MD RAID Acceleration

Support for Asynchronous DMA/XOR Engines

Dan J. Williams
Intel Corporation

dan.j.williams@intel.com

Abstract

The Linux MD driver performs RAID manage-
ment operations entirely with software routines
running on the CPU. This paper discusses the
theoretical performance advantages of modify-
ing MD’s RAID-5 implementation to offload its
operations to dedicated hardware resources.

1 Introduction

RAID (Redundant Array of Inexpensive Disks)
host bus adapters are a common feature of
server-class platforms. The core of these
adapters is typically an embedded system-on-
a-chip architecture comprised of a low power
CPU paired with dedicated XOR calculation
hardware and a memory controller. Firmware
on this chip is tasked with taking a set of disks,
combining them with a given RAID algorithm,
and then exposing the RAID volume to the host
operating system.

Today, system-on-a-chip I/O processor (IOP)
designs are being reused in external storage ap-
plications, where the firmware is replaced with
Linux. OEM’s take advantage of this low cost
hardware and Linux based storage software to
produce entry-level NAS (Network Attached

Storage) and SAN (Storage Area Network) ap-
pliances. The problem, however, is that the
Linux MD driver does not take into account
the dedicated RAID acceleration capabilities of
an IOP. This paper discusses the implemen-
tation and benefits of modifying Linux’s MD
driver architecture to offload its compute inten-
sive operations when in the presence of dedi-
cated hardware (compute intensive operations
include block xor, copy, compare, and zeroing).
A corollary of this goal will be the capabil-
ity for MD to spread operations over multiple
CPUs in SMP configurations. It goes without
saying that the performance of MD in systems
without offload capabilities must not be signif-
icantly impacted.

The general approach of this work, as sug-
gested by Neil Brown on the linux-raid mailing
list [NB1], is to have MD queue block opera-
tions to a separate thread / resource. The fol-
lowing benefits arise from this approach:

1. Reduced CPU Utilization: Once an oper-
ation has been handed off to the backend
hardware, the kernel is free to prepare the
next RAID operation, causing a pipelining
effect, or it can spend cycles in other areas
of the system.

2. Speed improvements from hardware
memory copies and XOR operations: The



410 e MD RAID Acceleration

architecture of the dedicated hardware
units on an IOP is designed to process
block operations at a higher rate than a
software routine on the CPU

3. Reduced cache pollution: Some data in-
volved in RAID calculations is never con-
sumed by a client thread, or is temporally
distant from consumption.

The overarching goal of these changes is to in-
crease the appeal of Linux powered 10P plat-
forms in the external storage appliances mar-
ket by taking maximum advantage of IOP hard-
ware in RAID array management.

2 Background

The IT industry’s increasing intolerance for
downtime paired with the continued growth of
storage capacity requirements drives the mar-
ket for RAID technologies. The RAID-5 and
RAID-6 algorithms seek to increase fault tol-
erance while reducing the cost per unit of ca-
pacity compared to RAID-1/10 technologies.
Server systems that implement RAID-5/6 typ-
ically do so with a RAID host bus adapter.
Even though most server class operating sys-
tems can run the algorithms natively in the sys-
tem kernel, users typically want to spend CPU
cycles on transaction processing and leave stor-
age subsystem maintenance operations for the
adapter. In addition to offloading parity calcu-
lations adapters assume interrupt handling re-
sponsibilities for the disk controllers participat-
ing in the array. This, combined with large
caches isolated from system RAM, allows the
adapter to accelerate accesses to the disk array.

It naturally follows that when Linux is ported
to run on the adapter processor, MD should
be re-crafted to take advantage of the spe-
cialized hardware. An initial proof-of-concept

experiment was attempted that made minimal
changes to the current MD stack. However, it
became apparent from this work that more fun-
damental changes to MD were needed in order
to optimize the potential performance benefit of
the offload engines. A description of the per-
formance shortcomings of this first experiment
and the potential benefits of the current work is
best understood after a discussion of the current
MD architecture.

3 MD RAID-5 Architecture Intro-
duction

In essence, MD is a Linux block device driver
that redirects incoming requests to a set of
backing block devices that comprise the RAID
array. There are no restrictions on the types
of backing devices as long as they expose the
Linux block I/O interface; in other words, be-
yond disks it is possible to use loop back de-
vices, network block devices (NBD), or even
other MD devices in a RAID configuration.
Clients of an array submit a bio! directly
to MD’s request queue via its custom make__
request method. This routine acts as front-
end for the stripe cache and the stripe handling
state machine. Compare this to standard disk
block device drivers where make_request
is the front end of one of Linux’s 1/0O scheduler
queues that coalesce and reorder the requests
before submitting transactions to the disk. The
stripe cache is a read-write-allocate and write-
through cache of the blocks (pages) associ-
ated with backing disk data. It is worth not-
ing that the stripe cache sits below the page
cache in Linux’s memory hierarchy increasing
the chance that a client request can be serviced

'A bio is the unit of operation for the block I/O
layer. A bio describes the source / destination sector
of a transaction and points to a list of bio_vecs which
can be thought of as a scatter-gather list [LKD].



