
Dynamic Device Handling on the Modern Desktop

David Zeuthen
Red Hat, Inc.

davidz@redhat.com

Kay Sievers
Novell, Inc.

kay.sievers@suse.de

Abstract

Today, where almost all devices can be added
and removed from a running system, the
whole system environment needs to dynami-
cally adopt to such changes. It creates the need
to move from static device specific configura-
tions given at install time to policy based run-
time device configuration and change propaga-
tion troughout the whole system including cur-
rently running system services and end user ap-
plications.

Architectural Overview

The Linux kernel 2.6 exports almost all inter-
esting internal device state in a special filesys-
tem and sends out events for every change.
Udev and HAL as system-wide services are
picking up these device events, possibly re-
quest more information from the device itself
or merge available information stored on the
system. A global list of devices, including
the whole device context is maintained and
made available to every possible consumer. All
changes to that list are propagated over a sim-
ple inter-process-communication (IPC) inter-
face. Applications can subscribe to a specific
class of changes and adapt itself according to
that. Based on the notification the application

has received, it can reflect that change accord-
ingly or in response request a specific action to
be taken for a specific device.

The Path of an Event

The core of the Linux kernel keeps the control
over the interfaces where devices can be con-
nected and disconnected at runtime. The ker-
nel drivers create or destroy internal device in-
stances, to handle and represent devices. These
device instances are exported through the spe-
cial filesystem sysfs. Most of the directories in
sysfs represent a device and the files in the di-
rectories are properties or methods to request a
specific action of the device:

/sys/class/block/sda
|-- dev
|-- device -> ../../devices/pci0000:00/\

0000:00:1f.2/host0/target0:0:0/0:0:0:0
...
| |-- read_ahead_kb
| ‘-- scheduler
|-- range
|-- removable
|-- sda1
| |-- dev
| |-- size
| |-- start
| |-- stat
| ‘-- uevent
‘-- uevent

The hierachy of the device directories repre-
sent the dependency of the devices given by

342 • Dynamic Device Handling on the Modern Desktop

the hardware itself and the logical stacking con-
structed by the kernel driver core. Every de-
vice is identified by its filesystem path, called
the devpath. Everytime a device is added or
removed an uevent is sent out over a kernel
netlink socket:

add@/class/input/devices/input5
ACTION=add
DEVPATH=/class/input/devices/input5
SUBSYSTEM=input
SEQNUM=1166
...

A raw message send over the socket looks like
this:

recv(3,"add@/class/input/devices/input5\0
ACTION=add\0
DEVPATH=/class/input/devices/input5\0
SUBSYSTEM=input\0SEQNUM=1166\0
CLASS=/class/input/devices\0
PHYSDEVPATH=/devices/pci0000:00/0000:00:1d.1/\

usb2/2-2/2-2:1.0\0
PHYSDEVBUS=usb\0PHYSDEVDRIVER=usbhid\0
PRODUCT=3/46d/c03e/2000\0
NAME=\"Logitech USB-PS/2 Optical Mouse\"\0
PHYS=\"usb-0000:00:1d.1-2/input0\"\0
UNIQ=\"\"\0EV=7\0KEY=70000 0 0 0 0 0 0 0 0\0
REL=103\0", 2048, 0) = 383

An event sequence for a USB storage device
looks like this:

add@/devices/pci0000:00/0000:00:1d.7/usb5/5-3
add@/devices/pci0000:00/0000:00:1d.7/\

usb5/5-3/5-3:1.0
add@/class/scsi_host/host13
add@/class/usb_device/usbdev5.15
add@/block/sdb
add@/class/scsi_generic/sg1
add@/class/scsi_device/13:0:0:0

remove@/class/scsi_generic/sg1
remove@/class/scsi_device/12:0:0:0
remove@/block/sdb
remove@/class/scsi_host/host12
remove@/devices/pci0000:00/0000:00:1d.7/\

usb5/5-3/5-3:1.0
remove@/class/usb_device/usbdev5.14
remove@/devices/pci0000:00/0000:00:1d.7/\

usb5/5-3

The udev [1] daemon listens on the socket and
matches the given event properties with a set of
simple rules:

