
Linux as a Hypervisor
An Update

Jeff Dike
Intel Corp.

jeffrey.g.dike@intel.com

Abstract

Virtual machines are a relatively new workload
for Linux. As with other new types of applica-
tions, Linux support was somewhat lacking at
first and improved over time.

This paper describes the evolution of hypervi-
sor support within the Linux kernel, the spe-
cific capabilities which make a difference to
virtual machines, and how they have improved
over time. Some of these capabilities, such
as ptrace are very specific to virtualization.
Others, such as AIO and O_DIRECT support
help applications other than virtual machines.

We describe areas where improvements have
been made and are mature, where work is on-
going, and finally, where there are currently un-
solved problems.

1 Introduction

Through its history, the Linux kernel has had
increasing demands placed on it as it supported
new applications and new workloads. A rela-
tively new demand is to act as a hypervisor, as
virtualization has become increasingly popular.
In the past, there were many weaknesses in the

ability of Linux to be a hypervisor. Today, there
are noticeably fewer, but they still exist.

Not all virtualization technologies stress the ca-
pabilities of the kernel in new ways. There
are those, such as qemu, which are instruc-
tion emulators. These don’t stress the ker-
nel capabilities—rather they are CPU-intensive
and benefit from faster CPUs rather than more
capable kernels. Others employ a customized
hypervisor, which is often a modified Linux
kernel. This will likely be a fine hypervisor, but
that doesn’t benefit the Linux kernel because
the modifications aren’t pushed into mainline.

User-mode Linux (UML) is the only prominent
example of a virtualization technology which
uses the capabilities of a stock Linux kernel.
As such, UML has been the main impetus for
improving the ability of Linux to be a hyper-
visor. A number of new capabilities have re-
sulted in part from this, some of which have
been merged and some of which haven’t. Many
of these capabilities have utility beyond virtual-
ization, as they have also been pushed by peo-
ple who are interested in applications that are
unrelated to virtualization.

ptrace is the mechanism for virtualizing sys-
tem calls, and is the core of UML’s virtualiza-
tion of the kernel. As such, some changes to
ptrace have improved (and in one case, en-
abled) the ability to virtualize Linux.



226 • Linux as a Hypervisor

Changes to the I/O system have also improved
the ability of Linux to support guests. These
were driven by applications other than virtual-
ization, demonstrating that what’s good for vir-
tualization is often good for other workloads as
well.

From a virtualization point of view, AIO and
O_DIRECT allow a guest to do I/O as the
host kernel does—straight to the disk, with no
caching between its own cache and the device.
In contrast, MADV_REMOVE allows a guest to
do something which is very difficult for a phys-
ical machine, which is to implement hotplug
memory, by releasing pages from the middle of
a mapped file that’s backing the guest’s physi-
cal memory.

FUSE (Filesystems in Userspace), another re-
cent addition, is also interesting, this time from
a manageability standpoint. This allows a guest
to export its filesystem to the host, where a host
administrator can perform some guest manage-
ment tasks without needing to log in to the
guest.

There is a new effort to add a virtualization
infrastructure to the kernel. A number of
projects are contributing to this effort, includ-
ing OpenVZ, vserver, UML, and others who are
more interested in resource control than virtu-
alization. This holds the promise of allowing
guests to achieve near-native performance by
allowing guest process system calls to execute
on the host rather than be intercepted and virtu-
alized by ptrace.

Finally, there are a few problem areas which
are important to virtualization for which there
are no immediate solutions. It would be conve-
nient to be able to create and manage address
spaces separately from processes. This is part
of the UML SKAS host patch, but the mecha-
nism implemented there won’t be merged into
mainline. The current virtualization infrastruc-
ture effort notwithstanding, system call inter-

ception will be needed for some time to come.
So, system call interception will still be an area
of concern. Ingo Molnar implemented a mech-
anism called VCPU which effectively allows a
process to intercept its own system calls. This
hasn’t been looked at in any detail, so it’s too
early to see if this is a better way for virtual
machines to do system call interception.

