Automated Regression Hunting

PyReT and the Linux kernel

Aaron Bowen
Neumont University

abowen@student .neumont .edu

James M. Kenefick, Jr.
IBM

jkenefic@us.ibm.com

Jason Ruesch
Neumont University

jason@jasonruesch.com

Paul Fox
Neumont University

paul .mf@gmail.com

Ashton Romney
Neumont University

Ashton.Romney@hotmail.com

Jeremy Wilde
Neumont University

jwilde@student .neumont.edu

Justin Wilson
Neumont University

jwilson@student .neumont.edu

Abstract

Code regressions happen, it is almost a truism,
and the more complex the system, the more
often they will occur. Detecting which code
addition or patch created the regression, while
sometimes time-consuming, is at heart an iter-
ative process which lends itself to automation.
The core of this process is the same regardless
of the kind of software being written, whether
it is application programming or operating Sys-
tem programming.

The PyRet project (http://pyret.sf.net)
has automated this process in an object-
oriented fashion using Python. It includes an
implementation to test the Linux Kernel us-
ing the Linux Test Project (http://1ltp.sf.
net).

This paper will describe the process of regres-
sion hunting which lies at the heart of the PyRet
project. It will provide: a basic overview
of the PyReT architecture, the search mod-
els that PyReT currently utilizes, and methods
for extending the PyReT tool to other software
projects.

1 Introduction

The purpose of this paper is to describe the
process of automated regression identification.
It will focus primarily on automation of iden-
tification of patches which cause regressions
within the Linux kernel. It will describe the
implementation of automated regression detec-
tion by the PyReT project (http://pyret.



28 e Automated Regression Hunting

sf.net). It will cover searching of the regres-
sion space, hunting the regression with multi-
ple systems, and the communication solution
selected for managing multiple systems. It will
detail the specifics of hunt configuration within
PyReT; i.e., the mechanisms for managing the
kernel build and test phases of the regression
hunt. Finally, it will cover extension of the tool
to other non-kernel based testing and what still
needs to be done going forward with PyReT.

2 Regression Hunting

2.1 Overview

Software regressions are bugs existing in a spe-
cific version of software that are not present
in previous versions. Knowing which specific
update introduced a given bug can drastically
affect the amount of time needed to address
the issue. The regression hunting process can
be extremely time-consuming and error-prone.
This process is fairly standard regardless of the
development environment and lends itself very
well to automation. By automating the regres-
sion hunting process, developers are able to
spend their time fixing bugs rather than track-
ing down where they were introduced.

2.2 The Process

The first step in any regression hunt is to de-
termine the range of change-sets or dates that
will be searched. This step is crucial to the
process because the size of the initial range af-
fects the number of tests which must be per-
formed to determine which update introduced a
given regression. This range should start with
the first change-set where the bug is not present
and end with the first change-set where the bug

is known to exist. The smaller the range, the
faster the search will be.

The second step in the regression hunting pro-
cess is to specify the test case to be performed
which will determine if the regression is present
in the current build. This should be fairly
straightforward—as the regression manifested
somehow, the test case should just re-create the
activity that manifested the regression. Next,
the development environment is loaded with a
given change-set, the test case is checked and
passes, fails, or returns an error code based on
whether the regression was detected within the
current build.

The last step in the regression hunting process
is to analyze the results of the first two steps and
decide what needs to happen next in the hunt.
The system needs to determine if the hunt needs
to continue or if it has completed and a single
change-set or small selection of change-sets has
been identified as having introduced the regres-
sion.

2.3 Challenges

Automated regression detection, while fairly
straightforward, can present several challenges
such as intermittent regressions, branched de-
velopment environments, efficient hardware
utilization, and of course the inevitable un-
automatable test case.

Intermittent Regressions are bugs that inconsis-
tently return pass or fail values when checked
against your test case. In situations where in-
termittent regressions are encountered, it may
not be possible to find the exact change-set that
introduced a given regression. Hunting for in-
termittent regressions can still give developers
valuable information that can be used to narrow
the range of change-sets that they need to man-
ually check.



2006 Linux Symposium, Volume Two e 29

When searching for regressions in development
environments that use branching, determining
the starting range of change-sets to check be-
comes a bit more difficult. A given regres-
sion can exist on one branch and not on an-
other. A regression could have been corrected
on the main branch and then re-introduced from
a merged development branch. Regression-
hunting algorithms must be able to correctly
handle these situations.

