
Towards a Better SCM: Revlog and Mercurial

Matt Mackall
Selenic Consulting
mpm@selenic.com

Abstract

Large projects need scalable, performant, and
robust software configuration management sys-
tems. If common revision control operations
are not cheap, they present a large barrier to
proper software engineering practice. This pa-
per will investigate the theoretical limits on
SCM performance, and examines how existing
systems fall short of those ideals.

I then describe the Revlog data storage scheme
created for the Mercurial SCM. The Revlog
scheme allows all common SCM operations to
be performed in near-optimal time, while pro-
viding excellent compression and robustness.

Finally, I look at how a full distributed SCM
(Mercurial) is built on top of the Revlog
scheme, some of the pitfalls we’ve surmounted
in on-disk layout and I/O performance and the
protocols used to efficiently communicate be-
tween repositories.

1 Introduction: the need for SCM
scalability

As software projects grow larger and open
development practices become more widely
adopted, the demands on source control man-
agement systems are greatly increased. Large

projects demand scalability in multiple dimen-
sions, including efficient handling of large
numbers of files, large numbers of revisions,
and large numbers of developers.

As an example of a moderately large project,
we can look at the Linux kernel, a project
now in its second decade. The Linux kernel
source tree has tens of thousands of files and
has collected on the order of a hundred thou-
sand changesets since adopting version control
only a few years ago. It also has on the order
of a thousand contributors scattered around the
globe. It also continues to grow rapidly. So it’s
not hard to imagine projects growing to manage
millions of files, millions of changesets, and
many thousands of people developing in par-
allel over a timescale of decades.

At the same time, certain SCM features become
increasingly important. Decentralization is cru-
cial: thousands of users with varying levels of
network access can’t hope to efficiently cooper-
ate if they’re all struggling to commit change-
sets to a central repository due to locking and
bandwidth concerns. So it becomes critical that
a system be able to painlessly handle per-user
development branches and repeated merging
with the branches of other developers. Group-
ing of interdependent changes in multiple files
into a single “atomic” changeset becomes a ne-
cessity for understanding and working with the
huge number of changes that are introduced.
And robust, compact storage of the revision



84 • Towards a Better SCM: Revlog and Mercurial

history is essential for large number of develop-
ers to work with their own decentralized repos-
itories.

2 Overview of Scalability Limits
and Existing Systems

To intelligently evaluate scalability issues over
a timescale of a decade or more, we need to
look at the likely trends in both project growth
and computer performance. Many facets of
computer performance have historically fol-
lowed an exponential curve, but at different
rates. If we order the more important of these
facets by rate, we might have a list like the fol-
lowing:

• CPU speed

• disk capacity

• memory capacity

• memory bandwidth

• LAN bandwidth

• disk bandwidth

• WAN bandwidth

• disk seek rate

So while CPU speed has changed by many
orders of magnitude, disk seek rate has only
changed slightly. In fact, seek rate is now dom-
inated by disk rotational latency and thus its
rate of improvement has already run up against
a wall imposed by physics. Similarly, WAN
bandwidth runs up against limits of existing
communications infrastructure.

So as technology progresses, it makes more and
more sense to trade off CPU power to save disk

seeks and network bandwidth. We have in fact
already long since reached a point where disk
seeks heavily dominate many workloads, in-
cluding ours. So we’ll examine the important
aspects of source control from the perspective
of the facet it’s most likely to eventually be con-
strained by.

For simplicity, we’ll make a couple simplify-
ing assumptions. First, we’ll assume files of a
constant size, or rather that performance should
generally be linearly related to file size. Sec-
ond, we’ll assume for now that a filesystem’s
block allocation scheme is reasonably good and
that fragmentation of single files is fairly small.
Third, we’ll assume that file lookup is roughly
constant time for moderately-sized directories.

With that in mind, let’s look at some of the the-
oretical limits for the most important SCM op-
erations as well as scalability of existing sys-
tems, starting with operations on individual
files:

Storage compression: For compressing sin-
gle file revisions, the best schemes known in-
clude SCCS-style “weaves” [8] or RCS-style
deltas [5], together with a more generic com-
pression algorithm like gzip. For files in a typi-
cal project, this results in average compression
on the order of 10:1 to 20:1 with relatively con-
stant CPU overhead (see more about calculat-
ing deltas below).

