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Abstract

This past year has seen significant increases
in RCU’s realtime capabilities, particularly the
ability to preempt RCU read-side critical sec-
tions. There have even been some cases where
use of RCU improved realtime latency (and per-
formance and scalability as well), in contrast
to earlier implementations, which seemed only
to get in the way of realtime response. That
said, there is still considerable room for im-
provement, including

1. lower-overhead rcu_read_lock() and
rcu_read_unlock() primitives,

2. more scalable grace-period detection,

3. better balance of throughput and latency
for RCU callback invocation,

4. lower per-structure memory overhead and

5. priority boosting of RCU read-side critical
sections.

This last item is needed to prevent low-priority
tasks from blocking grace periods, resulting in
out-of-memory events, due to being preempted

for too long while in an RCU read-side critical
section.

This paper describes ongoing work to address
these five issues, including some interesting
failures in addition to a number of unexpected
successes. The ultimate goal of providing
a single RCU implementation that covers all
workloads is tantalizingly close, but is not yet
within our grasp. It is safe to say that the
very wide variety of workloads supported by
Linux

TM
provides substantial challenges to the

design and implementation of synchronization
primitives like RCU!

1 Introduction

RCU is a synchronization mechanism that pro-
vides extremely low-overhead read-side access
to shared data structures: in the theoretical best
case (which is actually realized in non-realtime
server workloads), the read-side RCU primi-
tives generate no code whatsoever. Writers split
their updates into “removal” and “reclamation”
phases, where the “removal” phase typically re-
moves an element from a globally accessible
list, and the “reclamation” phase typically frees
the element once it is known that all readers
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have dropped any references to the previously
removed element. Readers do not block and
are not blocked by writers, but writers must use
some mutual exclusion mechanism to coordi-
nate concurrent updates. RCU does not care
what mechanism the writers use.

Readers use the rcu_read_lock() and rcu_
read_unlock() primitives to mark RCU
read-side critical sections, and writers use
synchronize_rcu() (or its continuation
form, call_rcu()) to wait for a “grace pe-
riod” to elapse, where all RCU read-side ref-
erences obtained before the beginning of a
given grace period are guaranteed to have been
dropped by the end of that grace period. There
are a number of other RCU API members,
which are discussed at length elsewhere [4, 7],
but which are not critical to this paper.

A realtime RCU implementation in an OS ker-
nel must provide the following properties [10]:

1. Deferred destruction. No data element
may be destroyed (for example, freed)
while an RCU read-side critical section is
referencing it.

2. Reliable. The implementation must not be
prone to gratuitous failure.

3. Callable from IRQ (interrupt-handler)
context.

4. Preemptible RCU read-side critical sec-
tions.

5. Small memory footprint. Many real-
time systems are configured with modest
amounts of memory, so it is highly desir-
able to limit memory overhead, including
the number of outstanding RCU callbacks.

6. Independent of memory blocks. The im-
plementation should not make assump-
tions about the size and extent of the

data elements being protected by RCU,
since such assumptions constrain memory
allocation design, possibly imposing in-
creased complexity.

7. Synchronization-free read side. RCU
read-side critical sections should avoid
cache misses and expensive operations,
such as atomic instructions, memory bar-
riers, and interrupt disabling.

8. Freely nestable read-side critical sections.

9. Unconditional read-to-write upgrade.
RCU permits a read-side critical sec-
tion to freely acquire the corresponding
write-side lock—if two CPUs are both
in an RCU read-side critical section, and
if they both attempt to acquire the same
lock, they must acquire the lock in turn,
with no possibility of failure or deadlock,
and without needing to exit their RCU
read-side critical sections.

10. Compatible API. A realtime RCU imple-
mentation should have an API compatible
with that of “classic RCU.”

Table 1 summarizes the state of the art upon
which this paper builds, showing how well each
implementation meets the realtime-RCU crit-
era. In the table, “n” indicates a minor prob-
lem, “N” indicates a major problem, “X” in-
dicates an absolute show-stopper problem, and
“?” indicates a possible problem depending on
details of the implementation [10]. As can be
seen from the table, none of these pre-existing
RCU implementations meets all of the criteria.
The “Counters w/ Flipping” approach comes
closest, having only minor problems with prop-
erty 7. This paper looks at ways of improving
this approach in order to alleviate these prob-
lems, with the long-term goal of enabling a sin-
gle RCU implementation to serve the full range
of Linux workloads. This paper also focusses
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Classic RCU [17] N N
Preemptible RCU [11, 16] X
Jim Houston Patch [3] N N
Reader-Writer Locking N N N n
Hazard Pointers [12] ? ? n N ?
Lock-Based Deferred Free [8, 9] ? N
Read-Side GP Suppression [15] N n
Counters w/ Flipping [1, 10] n

Table 1: Realtime RCU State of the Art

on property 5 for small-memory embedded ma-
chines.

