Fully Automated Testing of the Linux Kernel

Martin Bligh
Google Inc.
mbligh@mbligh.org

Abstract

Some changes in the 2.6 development process
have made fully automated testing vital to the
ongoing stability of Linux®). The pace of de-
velopment is constantly increasing, with a rate
of change that dwarfs most projects. The lack
of a separate 2.7 development kernel means that
we are feeding change more quickly and di-
rectly into the main stable tree. Moreover, the
breadth of hardware types that people are run-
ning Linux on is staggering. Therefore it is vi-
tal that we catch at least a subset of introduced
bugs earlier on in the development cycle, and
keep up the quality of the 2.6 kernel tree.

Given a fully automated test system, we can
run a broad spectrum of tests with high fre-
quency, and find problems soon after they are
introduced; this means that the issue is still
fresh in the developers mind, and the offending
patch is much more easily removed (not buried
under thousands of dependant changes). This
paper will present an overview of the current
early testing publication system used on the
http://test.kernel.org website. We
then use our experiences with that system to de-
fine requirements for a second generation fully
automated testing system.

Such a system will allow us to compile hun-
dreds of different configuration files on ev-
ery release, cross-compiling for multiple dif-
ferent architectures. We can also identify per-

Andy P. Whitcroft
IBM Corp.

andyw@uk.ibm.com

formance regressions and trends, adding sta-
tistical analysis. A broad spectrum of tests
are necessary—boot testing, regression, func-
tion, performance, and stress testing; from disk
intensive to compute intensive to network in-
tensive loads. A fully automated test harness
also empowers other other techniques that are
impractical when testing manually, in order
to make debugging and problem identification
easier. These include automated binary chop
search amongst thousands of patches to weed
out dysfunctional changes.

In order to run all of these tests, and collate the
results from multiple contributors, we need an
open-source client test harness to enable shar-
ing of tests. We also need a consistent output
format in order to allow the results to be col-
lated, analysed and fed back to the community
effectively, and we need the ability to “pass”
the reproduction of issues from test harness to
the developer. This paper will describe the re-
quirements for such a test client, and the new
open-source test harness, Autotest, that we be-
lieve will address these requirements.

1 Introduction

It is critical for any project to maintain a high
level of software quality, and consistent inter-
faces to other software that it uses or uses it.

114 e Fully Automated Testing of the Linux Kernel

There are several methods for increasing qual-
ity, but none of these works in isolation, we
need a combination of:

e skilled developers carefully developing
high quality code,

e static code analysis,

e regular and rigorous code review,
e functional tests for new features,
e regression testing,

e performance testing, and

e stress testing.

Whilst testing will never catch all bugs, it will
improve the overall quality of the finished prod-
uct. Improved code quality results in a better
experience not only for users, but also for de-
velopers, allowing them to focus on their own
code. Even simple compile errors hinder devel-
opers.

In this paper we will look at the problem of au-
tomated testing, the current state of it, and our
views for its future. Then we will take a case
study of the test.kernel.org automated test sys-
tem. We will examine a key test component,
the client harness, in more detail, and describe
the Autotest test harness project. Finally we
will conclude with our vision of the future and
a summary.

2 Automated Testing

It is obvious that testing is critical, what is per-
haps not so obvious is the utility of regular test-
ing at all stages of development. It is important
to catch bugs as soon as possible after they are
created as:

e it prevents replication of the bad code into
other code bases,

e fewer users are exposed to the bug,
e the code is still fresh in the authors mind,

e the change is less likely to interact with
subsequent changes, and

e the code is easy to remove should that be
required.

In a perfect world all contributions would be
widely tested before being applied; however, as
most developers do not have access to a large
range of hardware this is impractical. More rea-
sonably we want to ensure that any code change
is tested before being introduced into the main-
line tree, and fixed or removed before most peo-
ple will ever see it. In the case of Linux, An-
drew Morton’s —mm tree (the de facto develop-
ment tree) and other subsystem specific trees
are good testing grounds for this purpose.

Test early, test often!

The open source development model and Linux
in particular introduces some particular chal-
lenges. Open-source projects generally suffer
from the lack of a mandate to test submissions
and the fact that there is no easy funding model
for regular testing. Linux is particularly hard
hit as it has a constantly high rate of change,
compounded with the staggering diversity of
the hardware on which it runs. It is completely
infeasible to do this kind of testing without ex-
tensive automation.

