
Linux® Scalability for Large NUMA Systems

Ray Bryant and John Hawkes
Silicon Graphics, Inc.

raybry@sgi.com hawkes@sgi.com

Abstract

The SGI® Altix™ 3000 family of servers
and superclusters are nonuniform memory ac-
cess systems that support up to 64 Intel® Ita-
nium® 2 processors and 512GB of main mem-
ory in a single Linux image. Altix is targeted
to the high-performance computing (HPC) ap-
plication domain. While this simplifies cer-
tain aspects of Linux scalability to such large
processor counts, some unique problems have
been overcome to reach the target of near-
linear scalability of this system for HPC appli-
cations. In this paper we discuss the changes
that were made to Linux® 2.4.19 during the
porting process and the scalability issues that
were encountered. In addition, we discuss our
approach to scaling Linux to more than 64 pro-
cessors and we describe the challenges that re-
main in that arena.

1 Introduction

Over the past three years, SGI has been work-
ing on a series of new high-performance com-
puting systems based on its NUMAflex™ in-
terconnection architecture. However, un-
like the SGI® Origin® family of machines,
which used a MIPS® processor and ran the
SGI® IRIX® operating system, the new se-
ries of machines is based on the Intel® Ita-
nium® Processor Family and runs an Itanium
version of Linux.

In January 2003, SGI announced this series of

machines, now known as the SGI Altix 3000
family of servers and superclusters. As an-
nounced, Altix supports up to 64 Intel Itanium
2 processors and 512GB of main memory in
a single Linux image. The NUMAflex archi-
tecture actually supports up to 512 Itanium 2
processors in a single coherency domain; sys-
tems larger than 64 processors comprise multi-
ple single-system image Linux systems (each
with 64 processors or less) coupled via NU-
MAflex into a "supercluster." The resulting
system can be programmed using a message-
passing model; however, interactions between
nodes of the supercluster occur at shared mem-
ory access times and latencies.

In this paper, we provide a brief overview
of the Altix hardware and discuss the Linux
changes that were necessary to support this
system and to achieve good (near-linear) scal-
ability for high-performance computing (HPC)
applications on this system. We also discuss
changes that improved scalability for more
general workloads, including changes for high-
performance I/O. Plans for submitting these
changes to the Linux community for incorpo-
ration in standard Linux kernels will be dis-
cussed. While single-system-image Linux sys-
tems larger than 64 processors are not a config-
uration shipped by SGI, we have experimented
with such systems inside SGI, and we will dis-
cuss the kernel changes necessary to port Linux
to such large systems. Finally, we present
benchmark results demonstrating the results of
these changes.

Linux Symposium 77

2 The SGI Altix Hardware

An Altix system consists of a configurable
number of rack-mounted units, each of which
SGI refers to as a brick. Depending on con-
figuration, a system may contain one or more
of the following brick types: a compute brick
(C-brick), a memory brick (M-brick), a router
brick (R-brick), or an I/O brick (P-brick or PX-
brick).

The basic building block of the Altix system is
the C-brick (see Figure 1). A fully configured
C-brick consists of two separate dual-processor
systems, each of which is a bus-connected mul-
tiprocessor or node. The bus (referred to here
as a Front Side Bus or FSB) connects the pro-
cessors and the SHUB chip. Since HPC ap-
plications are often memory-bandwidth bound,
SGI chose to package only two processors per
FSB in order to keep FSB bandwitdh from be-
ing a bottleneck in the system.

The SHUB is a proprietary ASIC that imple-
ments the following functions:

• It acts a memory controller for the local
memory on the node

• It provides an interface to the interconnec-
tion network

• It provides an interface to the I/O subsys-
tem

• It manages the global cache coherency
protocol

• It supports global TLB shoot-down and
inter-processor interrupts (IPIs)

• It provides a globally synchronized high-
resolution clock

The memory modules of the C-brick consist
of standard PC2100 or PC2700 DIMMS. With

Figure 1:Altix C-Brick

1GB DIMMS, up to 16GB of memory can be
installed on a node. For those applications re-
quiring even more memory, an M-brick (a C-
brick without processors) can be used.

Memory accesses in an Altix system are either
local (i.e., the reference is to memory in the
same node as the processor) or remote. Local
memory references have lower latency; the Al-
tix system is thus a NUMA (nonuniform mem-
ory access) system. The ratio of remote to lo-
cal memory access times on an Altix system
varies from 1.9 to 3.5 depending on the size
of the system and the relative locations of the
processor and memory module involved in the
transfer.