The remainder of this paper is organized by
the topics listed in the abstract, with Sec-
tion 2 focusing on reducing RCU read-side
overhead, Section 3 covering improvements to
grace-period detection scalability and perfor-
mance, Section 4 reviewing recent work on bal-
ancing callback throughput and latency, Sec-
tion 5 discussing support of systems with ex-
tremely small memories (by 2006 standards,
anyway), and Section 6 previewing work to
prevent indefinite preemption from resulting in
indefinite-duration grace periods. Finally, Sec-
tion 7 presents summary and conclusions.

2 Reduced-Overhead Read Side

The first attempts to produce a realtime-
friendly implementation of RCU had serious
drawbacks. Sarma and McKenney addressed
excessive realtime latencies imposed by long

sequences of RCU callbacks [16], but this im-
plementation did nothing to alleviate laten-
cies that could be induced by long RCU read-
side critical sections, which ran with preemp-
tion disabled. At the time, all known pre-
emptible RCU-like implementations were sub-
ject to indefinite-duration grace periods, which
could in turn result in system hangs due to
memory exhaustion.

In early 2005, McKenney described a lock-
based approach [9] that allowed RCU read-
side critical sections to run with preemption en-
abled, thus permitting good process-scheduling
latencies in face of long RCU read-side criti-
cal sections. However, this implementation al-
lowed realtime latencies to “bleed” from one
RCU read-side critical to another, due to its
lock-based grace-period-detection mechanism.
Subsequent discussions on the Linux-kernel
mailing list suggested that a counter-based ap-
proach might avoid this problem [10].

The following sections review this counter-
based implementation and subsequent im-
provements.

2.1 Simple Counter-Based Implementation

Figure 1 gives a schematic depicting the opera-
tion of the simple counter-based algorithm. The
basic idea is to maintain per-CPU arrays, with
each array containing a pair of counters [2].
At any given time, one of the pair will be
the “current” counter, and the other the “last”
counter. Oversimplifying somewhat for clarity,
each invocation of rcu_read_lock() on a
given CPU atomically1 increments that CPU’s
“current” counter, and each invocation of rcu_
read_unlock() atomically decrements what-
ever counter the corresponding rcu_read_

lock() incremented. Whenever the end of a
1Sections 2.2, 2.3, and 2.4 describe various schemes

to eliminate atomic instructions and memory barriers.
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Figure 1: Simple Data Flow

grace period is detected, the roles of the “cur-
rent” and “last” counters are swapped. This
means that the “last” counters will now be
atomically decremented, but (almost) never in-
cremented, so that they will eventually all reach
zero. Once they have all reached zero, we have
detected the end of another grace period, and
can then swap the roles of the counters once
more in order to detect the end of the next grace
period.

The actual sequence of events is a bit more in-
volved. The code for the rcu_read_lock()

primitive is shown in Figure 2.1. Lines 7
and 22 suppress and restore interrupts, prevent-
ing destructive races between an interrupted
rcu_read_lock() and a second rcu_read_

lock() invoked by the interrupt handler. For
example, if an interrupt were allowed to occur
just after line 8 of the first rcu_read_lock(),
the interrupt handler’s invocation would incor-
rectly believe that it was completely nested in
the interrupted RCU read-side critical section,
and thus that it was already protected. This sit-
uation could result in premature grace-period

1 void rcu_read_lock(void)
2 {
3 int f;
4 unsigned long oldirq;
5 struct task_struct *t = current;
6
7 raw_local_irq_save(oldirq);
8 if (t->rcu_read_lock_nesting++ == 0) {
9 f = rcu_ctrlblk.completed & 0x1;