One of the greatest benefits of automating re-
gression detection is the ability to take advan-
tage of multiple machines to test more than one
change-set at once. This has the potential to
drastically decrease the time needed to search
a large range of change-sets when a single test
takes a great deal of time to complete. This fea-
ture introduces challenges of its own. It is now
necessary to develop regression-hunting algo-
rithms that can take advantage of the multiple
hunter machines instead of using a simple bi-
nary search.

And finally there will always be test cases that
cannot be automated—Zkicking out a power ca-
ble, pulling a raid disk—and sometimes the ef-
fort and resources required to automate the test
case just aren’t worth it.

3 The PyReT Solution

3.1 Overview

As regression hunting is at its heart an iterative
process, PyReT was designed to implement this
process, rather than to solve a specific regres-
sion problem.

The solution was designed as two major pieces.
A Hunter, which executes a given test in the

search space, and a Master, which has respon-
sibility for managing search spaces. The ap-
plication flows of the Hunter and Master were
mapped out based on those areas of responsibil-
ity. Next the individual tasks of the application
flows were categorized and encapsulated into
objects in the form of Python classes. This will
allow specific implementations to customize
the process as needed, but allows the common
portions to be reused without change.

The modules used for a specific hunt are con-
figured in a search definition. The Master and
Hunter applications use the definition to estab-
lish the boundaries of their regression and de-
termine the appropriate application code and
test cases for the current regression under in-
vestigation. It is the responsibility for the end
user to provide the search definition for a hunt.

The Master module uses the search definition
to create the search space and from that test
jobs are created which are then executed by
Hunters, and the results reported back to the
Master module which uses this information to
further orchestrate the hunt.

All of this application interaction is managed
by the communication subsystem, which not
only owns the responsibility for facilitating ap-
plication communication but also owns the log-
ging mission. The communication subsystem is
also implemented as a set of modules to facili-
tate customization to specific environments.

3.2 Application Flow

There are three primary application work flows
used by PyRet:

e The Master control process, which is re-
sponsible for the overall management of
all the search spaces currently under anal-
isys.



30 e Automated Regression Hunting

e The Master search process, which owns a
single search space and is responsible for
identifying the patch which caused the re-
gression.

e And the Hunter work flow, which owns the
execution of a single instance of the re-
gression test against the patched applica-
tion under test.

The Master control process workflow starts by
loading the Master config and confirms the
availability of the communication subsystems.
Next the process kicks off an infinite loop re-
ferred to as the job thread. This loop basically
spins looking for new search definitions. When
a new definition is identified a Master search
process is initiated.

The Master search process begins by process-
ing the search space, identifying all patches
and patch set boundaries. Next it loads the
regression search module, which handles how
the search space is to be traversed. Jobs are
then created, executed (by the Hunter), evalu-
ated, and new jobs created until the regression
is identified or the search space exhausted.

The Hunter process spins on the communica-
tion subsystem until it finds a job it is desig-
nated to execute. Once a job has been identi-
fied, the Hunter will obtain and patch the ap-
plication. Next the application will be installed
and initiated on the Hunter system and the re-
gression test will then be executed against the
target application. Finally the results of the job
will be passed back to the Master search pro-
cess via the communication subsystem.

3.3 Current Searches

Once a set of change-sets has been decided
upon for testing, an efficient way to quickly test
the range of change-sets must be implemented

to ensure the efficiency of PyReT. The binary
search was originally chosen for its simplicity,
ease of initial design, and efficiency. Currently
there are two search modules included within
the PyReT framework, a single-hunter binary
search and a multi-hunter search.

After a change-set range has been determined
the patch that lies in the middle of the range
will be sent off as the first job for a hunter
to build and test. The direction to travel af-
ter the first job is based upon its results: pass,
fail, or error. If the patch has passed then it
is known that the regression, if any, lies some-
where between this patch and the ending patch
within the change-set range. If the patch has
failed then it is known that the regression lies
somewhere before this patch if the regression
is within the range of the change-sets being
tested. This process continues until we are left
with a pass patch jointly next to a fail patch,
and this fail patch is recorded as introducing the
regression.