As shown in Figure 1, each SHUB chip pro-
vides three external interfaces: two NUMA-
link™ interfaces (labeled NL in the figure) to
other nodes or the network and an I/O interface
to the I/O bricks in the system. The SHUB chip
uses the NUMAlink interfaces to send remote
memory references to the appropriate node in
the system. Depending on configuration the
NUMAlink interfaces provide up to 3.2GB/sec
of bandwidth in each direction.

I/O bricks implement the I/O interface in the
Altix system. (These can be either an IX-brick
or a PX-brick. Here we will use the generic
term I/O brick.) The bandwidth of the I/O

Linux Symposium 78

channel is 1.2GB/sec in each direction. Each
I/O brick can contain a number of standard
PCI cards; depending on configuration a small
number of devices may be installed directly in
the I/O brick as well.

Shared memory references to the I/O brick can
be generated on any processor in the system.
These memory references are forwarded across
the network to the appropriate node’s SHUB
chip and then they are routed to the appropri-
ate I/O brick. This is done in such a way that
standard Linux device drivers will work against
the PCI cards in an I/O brick, and these device
drivers can run on any node in the system.

The cache-coherency policy in the Altix sys-
tem can be divided into two levels: local
and global. The local cache-coherency pro-
tocol is defined by the processors on the FSB
and is used to maintain cache-coherency be-
tween the Itanium processors on the FSB.
The global cache-coherency protocol is imple-
mented by the SHUB chip. The global proto-
col is directory-based and is a refinement of the
protocol originally developed for DASH [11]
(Some of these refinements are discussed in
[10]).

The Altix system interconnection network uses
routing bricks (R-bricks) to provide connectiv-
ity in system sizes larger than 16 processors.
(Smaller systems can be built without routers
by directly connecting the NUMAlink chan-
nels in a ring configuration.) For example, a
64-processor system is connected as shown in
Figure 2.

One measure of the bandwidth capacity of the
interconnection network is the bisection band-
width. This bandwidth is defined as follows:
draw an imaginary line through the center of
the system. Suppose that each processor on
one side of this line is referencing memory
on a corresponding node on the other side
of this line. The bisection bandwidth is the

total amount of data that can be transferred
across this line with all processors driven as
hard as possible. In the Altix system, the
bisection bandwidth of the system is at least
400MB/sec/processor for all system sizes.

R R

RR

R R

RR

C
−bricks

Figure 2: 64-CPU Altix System (R’s represent
router bricks)

3 Benchmarks

Three kinds of benchmarks have been used in
studying Altix performance and scalability:

• HPC benchmarks and applications

• AIM7

• Other open-source benchmarks

HPC benchmarks, such as STREAM [12],
SPEC® CPU2000, or SPECrate® [22] are sim-
ple, usermode, memory-intensive benchmarks

Linux Symposium 79

to verify that the hardware architectural design
goals were achieved in terms of memory and
I/O bandwidths and latencies. Such bench-
marks typically execute one thread per CPU
with each thread being autonomous and inde-
pendent of the other threads so as to avoid in-
terprocess communication bottlenecks. These
benchmarks typically do not spend a signifi-
cant amount of time using kernel services.

Nonetheless, such benchmarks do test the vir-
tual memory subsystem of the Linux kernel.
For example, virtual storage for dynamically
allocated arrays in Fortran is allocated via
mmap. When the arrays are touched during
initialization, the page fault handler is invoked
and zero-filled pages are allocated for the ap-
plication. Poor scalability in the page-fault
handling code will result in a startup bottleneck
for these applications.

Once these benchmark tests had been passed,
we then ran similar tests for specific HPC ap-
plications. These applications were selected
based on a mixture of input from SGI market-
ing and an assessment of how difficult it would
be to get the application working in a bench-
mark environment. Some of these benchmark
results are presented in section 7 on page 85.

The AIM Benchmark Suite VII (AIM7) is
a benchmark that simulates a more general
workload than that of a single HPC applica-
tion. AIM7 is a C-language program that
forks multiple processes (called tasks), each of
which concurrently executes similar, randomly
ordered set of 53 different kinds of subtests
(called jobs). Each subtest exercises a par-
ticular facet of system functionality, such as
disk-file operations, process creation, user vir-
tual memory operations, pipe I/O, or compute-
bound arithmetic loops.