10 smp_read_barrier_depends();
11 t->rcu_flipctr1 =
12 &(__get_cpu_var(rcu_flipctr)[f]);
13 atomic_inc(t->rcu_flipctr1);
14 smp_mb__after_atomic_inc();
15 if (f != (rcu_ctrlblk.completed & 1)) {
16 t->rcu_flipctr2 =
17 &(__get_cpu_var(rcu_flipctr)[!f]);
18 atomic_inc(t->rcu_flipctr2);
19 smp_mb__after_atomic_inc();
20 }
21 }
22 raw_local_irq_restore(oldirq);
23 }

Figure 2: Memory-Barrier rcu_read_
lock()

completion, and memory corruption. This
problem is avoided by suppressing interrupts.

Line 8 increments a per-task-struct RCU read-
side nesting-level counter. If the prior value of
this counter was non-zero, this is a nested RCU
read-side critical section, which is already pro-
tected by the outermost critical section. Oth-
erwise, execution proceeds through lines 9–20,
which prevent any future grace periods from
completing. Line 9 snapshots the bottom bit
of a grace-period counter, and this bit is used
to index into one of two elements of a per-
CPU counter array, as depicted in Figure 1.
Line 10 forces the subsequent array access to
be ordered after the computation of its index on
Alpha CPUs. Lines 11–12 compute a pointer
to the “current” element of the current CPU’s
counter array, recording this pointer in the task
structure. Line 13 then atomically increments
this counter, and line 14 adds a memory bar-
rier on architectures for which atomic_inc()
is not an implicit memory barrier. The mem-
ory barrier is required to prevent the contents of
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the critical section from bleeding out into ear-
lier code.

Since rcu_read_lock() does not acquire
any explicit locks, it is possible for its execu-
tion to race with the detection of the end of
an ongoing grace period. This means that the
completed counter could change at any time
during rcu_read_lock() execution, which
in turn could lead to premature ending of the
next grace period, since rcu_read_lock()

would then erroneously be preventing the end
of the second grace period rather than the next
grace period. Line 15 detects this race, and, if
detected, lines 16–19 atomically increment the
CPU’s other counter, thus preventing the end
of both the next grace period and the one af-
ter that. The additional overhead of the sec-
ond atomic operation and memory barrier is in-
curred only in the unlikely event of a race be-
tween grace-period detection and rcu_read_

lock() execution.

1 void rcu_read_unlock(void)
2 {
3 unsigned long oldirq;
4 struct task_struct *t = current;
5
6 raw_local_irq_save(oldirq);
7 if (--t->rcu_read_lock_nesting == 0) {
8 smp_mb__before_atomic_dec();
9 atomic_dec(t->rcu_flipctr1);

10 t->rcu_flipctr1 = NULL;
11 if (t->rcu_flipctr2 != NULL) {
12 atomic_dec(t->rcu_flipctr2);
13 t->rcu_flipctr2 = NULL;
14 }
15 }
16 raw_local_irq_restore(oldirq);
17 }

Figure 3: Memory-Barrier rcu_read_unlock()

The code for rcu_read_unlock() is shown
in Figure 3. Lines 6 and 16 suppress and restore
hardware interrupts to prevent race conditions
analogous to those for rcu_read_lock().
Line 7 checks to see if we are exiting the out-
ermost RCU read-side critical section; if not,

we retain the outer critical section’s protec-
tion. Otherwise, lines 8–14 update state to al-
low grace periods to complete.

Lines 8 and 9 execute an atomic decrement,
along with a memory barrier, the latter re-
quired to prevent the RCU read-side critical
section from bleeding out into subsequent code.
Line 10 NULLs the pointer in the task struc-
ture, primarily for debug purposes. Note that
this counter might well belong to some other
CPU, for example, if this task was preempted
during its RCU read-side critical section. This
possibility is one reason that the increments and
decrements must be atomic. Line 11 detects the
case where rcu_read_lock() had to incre-
ment both of the CPU’s counters, and, if so,
lines 12 and 13 atomically decrement it and
NULL out the corresponding pointer in the task
structure.