In a perfect world a passed patch and a failed
patch would be exactly what one would want
in the entirety of their results. Unfortunately
we are not in a perfect world and must consider
the possibilities of unforeseen events, which is
the reason for the error result. If for some rea-
son a hunter is taken offline, crashes, exceeds
the time-limit set forth for the patch, etc., then
the job is neither pass or fail but is of type er-
ror. In this case the current patch is set as a
temporary boundary and the next patch tested
is taken as if the current one had passed. This
process continues on until a result is found, a
pass patch immediately next to a fail patch. If
a result is not found then sub-searches are cre-
ated, testing in-between each error until a result
is discovered or the entire patch has been tested
without a conclusive result.

The single hunter binary search relies on a
single hunter to perform all of the work re-
quired by a given range of change-sets. Since



2006 Linux Symposium, Volume Two e 31

there is only a single hunter being utilized then
only one patch can be tested at any given time
throughout the range of the change-set. Once a
result has been obtained the next patch is sent
out to the hunter and a result is waited upon,
and so on until the test has completed.

The multiple hunter search can be far more ef-
ficient than that of the single binary search,
where there is an extensive range of change-
sets. First, before sending out patches to be
tested, the number of available hunters is used
to determine how many patches will be tested
initially. Once this number is acquired patches
are sent out to available hunters to be tested;
these patches are evenly spaced throughout the
entire range of the change-set. This can po-
tentially find the regression within the change-
set exponentially faster than that of the single-
hunter binary search. Once this chunk of
patches has been tested the new boundaries
are set, the number of available hunters is ac-
quired, and the new patches are sent to available
hunters, spread evenly across the new range of
change-sets to be tested. This continues, like
above, until a regression has been discovered,
or an inconclusive result is determined.

3.4 Communication

PyReT relies on a shared files system (SFS) for
all communication between systems involved
in the hunting process. This allows the code
within the applications to be kept very simple
as compared to using a direct network connec-
tion. The directories that exist here fall into one
of three categories: search setup, communica-
tion, and logging.

The search setup directories are where search
space definitions are looked for and stored on
completion. This location is routinely scanned
by the Master to detect when a new one has
been created and it will then kick off the search

process previously described. This is also
where the source code and patch staging oc-
curs.

The communication directories are quite active.
Any time a Hunter is started it will create a
file in this area to notify the Master that it is
available. This file is also used to indicate a
Hunter’s current state by altering its extension.
The Hunter is also regularly touching these files
to let the Master know that they are still pro-
cessing. This area is also where a Hunter looks
to see if it has been assigned any jobs. This is
accomplished by the Master by creating a job
file and setting the extension to the name of the
Hunter that it is being assigned to. On comple-
tion of a job the hunter will change the exten-
sion to indicate the result. There is also a lo-
cation where all the completed jobs are moved
once all processing is completed.

The third category of usage for the SES is
where results are also stored. Each system re-
ports on what it is doing. These directories are
most useful while debugging a new implemen-
tation or gathering information about hunts that
were inconclusive.

3.5 Module Base Classes

In order for PyReT to effectively orchestrate the
activities of the disjointed module implemen-
tations it has certain expectations of how they
will behave and the kinds of tasks they are ex-
pected to carry out. The messages they must
respond to are defined in the project, the expec-
tations for behavior are outlined below.

The Transport module deals with acquiring
source trees and is Master specific as are the
next three modules. It is called only once when
a search is first started. During this invoca-
tion it should make sure that the copy of the
source tree that the master will be working with



32 e Automated Regression Hunting

is at least current enough to cover the range of
change-sets specified in the configuration.

Once the source code has been updated, the De-
compress module is called. If the source tree is
not in a compressed form this module can be
omitted or the DecompreNone version can be
used. If the source was transported in a tar ball
or some other compressed format, it would be
the responsibility of this module to extract the
individual files.

In order to make sense of the source tree the
Master relies on the MasterPatchSource mod-
ule. It will call this module’s SplitChange-
SetIDs which is expected to return a list of iden-
tifiers that can later be used to patch the source
to that revision or copy the correct version. It
is also expected that at the end of this process
the hunter will only need the change-set id to
patch the source it is working with. As an ex-
ample the Linux Kernel implementation creates
a patch file using this id as its name in this
method.