As the number of AIM7 tasks increases, ag-
gregated throughput increases to a peak value.
Thereafter, additional tasks produce increasing

contention for kernel services, they encounter
increasing bottlenecks, and the throughput de-
clines. AIM7 has been an important bench-
mark to improve Altix scalability under gen-
eral workloads that consist of a mixture of
throughput-oriented runs or of programs that
are I/O bound.

Other open-source benchmarks have also been
employed. pgmeter[6] is a general file sys-
tem I/O benchmark that we have used to eval-
uate file system performance[5].Kernbench
is a parallel make of the Linux kernel, (e.g.,
/usr/bin/time make -j 64 vmlinux). Hackbench
is a set of communicating threads that stresses
the CPU scheduler. Erich Focht’srandupdt
stresses the scheduler’s load-balancing algo-
rithms and ability to keep threads executing
near their local memory and has been used to
help tune the NUMA scheduler for Altix.

4 Measurement and Analysis Tools

A number of measurement tools and bench-
marks have been used in our optimization
of Linux kernel performance for Altix 3000.
Among these are:

• Lockmeter [4, 17], a tool for measuring
spinlock contention

• Kernprof [18], a kernel profiling tool that
supports hierarchical profiling

• VTune™ [20], a profiling tool available
from Intel.

• pfmon [13, 15], a tool written by Stephane
Eranian that uses theperfmonsystem calls
of the Linux kernel for Itanium to inter-
face with the Itanium processor perfor-
mance measurement unit

Linux Symposium 80

5 Scaling and the Linux Kernel on
Altix

“Perfect scaling”—a linear one-to-one rela-
tionship between CPU count and throughput
for all CPU counts—is rarely achieved because
one or more bottlenecks (software or hard-
ware) introduce serial constraints into the oth-
erwise independently parallel CPU execution
streams. The common Linux bottlenecks -
lock contention and cache-line contention - are
true for uniform-memory-access multiproces-
sor systems as well as for NUMA multiproces-
sor systems and Altix 3000. However, the per-
formance impact of these bottlenecks on Al-
tix can be exaggerated (potentially in a nonlin-
ear way) by the high processor counts and the
directory-based global cache-coherency policy.

Analysis of lock contention has therefore been
a key part of improving scalability of the Linux
kernel for Altix. We have found and removed
a number of different lock-contention bottle-
necks whose impacts are significantly worse
on Altix than they are on smaller, non-NUMA
platforms. Specific examples of these changes
are discussed below, in sections 5.2 through
5.8.

Cache-line contention is usually more subtle
than lock contention, but cache-line contention
can still be a significant impediment to scal-
ing large configurations. These effects can
be broadly classified as either “false cache-
line sharing” or cache-line “ping-ponging.”
“False cache-line sharing” is the unintended
co-residency of unrelated variables in the same
cache-line. Cache-line “ping-ponging” is the
change in exclusive ownership of a cache-line
as different CPUs write to it.

An example of “false cache-line sharing” is
when a single L3 cache-line contains a loca-
tion that is frequently written and another loca-
tion that is only being read. In this case, a read

will commonly trigger an expensive cache-
coherency operation to demote the cache-line
from exclusive to shared state in the directory,
when all that would otherwise be necessary
would be adding the processor to the list of
sharing nodes in the cache-line directory en-
try. Once identified, “false cache-line sharing”
can often be remedied by isolating a frequently
dirtied variable into its own cache-line.

The performance measurement unit of the Ita-
nium 2 processor includes events that allow
one to sample cache misses and record pre-
cisely the data and instruction addresses asso-
ciated with these sampled misses. We have
used tools based on these events to find and re-
move false sharing in user applications, and we
plan to repeat such experiments to find and re-
move false sharing in the Linux kernel.

Some cache-line contention and ping-ponging
can be difficult to avoid. For example,
a multiple-reader single-writerrwlock_t con-
tains an contending variable: the read-lock
count. Eachread_lock() and read_unlock()
request changes the count and dirties the
cache-line containing the lock. Thus, an ac-
tively usedrwlock_t is continually being ping-
ponged from CPU to CPU in the system.