Retrieving arbitrary file revisions: It’s easy
to see that we can easily achieve constant time
(O(1) seeks) retrieval of individual file revi-
sions, simply by storing each revision in a sep-
arate file in the history repository. In terms of
big-O notation, we can do no better. This ig-
nores some details of filesystem scalability, but
it’s a good approximation. This is perhaps the
most fundamental operation in an SCM, so the
scalability of this operation is crucial.



2006 Linux Symposium, Volume Two • 85

Most SCMs, including CVS, and Bitkeeper use
delta or weave-based schemes that store all the
revisions for a given file in a single back-end
file. Reconstructing arbitrary versions requires
reading some or all of the history file, thus
making performance O(revisions) in disk band-
width and computation. As a special case, CVS
stores the most recent revision of a given file
uncompressed, but still must read and parse the
entire history file to retrieve it.

SVN uses a skip-delta [7] scheme that requires
reading O(log revisions) deltas (and seeks) to
reconstruct a revision.

Unpacked git stores a back-end file for each file
revision, giving O(1) performance, but packed
git requires searching a collection of indices
that grow as the project history grows. Also
worth noting is that git does not store an index
information at the file level. Thus operations
like finding the previous version of a file to cal-
culate a delta or the finding the common ances-
tor of two file revisions can require searching
the entirety of the project’s history.

Adding file revisions: Similarly, we can see
that adding file revisions by the same scheme
is also O(1) seeks. Most systems use schemes
that require rewriting the entire history file, thus
making their performance decrease linearly as
the number of revisions increase.

Annotate file history: We could, in princi-
ple, incrementally calculate and store an anno-
tated version of each version of a file we store
and thus achieve file history annotation in O(1)
seeks by adding more up-front CPU and stor-
age overhead. Almost all systems instead take
O(revision) disk bandwidth to construct anno-
tations, if not significantly more. While anno-
tation is traditionally not performance critical,
some newer merge algorithms rely on it [8].

Next, we can look at the performance limits of
working with revisions at the project level:

Checking out a project revision: Assuming
O(1) seeks to check out file revisions, we might
expect O(files) seeks to check out all the files
in the project. But if we arrange so that file
revisions are nearly consecutive, we can avoid
most of those seeks, and instead our limit be-
comes O(files) as measured by disk bandwidth.
A comparable operation is untarring an archive
of that revision’s files.

As most systems must read the entirety of a
file’s history to reconstruct a revision, they’ll
require O(total file revisions) disk bandwidth
and CPU to check out an entire project tree.
SCMs that don’t visit the repository history in
the filesystem’s natural layout can easily see
this performance degrade into O(total files) ran-
dom disk seeks, which can happen with SCMs
backed by database engines or with systems
like git which store objects by hash (unpacked)
or creation time (packed).

Committing changes: For a change to a small
set of the files in a project, we can expect to
be bound by O(changed files) seeks, or, as the
number of changes approaches the number of
files, O(files) disk bandwidth.

Systems like git can meet this target for com-
mit, as they simply create a new back-end file
for each file committed. Systems like CVS re-
quire rewriting file histories and thus take in-
creasingly more time as histories grow deeper.
Non-distributed systems also need to deal with
lock contention which grows quite rapidly with
the number of concurrent users, lock hold time,
and network bandwidth and latency.

Finding differences in the working direc-
tory: There are two different approaches to this
problem. One is to have the user explicitly ac-
quire write permissions on a set of files, which
nicely limits the set of files that need to be ex-
amined so that we only need O(writable files)
comparisons. Another is to allow all files to



86 • Towards a Better SCM: Revlog and Mercurial

be edited and to detect changes to all managed
files.

As most systems require O(file revisions) to re-
trieve a file version for comparison, this opera-
tion can be expensive. It can be greatly acceler-
ated by keeping a cache of file timestamps and
sizes as checkout time.

3 Revlog: A Solid Foundation

The core of the Mercurial system [4] is a stor-
age scheme known as a “revlog,” which seeks
to address the basic scalability problems of
other systems. First and foremost, it aims to
provide O(1) seek performances for both read-
ing and writing revisions, but still retain effec-
tive compression and integrity.

