
Native POSIX Threads Library (NPTL) Support for
uClibc.

Steven J. Hill
Reality Diluted, Inc.

sjhill@realitydiluted.com

Abstract

Linux continues to gain market share in embed-
ded systems. As embedded processing power
increases and more demanding applications in
need of multi-threading capabilities are devel-
oped, Native POSIX Threads Library (NPTL)
support becomes crucial. The GNU C library
[1] has had NPTL support for a number of years
on multiple processor architectures. However,
the GNU C library is more suited for work-
station and server platforms and not embed-
ded systems due to its size. uClibc [2] is a
POSIX-compliant C library designed for size
and speed, but currently lacking NPTL sup-
port. This paper will present the design and
implementation of NPTL support in uClibc. In
addition to the design overview, benchmarks,
limitations and comparisons between glibc and
uClibc will be discussed. NPTL for uClibc is
currently only supported for the MIPS proces-
sor architecture.

1 The Contenders

Every usable Linux system has applications
built atop a C library run-time environment.
The C library is at the core of user space and
provides all the necessary functions and system

calls for applications to execute. Linux is for-
tunate in that there are a number of C libraries
available for varying platforms and environ-
ments. Whether an embedded system, high-
performance computing, or a home PC, there
is a C library to fit each need.

The GNU C library, known also as glibc [1],
and uClibc [2] are the most common Linux C li-
braries in use today. There are other C libraries
like Newlib [3], diet libc [4], and klibc [5] used
in embedded systems and small root file sys-
tems. We list them only for completeness, yet
they are not considered in this paper. Our focus
will be solely on uClibc and glibc.

2 Comparing C Libraries

To understand the need for NPTL in uClibc, we
first examine the goals of both the uClibc and
glibc projects. We will quickly examine the
strengths and weaknesses of both C implemen-
tations. It will then become evident why NPTL
is needed in uClibc.

2.1 GNU C Library Project Goals

To quote from the main GNU C Library web
page [1], “The GNU C library is primarily de-
signed to be a portable and high performance C



410 • Native POSIX Threads Library (NPTL) Support for uClibc.

library. It follows all relevant standards (ISO C
99, POSIX.1c, POSIX.1j, POSIX.1d, Unix98,
Single Unix Specification). It is also interna-
tionalized and has one of the most complete in-
ternationalization interfaces known.” In short,
glibc, aims to be the most complete C library
implementation available. It succeeds, but at
the cost of size and complexity.

2.2 uClibc Project Goals

Let us see what uClibc has to offer. Again,
quoting from the main page for uClibc [2],
“uClibc (a.k.a. µClibc, pronounced yew-see-
lib-see) is a C library for developing embed-
ded Linux systems. It is much smaller than
the GNU C Library, but nearly all applica-
tions supported by glibc also work perfectly
with uClibc. Porting applications from glibc
to uClibc typically involves just recompiling
the source code. uClibc even supports shared
libraries and threading. It currently runs on
standard Linux and MMU-less (also known as
µClinux) systems. . . ” Sounds great for embed-
ded systems development. Obviously, uClibc is
going to be missing some features since its goal
is to be small in size. However, uClibc has its
own strengths as well.

2.3 Comparing Features

Table 1 shows the important differentiating fea-
tures between glibc and uClibc.

It should be obvious from the table above that
glibc certainly has better POSIX compliance,
backwards binary compatibility, and network-
ing services support. uClibc shines in that it is
much smaller (how much smaller will be cov-
ered later), more configurable, supports more
processor architectures and is easier to build
and maintain.

The last two features in the table warrant ad-
ditional explanation. glibc recently removed
linuxthreads support from its main de-
velopment tree. It was moved into a sepa-
rate ports tree. It is maintained on a volun-
teer basis only. uClibc will maintain both the
linuxthreads and nptl thread models ac-
tively. Secondly, glibc only supports a couple
of primary processor architectures. The rest of
the architectures were also recently moved into
the ports tree. uClibc continues to actively sup-
port many more architectures by default. For
embedded systems, uClibc is clearly the win-
ner.