5.1 Linux changes for Altix

To get from awww.kernel.org Linux ker-
nel to a Linux kernel for Altix, we apply the
following open-source community patches:

• The IA-64 patch maintained by David
Mossberger [14]

• The "discontiguous memory" patch orig-
inally developed as part of the Atlas
project [1]

• The O(1) scheduler patch from Erich
Focht [7]

Linux Symposium 81

• The LSE rollup patch for the Big Kernel
Lock [19]

This open-source base is then modified to
support the Altix platform-specific addressing
model and I/O implementation. This set of
patches and the changes specific to Altix com-
prise the largest set of differences between a
standard Linux kernel and a Linux kernel for
Altix.

Additional discretionary enhancements im-
prove the user’s access to the full power of the
hardware architecture. One such enhancement
is the CpuMemSets package of library and ker-
nel changes that permit applications to control
process placement and memory allocation. Be-
cause the Altix system is a NUMA machine,
applications can obtain improved performance
through use of local memory. Typically, this
is achieved by pinning the process to a CPU.
Storage allocated by that process (for example,
to satisfy page faults) will then be allocated in
local memory, using a first-touch storage allo-
cation policy. By making optimal use of local
memory, applications with large CPU counts
can be made to scale without swamping the
communications bandwidth of the Altix inter-
connection network.

Another enhancement is XSCSI, a new SCSI
midlayer that provides higher throughput for
the large Altix I/O configurations. Fig-
ure 3 shows a comparison of I/O bandwidths
achieved at the device-driver level for SCSI
and XSCSI on a prototype Altix system.
XSCSI was a tactical addition to the Linux ker-
nel for Altix in order to dramatically improve
I/O bandwith performance while still meeting
product-development deadlines.

5.2 Big Kernel Lock

The classic Linux multiprocessor bottleneck
has been thekernel_flag, commonly known as

0

200

400

600

800

1000

0 200 400 600 800 1000

M
B

/s

Request size (in 512 byte blocks)

XSCSI Raw I/O read performance

xscsi
scsi

Figure 3:Comparison of SCSI and XSCSI on Pro-
totype Altix Hardware

the Big Kernel Lock (BKL). Early Linux MP
implementations used the BKL as the primary
synchronization and serialization lock. While
this may not have been a significant problem
for workloads on a 2-CPU system, a single
gross-granularity spinlock is a principal scal-
ing bottleneck for larger CPU counts.

For example, on a prototype Altix platform
with 28 CPUs running a relatively unimproved
2.4.17 kernel and with Ext2 file systems, we
found that with an AIM7 workload, 30% of
the CPU cycles were consumed by waiting
on the BKL, and another 25% waiting on the
runqueue_lock. When we introduced a more
efficient multiqueue scheduler that eliminated
contention on therunqueue_lock, we discov-
ered that therunqueue_lockcontention sim-
ply became increased contention pressure on
the BKL. This resulted in 70% of the system
CPU cycles being spent waiting on the BKL,
up from 30%, and a 30% drop in AIM7 peak
throughput performance. The lesson learned
here is that we should attack the biggest bot-
tlenecks first, not the lesser bottlenecks.

Linux Symposium 82

We have attempted to solve the BKL problem
using several techniques. One approach has
been in our preferential use of the XFS® file
system, vs. Ext2 or Ext3, as the Altix file sys-
tem. XFS uses scalable, fine-grained locking
and largely avoids the use of the BKL alto-
gether. Figure 4 shows a comparison of the rel-
ative scalability of several different Linux file
systems under the AIM7 workload [5].

0

1

2

3

4

5

6

0 4 8 12 16 20 24 28

T
hr

ou
gh

pu
t (

re
la

tiv
e

to
 E

xt
2

at
 2

 C
PU

S)

Number of Processors

Filesystem Performance

ext2
ext3

ReiserFS
XFS

Figure 4:File System Scalability of Linux® 2.4.17
on Prototype Altix Hardware

Other changes were targeted to specific func-
tionality, such as back porting the 2.5 algorithm
for process accounting that uses a new spinlock
instead of using the BKL.

The largest set of changes was derived from the
LSE rollup patch [19]. The aggregate effect of
these changes has reduced the fraction of cy-
cles spent spinning (out of all CPU cycles) for
the BKL lock from 50% to 5% when running
the AIM7 benchmark, with 64 CPUs and XFS
filesystems on 64 disks.

