
GIT—A Stupid Content Tracker

Junio C. Hamano
Twin Sun, Inc.

junio@twinsun.com

Abstract

Git was hurriedly hacked together by Linus
Torvalds, after the Linux kernel project lost
its license to use BitKeeper as its source
code management system (SCM). It has since
quickly grown to become capable of managing
the Linux kernel project source code. Other
projects have started to replace their existing
SCMs with it.

Among interesting things that it does are:

1. giving a quick whole-tree diff,

2. quick, simple, stupid-but-safe merge,

3. facilitating e-mail based patch exchange
workflow, and

4. helping to pin-point the change that caused
a particular bug by a bisection search in
the development history.

The core git functionality is implemented as a
set of programs to allow higher-layer systems
(Porcelains) to be built on top of it. Several
Porcelains have been built on top of git, to sup-
port different workflows and individual taste of
users. The primary advantage of this architec-
ture is ease of customization, while keeping
the repositories managed by different Porce-
lains compatible with each other.

The paper gives an overview of how git evolved
and discusses the strengths and weaknesses of
its design.

1 Low level design

Git is a “stupid content tracker.” It is designed
to record and compare the whole tree states ef-
ficiently. Unlike traditional source code control
systems, its data structures are not geared to-
ward recording changes between revisions, but
for making it efficient to retrieve the state of in-
dividual revisions.

The unit in git storage is an object. It records:

• blob – the contents of a file (either the
contents of a regular file, or the path
pointed at by a symbolic link).

• tree – the contents of a directory, by
recording the mapping from names to ob-
jects (either a blob object or a tree object
that represents a subdirectory).

• commit – A commit associates a tree
with meta-information that describes how
the tree came into existence. It records:

– The tree object that describes the
project state.

386 • GIT—A Stupid Content Tracker

– The author name and time of creation
of the content.

– The committer name and time of cre-
ation of the commit.

– The parent commits of this commit.

– The commit log that describes why
the project state needs to be changed
to the tree contained in this commit
from the trees contained in the parent
commits.

• tag – a tag object names another object
and associates arbitrary information with
it. A person creating the tag can attest that
it points at an authentic object by GPG-
signing the tag.

Each object is referred to by taking the SHA1
hash (160 bits) of its internal representation,
and the value of this hash is called its object
name. A tree object maps a pathname to the
object name of the blob (or another tree, for a
subdirectory).

By naming a single tree object that represents
the top-level directory of a project, the entire di-
rectory structure and the contents of any project
state can be recreated. In that sense, a tree ob-
ject is roughly equivalent to a tarball.

A commit object, by tying its tree object with
other commit objects in the ancestry chain,
gives the specific project state a point in project
history. A merge commit ties two or more lines
of developments together by recording which
commits are its parents. A tag object is used to
attach a label to a specific commit object (e.g. a
particular release).

These objects are enough to record the project
history. A project can have more than one lines
of developments, and they are called branches.
The latest commit in each line of development
is called the head of the branch, and a reposi-
tory keeps track of the heads of currently active

branches by recording the commit object names
of them.

To keep track of what is being worked on in
the user’s working tree, another data structure
called index, is used. It associates pathnames
with object names, and is used as the staging
area for building the next tree to be committed.

When preparing an index to build the next tree,
it also records the stat(2) information from
the working tree files to optimize common op-
erations. For example, when listing the set of
files that are different between the index and
the working tree, git does not have to inspect
the contents of files whose cached stat(2)
information match the current working tree.

The core git system consists of many relatively
low-level commands (often called Plumbing)
and a set of higher level scripts (often called
Porcelain) that use Plumbing commands. Each
Plumbing command is designed to do a spe-
cific task and only that task. The Plumbing
commands to move information between the
recorded history and the working tree are:

• Files to index. git-update-index
records the contents of the working tree
files to the index; to write out the blob
recorded in the index to the working tree
files, git-checkout-index is used;
and git-diff-files compares what
is recorded in the index and the working
tree files. With these, an index is built that
records a set of files in the desired state to
be committed next.

• Index to recorded history. To write
out the contents of the index as a tree
object, git-write-index is used;
git-commit-tree takes a tree object,
zero or more commit objects as its parents,
and the commit log message, and creates
a commit object. git-diff-index

2006 Linux Symposium, Volume One • 387

compares what is recorded in a tree ob-
ject and the index, to serve as a preview
of what is going to be committed.