2006 Linux Symposium, Volume Two e 411

by data in system RAM rather than suffering
large latencies waiting for the disk to return the
data. Before digging deeper into how the stripe
cache gets populated and managed, a descrip-
tion of the key RAID-5 data structure, st ruct
stripe_head, and the handle_stripe
routine is required.

MD logically organizes the sectors of the back-
ing disks into a series of stripe_heads.
Each stripe_head contains an array of N
r5devs, where N is the number of member
disks and an r5dev is the data structure that,
among other things, points to a PAGE_SIZE
block of data that it is the cached version of data
on the backing device. The following is a full
description of the r5dev structure members:

e struct bio req: bio reserved for
sending transactions to the backing disk

e struct bio_vec vec: bio_vecre-
served to describe the location of data for
transactions to the backing disk

The

e struct page *page: stripe

cache version of disk data

e struct bio xtoread,
rtowrite: Lists of incoming requests
queued via make_request

e struct bio xwritten: Queue for
write transactions that have hit the stripe
cache but now need to be propagated to the
backing disk

e sector_t sector: Logical sector of
the array that the page pointer references

e unsigned long flags: Bitfield that
contains the state of the cached buffer,
and flags for requesting service like R5_
Wantread and R5_Wantwrite

As mentioned the r5dev array is a member of
the stripe_head data structure. The perti-
nent members of this structure required for the
stripe cache are:

e sector_t sector: Logical array sec-
tor associated with the stripe_head

e int pd_idx: Which device in the
r5dev array holds the parity information
for this stripe. The parity information ro-
tates according to a separate algorithm;
by default this is left-symmetric. In the
RAID-4 case the parity disk is constant
across the entire array.

e unsigned long state: State of the
stripe that tracks whether the stripe needs
servicing, whether it is waiting for data be-
fore a transaction can continue, or whether
it is part of a secondary operation like syn-
chronizing or expanding.

e atomic_t count: This reference
counter logs the number of individual
threads that are currently operating on the
stripe. Once each thread has had a chance
to log its requests, the stripe_head is
passed to the raid5d kernel thread for
further handling.

e spinlock_t lock: Serializes access
to the contents of the st ripe_head.

A stripe_head begins life when a transac-
tion, received via make_request, targets the
physical disk sectors of its backing disks. It
ends life when its reference count drops to zero
(no client threads are performing operations)
making it a candidate for stripe cache victim-
ization.



412 e MD RAID Acceleration

4 MD RAID Acceleration

The state transitions and operations that a
stripe_head undergoes on its path from ac-
tivation to victimization are the focus of the
present acceleration work. The current flow for
a write operation follows; the description as-
sumes that we are overwriting complete blocks
in the stripe resulting in a ‘reconstruct-write’
operation.

1. A thread submits a bio with data to be
written to make_request. make_
request calls add_stripe_bio
which checks to make sure that a request
is not already pending before queuing the
new request. In the case that a request
is already pending the thread is put to
sleep, and subsequently woken once the
preceding request has been submitted.

2. With a new bio posted to the stripe
make_request, still in the context of
the requesting thread, calls handle_
stripe to start the raid5 state machine.
Assuming this is the first operation to the
stripe, handle_stripe will determine
that it needs to fill the cache with all the
other blocks in the stripe in order to per-
form the xor parity calculation. Once
handle_stripe submits the read re-
quests to the backing disks it hands over
further stripe operations to raid5d.?

3. Once all of the reads to disks have
completed raid5d is woken up to ad-
vance the state of the stripe and per-
form the ‘reconstruct-write’ operation. A
reconstruct-write involves copying data
from the bio (submitted in step 1) into the
relevant blocks, zeroing the parity block,

2raid5d is a thread that collects and executes array
maintenance operations, there is one thread for each ar-
ray in the system.

and finally regenerating parity across all
the blocks in the stripe. It is important to
note that all of the work in this step is per-
formed under a per stripe lock.? The writ-
ten blocks and the updated parity block are
now submitted to the backing disks.

4. raid5d is woken up again when the
writes complete. It signals completion
of the original write request (submitted
in step 1) by calling the bi_end_io
method of the bio. Assuming no new re-
quests have been submitted to this stripe
it is transitioned to an inactive state and
raid5d returns to sleep.

The acceleration work targets the operations of
moving data out of the stripe cache,* main-
taining parity, and recovering degraded blocks
from the other disks. These operations entail
memory block copying, block xor, block xor
with a ‘zero-result’ check (to verify parity), and
block fills (to prepare parity blocks that will
be overwritten). On an I/O processor, like the
I0P333, all of these operations can be carried
out in hardware. Initial proof-of-concept work
along these lines helped to illuminate the form
of the final design. The experiment involved
making in-line replacements of the software
xor routine with a routine that set up and ran
the operation with the hardware unit; however,
it did not show significant improvement gains.
As Neil Brown said on the linux-raid mailing
list, “I'm not surprised that simply replacing
xor_block with calls into the hardware en-
gine didn’t help much. xor_block is cur-
rently called under a spinlock, so the main pro-
cessor will probably be completely idle while
the AA is doing the XOR calculation, so there
isn’t much room for improvement.” [NB1]

3The stripe lock is a per stripe spin_lock that
prevents other threads from concurrently modifying the
stripe’s state in the handle_stripe routine.