3 Why NPTL for Embedded Sys-
tems?

uClibc supports multiple thread library
models. What are the shortcomings of
linuxthreads? Why is nptl better, or
worse? The answer lies in the requirements,
software and hardware, of the embedded
platform being developed. We need to first
compare linuxthreads and nptl to
choose the thread library that best meets the
needs of our platform. Table 2 lists the key
features the two thread libraries have to offer.

Using the table above, the nptl model is use-
ful in systems that do not have severe memory
constraints, but need threads to respond quickly
and efficiently. The linuxthreads model is
useful mostly for resource constrained systems
still needing basic thread support. As men-
tioned at the beginning of this paper, embed-
ded systems with faster processors and greater
memory resources are being required to do
more, with less. Using NPTL in conjunction
with the already small C library provided by
uClibc, creates a perfectly balanced embedded
Linux system that has size, speed and an high-
performance multi-threading.



2006 Linux Symposium, Volume One • 411

Feature glibc uClibc
LGPL Y Y
Complete POSIX compliance Y N
Binary compatibility across releases Y N
NSS Support Y N
NIS Support Y N
Locale support Y Y
Small disk storage footprint N Y
Small runtime memory footprint N Y
Supports MMU-less systems N Y
Highly configurable N Y
Simple build system N Y
Built-in configuration system N Y
Easily maintained N Y
NPTL Support Y Y
Linuxthreads Support N (See below) Y
Support many processor architectures N (See below) Y

Table 1: Library Feature Comparison

Feature Description LinuxThreads NPTL

Storage Size The actual amount of storage space consumed
in the file system by the libraries.

Smallest Largest

Memory Usage
The actual amount of RAM consumed at run-
time by the thread library code and data. In-
cludes both kernel and user space memory us-
age.

Smallest Largest

Number of Threads The maximum number of threads available in a
process.

Hard Coded Value Dynamic

Thread Efficiency Rate at which threads are created, destroyed,
managed, and run.

Slowest Fastest

Per-Thread Signals Signals are handled on a per-thread basis and
not the process.

No Yes

Inter-Thread Threads can share synchronization primitives
Synchronization like mutexes and semaphores. No Yes

POSIX.1 Compliance Thread library is compliant No

Table 2: Thread Library Features



412 • Native POSIX Threads Library (NPTL) Support for uClibc.

4 uClibc NPTL Implementation

The following sections outline the major tech-
nical components of the NPTL implementation
for uClibc. For the most part, they should apply
equally to glibc’s implementation except where
noted. References to additional papers and in-
formation are provided should the reader wish
to delve deeper into the inner workings of vari-
ous components.

4.1 TLS—The Foundation of NPTL

The first major component needed for NPTL on
Linux systems is Thread Local Storage (TLS).
Threads in a process share the same virtual ad-
dress space. Usually, any static or global data
declared in the process is visible to all threads
within that process. TLS allows threads to have
their own local static and global data. An ex-
cellent paper, written by Ulrich Drepper, cov-
ers the technical details for implementing TLS
for the ELF binary format [6]. Supporting TLS
required extensive changes to binutils [7], GCC
[8] and glibc [1]. We cover the changes made
in the C library necessary to support TLS data.

4.1.1 The Dynamic Loader

The dynamic loader, also affectionately known
as ld.so, is responsible for the run-time link-
ing of dynamically linked applications. The
loader is the first piece of code to execute be-
fore the main function of the application is
called. It is responsible for loading and map-
ping in all required shared objects for the appli-
cation.

For non-TLS applications, the process of load-
ing shared objects and running the application
is trivial and straight-forward. TLS data types
complicate dynamic linking substantially. The

loader must detect any TLS sections, allocate
initial memory blocks for any needed TLS data,
perform initial TLS relocations, and later per-
form additional TLS symbol look-ups and re-
locations during the execution of the process.
It must also deal with the loading of shared
objects containing TLS data during program
execution and properly allocate and relocate
its data. The TLS paper [6] provides ample
overview of how these mechanisms work. The
document does not, however, currently cover
the specifics of MIPS-specific TLS storage and
implementation. MIPS TLS information is
available from the Linux/MIPS website [9].