There is hope; machine-power is significantly
cheaper than man-power in the general case.
Given a large quantity of testers with diverse
hardware it should be possible to cover a use-
ful subset of the possible combinations. Linux
as a project has plenty of people and hardware;
what is needed is a framework to coordinate
this effort.

2006 Linux Symposium, Volume One o 115

Patches Patches Patches
[. [. [.
[[[
| N\ M

Test tree

Patches ’_H_H
[
L
[
L

Test tree

Test tree

Mainline
Prerelease

Mainline

‘ Distro ‘ ‘ Distro ‘

Ty [y (= Oy

Figure 1: Linux Kernel Change Flow

Distro ‘ ‘ Distro

Users
L
[
L

2.1 The Testing Problem

As we can see from the diagram in figure 1
Linux’s development model forms an hour-
glass starting highly distributed, with contri-
butions being concentrated in maintainer trees
before merging into the development releases
(the —mm tree) and then into mainline itself.
It is vital to catch problems here in the neck
of the hourglass, before they spread out to the
distros—even once a contribution hits mainline
it is has not yet reached the general user popu-
lation, most of whom are running distro kernels
which often lag mainline by many months.

In the Linux development model, each actual
change is usually small and attribution for each
change is known making it easy to track the au-
thor once a problem is identified. It is clear that
the earlier in the process we can identify there
is a problem, the less the impact the change will
have, and the more targeted we can be in report-
ing and fixing the problem.

Whilst contributing untested code is discour-
aged we cannot expect lone developers to be
able to do much more than basic functional test-
ing, they are unlikely to have access to a wide

range of systems. As a result, there is an op-
portunity for others to run a variety of tests on
incoming changes before they are widely dis-
tributed. Where problems are identified and
flagged, the community has been effective at
getting the change rejected or corrected.

By making it easier to test code, we can en-
courage developers to run the tests before ever
submitting the patch; currently such early test-
ing is often not extensive or rigorous, where it
is performed at all. Much developer effort is
being wasted on bugs that are found later in the
cycle when it is significantly less efficient to fix
them.

2.2 The State of the Union

It is clear that a significant amount of testing
resource is being applied by a variety of par-
ties, however most of the current testing effort
goes on after the code has forked from main-
line. The distribution vendors test the code that
they integrate into their releases, hardware ven-
dors are testing alpha or beta releases of those
distros with their hardware. Independent Soft-
ware Vendors (ISVs) are often even later in the
cycle, first testing beta or even after distro re-
lease. Whilst integration testing is always valu-
able, this is far too late to be doing primary test-
ing, and makes it extremely difficult and ineffi-
cient to fix problems that are found. Moreover,
neither the tests that are run, nor the results of
this testing are easily shared and communicated
to the wider community.

There is currently a large delay between a
mainline kernel releasing and that kernel being
accepted and released by the distros, embed-
ded product companies and other derivatives
of Linux. If we can improve the code qual-
ity of the mainline tree by putting more effort
into testing mainline earlier, it seems reason-
able to assume that those “customers” of Linux

116 e Fully Automated Testing of the Linux Kernel

would update from the mainline tree more of-
ten. This will result in less time being wasted
porting changes backwards and forwards be-
tween releases, and a more efficient and tightly
integrated Linux community.

2.3 What Should we be Doing?

Linux’s constant evolutionary approach to soft-
ware development fits well with a wide-
ranging, high-frequency regression testing
regime. The “release early, release often” de-
velopment philosophy provides us with a con-
stant stream of test candidates; for example the
-git snapshots which are produced twice daily,
and Andrew Morton’s collecting of the spe-
cialised maintainer trees into a bleeding-edge
—-mm development tree.

In an ideal world we would be regression test-
ing at least daily snapshots of all development
trees, the —mm tree and mainline on all possible
combinations of hardware; feeding the results
back to the owners of the trees and the authors
of the changes. This would enable problems
to be identified as early as possible in the con-
centration process and get the offending change
updated or rejected. The test.kernel.org testing
project provides a preview of what is possible,
providing some limited testing of the mainline
and development trees, and is discussed more
fully later.