5.3 TLB Flush

For the Altix platforms, a global TLB flush
first performs a local TLB flush using the In-
tel ptc.gainstruction. Then it writes TLB flush
address and size information to special SHUB
registers that trigger the remote hardware to
perform a local TLB flush of the CPUs in that
node. Several changes have been incorporated
into the Linux kernel for Altix to reduce the
impact of TLB flushing. First, care is taken
to minimize the frequency of flushes by elimi-
nating NULL entries in themmu_gathersarray
and by taking advantage of the larger Itanium 2
page size that allows flushing of larger address
ranges. Another reduction was accomplished
by having the CPU scheduler remember the
node residency history of each thread; this al-
lows the TLB flush routine to flush only those
remote nodes that have executed the thread.

5.4 Multiqueue CPU Scheduler

The CPU scheduler in the 2.4 (and earlier) ker-
nels is simple and efficient for uniprocessor
and small MP platforms, but it is inefficient
for large CPU counts and large thread counts
[3]. One scaling bottleneck is due to the use
of a single globalrunqueue_lockspinlock to
protect the global runqueue, thereby making it
heavily contended.

A second inefficiency in the 2.4 scheduler is
contention on cache-lines that are involved
with managing the global runqueue list. The
global list was frequently searched, and pro-
cess priorities were continually being recom-
puted. The longer the runqueue list, the more
CPU cycles were wasted.

Both of these problems are addressed by
new Linux schedulers that partition the sin-
gle global runqueue of the standard scheduler
into multiple runqueues. Beginning with the
Linux® 2.4.16 for Altix version, we began to

Linux Symposium 83

use the Multiqueue Scheduler contributed to
the Linux Scalability Effort (LSE) by Hubertus
Franke, Mike Kravetz, and others at IBM [8].
This scheduler was replaced by the O(1) sched-
uler contributed to the 2.5 kernel by Ingo Mol-
nar [16] and subsequently modified by Erich
Focht of NEC and others. The Linux kernel for
Altix now uses a version of the 2.5 scheduler
with some "NUMA-aware" enhancements and
other changes that provide additional perfor-
mance improvements for typical Altix work-
loads.

What is relatively peculiar to Altix workloads
is the commonplace utilization of the task
cpus_allowedbitmap to constrain CPU res-
idency. This is typically done to pin pro-
cesses to specific CPUs or nodes in order to
efficiently use local storage on a particular
node. The result is that the Altix scheduler
commonly encounters processes that cannot be
moved to other CPUs for load-balancing pur-
poses. The 2.5 version of the O(1) sched-
uler’s load_balance()routine searches only the
“busiest” CPU’s runqueue to find a candidate
process to migrate. If, however, the “busiest”
CPU’s runqueue is populated with processes
that cannot be migrated, the 2.5 version of
the O(1) scheduler does not then search other
CPUs’ runqueues to find additional migration
candidates. What is done in the Linux kernel
for Altix is that load_balance()builds a list of
“busier” CPUs and searches all of them (in de-
creasing order of imbalance) to find candidate
processes for migration.

A more subtle scaling problem occurs when
multiple CPUs contend insideload_balance()
on a busy CPU’s runqueue lock. This is
most often the case when idle CPUs are load-
balancing. While it is true that lock contention
among idle CPUs is often benign, the problem
is that that “busiest” CPU’s runqueue lock has
now become highly contended, and that stalls
any attempt totry_to_wake_up()a process on

that queue or on the runqueue of any of the idle
CPUs that are spinning on another runqueue
lock. Therefore, it is beneficial to stagger the
idle CPUs’ calls toload_balance()to minimize
this lock contention. We continue to experi-
ment with additional techniques to reduce this
contention.

At the time this paper was being written, we
have begun to use an adaptation of the O(1)
scheduler from Linux® 2.5.68 in the Linux
kernel for Altix. To this version of the sched-
uler, we have added a set of “NUMA-aware”
enhancements that were contributed by various
developers and that have been aggregated into
a roll-up patch by Martin Bligh [2]. Early per-
formance tests show promising results. AIM7
aggregate CPU time is roughly 6% lower at
2500 tasks than without these “NUMA-aware”
improvements. We will continue to track fur-
ther changes in this area and to contribute SGI
changes back to the community.

5.5 dcache_lock

In the 2.4.17 and earlier kernels, the
dcache_lockwas a modestly busy spinlock for
AIM7-like workloads, typically consuming
3% to 5% of CPU cycles for a 32-CPU
configuration. The 2.4.18 kernel, however,
began to use this lock indnotify_parent(),
and the compounding effect of that additional
usage made this lock a major CPU cycle
consumer. We have solved this problem in
the Linux kernel for Altix by back porting
the 2.5 kernel’s finer-graineddparent_lock
strategy. This has returned the contention on
thedcache_lockto acceptable levels.

