
Problem Solving With Systemtap

Frank Ch. Eigler
Red Hat

fche@redhat.com

Abstract

Systemtap is becoming a useful tool to help
solve low-level OS problems. Most features de-
scribed in the future tense at last year’s OLS
are now complete. We review the status and
recent developments of the system. In pass-
ing, we present solutions to some complex low-
level problems that bedevil kernel and applica-
tion developers.

Systemtap recently gained support for static
probing markers that are compiled into the ker-
nel, to complement the dynamic kprobes
system. It is a simple and fast mechanism, and
we invite kernel developers and other trace-like
tools to adopt it.

1 Project status

At OLS 2005, we presented[4] systemtap, the
open source tool being developed for trac-
ing/probing of a live unmodified linux sys-
tem. It accepts commands in a simple script-
ing language, and hooks them up to probes in-
serted at requested code locations within the
kernel. When the kernel trips across the probes,
routines in a compiled form of the script are
quickly run, then the kernel resumes. Over the
last year, with the combined efforts of a dozen
developers supported by four companies, much
of this theory has turned into practice.

1.1 Scripting language

The systemtap script is a small domain-specific
language resembling awk and C. It has only a
few data types (integers and strings, plus asso-
ciative arrays of these), full control structures
(blocks, conditionals, loops, functions). It is
light on punctuation (semicolons optional) and
on declarations (types are inferred and checked
automatically). Its core concept, the “probe,”
consists of a probe point (its trigger event) and
its handler (the associated statements).

Probe points name the kernel events at which
the statements should be executed. One may
name nearly any function, or a source file and
line number where the breakpoint is to be set
(just like in a symbolic debugger), or request
an asynchronous event like a periodic timer.
Systemtap defines a hierarchical probe point
namespace, a little like DNS.

Probe handlers have few constraints. They can
print data right away, to provide a sort of on-
the-fly printk. Or, they can save a times-
tamp in a variable and compare it with a later
probe hit, to derive timing profiles. Or, they
can follow kernel data structures, and speak up
if something is amiss.

The scripting language is implemented by a
translator that creates C code, which is in turn
compiled into a binary kernel module. Probe

262 • Problem Solving With Systemtap

points are mapped to virtual addresses by refer-
ence to the kernel’s DWARF debugging infor-
mation left over from its build. The same data
is used to resolve references to kernel “target-
side” variables. Their compiled nature allows
even elaborate probe scripts to run fast.

Safety is an essential element of the design.
All the language constructs are subjected to
translation- and run-time checks, which aim to
prevent accidental damage to the system. This
includes prevention of infinite loops, memory
use, and recursion, pointer faults, and several
others. Many checks may be inspected within
the translator-generated C code.

Some safety mechanisms are incomplete at
present. Systemtap contains a blacklist of ker-
nel areas that are deemed unsafe to probe, since
they might trigger infinite probing recursion,
locking reentrancy, or other nasty phenomena.
This blacklist is just getting started, so prob-
ing using broad wildcards is a recipe for pan-
ics. Similarly, we haven’t sufficiently ana-
lyzed the script-callable utility functions like
our gettimeofday wrapper to ensure that it
is safe to call from any probe handler. Work in
these directions is ongoing.

1.2 Recent developments

The most basic development since last summer
is that the system works, whereas last year we
relied on several mock-ups. You can download
it1, build it, and use it on your already installed
kernels today. It is not perfect nor complete,
but nor is it vapourware.

kprobes has received a heart transplant. The
most significant of these was truly concur-
rent probing on multiprocessor machines, made
possible by a switch to RCU data structures.

1http://sourceware.org/systemtap/

Implementation details are discussed in a sep-
arate paper [3] during this conference. In or-
der to exploit the parallelism enabled by this
improvement, systemtap supports variables to
track global statistics aggregates like averages
or counts using contention-free data structures.

For folks who like the exhilaration of full con-
trol, or have a distaste for the scripting lan-
guage, Systemtap supports bypassing the cush-
ion. In “guru mode,” systemtap allows inter-
mingling of literal C code with script, to go be-
yond the limitations of pure script code. One
can query or manipulate otherwise inaccessible
kernel state directly, but bears responsibility for
doing so safely.

Systemtap documentation is slowly growing, as
is our collection of sample scripts. There is a
fifteen-page language tutorial, and a few dozen
worked out examples on our web site. More
and more first-time users are popping up on the
mailing list, so we are adapting to supporting
new users, not just fellow project developers.