1 static void rcu_try_flip(void)
2 {
3 int c;
4 long f;
5 unsigned long m;
6
7 f = rcu_ctrlblk.completed;
8 if (!spin_trylock_irqsave
9 (&rcu_ctrlblk.fliplock, m)) {

10 return;
11 }
12 if (f != rcu_ctrlblk.completed) {
13 spin_unlock_irqrestore
14 (&rcu_ctrlblk.fliplock, m);
15 return;
16 }
17 f &= 0x1;
18 for_each_cpu(c) {
19 if (atomic_read(&per_cpu
20 (rcu_flipctr, c)[!f]) != 0) {
21 spin_unlock_irqrestore
22 (&rcu_ctrlblk.fliplock, m);
23 return;
24 }
25 }
26 smp_mb();
27 rcu_ctrlblk.completed++;
28 spin_unlock_irqrestore
29 (&rcu_ctrlblk.fliplock, m);
30 }

Figure 4: Memory-Barrier GP Detection
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The code that detects the end of a grace period
is shown in Figure 4, and is invoked from the
scheduling-clock interrupt. Line 7 records the
current value of the completed field, which is
a count of the number of grace periods detected
since boot. Lines 8–9 attempt to acquire the
spinlock guarding grace-period detection, and,
if unsuccessful, line 10 returns, relying on the
task holding the lock to continue doing so.

On the other hand, if we successfully acquire
the lock, we proceed to line 12, which checks
whether a grace period was detected while we
were acquiring the lock. If so, someone else de-
tected the grace period for us, and we need not
repeat the work. Lines 13–15 therefore release
the lock and return.

Otherwise, line 17 isolates the low-order bit
of the grace-period counter, which is used to
identify the “last” counter in each per-CPU ar-
ray. Lines 18–25 loop through each CPU, with
lines 19–20 checking the value of the “last”
counter. If any are non-zero, the grace period
has not yet ended, in which case lines 21–23
release the lock and return.

If all the “last” counters are zero, the current
grace period has ended. Line 26 then executes
a memory barrier to ensure that line 27’s count-
ing of the newly ended grace period does not
bleed back into the earlier counter checks, then
lines 28–29 release the lock.

The first patch for a robust implementation of
this simple counter-based realtime RCU im-
plementation was posted to LKML in August
2005 [6]. This patch has the shortcomings de-
scribed in the LKML posting:

1. The rcu_read_lock() and
rcu_read_unlock() primitives con-
tain heavyweight operations, including
atomic operations, memory barriers, and
disabling of hardware interrupts. These

heavyweight operations are undesireable
in a primitive whose sole purpose is
to provide high-performance read-side
operation.

2. The grace-period detection code uses a
single global queue, which can result in
an SMP locking bottleneck on larger ma-
chines.

3. The grace-period detection code is proba-
bly too aggressive, particularly on server-
class machines with ample memory. A
more sophisticated grace-period-detection
mechanism would: (1) allow for long
grace periods when memory was plenti-
ful, thus permitting the overhead of grace-
period detection to be amortized over a
larger number of RCU accesses and up-
dates, but (2) seek to minimize grace-
period duration when memory was scarce,
thus minimizing the amount of memory
consumed by outstanding RCU callbacks.

The remainder of this section focusses on the
first issue. The second issue is taken up in Sec-
tion 3. The third issue is beyond the scope of
this paper—in the near term, we need to retain
“classic RCU” for use in server workloads, but
longer term, there is some hope that a single
converged RCU mechanism might serve both
server and realtime environments. Section 2.5
describes some criteria that need to be met in
order to produce such a converged mechanism.

2.2 Remove Common-Case Atomic Opera-
tions

Although atomic increments and decrements
are necessary in the general case in Figures 2.1
and 3, there are some special cases where there
can be at most one CPU manipulating a given
counter. The first such case is at line 13 of Fig-
ure 2.1 when the counter is zero. In this case,
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there cannot possibly be some other CPU at-
tempting to decrement the counter, as it would
need to be non-zero for this to happen. In addi-
tion, there cannot be some other CPU attempt-
ing to increment the counter, since interrupts
are disabled, preventing preemption. There-
fore, lines 13–14 can be replaced by the fol-
lowing:

if (atomic_read(current->rcu_flipctr1) == 0) {
atomic_set(current->rcu_flipctr1,

atomic_read(current->rcu_flipctr1) + 1);
smp_mb();

} else {
atomic_inc(current->rcu_flipctr1);
smp_mb__after_atomic_inc();

}

Note that both atomic_read() and atomic_
set() are simple structure-access wrappers;
despite the “atomic” in their names, neither
of these primitives use atomic instructions
or memory barriers. If preemption is rare,
the then-clause of the above if statement
should be taken most frequently, avoiding the
atomic_inc(). A similar change can be
made to lines 8–9 of Figure 3, but with an ad-
ditional check to ensure that the task is running
on the same CPU that executed the correspond-
ing rcu_read_lock().