• Recorded history to index. The directory
structure recorded in a tree object is read
by git-read-tree into the index.

• Index to files. git-checkout-index
writes the blobs recorded in the index to
the working tree files.

By tying these low-level commands together,
Porcelain commands give usability to the
whole system for the end users. For ex-
ample, git-commit provides a UI to ask
for the commit log message, create a new
commit object (using git-write-tree and
git-commit-tree), and record the object
name of that commit as the updated topmost
commit in the current line of development.

2 Design Goals

From the beginning, git was designed specifi-
cally to support the workflow of the Linux ker-
nel project, and its design was heavily influ-
enced by the common types of operations in the
kernel project. The statistics quoted below are
for the 10-month period between the beginning
of May 2005 and the end of February 2006.

• The source tree is fairly large. It has
approximately 19,000 files spread across
1,100 directories, and it is growing.

• The project is very active. Approximately
20,000 changes were made during the 10-
month period. At the end of the examined
period, around 75% of the lines are from
the version from the beginning of the pe-
riod, and the rest are additions and modifi-
cations.

• The development process is highly dis-
tributed. The development history led
to v2.6.16 since v2.6.12-rc2 contains
changes by more than 1,800 authors that
were committed by a few dozen people.

• The workflow involves many patch ex-
changes through the mailing list. Among
20,000 changes, 16,000 were committed
by somebody other than the original au-
thor of the change.

• Each change tends to touch only a handful
files. The source tree is highly modular
and a change is often very contained to a
small part of the tree. A change touches
only three files on average, and modifies
about 160 lines.

• The tree reorganization by addition and
deletion is not so uncommon, but often
happens over time, not as a single rename
with some modifications. 4,500 files were
added or deleted, but less than 600 were
renamed.

• The workflow involves frequent merges
between subsystem trees and the mainline.
About 1,500 changes are merges (7%).

• A merge tends to be straightforward. The
median number of paths involved in the
1,500 merges was 185, and among them,
only 10 required manual inspection of
content-level merges.

Initial design guidelines came from the above
project characteristics.

• A few dozen people playing the integrator
role have to handle work by 2,000 contrib-
utors, and it is paramount to make it effi-
cient form them to perform common oper-
ations, such as patch acceptance and merg-
ing.

388 • GIT—A Stupid Content Tracker

• Although the entire project is large, in-
dividual changes tend to be localized.
Supporting patch application and merging
with a working tree with local modifica-
tions, as long as such local modifications
do not interfere with the change being pro-
cessed, makes the integrators’ job more ef-
ficient.

• The application of an e-mailed patch must
be very fast. It is not uncommon to feed
more than 1,000 changes at once during a
sync from the -mm tree to the mainline.

• When existing contents are moved around
in the project tree, renaming of an entire
file (with or without modification at the
same time) is not a majority. Other con-
tent movements happen more often, such
as consolidating parts of multiple files to
one new file or splitting an existing files
into multiple new files. Recording file re-
names and treating them specially does not
help much.

• Although the merge plays an important
role in building the history of the project,
clever merge algorithms do not make
much practical difference, because ma-
jority of the merges are trivial; nontriv-
ial cases need to be examined carefully
by humans anyway, and the maintainer
can always respond, “This does not apply,
please rework it based on the latest ver-
sion and resubmit.” Faster merge is more
important, as long as it does not silently
merge things incorrectly.

• Frequent and repeated merges are the
norm. It is important to record what has
already been merged in order to avoid hav-
ing to resolve the same merge conflicts
over and over again.

• Two revisions close together tend to have
many common directories unchanged be-

tween them. Tree comparison can take ad-
vantage of this to avoid descending into
subdirectories that are represented by the
same tree object while examining changes.

3 Evolution

The very initial version of git, released by Linus
Torvalds on April 7, 2005, had only a handful
of commands to:

• initialize the repository;

• update the index to prepare for the next
tree;

• create a tree object out of the current index
contents;

• create a commit object that points at its
tree object and its parent commits;

• print the contents of an object, given its
object name;

• read a tree object into the current index;

• show the difference between the index and
the working tree.

Even with this only limited set of commands, it
was capable of hosting itself. It needed script-
ing around it even for “power users.”