Adding TLS relocation support into uClibc’s
dynamic loader required close to 2200 lines
of code to change. The only functionality not
available in the uClibc loader is the handling of
TLS variables in the dynamic loader itself. It
should also be noted that statically linked bi-
naries using TLS/NPTL are not currently sup-
ported by uClibc. Static binaries will not be
supported until all processor architectures ca-
pable of supporting NPTL have working shared
library support. In reality, shared library sup-
port of NPTL is a prerequisite for debugging
static NPTL support. Thank you to Daniel Ja-
cobowitz for pointing this out.

4.1.2 TLS Variables in uClibc

There are four TLS variables currently used in
uClibc. The noticeable difference that can be
observed in the source code is that they have
an additional type modifier of __thread. Ta-
ble 3 lists the TLS in detail. There are 15 ad-
ditional TLS variables for locale support that
were not ported from glibc. Multi-threaded lo-
cale support with NPTL is currently not sup-
ported with uClibc.



2006 Linux Symposium, Volume One • 413

Variable Description

errno
The number of the last error set by system calls and some functions in
the library. Previously it was thread-safe, but still shared by threads
in the same process. For NPTL, it is a TLS variable and thus each
thread has its own instantiation.

h_errno
The error return value for network database operations. This vari-
able was also previously thread safe. It is only available internally to
uClibc.

_res The resolver context state variable for host name look-ups.
RPC_VARS Pointer to internal Remote Procedure Call (RPC) structure for multi-

threaded applications.

Table 3: TLS Variables in uClibc

4.2 Futexes

Futexes [10] [11] are fast user space mutexes.
They are an important part of the locking nec-
essary for a responsive pthreads library imple-
mentation. They are supported by Linux 2.6
kernels and no code porting was necessary for
them to be usable in uClibc other than adding
prototypes in a header file. glibc also uses them
extensively for the file I/O functions. Futexes
were ported for use in uClibc’s I/O functions as
well, although not strictly required by NPTL.
Futex I/O support is a configurable for uClibc
and can be selected with the UCLIBC_HAS_

STDIO_FUTEXES option.

4.3 Asynchronous Thread Cancellation

A POSIX compliant thread library contains the
function pthread_cancel, which cancels
the execution of a thread. Please see the official
definition of this function at The Open Group
website [12]. Cancellation of a thread must
be done carefully and only at certain points in
the library. There are close to 40 functions
where thread cancellation must be checked for
and possibly handled. Some of these are heav-
ily used functions like read, write, open,

close, lseek and others. Extensive changes
were made to uClibc’s C library core in order
to support thread cancellation. A list of these
are available on the NPTL uClibc development
site [13].

4.4 Threads Library

The code in the nptl directory of glibc was ini-
tially copied verbatim from a snapshot dated
20050823. An entirely new set of build files
were created in order to build NPTL within
uClibc. Almost all of the original files re-
main with the exception of Asynchronous I/O
(AIO) related code. All backwards binary
compatibility code and functions have been re-
moved. Any code that was surrounded with
#ifdef SHLIB_COMPAT or associated with
those code blocks was also removed. The
uClibc NPTL implementation should be as
small as possible and not constrained by old
thread compatibility code. This also means that
any files in the root nptl directory with the
prefix of old_pthread_ were also removed.
Finally, there were minor header files changes
and some functions renamed.



414 • Native POSIX Threads Library (NPTL) Support for uClibc.

4.5 POSIX Timers

In addition to the core threads library, there
were also code changes for POSIX Timers.
These changes were integrated into the librt
library in uClibc. These changes were not in the
original statement of work from Broadcom, but
were implemented for completeness. All the
timer tests for POSIX timers associated with
NPTL do pass, but were not required.

For those interested in further details of the
NPTL design, please refer to Ulrich Drepper’s
design document [14].

5 uClibc NPTL Testing

There were a total of four test suites that
the uClibc NPTL implementation was tested
against. Hopefully, with all of these tests,
uClibc NPTL functionality should be at or near
the production quality of glibc’s implementa-
tion.

5.1 uClibc Testsuite

uClibc has its own test suite distributed with the
library source. While there are many tests ver-
ifying the inner workings of the library and the
various subsystems, pthreads tests are minimal.
There are only 7 of them, with another 5 for the
dynamic loader. With the addition of TLS data
and NPTL, these were simply not adequate for
testing the new functionality. They were, how-
ever, useful as regression testing. The test suite
can be retrieved with uClibc from the main
site [2].