1.3 Usage scenarios

While it’s still early, systemtap has suggested
several uses. First is simple exploration and
profiling. A probe on “timer.profile” and col-
lecting stack backtrace samples gets one a
coarse profile. A probe at a troubled function,
with a similar a stack backtrace, tells one who
is the troublemaker. Probes on system call han-
dling functions (or more conveniently named
aliases defined in a library) give one an instant
system-wide strace, with as much filtering
and summarizing as one may wish. As a taste,
figure 1 demonstrates probing function nesting
within a compilation unit.

Daniel Berranger [1] arranged to run sys-
temtap throughout a Linux boot sequence
(/etc/init.d scripts) to profile the I/O

2006 Linux Symposium, Volume One • 263

and forking characteristics of the many startup
scripts and daemons. Some wasteful behavior
showed up right away in the reports. On a sim-
ilar topic, Dave Jones [2] is presenting a paper
at this conference.

Another problem may be familiar: an overac-
tive kswapd. In an old Red Hat Enterprise
Linux kernel, it was found that some inner
page-scanning loop ran several orders of mag-
nitude more iterations than anticipated, due to
some error in queue management code. Does
this kind of thing not happen regularly? Sys-
temtap was not available for diagnosing this
bug, but it would have been easy to probe loops
in the suspect functions, say by source file and
line number, to count and graph relative execu-
tion counts.

2 Static probing markers

Systemtap recently added support for static
probing markers or “markers” for short. This
is a way of letting developers designate points
in their functions as being candidates for
systemtap-style probing. The developer inserts
a macro call at the points of interest, giving the
marker a name and some optional parameters,
and grudgingly recompiles the kernel. (The
name can be any alphanumeric symbol, and
should be reasonably unique across the kernel
or module. Parameters may be string or nu-
meric expressions.)

In exchange for this effort, systemtap marker-
based probes are faster and more precise than
kprobes. The better precision comes from not
having to covet the compiler’s favours. Such
fickle favours include retaining clean bound-
aries in the instruction stream between inter-
esting statements, and precisely describing po-
sitions of variables in the stack frame. Since
markers don’t rely on debugging information,

neither favour is required, and the compiler can
channel its charms into unabated optimization.
The speed advantage comes from using direct
call instructions rather than int 3 breakpoints
to dispatch to the systemtap handlers. We will
see below just how big a difference this makes.

STAP_MARK (name);
STAP_MARK_NS (name,num,string);

Just putting a marker into the code does noth-
ing except waste a few cycles. A marker can be
“activated” by writing a systemtap probe asso-
ciated with the marker name. All markers with
the same name are identified, and are made to
call the probe handler routine. Like any other
systemtap probe, the handler can trace, collect,
filter, and aggregate data before returning.

probe kernel.mark("name") { }
probe module("drv").mark("name") { }

2.1 Implementation

As hinted above, the probe marker is a macro2

that consists of a conditional indirect function
call. Argument expressions are evaluated in the
conditional function call. Similarly to C++, an
explicit argument-type signature is appended to
the macro and the static variable name.

#define STAP_MARK(n) do { \
static void (*__mark_##n##_)(); \
if (unlikely (__mark_##n##_)) \

(void) (__mark_##n##_()); \
} while (0)

In x86 assembly language, this translates to a
load from a direct address, test, and a con-
ditional branch over a call sequence. The

2Systemtap includes a header file that defines a scores
of type/arity permutations.

264 • Problem Solving With Systemtap

load/zero-test is easily optimized by “hoisting”
it up (earlier), since it is operating on private
data. With GCC’s -freorder-blocks op-
timization flag, the instructions for the function
call sequence tend to be pushed well away from
(beyond) the hot path, and get jumped to us-
ing a conditional forward branch. That is ideal
from the perspective of hardware static branch
prediction.

A new static variable is created for each macro.
If the macro is instantiated within an inline
function, all inlined instances within a program
will share that same variable. Systemtap can
search for the variables in the symbol table by
matching names against the stylized naming
scheme. Further, systemtap deduces argument
types from the signature suffix, so it can write a
type-safe function to accept the parameters and
dispatch to a compiled probe handler.

During probe initialization, the static variable
containing the marker’s function pointer is sim-
ply overwritten to point at the handler, and it is
cleared again at shutdown.3

This design implies that only a single handler
can be associated with any single marker: other
systemtap sessions are locked out temporar-
ily. Should this become a problem for par-
ticularly popular markers, we can add support
for “multi-marker” macros that use some small
number of synonymous static variables instead
of one. This would trade utility for speed.