2 The past

2.1 ptrace

When UML was first introduced, Linux was in-
capable of acting as a hypervisor1. ptrace
allows one process to intercept the system calls
of another both at system call entry and exit.
The tracing process can examine and modify
the registers of the traced child. For example,
strace simply examines the process registers
in order to print the system call, its arguments,
and return value. Other tools, UML included,
modify the registers in order to change the sys-
tem call arguments or return value. Initially,
on i386, it was impossible to change the actual
system call, as the system call number had al-
ready been saved before the tracing parent was
notified of the system call. UML needed this in
order to nullify system calls so that they would
execute in such way as to cause no effects on
the host. This was done by changing the sys-
tem call to getpid. A patch to fix this was
developed soon after UML’s first release, and it
was fairly quickly accepted by Linus.

While this was a problem on i386, architectures
differ on their handling of attempts to change
system call numbers. The other architectures
to which UML has been ported (x86_64, s390,
and ppc) all handled this correctly, and needed

1on i386, which was the only platform UML ran on
at the time



2006 Linux Symposium, Volume One • 227

no changes to their system call interception in
order to run UML.

Once ptrace was capable of supporting
UML, attention turned to its performance, as
virtualized system calls are many times slower
than non-virtualized ones. An intercepted sys-
tem call involves the system call itself, plus four
context switches—to the parent and back on
both system call entry and exit. UML, and any
other tool which nullifies and emulates system
calls, has no need to intercept the system call
exit. So, another ptrace patch, from Lau-
rent Vivier, added PTRACE_SYSEMU, which
causes only system call entry to notify the par-
ent. There is no notification on system call
exit. This reduces the context switching due to
system call interception by 50%, with a corre-
sponding performance improvement for bench-
marks that execute a system call in a tight
loop. There is also a noticeable performance
increase for workloads that are not system call-
intensive. For example, I have measured a ~3%
improvement on a kernel build.

2.2 AIO and O_DIRECT

While these ptrace enhancements were
driven solely by the needs of UML, most of the
other enhancements to the kernel which make
it more capable as a hypervisor were driven by
other applications. This is the case of the I/O
enhancements, AIO and O_DIRECT, which
had been desired by database vendors for quite
a while.

AIO (Asynchronous IO) is the ability to issue
an I/O request without having to wait for it to
finish. The familiar read and write inter-
faces are synchronous—the caller can use them
to make one I/O request and has to wait until
it finishes before it can make another request.
The wait can be long if the I/O requires disk ac-
cess, which hurts the performance of processes

which could have issued more requests or done
other work in the meantime

A virtual OS is one such process. The ker-
nel typically issues many disk I/O requests at
a time, for example, in order to perform reada-
head or to swap out unused memory. When
these requests are performed sequentially, as
with read and write, there is a large perfor-
mance loss compared to issuing them simulta-
neously. For a long time, UML handled this
problem by using a separate dedicated thread
for I/O. This allowed UML to do other work
while an I/O request was pending, but it didn’t
allow multiple outstanding I/O requests.

The AIO capabilities which were introduced in
the 2.6 kernel series do allow this. On a 2.6
host, UML will issue many requests at once,
making it act more like a native kernel.

A related capability is O_DIRECT I/O. This al-
lows uncached I/O—the data isn’t cached in the
kernel’s page cache. Unlike a cached write,
which is considered finished when the data is
stored in the page cache, an O_DIRECT write
isn’t completed until the data is on disk. Sim-
ilarly, an O_DIRECT read brings the data in
from disk, even if it is available in the page
cache. The value of this is that it allows pro-
cesses to control their own caching without the
kernel performing duplicate caching on its own.
For a virtual machine, which comes with its
own caching system, this allows it to behave
like a native kernel and avoid the memory con-
sumption caused by buffered I/O.

2.3 MADV_REMOVE

Unlike AIO and O_DIRECT, which allow a
virtual kernel to act like a native kernel, MADV_
REMOVE allows it implement hotplug memory,
which is very much more difficult for a physical



228 • Linux as a Hypervisor

machine. UML implements its physical mem-
ory by creating a file on the host of the appro-
priate size and mapping pages from it into its
own address space and those of its processes. I
have long wanted a way to be able to free dirty
pages from this file to the host as though they
were clean. This would allow a simple way
to manage the host’s memory by moving it be-
tween virtual machines.

Removing memory from a virtual machine is
done by allocating pages within it and freeing
those pages to the host. Conversely, adding
memory is done by freeing previously allocated
pages back to the virtual machine’s VM sys-
tem. However, if dirty pages can’t be freed on
the host, there is no benefit.