4Moving data into the stripe cache is handled by the
block drivers of the backing devices.



Performing the operations under a spin lock
in raid5d prevents pre-emption, precludes
multiple operations being queued to the same
stripe, and from a system throughput perspec-
tive stalls the stripes waiting in raid5d’s
queue. The first phase of the current accel-
eration work is to move the block operations
outside the stripe_head lock, and outside
of raid5d. The current patches achieve this
by submitting the operations to a kernel work
queue. This has the side benefit of allowing
SMP systems, without xor and copy engines, to
spread RAID work over multiple CPUs. One of
the effects of using the raid5d thread to shep-
herd the stripe_head through its states of
operation is that work that is parallel in nature
is processed in a single threaded fashion. SMP
systems with the work queue changes will be
able to accept work from multiple threads and
then disperse that work across all the CPUs in
the system. In the uni-processor IOP case, the
work queue will interface with an offload API
to submit batches of operations to hardware en-
gines. The I/OAT DMA engine API [IOAT],
presented at last year’s OLS 2005, is the basis
for this acceleration interface.

In the presence of hardware offload engines, the
work queue will be responsible for de-queuing
requests as fast as possible while maintaining
the order of transactions. The order of trans-
actions is important because RAID operations,
like the write case outlined earlier, require sev-
eral steps that must complete in order. For ex-
ample, consider a case where the work queue
submits the drain operation (copy from bio to
stripe cache) for a write, and subsequently ad-
vances to the stage that performs the xor across
the new data in the stripe. If the xor starts be-
fore the copy completes, the parity becomes
corrupted. It is possible to envision systems
with several flavors of hardware offload con-
figuration; some may have an all in one unit
that can handle all the block operations from
a single queue, while some may have several

2006 Linux Symposium, Volume Two e 413

discrete units, one per operation type. A given
work queue thread implementation is required
to detect and manage cases where an operation
must be stalled until a hardware unit completes.
Again, this is not necessary if the hardware can
maintain ordering.

The raid5d thread in this new model is
now only tasked with finding work, submitting
work, and advancing the state machine. This
new arrangement aims submitting work, and
advancing the state machine. Block operations
are queued to a separate, to reclaim CPU cycles
spent performing block operations and allocate
them to other system tasks. With hardware ac-
celeration this model also enables some con-
figurations to entirely eliminate the CPU data
cache footprint of the stripe cache. Consider
that high performance disk adapter drivers ar-
range for data to be directly pushed and pulled
from memory by the device (bus mastering).
With this capability stripe data enters the stripe
cache via a device to host write operation, is
maintained in the cache via DMA engine xor
operations, and leaves the cache by either a de-
vice to host read operation or a DMA copy to
bio operation, never dirtying cache lines in
the CPU. The need to repetitively synchronize
the stripe cache with main memory was a con-
tributing factor to the sub-optimal performance
of the proof-of-concept experiment.

5 Conclusion

MD driver block operations can be accelerated
by taking full advantage of the hardware fea-
tures of an IOP. To date, patches have been
submitted to move the block operations to a
work queue and the next steps are to integrate
the dmaengine API into the work queue. Once
the RAID-5 changes have settled, the same ap-
proach will be applied to the RAID-6 layer
where parity manipulation can be significantly



414 e MD RAID Acceleration

more compute intensive. This work, while pri-
marily beneficial to embedded systems with
hardware-offload engines, also has the potential
to enhance MD performance on SMP systems.

References

[NB1] Neil Brown, Re: Accelerating Linux
software raid, Electronic
Communication, September 2005,
http://marc.theaimsgroup.com/
?l=linux—-raidé&m=
112648052213893&w=2

[NB2] Neil Brown, Re: [RFC][PATCH 000 of
3] MD Acceleration and the ADMA
interface: Introduction, Electronic
Communication, February 2006
http://marc.theaimsgroup.com/
?l=linux-raid&m=
113988782117987&w=2

[LKD] Robert Love, Linux Kernel
Development, Second Edition, 2005

[LDD] Jonathan Corbet, Alessandro Rubini,
and Greg Kroah-Hartman, Linux Device
Drivers, 3rd Edition, 2005

[IOAT] Andrew Grover and Chistopher
Leech, Accelerating Network Receive
Processing: Intel I/0 Acceleration
Technology, Linux Symposium, 2005,
http://www.linuxsymposium.org/
2005/1inuxsymposium_procvl.pdf



Proceedings of the
Linux Symposium

Volume Two

July 19th—-22nd, 2006
Ottawa, Ontario
Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM

Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation

C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



