
Integrating DMA Into the Generic Device Model

James E.J. Bottomley
SteelEye Technology, Inc.

http://www.steeleye.com

James.Bottomley@steeleye.com

Abstract

This paper will introduce the new DMA API
for the generic device model, illustrating how
it works and explaining the enhancements over
the previous DMA Mapping API. In a later sec-
tion we will explain (using illustrations from
the PA-RISC platform) how conversion to the
new API may be achieved hand in hand with a
complete implementation of the generic device
API for that platform.

1 Introduction

Back in 2001, a group of people working on
non-x86 architectures first began discussing
radical changes to the way device drivers make
use of DMA. The essence of the proposal
was to mandate a new DMA Mapping API[1]
which would be portable to all architectures
then supported by Linux. One of the forces
driving the adoption of this new API was the
fact that the PCI bus had expanded beyond the
x86 architecture and being embraced by non-
x86 hardware manufacturers. Thus, one of the
goals was that any driver using the DMA Map-
ping API should work onany PCI bus inde-
pendent of the underlying microprocessor ar-
chitecture. Therefore, the API was phrased en-
tirely in terms of the PCI bus, since PCI driver
compatibility across architectures was viewed
as a desirable end result.

1.1 Legacy Issues

One of the issues left unaddressed by the DMA
Mapping API was that of legacy buses: Most
non-x86 architectures had developed other bus
types prior to the adoption of PCI (e.g. sbus
for the sparc; lasi and gsc bus for PA-RISC)
which were usually still present in PCI based
machines. Further, there were other buses
that migrated across architectures prior to PCI,
the most prominent being EISA. Finally, some
manufacturers of I/O chips designed them not
to be bus based (the LSI 53c7xx series of SCSI
chips being a good example). These chips
made an appearance in an astonishing variety
of cards with an equal variety of bus intercon-
nects.

The major headache for people who write
drivers for non-PCI or multiple bus devices is
that there was no standard for non-PCI based
DMA, even though many of the problems en-
countered were addressed by the DMA Map-
ping API. This gave rise to a whole hotch-
potch of solutions that differed from architec-
ture to architecture: On Sparc, the DMA Map-
ping API has a completely equivalent SBUS
API; on PA-RISC, one may obtain a “fake”
PCI object for a device residing on a non-PCI
bus which may be passed straight into the PCI
based DMA API.

Linux Symposium 64

1.2 The Solution

The solution was to re-implement the DMA
Mapping API to be non bus specific. This goal
was vastly facilitated by the new generic de-
vice architecture[5] which was also being im-
plemented in the 2.5 Linux kernel and which fi-
nally permitted the complete description of de-
vice and bus interconnections using a generic
template.

1.3 Why A New API

After all, apart from legacy buses, PCI is the
one bus to replace all others, right? so an API
based on it must be universally applicable?

This is incorrect on two counts. Firstly, support
for legacy devices and buses is important to
Linux, since being able to boot on older hard-
ware that may have no further use encourages
others who would not otherwise try Linux to
play with it, and secondly there are other new
non-PCI buses support for which is currently
being implemented (like USB and firewire).

1.4 Layout

This paper will describe the problems caused
by CPU caches in section 2, move on to intro-
ducing new struct device based DMA API[2]
in section 3 and describe how it solves the
problems, and finally in section 4 describe how
the new API may be implemented by platform
maintainers giving specific examples from the
PA-RISC conversion to the new API.

2 Problems Caused By DMA

The definition of DMA: Direct Memory Ac-
cess means exactly that: direct access to mem-
ory (without the aid of the CPU) by a device
transferring data. Although the concept sounds

simple, it is fraught with problems induced by
the way a CPU interacts with memory.