However, this change does not help on x86
machines, since the non-atomic operations
must still be accompanied by memory barriers,
which, on x86, are implemented using atomic
instructions. This situation motivates elimina-
tion of these memory barriers, covered in the
next section.

2.3 Remove Memory Barriers

The memory barriers in rcu_read_lock()

and rcu_read_unlock() are needed only to

Figure 5: Wasted Memory Barriers

guard against races with grace-period detec-
tion, which is normally quite rare compared to
RCU read-side critical sections. In Figure 5
each shaded box represents an RCU read-side
critical section with associated memory barri-
ers. Only the emboldened MBs represent re-
quired memory barriers; the rest consume over-
head but provide no added protection. This sit-
uation indicates that memory barriers should be
associated with grace-period detection rather
than RCU read-side critical sections. One sim-
ple way to accomplish this is to maintain a
per-CPU flag indicating that grace-period de-
tection is in progress. Neither the rcu_read_
lock() nor the rcu_read_unlock() prim-
itive needs memory barriers, although rcu_

read_unlock() could continue to use them
when it is necessary to expedite grace-period
detection. Instead, the per-CPU scheduling-
clock interrupt handler would execute a mem-
ory barrier only (1) when the corresponding
per-CPU flag is set and (2) after the correspond-
ing CPU’s “last” counter had reached zero.
This single memory barrier would protect both
the preceding and the following RCU read-side
critical sections, as shown in Figure 6.
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Figure 6: Grace-Period Memory Barriers

Figure 7: No-Memory-Barrier Data Flow

The general approach is shown in Figure 7.
This approach offers performance benefits,
even on x86, but atomic instructions are still
required in case of preempted RCU read-side
critical sections. It is possible to do better.

2.4 Remove All Atomic Instructions and
Memory Barriers

Note that CONFIG_PREEMPT kernels limit
rcu_read_lock() nesting depth, since in-
finite nesting would overflow the preempt_

disable() counter. This limited nesting
depth permits each CPU to increment and
decrement its own counters, regardless of what
CPU the corresponding rcu_read_lock()

might have run on. Simply summing the per-
CPU “last” counters would give the number
of outstanding RCU read-side critical sections
holding up the current grace period.

1 void rcu_read_lock(void)
2 {
3 unsigned long oldirq;
4 struct task_struct *t = current;
5
6 raw_local_irq_save(oldirq);
7 if (t->rcu_read_lock_nesting++ == 0) {
8 t->rcu_i = rcu_ctrlblk.completed & 1;
9 smp_read_barrier_depends();

10 __get_cpu_var(rcu_flipctr)[t->rcu_i]++;
11 }
12 raw_local_irq_restore(oldirq);
13 }

Figure 8: Non-MB rcu_read_lock()

The implementation of rcu_read_lock()

becomes quite simple, as shown in Figure 8.
Lines 6 and 12 suppress interrupts, as before.
Line 7 increments this task’s RCU read-side
critical-section nesting level, and, if this is
the outermost such critical section, executes
lines 8–10 to prevent subsequent grace peri-
ods from completing. Line 8 records the in-
dex of the “current” counter for use by the cor-
responding rcu_read_unlock(), line 9 pro-
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vides memory barriers for systems that fail to
force ordering of data-dependant loads (for ex-
ample, DEC Alpha [5]), and line 10 increments
this CPU’s “current” counter, preventing subse-
quent grace periods from proceeding.

1 void rcu_read_unlock(void)
2 {
3 unsigned long oldirq;
4 struct task_struct *t = current;
5
6 raw_local_irq_save(oldirq);
7 if (--t->rcu_read_lock_nesting == 0) {
8 __get_cpu_var(rcu_flipctr)[t->rcu_i]--;
9 }

10 raw_local_irq_restore(oldirq);
11 }

Figure 9: Non-MB rcu_read_unlock()

The rcu_read_unlock() is also quite sim-
ple, as shown in Figure 9. Lines 6 and 10
once again suppress hardware interrupts, line 7
decrements the RCU read-side critical-section
nesting level, and, if outermost, line 8 decre-
ments this CPU’s counter, but with the same
index as that incremented by the corresponding
rcu_read_lock().