I implemented one mechanism for doing this
some time ago. It was a new driver, /dev/
anon, which was based on tmpfs. UML phys-
ical memory is formed by mapping this device,
which has the semantics that when a page is no
longer mapped, it is freed. With /dev/anon,
in order to pull memory from a UML instance,
it is allocated from the guest VM system and
the corresponding /dev/anon pages are un-
mapped. Those pages are freed on the host, and
another instance can have a similar amount of
memory plugged in.

This driver was never seriously considered for
submission to mainline because it was a fairly
dirty kludge to the tmpfs driver and because it
was never fully debugged. However, the need
for something equivalent remained.

Late in 2005, Badari Pulavarty from IBM pro-
posed an madvise extension to do something
equivalent. His motivation was that some IBM
database wanted better control over its mem-
ory consumption and needed to be able to poke
holes in a tmpfs file that it mapped. This is ex-
actly what UML needed, and Hugh Dickens,
who was aware of my desire for this, pointed

Badari in my direction. I implemented a mem-
ory hotplug driver for UML, and he used it in
order to test and debug his implementation.

MADV_REMOVE is now in mainline, and at this
writing, the UML memory hotplug driver is in
-mm and will be included in 2.6.17.

3 Present

3.1 FUSE

FUSE2 is an interesting new addition to the
kernel. It allows a filesystem to be imple-
mented by a userspace driver and mounted like
any in-kernel filesystem. It implements a de-
vice, /dev/fuse, which the userspace driver
opens and uses to communicate with the kernel
side of FUSE. It also implements a filesystem,
with methods that communicate with the driver.
FUSE has been used to implement things like
sshfs, which allows filesystem access to a re-
mote system over ssh, and ftpfs, which allows
an ftp server to be mounted and accessed as a
filesystem.

UML uses FUSE to export its filesystem to the
host. It does so by translating FUSE requests
from the host into calls into its own VFS. There
were some mismatches between the interface
provided by FUSE and the interface expected
by the UML kernel. The most serious was
the inability of the /dev/fuse device to sup-
port asynchronous operation—it didn’t support
O_ASYNC or O_NONBLOCK. The UML ker-
nel, like any OS kernel, is event-driven, and
works most naturally when requests and other
things that require attention generate interrupts.
It must also be possible to tell when a particu-
lar interrupt source is empty. For a file, this
means that when it is read, it returns -EAGAIN

2http://fuse.sourceforge.net/



2006 Linux Symposium, Volume One • 229

instead of blocking when there is no input avail-
able. /dev/fuse didn’t do either, so I im-
plemented both O_ASYNC and O_NONBLOCK
support and sent the patches to Miklos Szeredi,
the FUSE maintainer.

The benefit of exporting a UML filesystem to
the host using FUSE is that it allows a num-
ber of UML management tasks to be performed
on the host without needing to log in to the
UML instance. For example, it would allow
the host administrator to reset a forgotten root
password. In this case, root access to the UML
instance would be difficult, and would likely re-
quire shutting the instance down to single-user
mode.

By chrooting to the UML filesystem mount on
the host, the host admin can also examine the
state of the instance. Because of the chroot,
system tools such as ps and top will see the
UML /proc and /sys, and will display the
state of the UML instance. Obviously, this only
provides read access to this state. Attempting to
kill a runaway UML process from within this
chroot will only affect whatever host process
has that process ID.

3.2 Kernel virtualization infrastructure

There has been a recent movement to introduce
a fairly generic virtualization infrastructure into
the kernel. Several things seemed to have hap-
pened at about the same time in order to make
this happen. Two virtualization projects, Vir-
tuozzo and vserver, which had long maintained
their kernel changes outside the mainline ker-
nel tree, expressed an interest in getting their
work merged into mainline. There was also in-
terest in related areas, such as workload migra-
tion and resource management.

This effort is headed in the direction of intro-
ducing namespaces for all global kernel data.

The concept is the same as the current filesys-
tem namespaces—processes are in the global
namespace by default, but they can place them-
selves in a new namespace, at which point
changes that they make to the filesystem aren’t
visible to processes outside the new namespace.
The changes in question are changed mounts,
not changed files—when a process in a new
namespace changes a file, that’s visible outside
the namespace, but when it make a mount in
its namespace, that’s not visible outside. For
filesystems, the situation is more complicated
than that because there are rules for propagating
new mounts between namespaces. However,
for virtualization purposes, the simplest view
of namespaces works—that changes within the
namespace aren’t visible outside it.