Just running the tests is not sufficient, all this
does is produce large swaths of data for humans
to wade through; we need to analyse the results
to engender meaning, and isolate any problems
identified.

Regression tests are relatively easy to analyse,
they generate a clean pass or fail; however, even
these can fail intermittently. Performance tests
are harder to analyse, a result of 10 has no par-
ticular meaning without a baseline to compare

it against. Moreover, performance tests are not
100% consistent, so taking a single sample is
not sufficient, we need to capture a number of
runs and do simple statistical analysis on the
results in order to determine if any differences
are statistically significant or not. It is also crit-
ically important to try to distinguish failures
of the machine or harness from failures of the
code under test.

3 Case Study: test.kernel.org

We have tried to take the first steps towards
the automated testing goals we have outlined
above with the testing system that generates
the test.kernel.org website. Whilst it is still far
from what we would like to achieve, it is a good
example of what can be produced utilising time
on an existing in house system sharing and test-
ing harness and a shared results repository.

New kernel releases are picked up automati-
cally within a few minutes of release, and a
predefined set of tests are run across them by a
proprietary IBM(®) system called ABAT, which
includes a client harness called autobench. The
results of these tests are then collated, and
pushed to the TKO server, where they are anal-
ysed and the results published on the TKO web-
site.

Whilst all of the test code is not currently open,
the results of the testing are, which provides a
valuable service to the community, indicating
(at least at a gross level) a feel for the viability
of that release across a range of existing ma-
chines, and the identification of some specific
problems. Feedback is in the order of hours
from release to results publication.

2006 Linux Symposium, Volume One o 117

| New Release Patch

! !

| Mirror / Trigger | | Manual Job |

\/

Server Job Queues m

v
| Client Harness m

Observe
Problem

| Results Collation |

!

| Results Analysis |

l

| Results Publication |

Figure 2: test.kernel.org Architecture

3.1 How it Works

The TKO system is architected as show in fig-
ure 2. Its is made up of a number of distinct
parts, each described below:

The mirror / trigger engine: test execution is
keyed from kernel releases; by any —mm tree re-
lease (2.6.16-rc1-mm1), git release (2.6.17-rc1-
git10), release candidate (2.6.17-rc1), stable re-
lease (2.6.16) or stable patch release (2.6.16.1).
A simple rsync local mirror is leveraged to ob-
tain these images as soon as they are avail-
able. At the completion of the mirroring pro-
cess any newly downloaded image is identified
and those which represent new kernels trigger
testing of that image.

Server Job Queues: for each new kernel, a
predefined set of test jobs are created in the
server job queues. These are interspersed with
other user jobs, and are run when time is avail-
able on the test machines. IBM’s ABAT server
software currently fulfils this function, but a

simple queueing system could serve for the
needs of this project.

Client Harness: when the test system is avail-
able, the control file for that test is passed to the
client harness. This is responsible for setting
up the machine with appropriate kernel ver-
sion, running the tests, and pushing the results
to a local repository. Currently this function is
served by autobench. It is here that our efforts
are currently focused with the Autotest client
replacement project which we will discuss in
detail in section 4.4.

Results Collation: results from relevant jobs
are gathered asynchronously as the tests com-
plete and they are pushed out to test.kernel.org.
A reasonably sized subset of the result data is
pushed, mostly this involves stripping the ker-
nel binaries and system information dumps.

Results Analysis: once uploaded the results
analysis engine runs over all existing jobs and
extracts the relevant status; this is then sum-
marised on a per release basis to produce both
overall red, amber and green status for each re-
lease/machine combination. Performance data
is also analysed, in order to produce historical
performance graphs for a selection of bench-
marks.

Results Publication: results are made avail-
able automatically on the TKO web site. How-
ever, this is currently a “polled” model; no au-
tomatic action is taken in the face of either test
failures or if performance regressions are de-
tected, it relies on developers to monitor the
site. These failures should be actively pushed
back to the community via an appropriate pub-
lication mechanism (such as email, with links
back to more detailed data).