Unfortunately, this approach invalidates the
earlier trick used to get rid of common-case
memory barriers, because a given CPU can
no longer determine when its “last” counter is
zero. We instead use a state machine to detect
the end of grace periods, with states executed
cyclicly as follows:

1. Idle: not attempting to detect the end of a
grace period.

2. Grace period: marks the end of a grace pe-
riod via a counter flip, and sets per-CPU
flip-seen flags, which each CPU will clear
after it has seen the flip.

3. Wait-ack: waits for each CPU to clear its
flip-seen flag. Once each CPU has cleared

its flip-seen flag, there can be no further
increments to any of the “last” counters.

4. Wait-zero: waits for the sum of the
“last” counters to reach zero. Once zero
is reached, each CPU must execute a
memory-barrier instruction to force order-
ing of prior RCU read-side critical sec-
tions. Therefore, we then set a per-
CPU memory-barrier-done flag, which
each CPU will clear after executing its
memory barrier.

5. Wait-memory-barrier: waits for all CPUs
to execute a memory barrier and clear
its memory-barrier-done flag. As before,
these memory barriers protect both the
earlier and the subsequent RCU read-side
critical sections.

Note that this state machine results in a “fuzzy”
grace-period boundary extending from state 2
to state 5. This requires an extra staging queue
for RCU callbacks, or that the callbacks are ad-
vanced only once per two grace periods.

With this state machine, it is not necessary for
individual CPUs to determine when their par-
ticular counter has reached zero. Instead, once
the sum of the counters has reached zero, each
CPU is explicitly asked to execute a memory
barrier. The data flow is shown in Figure 10.

Although this approach results in lightweight
read-side primitives, it also increase grace-
period detection time by a few scheduling-
clock periods compared to the implementations
described in the previous sections. It should
be possible to overcome this effect, for exam-
ple, by causing call_rcu() to invoke grace-
period detection if callbacks are arriving too
quickly.

In addition, the read-side primitives still dis-
able interrupts in order to provide the guaran-
tee that all future invocations will be using the
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Figure 10: No-Atomic Data Flow

correct element of the counter array just after a
counter flip. Removing this interrupt disabling
is a topic for future investigation.

2.5 Converging Classic and Realtime RCU

Can classic RCU be totally supplanted by real-
time RCU? The jury is still out on this question,
but here are some criteria that realtime RCU
must first meet:

1. It must be rock solid across the full gamut
of workloads.

2. Any required tuning for SMP servers must
be automated, e.g., computed at boot time
based on the amount of physical memory,
the number of CPUs, etc.

3. It must be impose negligible additional
overhead compared to classic RCU on
SMP machines.

The last criterion might be weakened, as it
may be acceptable to revert to classic RCU for
SMP/NUMA machines with more than (say) 16
CPUs. However, it may be possible to cast real-
time RCU into hierarchical form, which could
reduce overhead [18]. In any case, the fewer the
implementations of RCU, the smaller the test-
ing and maintenance burden imposed by RCU.
This situation motivates us to continue working
towards the goal of single universal RCU im-
plementation.

3 Scalable Grace-Period Detection

The current RCU implementation in the -rt
tree [13] uses a single global callback queue. In
the past, this has simplified the implementation,
for example, by removing any CPU-hotplug
considerations. However, RCU implementa-
tions that avoid memory barriers and atomic in-
structions do need to worry about CPU hotplug,
due to their use of per-CPU memory-barrier
and flip-seen flags. It therefore makes sense to
move to per-CPU queuing for these implemen-
tations, since the CPU-hotplug complexity can
no longer be avoided.

Other non-trivial changes will be required
as well, for example, the heuristic used
to determine when to invoke rcu_check_

callbacks() will likely need to be revisited,
most likely by appropriately updating rcu_

pending(). Larger SMP machines may also
need hierarchical bitmaps similar to Manfred
Spraul’s [18], as well as hierarchical summing
of the “last” counters.