When3 finished, it will be possible to create
new instantiations of all of the kernel subsys-
tems. At this point, virtualization approaches
like OpenVZ and vserver will map pretty di-
rectly onto this infrastructure.

UML will be able to put this to good use, but
in a different way. It will allow UML to have
its process system calls run directly on the host,
without needing to intercept and emulate them
itself. UML will create an virtualized instance
of a subsystem, and configure it as appropriate.
At that point, UML process system calls which
use that subsystem can run directly on the host
and will behave the same as if it had been exe-
cuted within UML.

For example, virtualizing time will be a mat-
ter of introducing a time namespace which
contains an offset from the host time. Any
process within this namespace will see a sys-
tem time that’s different from the host time
by the amount of this offset. The offset
is changed by settimeofday, which can
now be an unprivileged operation since its ef-
fects are invisible outside the time namespace.

3or if—some subsystems will be difficult to virtualize



230 • Linux as a Hypervisor

gettimeofday will take the host time and
add the namespace offset, if any.

With the time namespace working, UML
can take advantage of it by allowing
gettimeofday to run directly on the host
without being intercepted. settimeofday
will still need to be intercepted because it
will be a privileged operation within the UML
instance. In order to allow it to run on the host,
user and groups IDs will need to be virtualized
as well.

UML will be able to use the virtualized sub-
systems as they become available, and not have
to wait until the infrastructure is finished. To
do this, another ptrace extension will be
needed. It will be necessary to selectively in-
tercept system calls, so a system call mask will
be added. This mask will specify which sys-
tem calls should continue to be intercepted and
which should be allowed to execute on the host.

Since some system calls will sleep when they
are executed on the host, the UML kernel will
need to be notified. When a process sleeps in a
system call, UML will need to schedule another
process to run, just as it does when a system call
sleeps inside UML. Conversely, when the host
system call continues running, the UML will
need to be notified so that it can mark the pro-
cess as runnable within its own scheduler. So,
another ptrace extension, asking for notifica-
tion when a child voluntarily sleeps and when
it wakes up again, will be needed. As a side-
benefit, this will also provide notification to the
UML kernel when a process sleeps because it
needs a page of memory to be read in, either
because that page hadn’t been loaded yet or be-
cause it had been swapped out. This will allow
UML to schedule another process, letting it do
some work while the first process has its page
fault handled.

3.3 remap_file_pages

When page faults are virtualized, they are fixed
by calling either mmap or mprotect4 on the
host. In the case of mapping a new page, a new
vm_area_struct (VMA) will be created on
the host. Normally, a VMA describes a large
number of contiguous pages, such as the pro-
cess text or data regions, being mapped from a
file into a region of a process virtual memory.

However, when page faults are virtualized, as
with UML, each host VMA covers a single
page, and a large UML process can have thou-
sands of VMAs. This is a performance prob-
lem, which Ingo Molnar solved by allowing
pages to be rearranged within a VMA. This
is done by introducing a new system call,
remap_file_pages, which enables pages
to be mapped without creating a new VMA for
each one. Instead, a single large mapping of
the file is created, resulting in a single VMA on
the host, and remap_file_pages is used to
update the process page tables to change page
mappings underneath the VMA.

Paolo Giarrusso has taken this patch and is
making it more acceptable for merging into
mainline. This is a challenging process, as the
patch is intrusive into some sensitive areas of
the VM system. However, the results should
be worthwhile, as remap_file_pages pro-
duces noticeable performance improvements
for UML, and other mmap-intensive applica-
tions, such as some databases.

4 Future

So far, I’ve talked about virtualization enhance-
ments which either already exist or which show

4depending on whether the fault was caused by no
page being present or the page being mapped with insuf-
ficient access for the faulting operation



2006 Linux Symposium, Volume One • 231

some promise of existing in the near future.
There are a couple of areas where there are
problems with no attractive solutions or a so-
lution that needs a good deal of work in order
to be possibly mergeable.