By the end of the second week, the Plumbing
level already had many of the fundamental data
structure of today’s git, and the initial commit
of the modern Linux kernel history hosted on
git (v2.6.12-rc2) was created with this version.
It had commands to:

• read more than one tree object to process
a merge in index;

2006 Linux Symposium, Volume One • 389

• perform content-level merges by iterating
over an unmerged index;

• list the commit ancestry and find the most
recent common commit between two lines
of development;

• show differences between two tree objects,
in the raw format;

• fetch from a remote repository over rsync
and merge the results.

When two lines of development meet, git uses
the index to match corresponding files from the
common ancestor (merge base) and the tips of
the two branches. If one side changed a file
while the other side didn’t, which often hap-
pens in a big project, the merge algorithm can
take the updated version without looking at the
contents of the file itself. The only case that
needs the content-level merge is when both side
changed the same file. This tree merge opti-
mization is one of the foundations of today’s
git, and it was already present there. The first
ever true git merge in the Linux kernel repos-
itory was made with this version on April 17,
2005.

By mid May, 2005, it had commands to:

• fetch objects from remote repositories
over HTTP;

• create tags that point at other objects;

• show differences between the index and a
tree, working tree files and a tree, in ad-
dition to the original two tree compari-
son commands—both raw and patch for-
mat output were supported;

• show the commit ancestry along with the
list of changed paths.

By the time Linus handed the project over to the
current maintainer in late July 2005, the core
part was more or less complete. Added during
this period were:

• packed archive for efficient storage, ac-
cess, and transfer;

• the git “native” transfer protocol, and the
git-daemon server;

• exporting commits into the patch format
for easier e-mail submission.

• application of e-mailed patches.

• rename detection by diff commands.

• more “user friendliness” layer commands,
such as git-add and git-diff wrap-
pers.

The evolution of git up to this point primar-
ily concentrated on supporting the people in
the integrator role better. Support for individ-
ual developers who feed patches to integrators
was there, but providing developers with more
pleasant user experiences was left to third-party
Porcelains, most notably Cogito and StGIT.

4 Features and Strengths

This section discusses a few examples of how
the implementation achieves the design goals
stated earlier.

4.1 Patch flows

There are two things git does to help developers
with the patch-based workflow.

390 • GIT—A Stupid Content Tracker

Generating a patch out of a git-managed history
is done by using the git-diff-tree com-
mand, which knows how to look at only sub-
trees that are actually different in two trees for
efficient patch generation.

The diff commands in git can optionally be told
to detect file renames. When a file is renamed
and modified at the same time, with this op-
tion, the change is expressed as a diff between
the file under the old name in the original tree
and the file under the new name in the updated
tree. Here is an example taken from the kernel
project:

5e7b83ffc67e15791d9bf8b2a18e4f5fd0eb69b8
diff --git a/arch/um/kernel/sys_call_table....
similarity index 99%
rename from arch/um/kernel/sys_call_table.c
rename to arch/um/sys-x86_64/sys_call_table.c
index b671a31..3f5efbf 100644
--- a/arch/um/kernel/sys_call_table.c
+++ b/arch/um/sys-x86_64/sys_call_table.c
@@ -16,2 +16,8 @@ #include "kern_util.h"

+#ifdef CONFIG_NFSD
+#define NFSSERVCTL sys_nfsservctl
+#else
+#define NFSSERVCTL sys_ni_syscall
+#endif
+
#define LAST_GENERIC_SYSCALL __NR_keyctl

This is done to help reviewing such a change by
making it easier than expressing it as a deletion
and a creation of two unrelated files.

The committer (typically the subsystem main-
tainer) keeps the tip of the development branch
checked out, and applies e-mailed patches to it
with git-apply command. The command
checks to make sure the patch applies cleanly
to the working tree, paths affected by the patch
in the working tree are unmodified, and the in-
dex does not have modification from the tip of
the branch. These checks ensure that after ap-
plying the patch to the working tree and the in-
dex, the index is ready to be committed, even

when there are unrelated changes in the work-
ing tree. This allows the subsystem maintainer
to be in the middle of doing his own work and
still accept patches from outside.