4 Callback Latency vs. Through-
put

Applying RCU to the file structure had the un-
intended consequence of allowing a simple file
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open-close loop to generate RCU callbacks at
a sufficient rate to exhaust memory. This was
fixed by varying the permitted number of RCU
callback invocations per softirq instance. Real-
time implementations of RCU must gracefully
handle this same situation.

One approach is for call_rcu() to invoke the
grace-period detection code directly when there
are large numbers of callbacks. However, the
actual invocation of callbacks cannot be done
from call_rcu(), as this can result in dead-
lock. The callbacks must still be invoked from
softirq context.

In the -rt tree [13], realtime tasks can preempt
softirq handlers. Therefore, a system with run-
away realtime processes that consume all avail-
able CPU would not execute callbacks at all.
In addition, many other critical system services
would fail to execute. Lack of critical system
services, including RCU callback invocation,
would result in system hangs or failures.

What should be done when the system is over-
loaded with realtime tasks? Realtime tasks
must take precedence, but system services can-
not be indefinitely delayed. This is a policy de-
cision, with the following possible choices:

1. Degrade realtime response time, thereby
keeping the system alive (for example, de-
crease priority of “hoggy” realtime tasks
in order to permit debugging using non-
realtime tools).

2. Panic the system and reboot, as might
be required in some production realtime
workloads.

3. Kill less-critical realtime tasks, thereby
keeping system alive. Of course, this op-
tion requires some way of determining
which tasks to kill.

4. “Fence” the realtime tasks, so that they
are not permitted to consume excessive
amounts of any given CPU’s time [14].
This can be considered to be a variation
on the first option.

It is likely that more than one of these will be
required, but much experimentation with nu-
merous realtime applications will be required
to determine the right options and implementa-
tions.

5 Reduced Per-Struct Memory
Overhead

Any structure passed to call_rcu() must
contain a two-pointer struct rcu_head to
track the structure and its callback function.
This additional memory overhead is negligible
in many environments, but on 32-bit embedded
systems with small memory (e.g., 2MB), the
additional eight bytes can be problematic. This
section looks at the following three options for
dealing with this problem:

1. Use synchronize_rcu() instead of
call_rcu(), thus eliminating the need
for the struct rcu_head.

2. Use the C union feature to multiplex the
struct rcu_head with other fields that
are not used by RCU-protected code paths.

3. Shrink the struct rcu_head so that it
fits into 32 bits, reducing the memory it
consumes.

The use of synchronize_rcu() has the ad-
vantages of reducing the RCU-protected struc-
ture by eight bytes rather than by only four,
(usually) simplifying the code somewhat, and
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being already heavily used in the Linux ker-
nel. However, because synchronize_rcu()
blocks for a full grace period, its use is not ap-
propriate in all situations.

The second option, use of C union, also re-
duces the RCU-protected structure by up to
eight bytes rather than by only four, does not
affect code complexity, and has seen some
use, for example, the struct dentry unions
the d_child list header with the d_rcu field.
However, not all structures contain data that is
unreferenced by all RCU code paths. Such data
structures cannot make use of C union to re-
duce the memory overhead of struct rcu_

head. Furthermore, use of union can make
some data structures more difficult to under-
stand. Nevertheless, where it applies, use of C
union is very simple and effective.

Figure 11: Shrink rcu_head Structure

People using systems with very small memo-
ries may wish to experiment with a mapping
table to compress the function pointer into a
few bits. Linux currently has roughly 40 func-
tions passed to call_rcu(), requiring six bits
of index, leaving 26 bits for the pointer to the
next struct rcu_head, which could address
64MB of memory, as depicted in Figure 11.
Systems with kernel memory mapped at an off-
set add that offset in order to reduce the number
of bits required for the pointer.

If an embedded system were to load and un-
load modules in order to further reduce mem-
ory requirements, and if these modules used
call_rcu(), then the index field in Figure 11
would only need to be large enough to han-
dle the number of RCU callback functions that
were actually loaded into the kernel at a given
time. However, to realize this savings, it would
be necessary to reclaim entries in the func-
tion pointer table corresponding to callbacks in
modules that had been unloaded. One way to
do this would be to use reference counts, as il-
lustrated by the column labelled “RC” in Fig-
ure 11. Only file_free_rcu() has a non-
zero reference count, permitting the slots occu-
pied by the other function pointers to be reused
as needed by call_rcu(). If the desired
RCU callback already had a slot, call_rcu()
would simply increment its reference count.
In either case, the reference count would be
decremented after invoking the callback func-
tion. In UP kernels, the table may be protected
by simple disabling of interrupts. At present,
it seems unlikely that this function-table ap-
proach would be used on SMP systems.