The fundamental scheme is to store a separate
index and data file for each file managed. The
index contains a fixed-sized record for each re-
vision managed while the data file contains a
linear series of compressed hunks, one per re-
vision.

Each hunk is either a full revision or a delta
against the immediately preceding hunk or
hunks. This somewhat resembles the format of
an MPEG video stream, which contains a series
of delta frames with occassional full frames for
synchronization.

Looking up a given revision is easy—simply
calculate the position of the relevant record in
the index and read it. It will contain a pointer to
the first full revision of the delta chain and the
entire chain can then be read in a single con-
tiguous chunk. Thus we need only O(1) seeks
to locate and retrieve a revision.

By limiting the total length of the hunks needed
to reconstruct a given version to a small mul-
tiple of that version’s uncompressed size, we

Figure 1: Revlog Layout

guarantee that we’ll never need to read more
than O(1) file equivalents from the data file and
our CPU time for reconstruction is similarly
bounded.

To add a new version, we simply append a new
index record and data hunk to our revlog, again
an O(1) operation. This append-only approach
provides several advantages. In addition to be-
ing fast, we also avoid the risk of corrupting
earlier data because we don’t rewrite it. If we
are careful to only write index entries after data
hunks, we also need no special provisions for
locking out readers while writes are in progress.
And finally, it makes possible a trivial jour-
nalling scheme, described later.

Because our system needs to allow more
than simple linear development with repeated
branching and merging, our revision identifiers
cannot be just simple integers. And because our
scheme is intended to be decentralized, we’d
like to have identifiers that are global. Thus,
Mercurial generates identifiers from a strong
hash of its contents (currently using SHA1).
This hash also provides a robust integrity check
when revisions are reconstructed.

As our project can contain arbitrary branch-



2006 Linux Symposium, Volume Two • 87

ing and merging through time, each revlog can
have an arbitrary directed acyclic graph (DAG)
describing its history. But if we revert a change,
we will have the same hash value appearing in
two places on the graph, which results in a cy-
cle!

Revlogs address this by incorporating the hash
of the parent revisions into a given revision’s
hash identifier, thus making the hash dependent
on both the revision’s contents and its position
in the tree. Not only does this avoid our cycle
problem, it makes merging DAGs from multi-
ple revlogs trivial: simply throw out any revi-
sions with duplicate hashes and append the re-
mainder.

Each 64 byte revlog index record contains the
following information:

2 bytes: flags
6 bytes: hunk offset
4 bytes: hunk length
4 bytes: uncompressed length
4 bytes: base revision
4 bytes: link revision
4 bytes: parent 1 revision
4 bytes: parent 2 revision
32 bytes: hash

Data hunks are composed of a flag byte indi-
cating compression type followed by a full re-
vision or a delta.

4 Delta Encoding Considerations

Revlog deltas themselves are quite simple.
They’re simply a collection of chunks specify-
ing a start point, an end point, and a string of
replacement bytes. But calculating deltas and
applying deltas both turn out to have some in-
teresting issues.

First, let’s consider delta calculation. We care-
fully tested three algorithms before selecting
the one used by revlogs.

The classic algorithm used by GNU diff and
most other textual tools is the Myers algorithm,
which generates optimal output for the so-
called longest common substring (LCS) prob-
lem. This algorithm is fairly complex, and the
variant used by GNU diff has heuristics to avoid
a couple forms of quadratic run-time behavior.

While the algorithm is optimal for LCS, it does
not in fact generate the shortest deltas for our
purposes. This is because it weighs insertions,
changes, and deletions equally (with a weight
of one). For us, deleting long strings of charac-
ters is cheaper than inserting or changing them.

Another algorithm we tried was xdelta [3],
which is aimed at calculating diffs for large bi-
nary files efficiently. While much simpler and
somewhat faster than the Myers algorithm, it
also generated slightly larger deltas on average.

Finally, we tried a C reimplementation (“bd-
iff”) of the algorithm found in Python’s dif-
flib [1]. In short, this algorithm finds the
longest contiguous match in a file, then recur-
sively matches on either side. While also hav-
ing worst-case quadratic performance like the
Myer’s algorithm, it more often approximates
linear performance.