2.2 Performance

Several performance metrics are interesting:
code bloat, slowdown due to a dormant marker,
dispatch cost of an active marker. These quan-
tities may be compared to the classic kprobes

3These operations atomically synchronize using
cmpxchg.

alternative. On all these metrics, markers seem
to perform well.

For demonstration purposes, we inserted
marker macros in just two spots in a 2.6.16-
based kernel: the scheduler context-switch rou-
tine, just before switch_to (passing the
“from” and “to” task->pid numbers), and
the system call handler sys_getuid (pass-
ing current->uid). All tests were run on
a Fedora Core 5 machine with a 3 GHz Pen-
tium 4 HT.

Code bloat is the number of bytes of instruc-
tion code needed to support the marker, which
impacts the instruction cache. With kprobes,
there is no code inserted, so those numbers are
zero. We measured it for static markers by dis-
assembling otherwise identical kernel binaries,
compiled with and without markers.

function test call
getuid 10 19

context_switch 19 34

Slowdown due to a dormant marker is the time
penalty for having a potential but unused probe
point. This quantity is also zero for kprobes.
For our static markers, it is the time taken to
test whether the static variable is set, and it be-
ing clear, to bypass the probe function call. It
may incur a data cache miss (for loading the
static variable), but the actual test and properly
predicted branch can be nearly “free.”

Indeed, a microbenchmark that calls an marker-
instrumented getuid system call in a tight
loop a million times has minimum and aver-
age times that match one that calls an uninstru-
mented system call (getgid). A different mi-
crobenchmark that runs the same marker macro
but in user space, surrounded by rdtscll
calls, indicates a cost of a handful of cycles
each: 4–20.

2006 Linux Symposium, Volume One • 265

Since the slowdown due to a dormant marker
is so small, we plan to measure a heavily in-
strumented kernel macroscopically. However,
adding markers strategically into the kernel is
challenging, if they are to represent plausible
extra load.

Finally, let’s discuss the dispatch speed of an
active marker. This is important because it
relates inversely to the maximum number of
probes that can trigger per unit time. The over-
head for a reasonable frequency of probe hits
should not overwhelm the system. For our
static markers, the dispatch overhead consists
of the indirect function call. On the test plat-
form, this additional cost is just 50–60 cycles.

For kprobes, an active probe includes an elab-
orate process involving triggering a breakpoint
fault (int 3 on x86), entering the fault han-
dler, identifying which handler belongs to that
particular breakpoint address, calling the han-
dler, single-stepping the original instruction un-
der the breakpoint, and probably some other
steps we left out.

A realistic systemtap-based microbenchmark
measured the time required for one round
trip of the same functions used above: the
marker-instrumented sys_getuid and unin-
strumented sys_getgid. Each probe han-
dler is identical, and increments a script-level
global counter variable for each visit. The fol-
lowing matrix summarizes the typical number
of nanoseconds per system call (lower is better)
with the listed instrumentation active.

function marker kprobe both neither
getuid 820 2100 2250 620
getgid 2100 620

Note that the complete marker-based probes
run in 200 ns, and kprobes-based probes run in
1480 ns. Some arithmetic lets us work back-
ward, to estimate just the dispatching times and

exclude the systemtap probes. The cost of the
50–60 cycles of function call dispatch for the
markers (measured earlier) takes about 20 ns on
the test host. That implies that the systemtap
probe handler took about 180 ns. Since iden-
tical probe handlers were run for both kprobes
and markers, we can subtract that, leaving 1300
ns as the kprobes dispatch overhead.

While the above analysis only pretends to be
quantitative, it gives some evidence that mark-
ers have attractive performance: cheap to sit
around dormant, and fast when activated.

3 Next steps

3.1 User-space probes

Systemtap still lacks support for probing user-
space programs: we can go no higher than the
system call interface. A kprobes extension is
under development to allow the same sorts of
breakpoints to be inserted into shared libraries
and executables at runtime that it now manages
in the kernel. When this part is finished and ac-
cepted, systemtap will exploit it shortly. Probes
in user space would use a similar syntax to re-
fer to sources or symbols as already available
for kernel probe points.

