, uprobes
implements a probepoint by replacing the first byte(s)
of the instruction at the probepoint with a breakpoint
instruction, after first saving a copy of the original in-
struction. After the breakpoint is hit and the handler has
been run, uprobes needs to execute the original instruc-
tion in the context of the probed process. There are two
commonly accepted ways to do this:

• Single-stepping inline (SSIL): Temporarily replace
the breakpoint instruction with the original instruc-
tion; single-step the instruction; restore the break-
point instruction; and allow the task to continue.
This method is typically used by interactive debug-
gers such as gdb.

• Single-stepping out of line (SSOL): Place a copy of
the original instruction somewhere in the probed
process’s address space; single-step the copy; “fix
up” the task’s state as necessary; and allow the task
to continue. If the effect of the instruction depends
on its address (e.g., a relative branch), the task’s
registers and/or stack must be “fixed up” after the
instruction is executed (e.g., to make the program
counter relative to the address of the original in-
struction, rather than the instruction copy). This
method is used by kprobes for kernel tracing.

The SSIL approach doesn’t work acceptably for mul-
tithreaded programs. In particular, while the break-
point instruction is temporarily removed during single-
stepping, another thread can sail past the probepoint.
We considered the approach of quiescing, or otherwise
blocking, all threads every time one hits a probepoint, so
that we could be sure of no probe misses during SSIL,
but we considered the performance implications unac-
ceptable.

In terms of implementation, SSOL has two important
implications:

• Each uprobes port must provide code to do
architecture-specific post-single-step fix-ups.
Much of this code can be filched from kprobes,



222 • Ptrace, Utrace, Uprobes: Lightweight, Dynamic Tracing of User Apps

but there are additional implications for uprobes.
For example, uprobes must be prepared to handle
any instruction in the architecture’s instruction set,
not just those used in the kernel; and for some
architectures, uprobes must be able to handle both
32-bit and 64-bit user applications.

• The instruction copy to be single-stepped must re-
side somewhere in the probed process’s address
space. Since uprobes can’t know what other
threads may be doing while a thread is single-
stepping, the instruction copy can’t reside in any
location legitimately used by the program. After
considering various approaches, we decided to al-
locate a new VM area in the probed process to hold
the instruction copies. We call this the SSOL area.

To minimize the impact on the system, uprobes allo-
cates the SSOL area only for processes that are actually
probed, and the area is small (typically one page) and
of fixed size. “Instruction slots” in this area are allo-
cated on a per-probepoint basis, so that multiple threads
can single-step in the same slot simultaneously. Slots
are allocated only to probepoints that are actually hit.
If uprobes runs out of free slots, slots are recycled on a
least-recently-used basis.

6.2 Quiescing

Uprobes takes a fairly conservative approach when in-
serting and removing breakpoints: all threads in the
probed process must be “quiescent” before the break-
point is inserted/removed.

Our approach to quiescing the threads started out fairly
simple: For each task in the probed process, the
[un]register_uprobe() function sets the UTRACE_
ACTION_QUIESCE flag in the uprobe_task’s en-
gine, with the result that utrace soon brings the task
to a stopped state and calls uprobes’s quiesce callback
for that task. After setting all tasks on the road to qui-
escence, [un]register_uprobe() goes to sleep.
For the last thread to quiesce, the quiesce callback in-
serts or removes the requested breakpoint, wakes up
[un]register_uprobe(), and rouses all the qui-
esced threads.

It turned out to be more complicated than that. For ex-
ample:

• If the targeted thread is already quiesced, setting
the UTRACE_ACTION_QUIESCE flag causes the
quiesce callback to run immediately in the context
of the [un]register_uprobe() task. This
breaks the “sleep until the last quiescent thread
wakes me” paradigm.

• If a thread hits a breakpoint on the road to quies-
cence, its quiesce callback is called before the sig-
nal callback. This turns out to be a bad place to stop
for breakpoint insertion or removal. For example,
if we happen to remove the uprobe_kimg for the
probepoint we just hit, the subsequent signal call-
back won’t know what to do with the SIGTRAP.

• If [un]register_uprobe() is called from a
uprobe handler, it runs in the context of the probed
task. Again, this breaks the “sleep until the last
quiescent thread wakes me” paradigm.

It turned out to be expedient to establish an “alternate
quiesce point” in uprobes, in addition to the quiesce call-
back. When it finishes handling a probepoint, the up-
robes signal callback checks to see whether the process
is supposed to be quiescing. If so, it does essentially
what the quiesce callback does: if it’s the last thread to
“quiesce,” it processes the pending probe insertion or re-
moval and rouses the other threads; otherwise, it sleeps
in a pseudo-quiesced state until the “last” thread rouses
it. Consequently, if [un]register_uprobe() sees
that a thread is currently processing a probepoint, it
doesn’t try to quiesce it, knowing that it will soon hit
the alternate quiesce point.

6.3 User-space return probes

Uprobes supports a second type of probe: a return probe
fires when a specified function returns. User-space re-
turn probes (uretprobes) are modeled after return probes
in kprobes (kretprobes).