Observed problems: When a problem (func-
tional or performance) is observed by a de-
veloper monitoring the analysed and published
results, this is manually communicated back

118 e Fully Automated Testing of the Linux Kernel

to the development community (normally via
email). This often results in additional patches
to test, which can be manually injected into the
job queues via a simple script, but currently
only by an IBM engineer. These then automat-
ically flow through with the regular releases,
right through to publication on the matrix and
performance graphs allowing comparison with
those releases.

3.2 TKO in Action

The regular compile and boot testing frequently
shakes out bugs as the patch that carried them
enters the —mm tree. By testing multiple ar-
chitectures, physical configurations, and kernel
configurations we often catch untested combi-
nations and are able to report them to the patch
author. Most often these are compile failures,
or boot failures, but several performance re-
gressions have also been identified.

As a direct example, recently the performance
of highly parallel workloads dropped off sig-
nificantly on some types of systems, specifi-
cally with the —mm tree. This was clearly in-
dicated by a drop off in the kernbench perfor-
mance figures. In the graph in figure 3 we can
see the sudden increase in elapsed time to a new
plateau with 2.6.14-rc2-mm1. Note the vertical
error bars for each data point—doing multiple
test runs inside the same job allows us to calcu-
late error margins, and clearly display them.

Once the problem was identified some further
analysis narrowed the bug to a small number of
scheduler patches which were then also tested;
these appear as the blue line (“other” releases)
in the graph. Once the regression was identified
the patch owner was then contacted, several it-
erations of updated fixes were then produced
and tested before a corrected patch was applied.
This can be seen in the figures for 2.6.16-rc1-
mm4.

The key thing to note here is that the regression
never made it to the mainline kernel let alone
into a released distro kernel; user exposure was
prevented. Early testing ensured that the devel-
oper was still available and retained context on
the change.

3.3 Summary

The current system is providing regular and
useful testing feedback on new releases and
providing ongoing trend analysis against his-
torical releases. It is providing the results of
this testing in a public framework available
to all developers with a reasonable turn round
time from release. It is also helping develop-
ers by testing on rarer hardware combinations
to which they have no access and cannot test.

However, the system is not without its prob-
lems. The underlying tests are run on a in-
house testing framework (ABAT) which is cur-
rently not in the public domain; this prevents
easy transport of these tests to other testers. As
a result there is only one contributor to the re-
sult set at this time, IBM. Whilst the whole
stack needs to be made open, we explain in the
next section why we have chosen to start first
with the client test harness.

The tests themselves are very limited, covering
a subset of the kernel. They are run on a small
number of machines, each with a few, fixed
configurations. There are more tests which
should be run but lack of developer input and
lack of hardware resources on which to test pre-
vent significant expansion.

The results analysis also does not communi-
cate data back as effectively as it could to
the community—problems (especially perfor-
mance regressions) are not as clearly isolated as
they could be, and notification is not as prompt
and clear as it could be. More data “fold-
ing” needs to be done as we analyse across a

2006 Linux Symposium, Volume One e 119

114II
X - T
112 + Fex ! N N i
- N ¥ ¥ x :
ek T Ko ok IR X
- ! R T 3 et & S N *
o 110 | | ! : L AN i 7]
o ! h
/
Q - N, -
S 108 j "
2 j N
(0] - 1 AN -
g 106 : .
£ j .
e] ! \
o 104 ! SO 4
] |
Q |
E ‘
w102 S
4 YX-Eog
100
98 | NN N T N T N I N I I B |
EECECEECECEES CEEOESE LS ER SO E R R g S GO ESEGOE D
CEEGETEET ETECENNEENHENENNEINNCOH EOOOO ESTIITTd968 00 EAENWG EO
Nehoh ™= GGG ANFO AT LAl A A p AN AANNN L NGOG OGO ANNNN LN TN AL
HIGPVO L OO P00 ANGPLO 060060 Fwe o S EF P Prininininio SEET0 £o Fo oo
OON LN LN LN O NA AN AN LAANNLONN dJommonmnos ANEHNANM A<t LN LN
NP T A A R) = ENEEEENE EEEESESE 3
© ©o © © ©s © © ©F E EECE E EEEECFCE ©
N NN NN NN N N [qV]Te] [Te) Yo} n i N
[8] ~ A [SESNSNS) o o
by © ©OOOO © TYSYY O OYOY
O > ©©OOO © ©OOO © ©
— N adaaN o A o o
© ©COS S ©
N ANNANN N N
Kernel
-mm. ---x-—- other :--%---

mainline +——+—

Figure 3: Kernbench

multi-dimensional space of kernel version, ker-
nel configuration, machine type, toolchain, and

tests.