5.2 glibc Testsuite

The author would first like to convey immense
appreciation to the glibc developers for creating

such a comprehensive and usable test suite for
TLS and NPTL. Had it not been for the tests
distributed with their code, I would have re-
leased poor code that would have resulted in
customer support nightmares. The tests were
very well designed and extremely helpful in
finding holes in the uClibc NPTL implemen-
tation. 182 selected NPTL tests and 15 TLS
tests were taken from glibc and passed success-
fully with uClibc. There were a number of tests
not applicable to uClibc’s NPTL implementa-
tion that were omitted. For further details con-
cerning the tests, please visit the uClibc NPTL
project website [13].

5.3 Linux Test Project

The Linux Test Project (LTP) suite [15] is used
to “validate the reliability, robustness, and sta-
bility of Linux.” It has 2900+ tests that will not
only test pthreads, but act as a large set of re-
gression tests to make sure uClibc is still func-
tioning properly as a whole.

5.4 Open POSIX Test Suite

To quote from the website [16], “The POSIX
Test Suite is an open source test suite with the
goal of performing conformance, functional,
and stress testing of the IEEE 1003.1-2001 Sys-
tem Interfaces specification in a manner that is
agnostic to any given implementation.” This
suite of tests is the most important indicator
of how correct the uClibc NPTL implemen-
tation actually is. It tests pthreads, timers,
asynchronous I/O, message queues and other
POSIX related APIs.

5.5 Hardware Test Platform

All development and testing was done with an
AMD Alchemy DBAu1500 board graciously



2006 Linux Symposium, Volume One • 415

Source Version
binutils 2.16.1
gcc 4.1.0
glibc 20050823
uClibc-nptl 20060318
Linux Kernel Headers 2.6.15
LTP 20050804
Open POSIX Test Suite

20050804(Distributed w/LTP)
buildroot 20060328
crosstool 0.38
Linux/MIPS Kernel 2.6.15

Table 4: Source and Tool Versions

donated by AMD. Broadcom also provided
their own hardware, but it was not ready for use
until later in the software development cycle.

The DBAu1500 development board is designed
around a 400MHz 32-bit MIPS Au1500 pro-
cessor core. The board has 64MB of 100MHz
SDRAM and 32MB of AMD MirrorBit Flash
memory. The Au1500 utilizes the MIPS32 In-
struction Set and has a 16KB Instruction and
16KB Data Cache. (2) 10/100Mbit Ethernet
Ports, USB host controller, PCI 2.2 compliant
host controller, and other peripherals.

5.6 Software Versions

Table 4 lists the versions of all the sources used
in the development and testing of uClibc NPTL.
buildroot [17] was the build system used to cre-
ate both the uClibc and glibc root filesystems
necessary for running the test suites. crosstool
[18] was used for building the glibc NPTL
toolchain.

The actual Linux kernel version used on the
AMD development board for testing is the re-
leased Linux/MIPS 2.6.15 kernel. The 2.6.16
release is not currently stable enough for test-
ing and development. A number of system calls

glibc uClibc
53m 8.983s 21m 33.129s

Table 5: Toolchain Build Times

appear to be broken along with serial text con-
sole responsiveness. The root filesystem was
mounted over NFS.

6 uClibc NPTL Test Results

6.1 Toolchain Build Time

Embedded system targets do not usually have
the processor and/or memory resources avail-
able to host a complete development environ-
ment (compiler, assembler, linker, etc). Usually
development is done on an x86 host and the bi-
naries are cross compiled for the target using
a cross development toolchain. crosstool [18]
was used to build the x86 hosted MIPS NPTL
toolchain using glibc, and buildroot [17] was
used to build the MIPS NPTL toolchain using
uClibc.

Building a cross development toolchain is a
time consuming process. Not only are they dif-
ficult to get working properly, they also take
a long time to build. glibc itself usually must
be built twice in order to get internal paths and
library dependencies to be correct. uClibc on
the other hand, need only be built once due
to its simpler design and reduced complexity
of the build system. The toolchains were built
and hosted on a dual 248 Opteron system with
1GB of RAM, Ultra 160 SCSI and SATA hard
drives. Times include the actual extraction of
source from the tarballs for toolchain compo-
nents. See Table 5. The toolchains above com-
pile both C and C++ code for the MIPS tar-
get processor. Not only are uClibc’s libraries



416 • Native POSIX Threads Library (NPTL) Support for uClibc.

smaller (as you will see shortly), but creating a
development environment is much simpler and
less time consuming.