KERNEL=="mice", NAME="input/$kernel_name"
ACTION=="add", MODALIAS=="?*", \
RUN+="/sbin/modprobe $modalias"

SUBSYSTEM=="scsi_device", ACTION=="add", \
RUN+="/sbin/modprobe sg"

KERNEL="sda[0-9]", \
IMPORT{program}="/sbin/vol_id --export $tempnode"

ENV{ID_FS_UUID}=="?*", \
SYMLINK+="disk/by-uuid/$env{ID_FS_UUID}"

RUN+="socket:/org/freedesktop/hal/udev_event"

Udev rules can specify the name of the de-
vice node to be created, request programs to
be executed to import additional data into the
event environment, or run external programs to
setup or initialize a device, or request a match-
ing module to be loaded into the kernel. Rules
can also pass the whole event udev has received
from the kernel, including possibly added data
collected from the device or system configu-
ration by executing a program or passing the
event over a domain socket.

A simple database with persistent device in-
formation is maintained by udev and can
be queried on demand by any program, but
udev does not watch any device state besides
adding or removal, and does not get notified
about things like battery state changes, media
changes in optical drives or card readers. The
udev infrastructure is limited to very short liv-
ing event handling to provide the initial setup
of a device and to reflect the kernels internal
device state to userspace.

All advanced subsystem specific knowledge
and device monitoring requires a stateful sys-
tem service that has specific knowlege about
certain classes of hardware, and has access to
information that can uniquely identify a device.

Abstraction and Meaningful Event
Context

In order to provide applications with more in-
formation than what the kernel or udev can pro-
vide, all hardware information is kept in the

2006 Linux Symposium, Volume Two • 343

stateful HAL daemon. Upon startup, the dae-
mon scans sysfs and builds a list of device ob-
jects. It connects to the udev daemon to get
notified about further device state changes and
updates its internal device representation from
that on accordingly. Each device object is iden-
tified by a Unique Device Identifier (UDI) and
each has a number of properties which simply
are key/value pairs:

udi =’/org/freedesktop/Hal/devices/volume_uuid\
_c66f3d19_2e10_44c0_9bd6_a8fefc476f7d’

volume.partition.msdos_part_table_type = 130
info.product = ’SWAP-hda2’
volume.size = 1077511680
volume.num_blocks = 2104515
volume.block_size = 512
volume.partition.number = 2
info.capabilities = {’volume’, ’block’}
info.category = ’volume’
volume.is_partition = true
volume.is_disc = false
volume.is_mounted_read_only = false
volume.is_mounted = false
volume.mount_point = ’’
volume.label = ’SWAP-hda2’
volume.uuid = ’c66f3d19-2e10-44c0-\

9bd6-a8fefc476f7d’
volume.fsversion = ’2’
volume.fsusage = ’other’
volume.fstype = ’swap’
storage.model = ’’
block.storage_device = ’/org/freedesktop/Hal/\

devices/storage_serial_NP0JT48299J8’
block.is_volume = true
block.minor = 2
block.major = 3
block.device = ’/dev/hda2’

These objects are exported via the D-BUS
[2] system message bus and each object
implements the org.freedesktop.Hal.
Device interface with methods that applica-
tions can use among other things to query prop-
erties. On Linux, there is almost a one to one
mapping between directories in sysfs and the
device objects. When new devices are plugged
in or out, device objects will appear and disap-
pear and applications listening on the message
bus can be notified. Depending on the device
object, properties may change values over time,
which also triggers notifications to subscribed
applications.

Most of the properties of HAL device objects
are derived from the contents of sysfs files,

some are read from the actual hardware us-
ing ioctl’s, some are merged from device in-
formation files and some are related to the ac-
tual device configuration. A device object has
one or more capabilities and for each capa-
bility a number of properties must be present.
Properties are name spaced; for example the
capability block requires properties prefixed
with block. Some properties are optional.
All properties are strongly typed (integer, dou-
ble, boolean, string, and list of strings are sup-
ported) and are defined in the HAL specifica-
tion [3].