4 Client Harnesses

As we have seen, any system which will pro-
vide the required level of testing needs to form
a highly distributed system, and be able to run
across a large test system base. This will ne-
cessitate a highly flexible client test harness; a
key component of such a system. We have used
our experiences with the IBM autobench client,
and the TKO analysis system to define require-
ments for such a client. This section will dis-
cuss client harnesses in general and lead on to
a discussion of the Autotest project’s new test

harness.

We chose to attack the problem of the client
harness first as it seems to be the most pressing

Scheduler Regression

issue. With this solved, we can share not only
results, but the tests themselves more easily,
and empower a wide range of individuals and
corporations to run tests easily, and share the
results. By defining a consistent results format,
we can enable automated collation and analysis
of huge amounts of data.

4.1 Requirements / Design Goals

A viable client harness must be operable stand-

alone or under an external scheduler infrastruc-

ture. Corporations already have significant re-

sources invested in bespoke testing harnesses
which they are not going to be willing to waste;
the client needs to be able to plug into those,
and timeshare resources with them. On the
other hand, some testers and developers will
have a single machine and want something sim-
ple they can install and use. This bimodal flex-
ibility is particularly relevant where we want to

120 e Fully Automated Testing of the Linux Kernel

be able to pass a failing test back to a patch au-
thor, and have them reproduce the problem.

The client harness must be modular, with a
clean internal infrastructure with simple, well
defined APIs. It is critical that there is clear
separation between tests, and between tests and
the core, such that adding a new test cannot
break existing tests.

The client must be simple to use for newcom-
ers, and yet provide a powerful syntax for com-
plex testing if necessary. Tests across multiple
machines, rebooting, loops, and parallelism all
need to be supported.

We want distributed scalable maintainership,
the core being maintained by a core team and
the tests by the contributors. It must be able to
reuse the effort that has gone into developing
existing tests, by providing a simple way to en-
capsulate them. Whilst open tests are obviously
superior, we also need to allow the running of
proprietary tests which cannot be contributed to
the central repository.

There must be a low knowledge barrier to entry
for development, in order to encourage a wide
variety of new developers to start contributing.
In particular, we desire it to be easy to write
new tests and profilers, abstracting the com-
plexity into the core as much as possible.

We require a high level of maintainability. We
want a consistent language throughout, one
which is powerful and yet easy to understand
when returning to the code later, not only by
the author, but also by other developers.

The client must be robust, and produce consis-
tent results. Error handling is critical—tests
that do not produce reliable results are use-
less. Developers will never add sufficient error
checking into scripts, we must have a system
which fails on any error unless you take affir-
mative action. Where possible it should isolate

hardware or harness failures from failures of
the code under test; if something goes wrong in
initialisation or during a test we need to know
and reject that test result.

Finally, we want a consistent results
architecture—it is no use to run thousands
of tests if we cannot understand or parse the
results. On such a scale such analysis must
be fully automatable. Any results structure
needs to be consistent across tests and across
machines, even if the tests are being run by a
wide diversity of testers.

4.2 What Tests are Needed?

As we mentioned previously, the current pub-
lished automated testing is very limited in its
scope. We need very broad testing coverage if
we are going to catch a high proportion of prob-
lems before they reach the user population, and
need those tests to be freely sharable to max-
imise test coverage.

Most of the current testing is performed in or-
der to verify that the machine and OS stack is
fit for a particular workload. The real workload
is often difficult to set up, may require propri-
etary software, and is overly complex and does
not give sufficiently consistent reproducible re-
sults, so use is made of a simplified simula-
tion of that workload encapsulated within a test.
This has the advantage of allowing these simu-
lated workloads to be shared. We need tests in
all of the areas below:

Build tests simply check that the kernel will
build. Given the massive diversity of differ-
ent architectures to build for, different con-
figuration options to build for, and different
toolchains to build with, this is an extensive
problem. We need to check for warnings, as
well as errors.