6.2 Library Code Size

Throughout our discussion, we have stressed
the small size of uClibc as compared to glibc.
Tables 6 and 7 show these comparisons of li-
braries and shared objects as compared to one
another.

The size difference between the C libraries is
dramatic. uClibc is better than 2 times smaller
than glibc. uClibc’s libdl.a is larger be-
cause some TLS functions only used for shared
objects are being included in the static library.
This is due to a problem in the uClibc build
system that will be addressed. The libnsl.a
and libresolv.a libraries are dramatically
smaller for uClibc only because they are stub
libraries. The functions usually present in the
corresponding glibc libraries are contained in-
side uClibc. Finally, libm.a for uClibc is
much smaller do to reduced math functionality
in uClibc as compared to glibc. Most functions
for handling double data types are not present
for uClibc.

The shared objects of most interest are
libc.so, ld.so, and libpthread.so.
uClibc’s main C library is over 2 times smaller
than glibc. The dynamic loader for uClibc
is 4 times smaller. glibc’s dynamic loader
is complex and larger, but it has to be in or-
der to handle binary backwards compatibility.
Additionally, uClibc’s dynamic loader is can-
not be executed as an application like glibc’s.
Although the NPTL pthread library code was
ported almost verbatim from glibc, uClibc’s li-
brary is 30% smaller. Why? The first reason
is that any backward binary compatibility code
was removed. Secondly, the comments in the
nptl directory of glibc say that the NPTL code

should be compiled with the -O2 compiler op-
tion. For uClibc, the -Os option was used to
reduced the code size and yet NPTL still func-
tioned perfectly. This optimization worked for
MIPS, but other architectures may not be able
to use this optimization.

6.3 glibc NPTL Library Test Results

The developers of NPTL for glibc created a
large and comprehensive test suite for testing
its functionality. 182 tests were taken from
glibc and tested with uClibc’s TLS and NPTL
implementation. All of these tests passed with
uClibc NPTL. For a detailed overview of the
selected tests, please visit the uClibc NPTL
project website.

6.4 Linux Test Project (LTP) Results

Out of over 2900+ tests executed, there were
only 31 failed tests by uClibc. glibc also failed
31 tests. A number of tests that passed with
uClibc, failed with glibc. The converse was
also true. These differences will be examined
at a later date. However, passing all the tests in
the LTP is a goal for uClibc. Detailed test logs
can be obtained from the uClibc NPTL project
website.

6.5 Open POSIX Testsuite Results

Table 8 shows the results of the test runs for
both libraries.

The first discrepancy observed is the total num-
ber of tests. glibc has a larger number of tests
available because of Asynchronous I/O support
and the sigqueue function, which is not cur-
rently available in uClibc. Had these features
been present in uClibc, the totals would have



2006 Linux Symposium, Volume One • 417

Static Library glibc [bytes] uClibc [bytes]
libc.a 3 426 208 1 713 134
libcrypt.a 29 154 15 630
libdl.a 10 670 36 020
libm.a 956 272 248 598
libnsl.a 161 558 1 100
libpthread.a 281 502 250 852
libpthread_nonshared.a 1 404 1 288
libresolv.a 111 340 1 108
librt.a 79 368 29 406
libutil.a 11 464 9 188
TOTAL 5 068 940 2 306 324

Table 6: Static Library Sizes (glibc vs. uClibc)

Shared Object glibc [bytes] uClibc [bytes]
libc.so 1 673 805 717 176
ld.so 148 652 35 856
libcrypt.so 28 748 13 676
libdl.so 16 303 13 716
libm.so 563 876 80 040
libnsl.so 108 321 5 032
libpthread.so 120 825 97 189
libresolv.so 88 470 5 036
librt.so 45 042 14 468
libutil.so 13 432 9 320
TOTAL 2 807 474 991 509

Table 7: Shared Object Sizes (glibc vs. uClibc)



418 • Native POSIX Threads Library (NPTL) Support for uClibc.