The RegressionSearch module is what deter-
mines which change-sets will be tested and in
which order. When it is created it is passed the
change-set list and is expected to retain which
tests were run and the results of each test. The
module is asked for a batch of indexes to be
tested, the Master will then issue a job for each
set. As each test is completed it will notify this
module, once they are all complete, if the mod-
ule has reported that the search is not complete
it will request the next set to test. Once the hunt
is finished it will request the results list from the
module.

The first of the Hunter-specific modules, Copy,
deals with copying the source from the shared
file system to the Hunter’s local file system. It
is a basic module expecting only to know where
it should copy the source from and where to
place it.

The implementation of the HunterPatchSource
module is very dependent on the behavior of
the MasterPatchSource module. This one is ex-
pected to apply the patch to the copied source to
bring it up to the revision that it is to test. This
module could be empty if the source files were
split up by revisions so that the Hunter could
just copy the correct version.

The Build module is one of the straightforward
pieces. Assuming all the previous steps have
worked, it is tasked with compiling the source
code in preparation for the test.

In order to set up the compiled source, the
Hunter will call the Install module. Here
any configuration of the system should occur.
This module is also tasked with undoing any
changes made to the system and will be noti-
fied to do this once the test is completed.

The Test module is called to exercise the code
under review. It is expected to return the result
of the test to the Hunter so that it can be com-
municated back to the Master.

3.6 Module Configuration

The PyReT application uses the concept of en-
capsulation, implemented as Python modules,
as a way of making it versatile. Each piece of
functionality that does something towards find-
ing the regression is placed into a module. The
modules are then loaded and used by both the
Master and Hunter applications.

This first section discusses how a module is de-
fined. There is a configuration file, referred to
as the search space file, which contains the def-
initions for the modules. Each module can con-
tain parameters. The developers of the module
decide what parameters the module accepts or
requires. They can then document how their
module is to be defined in the search space



file or, if they want, they can define a special
method in their module file that gives the caller
the parameters needed by their module.

The search-space file currently being used
by PyReT’s implementation of finding regres-
sions in the Linux kernel contains the follow-
ing modules: BinaryRS, MultiHunterRS, and
CompleteRS regression search modules; Trans-
portCogito transport module; Decompress-
None decompress module; LinuxKernelMas-
terPatchSource and LinuxKernelHunterPatch-
Source patchsource modules; LinuxKernel-
Copy copy module; LinuxKernelBuild build
module; LinuxKernellnstall install module;
and LinuxKernelTest test module. A module
is either required or optional. For instance, a
search module is required, or the application
would be useless. In contrast, the decompress
module is optional because the program being
tested may not need to be decompressed in any
way, as is the case with the Linux kernel im-
plementation. It does, however, make use of
the DecompressNone module in order to show-
case that there can be a decompress module, if
needed.

The modules to be used and the parameters they
will receive are specified in the search-space
file. Creating this file is a time-consuming pro-
cess when done from scratch. To write one, the
name of every module being used and what pa-
rameters each takes needs to be known. A sam-
ple file is provided, but it also requires consid-
erable knowledge of what modules exist in or-
der to adapt it. The search-space creation pro-
gram will dynamically read what modules are
available and prompt the user to choose which
ones to use. For each module being defined,
it will gather what parameters the module is
expecting from a global getParameters method
defined in the module file by the developer.
This makes it much easier to accurately spec-
ify a new search space.

2006 Linux Symposium, Volume Two e 33

4 The PyReT Exemplar
4.1 The Linux Kernel

PyReT could have been used to test other
projects; however, there are a number of char-
acteristics that make some projects easier to
work with. These key aspects would be an open
repository that can be manipulated via automa-
tion, and the availability of tests to run against
that source. We found these properties read-
ily available for the Linux kernel in the form
of GIT and the Linux Test Project. In this im-
plementation, Cogito is utilized to facilitate all
interactions with GIT.

The interaction with the source tree is driven by
the Master. It will use the search definition to
update or create a local copy of the source tree
each time a new search is started. It then pulls
the log for the specified date range and parses
to determine which change-sets were commit-
ted during that time. This list is used by the
regression searches to identify change-sets to
test. Within the patch source module, which
is also specific to Cogito, it uses the change-
set list to revert the working tree of the cloned
repository to the oldest revision in the list. It
then iterates through the list, creating a patch
file for each revision that might be tested and
saving it to the shared file system. At this
point in the process the Master has everything it
needs to run the complete search. It then issues
a job to a Hunter with the information of which
change-set it is to test. With the initial setup
it becomes a straightforward task of copying
the working tree and applying the appropriate
patch file from the shared file system and then
executing the tests.