Once a device object is constructed it is
matched by one or more device information
files to merge additional properties. These files
are simple XML files that define rules. For ex-
ample:

<match key="storage.model"
contains="Storage-CFC">

<merge key="storage.drive_type"
type="string">compact_flash</merge>

</match>

will match all device objects that contains
the string Storage-CFC in the storage.
model property and set the drive type to be a
Compact Flash reader, while

<!-- Sony Ericsson Handys with Memory Stick (Duo) -->
<match key="@storage.physical_device:usb.vendor_id"
int="0xfce">
<!-- K750i -->
<match key="@storage.physical_device:usb.product_id"
int="0xd016">
<merge key="storage.drive_type"
type="string">memory_stick</merge>

</match>
</match>

matches a specific USB device and sets the
drive to be of type memory stick. Since
the HAL specification [3] precisely defines the
properties (including the range of values they
can assume), an application can rely on this
property to e.g. display the right icon for such
drives that reads Compact Flash, MemoryStick
and so forth.

To provide up to date information including
when media is removed, HAL polls device

344 • Dynamic Device Handling on the Modern Desktop

files. This is a necessary since e.g. the Linux
kernel (rightly) refuses to do so, since it is not
always necessary.

For each device object, HAL provides a suffi-
cient number of properties for consumer appli-
cations to make intelligent choices about how
to react when new devices are added or re-
moved or when properties change. An example
is the way HAL abstracts batteries:

udi = ’/org/freedesktop/Hal/devices/acpi_BAT0’
battery.charge_level.percentage = 99
battery.charge_level.rate = 0
battery.charge_level.last_full = 20020
battery.charge_level.current = 19910
battery.voltage.current = 12429
battery.reporting.rate = 0 (0x0)
battery.reporting.current = 19910
battery.charge_level.capacity_state = ’ok’
battery.rechargeable.is_discharging = false
battery.rechargeable.is_charging = false
battery.is_rechargeable = true
battery.alarm.unit = ’mWh’
battery.alarm.design = 1002
battery.charge_level.unit = ’mWh’
battery.charge_level.granularity_2 = 1
battery.charge_level.granularity_1 = 1
battery.charge_level.low = 200
battery.charge_level.warning = 1002
battery.charge_level.design = 47520
battery.voltage.design = 10800
battery.voltage.unit = ’mV’
battery.technology = ’LION’
battery.serial = ’21805’
battery.model = ’IBM-08K8193’
battery.vendor = ’SANYO’
battery.present = true
battery.type = ’primary’

The battery capability is represented in the
way that the information about batteries is in-
dependent of whether the information is col-
lected via the ACPI or PMU power manage-
ment subsystems. HAL also represent some
uninterruptible power suppplies (UPS) devices
connected via USB in exactly the same way.
Also some wireless keyboards and mice hard-
ware will have capability battery since HAL
is able to report how much battery power is left.

Another kind of asynchronous information that
HAL reports are button events. HAL defines
the capability button:

udi = ’/org/freedesktop/Hal/devices/acpi_PWRF’

button.has_state = false
button.type = ’power’

udi = ’/org/freedesktop/Hal/devices/acpi_LID’
button.has_state = true
button.state.value = true
button.type = ’lid’

and the above snippet shows the representa-
tion of the power button and the lid button.
Since a button can be either pressed or remain
pressed down, the abstraction has the notion of
state. HAL creates device objects of capability
button from several sources including ACPI
(for power, sleep, lid buttons etc.), from con-
nected keyboards (to catch auxillary buttons in-
cluding sleep and eject buttons) and so forth.
When HAL detects that a button is pressed, an
asynchronous signal is emitted on the system
message bus and applications can react accord-
ingly. In the HAL universe this is known as
a DeviceCondition and it carries some detail
too.1

HAL supports the following capabilities:

• volume: Volumes

• storage: Drives

• net: Networking interfaces

• input: Input devices

• printer: Printers

• portable_audio_player: Portable
music players (mainly flash drives)

• alsa: ALSA audio devices

• oss: OSS audio devices
1Notably, HAL also emits device conditions on HAL

device objects representing optical drives when the eject
button is pressed. This enables applications in the desk-
top to unmount and eject the disc and solves the well-
known problem of nothing happening when the novice
user presses eject on the drive. Sadly, some broken hard-
ware does not supports this properly.