It is possible that the stripped-down Linux ker-
nels used in embedded systems might have
fewer uses of call_rcu(), and thus might be
able decrease the number of bits of the struct
rcu_head and increase the size of the pointer.

Of course, both synchronize_rcu() and
C union are more generally useful and also
provide greater per-structure memory savings.
However, if these approaches are insufficient,
it might be worthwhile considering a small-
memory configuration parameter that shrinks
the size of struct rcu_head for small-
memory systems.
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6 Priority Boosting

Many realtime workloads maintain low CPU
utilization in order to avoid excessive latencies
due to task queueing in the scheduler. How-
ever, any number of software bugs can cause
“runaway” tasks to saturate the CPUs. If the
CPUs are saturated with realtime tasks, the re-
altime RCU implementations described in Sec-
tion 2 are vulnerable to indefinite grace-period
durations caused by a low-priority non-realtime
task being preempted while executing in an
RCU read-side critical section. This can re-
sult in OOM conditions, especially on small-
memory machines. Of course, as mentioned
earlier, starving other system services can also
result in system failures.

One way to avoid this problem is to boost the
priority of tasks executing in RCU read-side
critical sections, in a manner similar to mutex-
based priority boosting. However, unlike with
locking, it does not make sense to boost and
decrease priority in the rcu_read_lock()

and rcu_read_unlock() primitives, because
this would require the introduction of locking
into these primitives, in turn unacceptably in-
creasing their overhead and destroying their
deadlock-immunity properties. In fact, the per-
formance degradation is worse than for lock-
ing, since lock-based priority boosting need
do nothing except in the (presumably less-
common) case where a high-priority task at-
tempts to acquire a lock held by a lower-priority
task.

A better approach is to recognize that it does
not help to boost the priority of a task that is
already running. Boosting its priority will not
make it run faster, in fact, the resulting cache-
thrashing will likely slow it down. No ac-
tion need be taken until the task either is pre-
empted or attempts to acquire an already-held
lock while still in its RCU read-side critical sec-
tion, at which point that task’s priority can be

boosted to the highest non-realtime priority. It
may also be necessary to further boost the pri-
ority of RCU read-side critical sections when
the system exhausts memory.

We have been experimenting with this ap-
proach, but additional work is needed to arrive
at a simple and stable patch. It is possible that
restricting the CPU time that may be consumed
by realtime tasks [14] will prove a more fruitful
approach, at least in the near term.

7 Conclusions

Although there is more work to be done, it
appears that a robust and efficient realtime-
friendly implementation of RCU is quite feasi-
ble. We have shown how atomic instructions
and memory barriers can be eliminated from
RCU read-side primitives, and how standard
techiques, with some innovation, can yield a
scalable grace-period detection algorithm.

There has been good progress towards the
right balance of RCU callback throughput and
scheduling latency on realtime systems, but
more work is needed to ensure that this balance
is maintained for all workloads.

We described three ways of reducing per-
structure struct rcu_head overhead, two of
which eliminate this overhead completely and
are available within the current kernel.org tree,
and a third that requires some additional work
and saves only 50% of the struct rcu_head

overhead.

We described a mechanism for boosting the pri-
ority of preempted RCU readers in order to ex-
pedite grace-period end, however, we do not
yet have a stable implementation of this mech-
anism. In the meantime, limiting the CPU con-
sumption of realtime tasks should help, since
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this should allow the priority of any preempted
RCU reader to age upwards. However, more
work is needed to determine whether this ap-
proach will suffice in all cases.

The jury is still out as to whether a single RCU
implementation can meet the needs of both re-
altime and SMP-server workloads, but the tech-
niques described in this paper are approaching
that goal. That said, whether or not this goal
is eventually reached, the implementations de-
scribed in this paper should improve Linux’s
ability to provide realtime response on SMP
systems.
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