5.6 lru_list_lock

One bottleneck in the VM system we have en-
countered is contention for thelru_list_lock.
This bottleneck cannot be completely elimi-
nated without a major rewrite of the Linux

Linux Symposium 84

2.4.19 VM system. The Linux kernel
for Altix contains a minor, albeit measur-
ably effective, optimization for this bottle-
neck in fsync_buffers_list(). Instead of re-
leasing thelru_list_list and immediately call-
ing osync_buffers_list(), which reacquires it,
fsync_buffers_list()keeps holding the lock
and instead calls a new__osync_buffers_list(),
which expects the lock to be held on entry. For
a highly contended spinlock, it is often better to
double the lock’s hold-time than to release the
lock and have to contend for ownership a sec-
ond time. This particular change produced 2%
to 3% improvement in AIM7 peak throughput.

5.7 xtime_lock

Thextime_lockread-write spinlock is a severe
scaling bottleneck in the 2.4 kernel. A mere
handful of concurrent user programs calling
gettimeofday()can keep the spinlock’s read-
count perpetually nonzero, thereby starving the
timer interrupt routine’s attempts to acquire
the lock in write mode and update the timer
value. We eliminated this bottleneck by in-
corporating an open-source patch that converts
thextime_lockto a lockless-read usingfrlock_t
functionality (which is equivalent toseqlock_t
in the 2.5 kernel).

5.8 Node-Local Data Structures

We have reduced memory latencies to var-
ious per-CPU and per-node data structures
by allocating them in node-local storage and
by employing strided allocation to improve
cache efficiency. Structures where this tech-
nique is used includestruct cpuinfo_ia64,
mmu_gathers, andstruct runqueue.

6 Beyond 64 Processors

The Altix platform hardware architecture sup-
ports a cache-coherent domain of 512 CPUs.

Although SGI currently supports a maximum
of 64 processors in a single Linux image, we
believe there is potential interest in SSI Linux
systems that are larger than 64 CPUs (judging
from our experience with IRIX systems, where
some customers run 512-CPU SSI systems).
Additionally, testing on systems that are larger
than 64 CPUs can help us find scalability prob-
lems that are present, but not yet obvious in
smaller systems.

The Linux kernel currently defines a CPU bit
mask as anunsigned long, which for an Ita-
nium architecture provides enough bits to spec-
ify 64 CPUs. To support a CPU count that ex-
ceeds the bit count of anunsigned longrequires
that we define acpumask_ttype, declared as
unsigned long[N], where N is large enough
to provide sufficient bits to denote each CPU.
While this is a simple kernel coding change,
the change affects numerous files. Moreover, it
also affects some calling sequences which to-
day expect to pass acpumask_tas a call-by-
value argument or as a simple function return
value. Most problematic is whencpumask_t
is involved in a user-kernel interface, such as
we have with the SGI CpuMemSets functions
like runon anddplace. Our plan is to follow
the approach of the 2.5 kernel in this area (c.f.,
sched_set/get_affinity).

Our initial 128-CPU investigations have so far
not yielded any great surprises. The Altix hard-
ware architecture scales memory access band-
widths to these larger configurations, and the
longer memory access latencies are small (65
nanoseconds per router “hop” in the current
systems) and well understood.

The large NR_CPU configurations benefit
from anti-aliasing the per-node data and from
dynamically allocating thestruct cpuinfo_ia64
andmmu_gathers. Dynamic allocation of the
runqueue_telements reduces the static size of
the kernel, which otherwise produces a “gp

Linux Symposium 85

overflow” at link time. Inter-processor inter-
rupts and remote SHUB references are made
in physical addressing mode, thereby avoiding
the use of TLB entries and reducing TLB pres-
sure. Finally, several calls to__cli() were elim-
inated or converted into locks.

7 HPC Application Benchmark
Results

In this section, we present some benchmark re-
sults for example applications in the HPC mar-
ket segment.