Probing in user space may seem like a task for a
different sort of tool, perhaps a plain debugger
like gdb, or a fancier one like frysk4, or another
supervisor process based on ptrace. How-
ever, we believe that the handler routine of even
a user-space probe should run in kernel space,
because:

1. The microsecond level speed of a kprobes
“round trip” is still an order of magnitude
faster than the equivalent process state
query / manipulation using the ptrace API.

4http://sources.redhat.com/frysk

266 • Problem Solving With Systemtap

2. Some problems require correlation of ac-
tivities in the kernel with those in user-
space. Such correlations are naturally
expressed by a single script that shares
variables amongst kernel- and user-space
probes.

Once we pass that hurdle, joint application of
user-space kprobes and static probing markers
will make it possible for user-space programs
and libraries to contain probing markers too.
This would let libraries or programs designate
their own salient probe points, while enjoying a
low dormant probe cost. Language interpreters
like Perl and PHP can insert markers into their
evaluation loops to mark events like script func-
tion entries/exits and garbage collection. Com-
plex applications can instrument multithread-
ing events like synchronization and lock con-
tention.

3.2 Debugging aid

Systemtap is becoming stable enough that ker-
nel developers should feel comfortable with us-
ing it as a first-ditch debugging aid. When you
run into a problem where a little bit of tracing,
profiling, event counting might help, we are ea-
ger to help you write the necessary scripts.

3.3 Sysadmin aid

We would like to develop a suite of system-
tap scripts that supplant tools like netstat,
vmstat, strace. For inspiration, it may
be desirable to port the OpenSolaris DTrace-
Toolkit5, which is a suite of dtrace scripts to
provide an overview of the entire system’s ac-
tivity. Systemtap will make it possible to save

5http://www.opensolaris.org/os/
community/dtrace/dtracetoolkit/

and reuse compiled scripts, so that deployment
and execution of such a suite could be easier
and faster.

3.4 Grand unified tracing

There are many linux kernel tracing projects
around. Every few months, someone reinvents
LTT and auditing. While the author does not
understand all the reasons for which these tools
tend not to be integrated into the mainstream
kernel, perhaps one of them is performance.

To the extent that is true, we propose that
these groups consider using a shared pool of
static markers as the basic kernel-side instru-
mentation mechanism. If they prove to have
as low dormant cost and as high active perfor-
mance as initial experience suggests, perhaps
this could motivate the various tracing efforts
and kernel subsystem developers to finally join
forces. Let’s designate standard trace/probe
points once and for all. Tracing backends can
attach to these markers the same way system-
tap would. There would be no need for them to
maintain kernel patches any more. Let’s think
about it.

References

[1] Daniel Berranger.
http://people.redhat.com/

berrange/systemtap/bootprobe/,
January 2006.

[2] Dave Jones. Why Userspace Sucks. In
Proceedings of the 2006 Ottawa Linux
Symposium, July 2006.

[3] Ananth N. Mavinakayanahalli et al.
Probing the Guts of Kprobes. In
Proceedings of the 2006 Ottawa Linux
Symposium, July 2006.

2006 Linux Symposium, Volume One • 267

[4] Vara Prasad et al. Dynamic
Instrumentation of Production Systems. In
Proceedings of the 2005 Ottawa Linux
Symposium, volume 2, pages 49–64, July
2005.

268 • Problem Solving With Systemtap

cat socket-trace.stp
probe kernel.function("*@net/socket.c") {
printf ("%s -> %s\n", thread_indent(1), probefunc())

}
probe kernel.function("*@net/socket.c").return {
printf ("%s <- %s\n", thread_indent(-1), probefunc())

}

stap socket-trace.stp
0 hald(2632): -> sock_poll
28 hald(2632): <- sock_poll

[...]
0 ftp(7223): -> sys_socketcall

1159 ftp(7223): -> sys_socket
2173 ftp(7223): -> __sock_create
2286 ftp(7223): -> sock_alloc_inode
2737 ftp(7223): <- sock_alloc_inode
3349 ftp(7223): -> sock_alloc
3389 ftp(7223): <- sock_alloc
3417 ftp(7223): <- __sock_create
4117 ftp(7223): -> sock_create
4160 ftp(7223): <- sock_create
4301 ftp(7223): -> sock_map_fd
4644 ftp(7223): -> sock_map_file
4699 ftp(7223): <- sock_map_file
4715 ftp(7223): <- sock_map_fd
4732 ftp(7223): <- sys_socket
4775 ftp(7223): <- sys_socketcall

[...]

Figure 1: Tracing and timing functions in net/sockets.c.

Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