Because the workflow git supports should not
require all participants to use git, it understands
both patches generated by git and traditional
diff in unified format. It does not matter how
the change was prepared, and does not nega-
tively affect contributors who manage their own
patches using other tools, such as Andrew Mor-
ton’s patch-scripts, or quilt.

4.2 Frequent merges

A highly distributed development process
involves frequent merges between different
branches. Git uses its commit ancestry relation
to find common ancestors of the branches being
merged, and uses a three-way merge algorithm
at two levels to resolve them. Because merges
tend to happen often, and the subprojects are
highly modular, most of the merges tend to
deal with cases where only one branch modi-
fies paths that are left intact by the other branch.
This common case is resolved within the index,
without even having to look at the contents of
files. Only paths that need content-level merges
are given to an external three-way merge pro-
gram (e.g. “merge” from the RCS suite) to be
processed. Similarly to the patch-application
process, the merge can be done as long as the
index does not have modification from the tip of
the branch and there is no change to the work-
ing tree files that are involved in the merge, to
allow the integrator to have local changes in the
working tree.

While merging, if one branch renamed a file
from the common ancestor while the other
branch kept it at the same location (or renamed
it to a different location), the merge algorithm

2006 Linux Symposium, Volume One • 391

notices the rename between the common an-
cestor and the tips of the branches, and ap-
plies three-way merge algorithm to merge the
renames (i.e. if one branch renamed but the
other kept it the same, the file is renamed). The
experiences by users of this “merging renamed
paths” feature is mixed. When merges are fre-
quently done, it is more likely that the differ-
ences in the contents between the common an-
cestor and the tip of the branch is small enough
that automated rename detector notices it.

When two branches are merged frequently with
each other, there can be more than one closest
common ancestor, and depending on which an-
cestor is picked, the three-way merge is known
to produce different results. The merge al-
gorithms git uses notice this case and try to
be safe. The faster “resolve” algorithm leaves
the resolution to the end-user, while the more
careful “recursive” algorithm first attempts to
merge the common ancestors (recursively—
hence its name) and then uses the result as the
merge base of the three-way merge.

4.3 Following changes

The project history is represented as a parent-
child ancestry relation of commit objects, and
the Plumbing command git-rev-list is
used to traverse it. Because detecting subdirec-
tory changes between two trees is a very cheap
operation in git, it can be told to ignore commits
that do not touch certain parts of the directory
hierarchy by giving it optional pathnames. This
allows the higher-level Porcelain commands to
efficiently inspect only “interesting” commits
more closely.

The traversal of the commit ancestry graph is
also done while finding a regression, and is
used by the git-bisect command. This
traversal can also be told to omit commits that
do not touch a particular area of the project di-
rectory; this speeds up the bug-hunting process

when the source of the regression is known to
be in a particular area.

4.4 Interoperating with other SCM

A working tree checked out from a foreign
SCM system can be made into a git reposi-
tory. This allows an individual participant of
a project whose primary SCM system is not
git to manage his own changes with git. Typ-
ically this is done by using two git branches
per the upstream branch, one to track the for-
eign SCM’s progress, another to hold his own
changes based on that. When changes are
ready, they are fed back by the project’s pre-
ferred means, be it committing into the foreign
SCM system or sending out a series of patches
via e-mail, without affecting the workflow of
the other participants of the projects. This al-
lows not just distributed development but dis-
tributed choice of SCM. In addition, there are
commands to import commits from other SCM
systems (as of this writing, supported systems
are: GNU arch, CVS, and Subversion), which
helps to make this process smoother.

There also is an emulator that makes a git
repository appear as if it is a CVS reposi-
tory to remote CVS clients that come over the
pserver protocol. This allows people more
familiar with CVS to keep using it while others
work in the same project that is hosted on git.

4.5 Interoperating among git users

Due to the clear separation of the Plumbing and
Porcelain layers, it is easy to implement higher-
level commands to support different workflows
on top of the core git Plumbing commands. The
Porcelain layer that comes with the core git re-
quires the user to be fairly familiar with how the
tools work internally, especially how the index
is used. In order to make effective use of the

392 • GIT—A Stupid Content Tracker

tool, the users need to be aware that there are
three levels of entities: the histories recorded in
commits, the index, and the working tree files.