7.1 STREAM

The STREAM Benchmark [12] is a “simple
synthetic benchmark program that measures
sustainable memory bandwidth (in MB/sec)
and the corresponding computation rate for
simple vector kernels” [12]. Since many HPC
applications are memory bound, higher num-
bers for this benchmark indicate potentially
higher performance on HPC applications in
general. The STREAM Benchmark has the fol-
lowing characteristics:

• It consists of simple loops

• It is embarrassingly parallel

• It is easy for compiler to generate scalable
code for this benchmark

• In general, only simple optimization lev-
els are allowed

Here we report on what is called the "triad"
portion of the benchmark. The parallel Fortran
code for this kernel is shown below:

!$OMP PARALLEL DO

DO j = 1, n

a(j) = b(j) + s ∗c(j)

CONTINUE

To execute this code in parallel on an Al-
tix system, the data is evenly divided among
the nodes, and each processor is assigned to
do the calculations on the portion of the data
on its node. Threads are pinned to proces-
sors so that no thread migration occurs dur-
ing the benchmark. The scalability results for
this benchmark on Altix 3000 are as shown
in figure 5. As can be seen from this graph,

0

20

40

60

80

100

120

140

0 8 16 24 32 40 48 56 64

G
B

/s

Number of Processors

Altix 3000 STREAM Triad Benchmark

Linear
SGI Altix 3000

Figure 5:Scalability of STREAM TRIAD bench-
mark on Altix 3000

the results scale almost linearly with proces-
sor count. In some sense, this is not surpris-
ing, given the NUMA architecture of the Altix
system, since each processor is accessing data
in local memory. One can argue that any non-
shared memory cluster with a comparable pro-
cessor could achieve a similar result. However,
what is important to realize here is that not all
multiprocessor architectures can achieve such
a result. A typical uniform-memory-access
multiprocessor system, for example, could not
achieve such linear scalability because the in-
terconnection network would become a bottle-
neck. Similarly, while it is true that a non-

Linux Symposium 86

shared memory cluster can achieve good scal-
ability, it does so only if one excludes the data
distribution and collection phases of the pro-
gram from the test. These times are trivial on
an Altix system due to its shared memory ar-
chitecture.

We have also run the STREAM benchmark
without thread pinning, both with the standard
2.4.18 scheduler and the O(1) scheduler. The
O(1) scheduler produces a throughput result
that is nearly six times better than the standard
Linux scheduler. This demonstrates that the
standard Linux scheduler causes dramatically
more thread migration and cache damage than
the O(1) scheduler.

7.2 Star-CD™

Star-CD [21] is a fluid-flow analysis system
marketed by Computational Dynamics, Ltd. It
is an example of a computational fluid dynam-
ics code. This particular code uses a message-
passing interface on top of the shared-memory
Altix hardware. This example uses an “A”
Class Model, with 6 million cells. The results
of the benchmark are shown in Figure 6.

7.3 Gaussian® 98

Gaussian [9] is a product of Gaussian, Inc.
Gaussian is a computational chemistry system
that calculates molecular properties based on
fundamental quantum mechanics principles.
The problem being solved in this case is a sam-
ple problem from the Gaussian quality assur-
ance test suite. This code uses a shared mem-
ory programming model. The results of the
benchmark are shown in Figure 7.

8 Concluding Remarks

With the open-source changes discussed in this
paper, SGI has found Linux to be a good fit

0

10

20

30

40

50

60

0 8 16 24 32 40 48 56 64

Sp
ee

du
p

Number of Processors

Star−CD Scalability Altix 3000 Prototype

Linear
SGI Altix 3000

Figure 6:Scalability of Star-CD Benchmark

0

5

10

15

20

25

30

0 8 16 24 32

Sp
ee

du
p

Number of Processors

Gaussian Sclability Altix 3000 Prototype

Linear
SGI Altix 3000

Figure 7:Scalability of Gaussian Benchmark

Linux Symposium 87

for HPC applications. In particular, changes in
the Linux scheduler, use of the XFS file sys-
tem, use of the XSCSI implementation, and
numerous small scalability fixes have signifi-
cantly improved scaling of Linux for the Altix
platform. The combination of a relatively low
remote-to-local memory access time ratio and
the high bandwidth provided by the Altix hard-
ware are also key reasons that we have been
able to achieve good scalability using Linux on
the Altix system.

Relatively speaking, the total set of changes in
Linux for the Altix system is small, and most
of the changes have been obtained from the
open-source Linux community. SGI is com-
mitted to working with the Linux community
to ensure that Linux performance and scalabil-
ity continues to improve as a viable and com-
petitive operating system for real-world envi-
ronments. Many of the changes discussed in
this paper have already been submitted to the
open-source community for inclusion in com-
munity maintained software. Versions of this
software are also available atoss.sgi.com .