2006 Linux Symposium, Volume Two • 345

• laptop_panel: laptop panels

• ac_adaptor: AC adaptor

• battery: batteries

• button: special buttons on the system

• camera: for digital cameras (supported
by e.g. gphoto2)

One example of a consumer application that re-
lies solely on HAL for hardware information
is the gnome-power-manager application
[4]. In a nutshell, gnome-power-manager
is the one-stop solution for system-wide power
management on the GNOME desktop and it
rivals and exceeds what properitary operating
systems offers the end users. It includes neat
things like user interface dialogs for configur-
ing when to put the computer and display to
sleep; it support UPS’es; display brightness,
graphs of the discharge rate and so forth. In
many ways it is a great showcase of how one
can intelligent use the wealth of information
stored in HAL.

Handling Events from the Con-
sumers View

HAL was designed and architected primarily
with desktop applications in mind. One of the
goals was to make it easier to write desktop
software to automate configuration of hardware
with little or no user intervention. Another de-
sign goal was that end users should never ever
have to edit configuration in /etc since end
users are not expected to understand the file
(they are all different formats) and they will not
necessarily have privileges to do so.

Since UNIX-like operating systems are multi-
user, it is necessary to store and read the device

configuration settings from within the users
session as users may configure hardware in dif-
ferent ways. On the GNOME desktop this
means reading settings from the GNOME con-
figuration system gconf [5].

Historically, software for configuring hardware
wasn’t designed with the desktop in mind. One
reason for this is that configuring hardware re-
quires super user privileges and until D-BUS
emerged there was no good way of letting un-
privileged applications perform privileged op-
erations.

With HAL this has changed: each device object
in HAL may export one or more capability spe-
cific interfaces to be invoked by software run-
ning in the user session. That way global de-
vice state change events travel from the system
level through the user session, where the indi-
vidual user policy is stored, back to the system
to setup devices according to the users given
preference.

For example device objects of capability vol-
ume exports the org.freedesktop.Hal.
Device.Volume interface with the follow-
ing methods:

• Mount(): for mounting a volume into
the filesystem

• Unmount(): for unmounting a volume

• Eject(): for ejecting the volume

Each method may throw one or more ex-
pections, for example the Mount() method
may throw the following exceptions (omitting
prefix org.freedesktop.Hal.Device.
Volume):

• UnknownError: Some unknown error
occured

346 • Dynamic Device Handling on the Modern Desktop

• PermissionDenied: The user is not
allowed to mount the volume

• AlreadyMounted: The volume is al-
ready mounted

• InvalidMountOption: Attempted to
mount with an invalid mount option

• UnknownFilesystemType: The file
system is not supported on the system
(missing file system driver for instance)

• InvalidMountpoint: The mount
point specific is not allowed

• MountPointNotAvailable: The ap-
plication requested a mount point that is
not available

• org.freedesktop.Hal.Device.
PermissionDeniedByPolicy: The
caller lacked a PolicyKit privilege to
carry out this operation. The name of the
privilege is returned in the detail of the
exception.

This format is a lot more predictable and er-
ror handling friendly than the traditional way
of parsing the output of e.g. mount(1). Other
methods have well defined exceptions too.

At the time of writing, the following inter-
faces are supported by HAL (the list will have
the org.freedesktop.Hal.Device pre-
fix omitted):

• Volume: For mounting, unmounting,
ejecting volumes / filesystems

• Volume.Crypto: For setting up LUKS
volumes

• SystemPowerManagement: For sus-
pend, hibernate, poweroff, reboot

• LaptopPanel: For display bright-
ness on laptops; currently supports mod-
els from Toshiba, Asus, Panasonic,
IBM/Lenovo, Sony, HP 2

Since HAL uses D-BUS for IPC any unpriv-
ileged application may invoke device object
methods and this needs to be limited a no to
become a security issue. D-BUS by itself has
a notion of security policy but this is, by defi-
nition, quite limited since D-BUS knows only
little of the semantics of the object a given
method is invoked on. To remedy this, HAL
depends on PolicyKit [10] to check if the caller
have privileges to invoke a given method on a
given device object. This enables fine grained
control that allows only some users to mount
e.g. removable media while denying mounting
of fixed hard disks. For more information see
the PolicyKit documentation.