An alternative Porcelain, Cogito, takes a dif-
ferent approach by hiding the existence of the
index from the users, to give them a more tra-
ditional two-level world model: recorded his-
tories and the working tree files. This may fall
down at times, especially for people playing the
integrator role during merges, but gives a more
familiar feel to new users who are used to other
SCM systems.

Another popular tool based on git, StGIT, is de-
signed to help a workflow that depends more
heavily on exchange of patches. While the pri-
mary way to integrate changes from different
tracks of development is to make merges in
the workflow git and Cogito primarily targets,
StGIT supports the workflow to build up piles
of patches to be fed upstream, and re-sync with
the upstream when some or all of the patches
are accepted by rebuilding the patch queue.

While different Porcelains can be used by dif-
ferent people with different work habits, the de-
velopment history recorded by different Porce-
lains are eventually made by the common
Plumbing commands in the same underlying
format, and therefore are compatible with each
other. This allows people with different work-
flow and choice of tools to cooperate on the
same project.

5 Weakness and Future Works

There are various missing features and unfin-
ished parts in the current system that require
further improvements. Note that the system is
still evolving at a rapid pace and some of the
issues listed here may have already been ad-
dressed when this paper is published.

5.1 Partial history

The system operates on commit ancestry chains
to perform many of the interesting things it
does, and most of the time it only needs to look
at the commits near the tip of the branches. An
obvious example is to look at recent develop-
ment histories. Merging branches need access
to the commits on the ancestry chain down to
the latest common ancestor commit, and no ear-
lier history is required. One thing that is often
desired but not currently supported is to make
a “shallow” clone of a repository that records
only the recent history, and later deepen it by
retrieving older commits.

Synchronizing two git repositories is done by
comparing the heads of branches on both repos-
itories, finding common ancestors and copying
the commits and their associated tree and blob
objects that are missing from one end to the
other. This operation relies on an invariant that
all history behind commits that are recorded as
the heads of branches are already in the repos-
itory. Making a shallow clone that has only
commits near the tip of the branch violates this
invariant, and a later attempt to download older
history would become a no-operation. To sup-
port “shallow” cloning, this invariant needs to
be conditionally lifted during “history deepen-
ing” operation.

5.2 Subprojects

Multiple projects overlayed in a single direc-
tory are not supported. Different repositories
can be stored along with their associated work-
ing trees in separate subdirectories, but cur-
rently there is no support to tie the versions
from the different subprojects together.

There have been discussions on this topic and
two alternative approaches were proposed, but

2006 Linux Symposium, Volume One • 393

there were not enough interest to cause either
approach to materialize in the form of concrete
code yet.

5.3 Implications of not recording renames

In an early stage of the development, we de-
cided not to record rename information in trees
nor commits. This was both practical and
philosophical.

Files are not renamed that often, and it was ob-
served that moving file contents around with-
out moving the file itself happened just as of-
ten. Not having to record renames specially,
but always recording the state of the whole tree
in each revision, was easier to implement from
a practical point of view.

When examining the project history, the ques-
tion “where did this function come from, and
how did it get into the current form?” is far
more interesting than “where did this file come
from?” and when the former question is an-
swered properly (i.e. “it started in this shape
in file X, but later assumed that shape and mi-
grated to file Y”), the latter becomes a nar-
row special case, and we did not want to only
support the special case. Instead, we wanted
to solve the former problem in a way general
enough to make the latter a non-issue. How-
ever, deliberately not recording renames often
contradicts people’s expectations.

Currently we have a merge strategy that looks
at the common ancestor and two branch heads
being merged to detect file renames and try to
merge the contents accordingly. If the modifi-
cations made to the file in question across re-
names is too big, the rename detection logic
would not notice that they are related. It is
possible for the merge algorithm to inspect all
commits along the ancestry chain to make the
rename detection more precise, but this would
make merges more expensive.

6 Conclusion

Git started as a necessity to have a minimally
usable system, and during its brief development
history, it has quickly become capable of host-
ing one of the most important free software
projects, the Linux kernel. It is now used by
projects other than the kernel (to name a few:
Cairo, Gnumeric, Wine, xmms2, the X.org X
server). Its simple model and tool-based ap-
proach allow it to be enhanced to support differ-
ent workflows by scripting around it and still be
compatible with other people who use it. The
development community is active and is grow-
ing (about 1500 postings are made to the mail-
ing list every month).

394 • GIT—A Stupid Content Tracker

Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