When you register a uretprobe, you specify the process,
the function (i.e., the address of the first instruction), and
a handler to be run when the function returns.

Uprobes sets a probepoint at the entry to the function.
When the function is called, uprobes saves a copy of
the return address (which may be on the stack on in a
register, depending on the architecture) and replaces the
return address with the address of the “uretprobe tram-
poline,” which is simply a breakpoint instruction.



2007 Linux Symposium, Volume One • 223

When the function returns, control passes to the tram-
poline, the breakpoint is hit, and uprobes gains control.
Uprobes runs the user-specified handler, then restores
the original return address and allows the probed func-
tion to return.

In uprobes, the return-probes implementation differs
from kprobes in several ways:

• The user doesn’t need to specify how many
“return-probe instance” objects to preallocate.
Since uprobes runs in a context where it can use
kmalloc() freely, no preallocation is necessary.

• Each probed process needs a trampoline in its ad-
dress space. We use one of the slots in the SSOL
area for this purpose.

• As in kprobes, it’s permissible to unregister the re-
turn probe while the probed function is running.
Even after all probes have been removed, uprobes
keeps the uprobe_process and its uprobe_
tasks (and utrace engines) around as long as nec-
essary to catch and process the last hit on the uret-
probe trampoline.

6.4 Registering/unregistering probes in probe han-
dlers

A uprobe or uretprobe handler can call any of the func-
tions in the uprobes API. A handler can even unregister
its own probe. However, when invoked from a handler,
the actual [un]register operations do not take place im-
mediately. Rather, they are queued up and executed af-
ter all handlers for that probepoint have been run and
the probed instruction has been single-stepped. (Specif-
ically, queued [un]registrations are run right after the
previously described “alternate quiesce point.”) If the
registration_callback field is set in the uprobe
object to be acted on, uprobes calls that callback when
the [un]register operation completes.

An instrumentation module that employs such dynamic
[un]registrations needs to keep track of them: since a
module’s uprobe objects typically disappear along with
the module, the module’s cleanup function should not
exit while any such operations are outstanding.

7 Applying Uprobes

We envision uprobes being used in the following situa-
tions, for debugging and/or for performance monitoring:

• Tracing timing-sensitive applications.

• Tracing multithreaded applications.

• Tracing very large and/or complex applications.

• Diagnosis of systemic performance problems in-
volving multiple layers of software (in kernel and
user space).

• Tracing applications in creative ways – e.g., col-
lecting different types of information at different
probepoints, or dynamically adjusting which code
points are probed.

8 Future Work

What’s next for utrace, uprobes, and kprobes? Here are
some possibilities:

• Utrace += SSOL. As discussed in Section 6.1,
single-stepping out of line is crucial for the sup-
port of probepoints in multithreaded processes.
This technology may be migrated from uprobes to
utrace, so that other utrace clients can exploit it.
One such client might be an enhanced ptrace.

• SystemTap += utrace + uprobes. Some System-
Tap users want support for probing in user space.
Some potential utrace and uprobes users might be
more enthusiastic given the safety and ease of use
provided by SystemTap.

• Registering probes from kprobe handlers. Utrace
and uprobe handlers can register and unregister
utrace, uprobes, and kprobes handlers. It would be
nice if kprobes handlers could do the same. Per-
haps the effect of sleep-tolerant kprobe handlers
could be approximated using a kernel thread that
runs deferred handlers. This possibility is under
investigation.

• Tracing Java. Uprobes takes us closer to dynamic
tracing of the Java Virtual Machine and Java appli-
cations.



224 • Ptrace, Utrace, Uprobes: Lightweight, Dynamic Tracing of User Apps

• Task-independent exec hook. Currently, uprobes
can trace an application if it’s already running, or if
it is known which process will spawn it. Allowing
tracing of applications that are yet be started and
are of unknown lineage will help to solve problems
that creep in during application startup.

9 Acknowledgements

The authors wish to thank Roland McGrath for com-
ing up with the excellent utrace infrastructure, and also
for providing valuable suggestions and feedback on up-
robes. Thanks are due to David Wilder and Srikar Dron-
amraju for helping out with testing the uprobes frame-
work. Thanks also to Dave Hansen and Andrew Morton
for their valuable suggestions on the VM-related por-
tions of the uprobes infrastructure.

10 Legal Statements

Copyright c© IBM Corporation, 2007.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM, PowerPC, and OS/2 are trademarks or registered trade-
marks of International Business Machines Corporation in the
United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Pentium is a registered trademark of Intel Corporation.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

This document is provided “AS IS,” with no express or im-
plied warranties. Use the information in this document at
your own risk.

References

[1] Suparna Bhattacharya. Dynamic Probes -
Debugging by Stealth. In Proceedings of
Linux.Conf.Au, 2003.

[2] Mavinakayanahalli et al. Probing the Guts of
Kprobes. In Proceedings of the Ottawa Linux
Symposium, 2006.

[3] Roland McGrath. Utrace home page. http://
people.redhat.com/roland/utrace/.

[4] SystemTap project team. SystemTap.
http://sourceware.org/systemtap/.



Proceedings of the
Linux Symposium

Volume One

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.