The bdiff algorithm has several advantages. On
average, it produced slightly smaller output
than either the Myers or xdelta algorithms, and
was as fast or faster. It also had the shortest and
simplest code of the three. And lastly, when
used for textual diffs, it often generates more
“intuitive” output than GNU diff.

We may eventually include the xdelta algorithm
as a fallback for exceptionally large files, but
the bdiff algorithm has proven satisfactory so
far.



88 • Towards a Better SCM: Revlog and Mercurial

rev offset length base linkrev nodeid p1 p2
0 0 453 0 0 ee9b82ca6948 000000000000 000000000000
1 453 107 0 1 98f3df0f2f4f ee9b82ca6948 000000000000
2 560 73 0 2 8553cbcb6563 98f3df0f2f4f 000000000000
3 633 63 0 3 09f628a628a8 8553cbcb6563 000000000000
4 696 69 0 4 3413f6c67a5a 09f628a628a8 000000000000

...
15 1435 69 0 15 69d47ab5fc42 9e64605e7ab0 000000000000
16 1504 111 0 16 81322d98ee1f 69d47ab5fc42 000000000000
17 1615 525 17 17 20f563caf71e 81322d98ee1f 000000000000
18 2140 56 17 18 1d47c3ef857a 20f563caf71e 000000000000

...

Table 1: Part of a typical revlog index

Next is the issue of applying deltas. In the worst
case, we may need to apply many thousands of
small deltas to large files. To sequentially ap-
ply 1K deltas to a 1M, we’ll effectively have
to do 1G of memory copies—not terribly effi-
cient. Mercurial addresses this problem by re-
cursively merging neighboring patches into a
single delta. Not only does this reduce us to
only applying a single delta, it eliminates or
joins the hunks that overlap, further reducing
the work. Thus, patch application is reduced
in CPU time from O(file size * deltas) to ap-
proximately O(file size + delta size). As we’ve
already constrained the total data to be propor-
tional to our original file size, this is again O(1)
in terms of file units.

5 Mercurial: A Simple Hierarchy

With revlogs providing a solid basis for stor-
ing file revisions, we can now describe Mer-
curial. Naturally, Mercurial stores a revlog for
each managed file. Above that, it stores a “man-
ifest” which contains a list of all file:revision
hash pairs in a project level revision. And fi-
nally, it stores a “changeset” that describes the
change that corresponds to each manifest. And
conveniently, changesets and manifests are also
stored in revlogs!

changeset
data

changeset
index

manifest
data

manifest
index

file
data

file
index

linkrev

Figure 2: The Mercurial Hierarchy

This schema of file/manifest/changeset hashing
was directly inspired by Monotone [2] (which
also inspired the scheme used by git [6]). Mer-
curial adds a couple important schema im-
provements beyond using revlogs for efficient
storage. As already described, revlog hashes
avoid issues with graph cycles and make merg-
ing graphs extremely easy. Also, revlogs at
each level contain a “linkrev” for each revision
that points to the associated changeset, allow-
ing one to quickly walk both up and down the
hierarchy. It also has file-level DAGs which
allow for more efficient log and annotate, and
more accurate merge in some situations.

Checking out Project Revisions: Checkout is
a simple process. Retrieve a changeset, retrieve
the associated manifest, and retrieve all file re-
visions associated with that manifest.

Mercurial takes the approach of keeping a
cache of managed file sizes and timestamps for



2006 Linux Symposium, Volume Two • 89

rapid detection of file changes for future com-
mits. This also lets us know which files need
updating when we checkout a changeset. Nat-
urally, Mercurial also tracks which changeset
the current working directory is based on, and
in the case of merge operations, we’ll have two
such parents.

The manifest is carefully maintained in sorted
order and all operations on files are done in
sorted order as well. An early version stored
revlogs by hash (as git still does) and that
scheme was found to rapidly degrade over time.
Simply copying a repo would often reorder
it on disk by hash, giving worst-case perfor-
mance.

With revlogs instead stored in a directory tree
mirroring the project and all reads done in
sorted order, filesystems and utilities like cp
and rsync are given every opportunity to opti-
mize on-disk layout so that we minimize seeks
between revlogs in normal usage. This gets us
very close to O(files) disk bandwidth with typ-
ical filesystems.