Static verification tests run static analysis
across the code with tools like sparse, lint, and
the Stanford checker, in the hope of finding
bugs in the code without having to actually ex-
ecute it.

Inbuilt debugging options (e.g. CONFIG_
DEBUG_PAGEALLOC, CONFIG_DEBUG_SLAB)
and fault insertion routines (e.g. fail every
100th memory allocation, fake a disk error oc-
casionally) offer the opportunity to allow the
kernel to test itself. These need to be a sepa-
rated set of test runs from the normal functional
and performance tests, though they may reuse
the same tests.

Functional or unit tests are designed to exer-
cise one specific piece of functionality. They
are used to test that piece in isolation to ensure
it meets some specification for its expected op-
eration. Examples of this kind of test include
LTP and Crashme.

Performance tests verify the relative perfor-
mance of a particular workload on a specific
system. They are used to produce comparisons
between tests to either identify performance
changes, or confirm none is present. Examples
of these include: CPU performance with Kern-
bench and AIM7/reaim; disk performance with
bonnie, tbench and iobench; and network per-
formance with netperf.

Stress tests are used to identify system be-
haviour when pushed to the very limits of its
capabilities. For example a kernel compile exe-
cuted completely in parallel creates a compile
process for each file. Examples of this kind
of test include kernbench (configured appro-
priately), and deliberately running under heavy
memory pressure such as running with a small
physical memory.

Profiling and debugging is another key area.
If we can identify a performance regression, or

2006 Linux Symposium, Volume One o 121

some types of functional regression, it is im-
portant for us to be able to gather data about
what the system was doing at the time in order
to diagnose it. Profilers range from statistical
tools like readprofile and lockmeter to monitor-
ing tools like vmstat and sar. Debug tools might
range from dumping out small pieces of infor-
mation to full blown crashdumps.

4.3 Existing Client Harnesses

There are a number of pre-existing test har-
nesses in use by testers in the community. Each
has its features and problems, we touch on a
few of them below.

IBM autobench is a fairly fully featured client
harness, it is completely written in a combi-
nation of shell and perl. It has support for
tests containing kernel builds and system boots.
However, error handling is very complex and
must be explicitly added in all cases, but does
encapsulate the success or failure state of the
test. The use of multiple different languages
may have been very efficient for the original
author, but greatly increases the maintenance
overheads. Whilst it does support running mul-
tiple tests in parallel, loops within the job con-
trol file are not supported nor is any complex
“programming.”

OSDL STP The Open Systems Development
Lab (OSDL) has the Scalable Test Platform
(STP). This is a fully integrated testing envi-
ronment with both a server harness and client
wrapper. The client wrapper here is very simple
consisting of a number of shell support func-
tions. Support for reboot is minimal and kernel
installation is not part of the client. There is no
inbuilt handling of the meaning of results. Er-
ror checking is down to the test writer; as this
is shell it needs to be explicit else no checking
is performed. It can operate in isolation and
results are emailable, reboot is currently being
added.

122 e Fully Automated Testing of the Linux Kernel

LTP' The Linux Test Project is a functional /
regression test suite. It contains approximately
2900 small regression tests which are applied
to the system running LTP. There is no support
for building kernels or booting them, perfor-
mance testing or profiling. Whilst it contains
a lot of useful tests, it is not a general heavy
weight testing client.

A number of other testing environments cur-
rently exist, most appear to suffer from the
same basic issues, they evolved from the sim-
plest possible interface (a script) into a test
suite; they were not designed to meet the level
of requirements we have identified and speci-
fied.

All of those we have reviewed seem to have a
number of key failings. Firstly, most lack most
lack bottom up error handling. Where sup-
port exists it must be handled explicitly, testers
never will think of everything. Secondly, most
lack consistent machine parsable results. There
is often no consistent way to tell if a test passes,
let alone get any details from it. Lastly, due to
their evolved nature they are not easy to under-
stand nor to maintain. Fortunately it should be
reasonably easy to wrap tests such as LTP, or to
port tests from STP and autobench.

4.4 Autotest a Powerful Open Client

The Autotest open client is an attempt to ad-
dress the issues we have identified. The aim is
to produce a client which is open source, im-
plicitly handles errors, produces consistent re-
sults, is easily installable, simple to maintain
and runs either standalone or within any server
harness.