4.1 AIO enhancements

4.1.1 Buffered AIO

Currently AIO is only possible in conjunction
with O_DIRECT. This is where the greatest
benefit from AIO is seen. However, there is de-
mand for AIO on buffered data, which is stored
in the kernel buffer cache. UML has several
filesystems which store data in the host filesys-
tem, and the ability for these filesystems to per-
form AIO would be welcome. There is a patch
to implement this, but it hasn’t been merged.

4.1.2 AIO on metadata

Virtual machines would prefer to sleep in the
host kernel only when they choose to, and for
operations which may sleep to be performed
asynchronously and deliver an event of some
sort when they complete. AIO accomplishes
this nicely for file data. However, operations
on file metadata, such as stat, can still sleep
while the metadata is read from disk. So, the
ability to perform stat asynchronously would
be a nice small addition to the AIO subsystem.

4.1.3 AIO mmap

When reading and writing buffered data, it is
possible to save memory by mapping the data
and modifying the data in memory rather than
using read and write. When mapping a file,
there is no copying of the data into the process

address space. Rather, the page of data in the
kernel’s page cache is mapped into the address
space.

Against the memory savings, there is the cost of
changing the process memory mappings, which
can be considerable—comparable to copying
a page of data. However, on systems where
memory is tight, the option of using mmap for
guest file I/O rather than read and write
would be welcome.

Currently, there is no support for doing mmap
asynchronously. It can be simulated (which
UML does) by calling mmap (which returns
after performing the map, but without reading
any data into the new page), and then doing an
AIO read into the page. When the read finishes,
the data is known to be in memory and the page
can be accessed with high confidence5 that the
access will not cause a page fault and sleep.

This works well, but real AIO mmap support
would have the advantage that the cost of the
mmap and TLB flush could be hidden. If the
AIO completes while another process is in con-
text, then the address space of the process re-
questing the I/O can be updated for free, as a
TLB flush would not be necessary.

4.2 Address spaces

UML has a real need for the ability of one pro-
cess to be able to change mappings within the
address space of another. In SKAS (Separate
Kernel Address Space) mode, where the UML
kernel is in a separate address space from its
processes, this is critical, as the UML kernel
needs to be able to fix page faults, COW pro-
cesses address spaces during fork, and empty
process address spaces during execve. In

5there is a small chance that the page could be
swapped out between the completion of the read and the
subsequent access to the data



232 • Linux as a Hypervisor

SKAS3 mode, with the host SKAS patch ap-
plied, this is done using a special device which
creates address spaces and returns file descrip-
tors that can be used to manipulate them. In
SKAS0 mode, which requires no host patches,
address space changes are performed by a bit
of kernel code which is mapped into the pro-
cess address space.

Neither of these solutions is satisfactory, nor
are any of the alternatives that I know about.

4.2.1 /proc/mm

/proc/mm is the special device used in
SKAS3 mode. When it is opened, it creates
a new empty address space and returns a file
descriptor referring to it. This address space
remains in existence for as long as the file de-
scriptor is open. On the last close, if it is not in
use by a process, the address space is freed.

Mappings within a /proc/mm address space
are changed by writing structures to the cor-
responding file descriptor. This structure is
a tagged union with an arm each for mmap,
munmap, and mprotect. In addition, there is
a ptrace extension, PTRACE_SWITCH_MM,
which causes the traced child to switch from
one address space to another.

From a practical point of view, this has been
a great success. It greatly improves UML per-
formance, is widely used, and has been stable
on i386 for a long time. However, from a con-
ceptual point of view, it is fatally flawed. The
practice of writing a structure to a file descrip-
tor in order to accomplish something is merely
an ioctl in disguise. If I had realized this at
the time, I would have made it an ioctl. How-
ever, the requirement for a new ioctl is usually
symptomatic of a design mistake. The use of
write (or ioctl) is an abuse of the inter-
face. It would have been better to implement
three new system calls.

4.2.2 New system calls

My proposal, and that of Eric Biederman, who
was also thinking about this problem, was to
add three new system calls that would be the
same as mmap, munmap, and mprotect, ex-
cept that they would take an extra argument, a
file descriptor, which would describe the ad-
dress space to be operated upon, as shown in
Figure 1

This new address space would be returned by
a fourth new system call which takes no argu-
ments and returns a file descriptor referring to
the address space:

int new_mm(void);

Linus didn’t like this idea, because he didn’t
want to introduce a bunch of new system calls
which are identical to existing ones, except for
a new argument. Instead he proposed a new
system call which would run any other system
call in the context of a different address space.