Performance for full tree checkouts for a large
project tend to be very comparable to time
needed to uncompress and untar an equivalent
set of files.

Committing Changes: Commits are atomic
and are carefully ordered so as to not need
any locking for readers. First all relevant file
revlogs are extended, followed by the manifest
and finally the changelog. Adding an entry to
the changelog index makes it visible to readers.

Commit operations are also journalled. For
each revlog file appended to during a commit,
we simply record the original length of the file.
If a commit is interrupted, we simply truncate
all the files back to the earlier lengths, in reverse
order.

Note that because locking is only needed on
writes and each user commits to primarily to

their own private repository, lock contention is
effectively nil.

Commit performance is high enough that Mer-
curial can apply and import a large series of
patches into its repository faster than tools like
quilt can simply apply them to the working di-
rectory.

Cloning: While Mercurial repositories can
contain numerous development branches,
branching is typically done by “cloning” a
repository wholesale. By using hardlinks and
copy-on-write techniques, Mercurial can create
independent lightweight copies of entire repos-
itories in seconds. This is an important part of
Mercurial’s distributed model—branches are
cheap and discardable.

Pushing and Pulling: A fundamental oper-
ation of a distributed SCM is synchroniza-
tion between the private repositories of dif-
ferent users. In Mercurial, this operation is
called “pulling” (importing changes from a re-
mote repository) or “pushing” (sending local
changes to a remote repository).

Pulling typically involves finding all changesets
present in the remote tree but not in the local
tree and asking them to be sent. Because this
may involve many thousands of changesets, we
can’t simply ask for a list of all changesets and
compare. Instead, Mercurial asks the remote
end for a list of heads and walks backwards un-
til it finds the root nodes of all remote change-
sets. It then requests all changesets starting at
these root nodes.

To minimize the number of round trips required
for this search, we make three optimizations.
First, we allow many requests in a single query
so that we can search different branches of the
graph in parallel. Second, we combine chains
of linear changes into single “twigs” so that
we can quickly step across large regions of



90 • Towards a Better SCM: Revlog and Mercurial

the graph. And finally, we use a special bi-
nary search approach to quickly find narrow
our search if new changes appear in the mid-
dle of a twig. This approach lets us find our
new changesets in approximately O(log(new
changesets)) bandwidth and round-trips.

Once the outstanding changes are found, the re-
mote end begins to stream the changes across in
Mercurial’s “bundle” format. Rather than be-
ing ordered changeset by changeset, a bundle
is instead ordered revlog by revlog. First, all
new changelog entries are sent as deltas. As
changesets are visited, a list of changed files is
constructed.

Armed with a list of new changesets, Mercurial
can quickly scan the manifest for changesets
with a matching linkrev and send all new man-
ifest deltas. We can also quickly visit our list
of changed files and find their relevant deltas
(again in sorted order). This minimizes seek-
ing on both ends and avoids visiting unchanged
parts of the repository.

Note that because this scheme makes deltas for
the same revlog adjacent, the stream can also be
more effectively compressed, preserving valu-
able WAN bandwidth.

6 Conclusions

By careful attention to scalability and perfor-
mance issues for all common operations from
the ground up, Mercurial performs well even as
projects become very large in terms of history,
files, or users.

As most of the performance improvements
made by Mercurial are in the back-end data rep-
resentation, they should be applicable to many
other systems.

Mercurial is still a young and rapidly improving
system. Contributions are encouraged!

References

[1] difflib. http://docs.python.org/
lib/module-difflib.html.

[2] Graydon Hoare.
http://www.venge.net/monotone/. http:
//www.venge.net/monotone/.

[3] Davide Libenzi. Libxdiff.
http://www.xmailserver.org/
xdiff-lib.html.

[4] Matt Mackall. The mercurial scm.
http://selenic.com/mercurial.

[5] Walter F. Tichy. Rcs–a system for version
control.
http://docs.freebsd.org/
44doc/psd/13.rcs/paper.html.

[6] Linus Torvalds. Git - tree history storage
tool. http://git.or.cz/.

[7] Unknown. Skip-deltas in subversion.
http://svn.collab.net/repos/
svn/trunk/notes/skip-deltas.

[8] Various. Weave - revctrl wiki.
http://revctrl.org/Weave.



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