Autotest is an all new client harness implemen-
tation. It is completely written in Python; cho-
sen for a number of reasons, it has a simple,

1http://ltp.sourceforge.net/

clean and consistent syntax, it is object oriented
from inception, and it has very powerful error
and exception handling. Whist no language is
perfect, it meets the key design goals well, and
it is open source and widely supported.

As we have already indicated, there are a num-
ber of existing client harnesses; some are even
open-source and therefore a possible basis for a
new client. Starting from scratch is a bold step,
but we believe that the benefits from a designed
approach outweigh the effort required initially
to get to a workable position. Moreover, much
of the existing collection of tests can easily be
imported or wrapped.

Another key goal is the portability of the tests
and the results; we want to be able to run tests
anywhere and to contribute those test results
back. The use of a common programming lan-
guage, one with a strict syntax and semantics
should make the harness and its contained tests
very portable. Good design of the harness and
results specifications should help to maintain
portable results.

4.5 The autotest Test Harness

Autotest utilises an executable control file to
represent and drives the users job. This con-
trol file is an executable fragment of Python
and may contain any valid Python constructs,
allowing the simple representation of loops and
conditionals. Surrounding this control file is
the Autotest harness, which is a set of support
functions and classes to simplify execution of
tests and allow control over the job.

The key component is the job object which rep-
resents the executing job, provides access to the
test environment, and provides the framework
to the job. It is responsible for the creation of
the results directory, for ensuring the job out-
put is recorded, and for any interactions with

2006 Linux Symposium, Volume One e 123

any server harness. Below is a trivial example
of a control file:

job.runtest ('testl’, ’kernbench’, 2, 5)

One key benefit of the use of a real program-
ming language is the ability to use the full range
of its control structures in the example below
Wwe use an iterator:

for i in range (0, 5):
job.runtest ('test%d’ % i, ’'kernbench’,
2, 5)

Obviously as we are interested in testing Linux,
support for building, installing and booting ker-
nels is key. When using this feature, we need a
little added complexity to cope with the inter-
ruption to control flow caused by the system
reboot. This is handled using a phase step-
per which maintains flow across execution in-
terruptions, below is an example of such a job,
combining booting with iteration:

def step_init():
step_test (1)

def step_test (iteration):
if (iteration < 5):
job.next_step([step_test,
iteration + 1]

print "boot: %d" % iteration

kernel = job.distro_kernel ()
kernel.boot ()

Tests are represented by the test object; each
test added to Autotest will be a subclass of this.
This allows all tests to share behaviour, such as
creating a consistent location and layout for the
results, and recording the result of the test in a
computer readable form. In figure 4 is the class
definition for the kernbench benchmark. As we
can see it is a subclass of test, and as such ben-
efits from its management of the results direc-
tory hierarchy.

4.6 Summary

We feel that Autotest is much more power-
ful and robust design than the other client har-
nesses available, and will produce more consis-
tent results. Adding tests and profilers is sim-
ple, with a low barrier to entry, and they are
easy to understand and maintain.

Much of the power and flexibility of Autotest
stems from the decision to have a user-defined
control file, and for that file to be written in a
powerful scripting language. Whilst this was
more difficult to implement, the interface the
user sees is still simple. If the user wishes to
repeat tests, run tests in parallel for stress, or
even write a bisection search for a problem in-
side the control file, that is easy to do.

The Autotest client can be used either as stan-
dalone, or easily linked into any scheduling
backend, from a simple queueing system to a
huge corporate scheduling and allocation en-
gine. This allows us to leverage the resources of
larger players, and yet easily allow individual
developers to reproduce and debug problems
that were found in the lab of a large corpora-
tion.

Each test is a self-contained modular pack-
age. Users are strongly encouraged to create
open-source tests (or wrap existing tests) and
contribute those to the main test repository on
test.kernel. org.2 However, private tests
and repositories are also allowed, for maximum
flexibility. The modularity of the tests means
that different maintainers can own and main-
tain each test, separate from the core harness.
We feel this is critical to the flexibility and scal-
ability of the project.

We currently plan to support the Autotest client
across the range of architectures and across the

2See the autotest wiki http://test.kernel.
org/autotest.