4.2 Handling System Restarts

The Hunter software runs as a daemon to allow
it to execute at system startup and attempts to



34 e Automated Regression Hunting

register itself to do just that each time it starts.
To deal with the problem of losing state be-
tween restarts, it saves its working directory in
a fixed location to allow this to be reloaded. It
also stores information about which step in the
hunting process it was at so that it can pick up
where it left off. The hunter also manipulates
the boot configuration to make the newly built
kernel the one that will be loaded by default.
Upon completion of the tests it will revert this
configuration to its previous state.

4.3 Testing with the LTP

The idea of a regression is that something that
used to work, now for one reason or another, no
longer does. Most regressions normally seem
to be found by end users when the application,
OS, etc. explodes, taking some bit of important
work with it, but on occasion and depending on
the application a regression bucket may exist,
and in fact for the Linux kernel this is the case,
The Linux Test Project (LTP). The LTP consists
of over 2900 tests for exercising the Linux ker-
nel, and executes (depending on who you ask,
what you compile in the kernel, the phase of the
moon) about thirty to forty percent of the ker-
nel. This combined with the ability to execute a
single test case at a time made it a good exem-
plar to use for this project. It is, however, pretty
important to note that any test case which can
be automated can be used in place of the LTP.

Basically, once a test has been identified, create
a test module from the PyReT class Test, which
wraps the test. This module should do any prep
for the test (pull the test code if needed, path
setup, envrionment variables, whatever), exe-
cute the test, and return whether the test passed
or failed. This module will then need to be reg-
istered with the system, after which it will be
called as part of the regression search.

5 Extending PyReT

The modular design of PyReT makes it highly
customizable. This is accomplished by imple-
menting the base classes that are defined to
cover each of the identified steps in the process.
Included in PyReT’s documentation is a set of
HTML PyDocs describing these classes. With
some effort, a developer can adapt PyReT to
fulfill the needs of most projects.

It appears the most difficult part of this process
is the creation of the modules dealing with the
source code repository. The modules impacted
by this are Transport and MasterPatchSource.
The Transport module is a straightforward im-
plementation, but it is very specific to which
source control system in use. These modules
will be highly reusable, as simple parameters
of where to acquire updates to the source is all
that will differentiate them between different
applications. The MasterPatchSource module
is more involved. It is tasked with identifying
which change-sets exist in the date range to be
tested. It is also responsible for making avail-
able the oldest revision and patches from that
revision to each later revision to be tested.

It is expected that most of the other module im-
plementations will be comparatively easy. In
the case of the RegressionSearch module there
is no need to define a new one in order to
make use of PyReT, as the current implemen-
tations have no reliance on how the other mod-
ules function. The others will usually involve
interacting with stdin and stdout to start
and monitor each step of the process.

Any new modules are expected to be in the
same directory as the base they are inheriting
from. This will allow the Master to locate them
when they are referenced in a search space file.
Optionally a module can also define a global
method that defines the parameters it is looking
for. This will allow the search space definition



tool to prompt users for these parameters when
they select a module with those definitions.

6 What’s Next?

PyReT is still a young project and has a lot of
room for growth and improvement. Key fea-
tures for future development include a web in-
terface and advance search modules.

Web interface—Currently it is difficult to setup
a search-space with all of the necessary param-
eters to perform a regression hunt with the cor-
rect modules. A web interface for setting up
regression hunts and reviewing the results of
searches would allow users to easily select the
type of regression hunt to perform as well as
guiding them through parameter selection, en-
suring a properly configured hunt.

Advance search modules—Search modules
need to be developed which allow searching
for multiple regressions simultaneously. Future
search development should focus on new re-
gression search algorithms that will make much
better use of the distributed computing aspects
of the PyReT project.

2006 Linux Symposium, Volume Two e 35



36 e Automated Regression Hunting




Proceedings of the
Linux Symposium

Volume Two

July 19th—-22nd, 2006
Ottawa, Ontario
Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM

Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation

C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