4.2.3 mm_indirect

This new system call is shown in Figure 2.

This would switch to the address space spec-
ified by the file descriptor and run the system
call described by the second and third argu-
ments.

Initially, I thought this was a fine idea, and I
implemented it, but now I have a number of ob-
jections to it.

• It is unstructured—there is no type-
checking on the system call arguments.
This is generally considered undesirable in
the system call interface as it makes it im-
possible for the compiler to detect many
errors.



2006 Linux Symposium, Volume One • 233

int fmmap(int address_space, void ∗start, size_t length,
int prot, int flags, int fd, off_t offset);

int fmunmap(int addresss_space, void ∗start, size_t length);
int fmprotect(int address_space, const void ∗addr, size_t len,

int prot);

Figure 1: Extended mmap, munmap, and mprotect

int mm_indirect(int fd, unsigned long syscall,
unsigned long ∗args);

Figure 2: mm_indirect

• It is too general—it makes sense to invoke
relatively few system calls under mm_
indirect. For UML, I care only about
mmap, mprotect, and munmap6. The
other system calls for which this might
make sense are those which take pointers
into the process address space as either ar-
guments or output values, but there is cur-
rently no demand for executing those in a
different address space.

• It has strange corner cases—the im-
plementation of mm_indirect has to
be careful with address space reference
counts. Several system calls change
this reference count and mm_indirect
would need to be aware of these. For
example, both exit and execve deref-
erence the current address space. mm_
indirect has to take a reference on the
new address space for the duration of the
system call in order to prevent it disap-
pearing. However, if the indirected sys-
tem call is exit, it will never return, and
that reference will never be dropped. This
can be fixed, but the presence of behav-
ior like this suggests that it is a bad idea.
Also, the kernel stack could be attacked by

6and modify_ldt on i386 and x86_64

nesting mm_indirect. The best way to
deal with these problems is probably just
to disallow running the problematic sys-
tem calls under mm_indirect.

• There are odd implementation problems—
for performance reasons, it is desirable
not to do an address space switch to the
new address space when it’s not neces-
sary, which it shouldn’t be when chang-
ing mappings. However, mmap can sleep,
and some systems (like SMP x86_64)
get very upset when a process sleeps
with current->mm != current->
active_mm.

For these reasons, I now think that mm_
indirect is really a bad idea.

These are all of the reasonable alternatives that
I am aware of, and there are objections to all
of them. So, with the exception of having these
ideas aired, we have really made no progress on
this front in the last few years.

4.3 VCPU

An idea which has independently come up sev-
eral times is to do virtualization by introduc-



234 • Linux as a Hypervisor

ing the idea of another context within a pro-
cess. Currently, processes run in what would
be called the privileged context. The idea is
to add an unprivileged context which is entered
using a new system call. The unprivileged con-
text can’t run system calls or receive signals. If
it tries to execute a system call or a signal is de-
livered to it, then the original privileged context
is resumed by the “enter unprivileged context”
system call returning. The privileged context
then decides how to handle the event before re-
suming the unprivileged context again.

In this scheme, the privileged context would be
the UML kernel, and the unprivileged context
would be a UML process. This idea has the
promise of greatly reducing the overhead of ad-
dress space switching and system call intercep-
tion.

In 2004, Ingo Molnar implemented this, but
didn’t tell anyone until KS 2005. I haven’t yet
taken a good look at the patch, and it may turn
out that it is unneeded given the virtualization
infrastructure that is in progress.

5 Conclusion

In the past few years, Linux has greatly im-
proved its ability to host virtual machines. The
ptrace enhancements have been specifically
aimed at virtualization. Other enhancements,
such as the I/O changes, have broader appli-
cation, and were pushed for reasons other than
virtualization.

This progress notwithstanding, there are ar-
eas where virtualization support could improve.
The kernel virtualization infrastructure project
holds the promise of greatly reducing the over-
head imposed on guests, but these are early
days and it remains to be seen how this will play
out.

If, for some reason, it goes nowhere, Ingo Mol-
nar’s VCPU patch is still a possibility.

There are still some unresolved problems, no-
tably manipulating remote address spaces. This
aside, all major problems with Linux hosting
virtual machines have at least proposed solu-
tions, if they haven’t yet been actually solved.



Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