We anticipate future scalability efforts in mul-
tiple directions. One is an ongoing reduction
of lock contention, as best we can accomplish
with the 2.4 source base. We have work in
progress on CPU scheduler improvements, re-
duction of thepagecache_lockcontention, and
reductions in other I/O-related locks.

Another class of work will be analysis of cache
and TLB activity inside the kernel, which will
presumably generate patches to reduce over-
head associated with poor cache and TLB us-
age.

Large-scale I/O is another area of ongoing fo-
cus, including improving aggregate bandwidth,
increasing transaction rates, and spreading in-
terrupt handlers across multiple CPUs.

References

[1] sourceforge.net/projects/
discontig

[2] www.kernel.org/pub/linux/
kernel/people/mbligh/

[3] Ray Bryant and Bill Hartner, Java
technology, threads, and scheduling in
Linux, IBM Developerworkswww-106.
ibm.com/developerworks/
library/j-java2/index.html

[4] Ray Bryant and John Hawkes,
Lockmeter: Highly-Informative
Instrumentation for Spin Locks in the
Linux Kernel,Proceedings of the Fourth
Annual Linux Showcase & Conference,
Atlanta, Ga. (2000),oss.sgi.com/
projects/lockmeter/als2000/
als2000lock.html

[5] Ray Bryant, Ruth Forester, and John
Hawkes, Filesystem Performance and
Scalability in Linux 2.4.17,Proceedings
of the Freenix Track of the 2002 Usenix
Annual Technical Conference, Montery,
Ca., (June 2002).

[6] Ray Bryant, David Raddatz, and Roger
Sunshine, PenguinoMeter: A new
File-I/O Benchmark for Linux,
Proceedings of the 5th Annual Linux
Showcase and Conference, Oakland, Ca.
(October 2001).

[7] home.arcor.de/efocht/sched

[8] M. Kravetz, H. Franke, S. Nagar, and R.
Ravindran, Enhancing Linux Scheduler
Scalability,Proceedings of the Ottawa
Linux Symposium, Ottawa, CA, July
2001.

[9] Gaussian, Inc., Carnegie Office Park,
Building 6, Suite 230, Carnegie, PA
15106 USA.www.guassian.com

Linux Symposium 88

[10] James Laudon and Daniel Lenoski, The
SGI Origin: a ccNUMA Highly Scalable
Server,ACM SIGARCH Computer
Architecture News, Volume 25, Issue 2,
(May 1997), pp. 241-251.

[11] Daniel Lenoski, James Laudon, Truman
Joe, David Nakahira, Luis Stevens,
Anoop Gupta, and John Hennesy, The
DASH prototype: Logic overhead and
performance,IEEE Transacctions on
Parallel and Distributed Systems,
4(1):41-61, January 1993.

[12] John D. McCalpin, STREAM:
Sustainable Memory Bandwidth in High
Performance Computers,
www.cs.virginia.edu/stream

[13] David Mosberger and Stephane Eranian,
IA-64 Linux Kernel, Design and
Implementation, Prentice-Hall (2002),
ISBN 0-13-061014-3, pp. 405-406.

[14] www.kernel.org/pub/linux/
kernel/ports/ia64

[15] www.hpl.hp.com/research/
linux/perfmon/ .

[16] www.ussg.iu.edu/hypermail/
linux/kernel/0201.0/0810.
html

[17] oss.sgi.com/projects/
lockmeter

[18] oss.sgi.com/projects/
kernprof

[19] lse.sourceforge.net/
lockhier/bkl_rollup.html

[20] www.intel.com/software/
products/vtune

[21] Star-CD,www.cd-adapco.com .

[22] www.spec.org

© 2003 Silicon Graphics, Inc. Permission to re-
distribute in accordance with Ottawa Linux Sym-
posium submission guidelines is granted; all other
rights reserved. Silicon Graphics, SGI, IRIX, Ori-
gin, XFS, and the SGI logo are registered trade-
marks and Altix, NUMAflex, and NUMAlink are
trademarks of Silicon Graphics, Inc., in the United
States and/or other countries worldwide. Linux is
a registered trademark of Linus Torvalds. MIPS
is a registered trademark of MIPS Technologies,
Inc., used under license by Silicon Graphics, Inc.,
in the United States and/or other countries world-
wide. Intel and Itanium are registered trademarks
and VTune is a trademark of Intel Corporation. All
other trademarks mentioned herein are the property
of their respective owners. (05/03)

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