124 e Fully Automated Testing of the Linux Kernel

import test
from autotest_utils import =

class kernbench (test) :

def setup(self,

iterations = 1,
threads = 2 % count_cpus (),
kernelver =

config os.environ[’AUTODIRBIN’

print "kernbench -3j %d -1 $d -c %s -k %s"

= iterations
threads
kernelver
config

self.
self.
self.
self.

iterations
threads
kernelver
config

top_dir Jjob.tmpdir+’ /kernbench’
kernel = job.kernel (top_dir, kernelver)
kernel.config([config])

def execute (self):

testkernel.build_timed (threads)
for i in range(l, iterations+1l):
testkernel.build_timed (threads,

os.chdir (top_dir + ’'/log’)
system("grep elapsed time.x > time")

Figure 4: Example

main distros. There is no plans to support other
operating systems, as it would add unnecessary
complexity to the project. The Autotest project
is released under the GNU Public License.

5 Future

We need a broader spectrum of tests added to
the Autotest project. Whilst the initial goal
is to replace autobench for the published data
on test.kernel.orgq, this is only a first
step—there are a much wider range of tests that
could and should be run. There is a wide body
of tests already available that could be wrapped
and corralled under the Autotest client.

We need to encourage multiple different en-
tities to contribute and share testing data for
maximum effect. This has been stalled wait-

’

" /usr/local/src/linux-2.6.14.tar.bz2’,

] + "/tests/kernbench/config") :

% (threads, iterations, config, kernelver)

warmup run

/log/time.%d’ % 1)

test: kernbench

ing on the Autotest project, which is now near-
ing release, so that we can have a consistent
data format to share and analyse. There will
be problems to tackle with quality and consis-
tency of data that comes from a wide range of
sources.

Better analysis of the test results is needed.
Whilst the simple red/yellow/green grid on
test.kernel.org and simple gnuplot
graphs are surprisingly effective for so little ef-
fort, much more could be done. As we run more
tests, it will become increasingly important to
summarise and fold the data in different ways
in order to make it digestible and useful.

Testing cannot be an island unto itself—not
only must we identify problems, we must com-
municate those problems effectively and effi-
ciently back to the development community,
provide them with more information upon re-
quest, and be able to help test attempted fixes.

2006 Linux Symposium, Volume One e 125

‘We must also track issues identified to closure.

There is great potential to automate beyond just
identifying a problem. An intelligent automa-
tion system should be able to further narrow
down the problem to an individual patch (by
bisection search, for example, which is O(log2)
number of patches). It could drill down into a
problem by running more detailed sets of per-
formance tests, or repeating a failed test several
times to see if a failure was intermittent or con-
sistent. Tests could be selected automatically
based on the area of code the patch touches,
correlated with known code coverage data for
particular tests.

6 Summary

We are both kernel developers, who started
the both test.kernel.org and Autotest
projects out of a frustration with the cur-
rent tools available for testing, and for fully
automated testing in particular. ~ We are
now seeing a wider range of individuals
and corporations showing interest in both the
test.kernel.org and Autotest projects,
and have high hopes for their future.

In short we need:

more automated testing, run at frequent in-
tervals,

e those results need to be published consis-
tently and cohesively,

e to analyse the results carefully,
e better tests, and to share them, and

e a powerful, open source, test harness that
is easy to add tests to.

There are several important areas where inter-
ested people can help contribute to the project:

e run a diversity of tests across a broad range
of hardware,

e contribute those results back to

test.kernel.orgqg,

e write new tests and profilers, contribute
those back, and

e for the kernel developers ... fix the bugs!!!

An intelligent system can not only improve
code quality, but also free developers to do
more creative work.

Acknowledgements

We would like to thank OSU for the donation
of the server and disk space which supports the
test.kernel.org site.

We would like to thank Mel Gorman for his in-
put to and review of drafts of this paper.

Legal Statement

This work represents the view of the authors and
does not necessarily represent the views of either
Google or IBM.

Linux is a trademark of Linus Torvalds in the United
States, other countries, or both.

Other company, product, and service names may be
the trademarks or service marks of others.

126 e Fully Automated Testing of the Linux Kernel

Proceedings of the
Linux Symposium

Volume One

July 19th—-22nd, 2006
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM

Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation

C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