RESULT glibc uClibc
TOTAL 1830 1648
PASSED 1447 1373
FAILED 111 83
UNRESOLVED 151 95
UNSUPPORTED 22 29
UNTESTED 92 60
INTERRUPTED 0 0
HUNG 1 3
SEGV 5 5
OTHERS 1 0

Table 8: OPT Results (glibc vs. uClibc)

most likely been the same. The remaining re-
sults are still being analyzed and will be pre-
sented at the Ottawa Linux Symposium in July,
2006. The complete test logs are available from
the uClibc NPTL project website.

7 Conclusions

NPTL support in uClibc is now a reality.
A fully POSIX compliant threads library in
uClibc is a great technology enabler for embed-
ded systems developers who need fast multi-
threading capability in a small memory foot-
print. The results from the Open POSIX Test-
suite need to be analyzed in greater detail in or-
der to better quantify what, if any POSIX sup-
port is missing.

8 Future Work

There is still much work to be done for the
uClibc NPTL implementation. Below is a list
of the important items:

• Sync NPTL code in uClibc tree with latest
glibc mainline code.

• Implement NPTL for other processor ar-
chitectures.

• Get static libraries working for NPTL.

• Merge uClibc-NPTL branch with uClibc
trunk.

• Implement POSIX message queues.

• Implement Asynchronous I/O.

• Implement sigqueue call.

• Fix outstanding LTP and Open POSIX
Test failures.

9 Acknowledgements

I would first like to acknowledge and thank God
for getting me through this project. It has been
a 9-1/2 month journey full of difficulty and
frustration at times. His strength kept me going.
Secondly, my wife Jennifer who was a constant
encourager and supporter of me. I spent many
weekends and evenings working while she kept
the household from falling apart. Obviously, I
would like to thank Broadcom Corporation for
supporting this development effort and provid-
ing the code back to the community. Thanks
to Erik Andersen from Code Poet Consulting
who was my partner in this endeavor, handling
all the contracts and legal issues for me. Thank
you to AMD for supplying me multiple MIPS
development boards free of charge. Special
thanks to Mathieu Chouinard for formatting my
paper in the final hours before submittal. Fi-
nally, I would like to dedicate this paper and
entire effort to my first child, Zachary James
Hill who just turned a year old on March 5th,
2006. I love you son.



2006 Linux Symposium, Volume One • 419

References

[1] GNU C Libary at http://www.gnu.
org/software/libc/ http:
//sourceware.org/glibc/

[2] uClibc at
http://www.uclibc.org/

[3] Newlib at http:
//sourceware.org/newlib/

[4] Diet Libc at http:
//www.fefe.de/dietlibc/

[5] Klibc at ftp://ftp.kernel.org/
pub/linux/libs/klibc/

[6] ELF Handling for Thread Local Storage
at http://people.redhat.com/
drepper/tls.pdf

[7] Binutils at http://www.gnu.org/
software/binutils/

[8] GCC at http://gcc.gnu.org/

[9] NPTL Linux/MIPS at http:
//www.linux-mips.org/wiki/NPTL

[10] Hubertus Franke, Matthew Kirkwood,
Rusty Russell. Fuss, Futexes and
Furwocks: Fast Userlevel Locking in
Linux. In Proceedings of the Ottawa
Linux Symposium, pages 479–494, June
2002.

[11] Futexes Are Tricky at
http://people.redhat.com/
drepper/futex.pdf

[12] pthread_cancel function definition
at http://www.opengroup.org/
onlinepubs/007908799/xsh/

pthread_cancel.html

[13] uClibc NPTL Project at
http://www.realitydiluted.com/

nptl-uclibc/

[14] The Native POSIX Thread Library for
Linux at http://people.redhat.
com/drepper/nptl-design.pdf

[15] Linux Test Project at
http://ltp.sourceforge.net/

[16] Open POSIX Test Suite at http://
posixtest.sourceforge.net/

[17] buildroot at http:
//buildroot.uclibc.org/

[18] crosstool at http:
//www.kegel.com/crosstool/



420 • Native POSIX Threads Library (NPTL) Support for uClibc.



Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