Current State and Future Plans

The combination of device properties, device
conditions and capability specific methods pro-
vides an extensible and stable interface. At
time of writing, HAL is already being ported
to other operating system kernels and envi-
ronments such as OpenSolaris [6]. All main-
stream Linux distributions today ship udev and
HAL and several desktop projects including
GNOME (through Project Utopia [8]) and KDE
(through Solid [9]) have HAL as a blessed 3 ex-
ternal dependency.

The task of “Making Hardware Just Work” is
greater than the sum of just an OS kernel,

2This all relies on laptop specific ACPI modules as
the kernel / X.org sadly lacks a standardized interface for
this

3but optional since desktops normally supports all
UNIX-like operating systems

2006 Linux Symposium, Volume Two • 347

drivers, udev, HAL, and the desktop environ-
ments; it requires integration and cooperation
between developers of all projects.

One of the driving motivations for introducing
HAL as a new layer between higher level soft-
ware and the system device enumeration and
discovery was to centralize the needed knowl-
edge about specific device subsystems at a sin-
gle location and provide a unified interface to
that information. As an effect of this effort,
a lot of higher level software ripped out its
own device discovery and monitoring code and
moved it into HAL. While at one side it is ex-
actly what was intended, on the other side it in-
creases the complexity in HAL and creates the
need to get people involved with very specific
subsystem knowledge at the low system level.

With the wide-spread use of HAL, which is
the first generic system-wide device monitor-
ing service, a lot of bugs in the Linux kernel
were dicovered, cause likely no other software
ever used the kernel interfaces that way or that
extensively. A lot of these issues got fixed over
time, but there is still a lot of improvement on
the low-level side neccessary, to offer applica-
tion developers a painless way to interact with
the system.

HAL will continue to try to unify the view
of the low-level interfaces to the higher-level
applications. Its goal is to take over tasks
that would require special defined policy in the
kernel, to replace device and system specific
knowledge from applications, and to replace
or integrate current stand-alone system services
into a unified interface for meaningful device
information and classification to applications.
Specific methods on device objects offered to
applications will fully integrate the user ses-
sion with the user owned preferences into the
system-wide device handling.

Acknowledgements

Havoc Pennington’s paper “Making Hardware
Just Work” [7] kicked off the HAL project and
it would never be a reality without help and
support from Greg Kroah-Hartmann, Robert
Love, Joe Shaw, Sjoerd Simons, the D-BUS
developers, Red Hat, Novell, and many other
people that thought about and worked closely
toghether on the multiple layers of this software
stack. We do not want to thank all the people
that do nothing but complain about specific de-
tails they do not like, or complain about the fact
that we need to change historical system behav-
ior to be able to satisfy todays requirements, but
at the same time use this software but never get
their hands dirty or help moving forward and
fixing all the problems we are facing.

References

[1] The Linux low-level Device Manager
http://www.kernel.org/pub/
linux/utils/kernel/hotplug/
udev.html

[2] D-BUS is a message bus system, a
simple way for applications to talk to one
another.
http://www.freedesktop.org/
wiki/Software/dbus

[3] David Zeuthen, et al. HAL specification
http://webcvs.freedesktop.
org/*checkout*/hal/hal/doc/
spec/hal-spec.html

[4] Richard Hughes. GNOME Power
Manager http:
//www.gnome.org/projects/
gnome-power-manager/

[5] Havoc Pennington, et al. GConf
configuration system http://www.
gnome.org/projects/gconf/

348 • Dynamic Device Handling on the Modern Desktop

[6] Artem Kachitchkine, et al. Tamarack:
Removable Media Enhancements in
Solaris http://opensolaris.
org/os/project/tamarack/

[7] Havoc Pennington. Making Hardware
Just Work http:
//ometer.com/hardware.html

[8] Project Utopia Mailing List http:
//mail.gnome.org/mailman/
listinfo/utopia-list

[9] Solid, The KDE Hardware Library
http://solid.kde.org/

[10] David Zeuthen, et al. PolicyKit
specification.
http://webcvs.freedesktop.org/

checkout/hal/PolicyKit/doc/

spec/polkit-spec.html

Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

