
OSTRA: Experiments With on-the-fly Source Patching

Arnaldo Carvalho de Melo
Mandriva Conectiva S.A.
acme@mandriva.com

acme@ghostprotocols.net

Abstract

OSTRA is an experiment on on-the-fly source
patching, where codebases like the Linux ker-
nel are “compiled” with occ, the OSTRA com-
piler, that inserts code to collect trace infor-
mation to be post processed using tools avail-
able to generate fancy HTML and CSS2 call-
graphs that show some profiling information,
tables showing where specific data structure
fields changed, graphs of all the observed in-
ternal state, etc.

1 Introduction

This paper talks about experiments in source
patching, where tools are used to “compile”
programs written in the C language, modify-
ing the source code according to some criteria
specified by the programmer.

Two experiments will be discussed, with tools
developed by the author presented, shedding
some light on the possibilities of source patch-
ing.

Ideas discussed with some fellow developers
but not yet tried will also be presented, with
the intent of—hopefully—having them finally
tested in practice by interested readers.

2 Sparse

Sparse was (ab)used in the experiments de-
scribed in this paper, both as a simple tokenizer
in some tools and using some of its more ad-
vanced “semantic parsing” capabilities in other
tools.

More information on sparse[1] can be obtained
in its on-line source repository.

3 Experiment 1: initstr

I first got interested in source patching when
trying to shrink the Linux kernel binary image
by marking strings in initialization functions as
__initdata, so that they would be put into
the .init.data ELF section.

This involved the repetitive process of trans-
forming code like:

int __init feature_init(void)

{
if (alloc fails)

panic("feature: not enough

memory!\n");

}

Into:



140 • OSTRA: Experiments With on-the-fly Source Patching

static char panic_msg[] __initdata

=
"feature: not enough

memory!\n";

int __init feature_init(void)
{

if (alloc fails)
panic(panic_msg);

}

So I thought about doing this automatically, us-
ing some “pre-compiler,” a tool to be used be-
fore the real compiler, that would modify the
code for functions marked __init, inserting
code that would mark the strings in arguments
to functions as __initdata.

The initstr[2] tool was the result of this experi-
ment, that to be really usable would require fur-
ther work as there are cases where strings can
not be blindly marked __initdata as they
are referenced in kernel data structures, such as
in the kmem_cache_create function, that
would have to be modified to make a string du-
plicate of the received slab cache name, and
also because Linus at the time thought sparse
was not robust enough to be used in the process
of building a production kernel image, perhaps
this has changed and I encourage interested per-
sons to try again as the tool was left available in
my kernel.org site.

4 Experiment 2: Tracing

The initstr tool idea was later useful when the
author was working on the his DCCP paper for
OLS 2005[3], where, to illustrate refactorings
done on the networking core to share TCP code
with DCCP callgraphs were in demand.

To collect the information needed for such call-
graphs the idea was to write tools that would

find the functions of interest and insert code at
the start and at the end of these functions, that
would record in a ring buffer these events.

The criteria devised to identify the functions of
interest were: functions that are “methods” of
some “class”, i.e. functions that receive as one
of their parameters a pointer to some specified
structure, for instance struct sock.

As the tool would have to look at each of the
parameters of each of the parsed functions to
see if they were a pointer of the specified class,
another desired feature was added: to specify
members of this class to be collected at entry
and/or exit of the methods, so as to look at the
internal state of the objects being traced at each
trace point.

The following sections will talk about the tools
written to achieve such goals.

4.1 ostra-grep

The first tool written was called ostra-grep,
that, as suggested by its name, “greps” the code
being compiled for functions that are methods
of the specified class.

It was used as a replacement to sparse’s
“checker” tool, using the Linux kernel Make-
file CHECKER parameter.

It just creates files with the name as the source
file parsed plus a “.ostra” suffix, where each of
the methods found would be recorded together
with the names of the parameters that are of the
class specified.

This mode of operation is interesting as it
makes ostra-grep useful for other purposes,
such as using another tool, ostra-kprobes, that
uses a different approach for collecting the call-
graph trace points, namely creating a kprobes
module that hooks all the methods found.



2006 Linux Symposium, Volume Two • 141

4.2 ostra-patch

After the ostra-grep discovery pass another
tool, ostra-patch, is used as a replacement for
gcc, that looks if the file being compiled has
methods to hook, short circuiting to gcc if not.

If the file has methods to hook ostra-patch will
use sparse in its most basic tokenizer form, just
to get to the methods found by ostra-grep and
insert code at the start of the function, call-
ing a trace entry collector function, ostra_
entry_hook(), passing the pointer to the
class in its parameter list and a identifiers for
the source file and function.

It then looks for all the “exit points”, i.e. all
the return statements and the implicit one in
void functions and inserts calls to ostra_
exit_hook(), passing the same information
passed to ostra_entry_hook() plus the
“exit point” identifier, i.e. a sequential number
telling which of the return statements was used
in this specific function call, providing further
useful information for the callgraph generator
tool, ostra-cg.

Other criteria for specifying where to install
trace points that can be implemented in the fu-
ture is for operator overloading, that is to in-
sert trace points when members of the class are
being changed or plain referenced, when calls
to something like ostra_operator_foo_
hook() would be inserted.

The hook functions are defined in a separate file
that has to be linked in.

5 Future Directions

Write it!

References

[1] http://www.kernel.org/git/

?p=devel/sparse/sparse.git

[2] http://www.kernel.org/

pub/linux/kernel/people/acme/

sparse/initstr.c

[3] Arnaldo Carvalho de Melo, 2005.
“DCCP on Linux”, Ottawa Linux
Symposium



142 • OSTRA: Experiments With on-the-fly Source Patching



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