2.1 Virtual Address Translation

Almost every complex CPU designed for mod-
ern Operating Systems does some form of Vir-
tual Address Translation. This translation,
which is usually done inside the CPU, means
that every task running on that CPU may utilise
memory as though it were the only such task.
The CPU transparently assigns each task over-
lapping memory in virtual space, but quietly
maps it to unique locations in the physical ad-
dress space (the memory address appearing on
the bus) using an integral component called a
MMU (Memory Management Unit).

Unfortunately for driver writers, since DMA
transfers occur without CPU intervention,
when a device transfers data directly to or from
memory, it must use the physical memory ad-
dress (because the CPU isn’t available to trans-
late any virtual addresses). This problem isn’t
new, and was solved on the x86 by using func-
tions which performed the same lookups as
the CPU’s MMU and could translate virtual to
physical addresses and vice versa so that the
driver could give the correct addresses physical
addresses to the hardware and interpret any ad-
dresses returned by the hardware device back
into the CPU’s virtual space.

However, the problems don’t end there. With
the advent of 64 bit chips it became apparent
that they would still have to provide support for
the older 32 bit (and even 24 bit) I/O buses for
a while. Rather than cause inconvenience to
driver writers by arbitrarily limiting the physi-
cal memory addresses to which DMA transfers
could be done, some of the platform manufac-
turers came up with another solution: Add an
additional MMU between the I/O buses and the
processor buses (This MMU is usually called
the IOMMU). Now the physical address lim-

Linux Symposium 65

itation of the older 32 bit buses can be hid-
den because the IOMMU can be programmed
to map the physical address space of the bus
to anywhere in thephysical (not virtual)
memory of the platform. The disadvantage
to this approach is that now this bus physical
to memory physical address mapping must be
programmed into the IOMMU and must also
be managed by the device driver.

There may even be multiple IOMMUs in the
system, so a physical address (mapped by a
particular IOMMU) given to a device might
not even be unique (another device may use the
same bus address via a different IOMMU).

2.2 Caching

On most modern architectures, the speed of the
processor vastly exceeds the speed of the avail-
able memory (or, rather, it would be phenom-
enally expensive to use memory matched to
the speed of the CPU). Thus, almost all CPUs
come equipped with a cache (called the Level
1 [L1] cache). In addition, they usually expose
logic to drive a larger external cache (called the
Level 2 [L2] cache).

In order to simplify cache management, most
caches operate at a minimum size called the
cache width.1 All reads and writes from main
memory to the cache must occur in integer
multiples of the cache width. A common value
for the cache width is sixteen bytes; however,
higher (and sometimes for embedded proces-
sors, lower) values are also known.

The effect of the processor cache on DMA can
be extremely subtle. For example, consider a
hypothetical processor with a cache width of
sixteen bytes. Referring to Figure 1, suppos-
ing I read a byte of data at address0x18 . Be-
cause of the cache burst requirement, this will

1also called the “cache line size” in the PCI specifi-
cation

Cache Line Width

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 data
data

new DMA
new DMA

CPU Cache DMA

CPU Cache DMA

Tim
e Line

Device does DMA to main memory

CPU Reads data at 0x18

data

data

Read from 0x11 satisfied from cached data

Figure 1: Incorrect data read because of cache
effects

bring the address range0x10 to 0x1f into the
cache. Thus, any subsequent read of say0x11
will be satisfied from the cache without any ref-
erence to main memory. Unfortunately, If I am
reading from0x11 because I programmed a
device to deposit data there via DMA, the value
that I read will not be the value that the device
placed in main memory because the CPU be-
lieves the data in the cache to be still current.
Thus I read incorrect data.

Worse, referring to Figure 2, supposing I have
designated the region0x00 to 0x17 for DMA
from a device, but then I write a byte of data
to 0x19 . The CPU will probably modify the
data in cache and mark the cache line0x10
to 0x1f dirty, but not write its contents to
main memory. Now, supposing the device
writes data into0x00 to 0x17 by DMA (the
cache still is not aware of this). However, sub-
sequently the CPU decides to flush the dirty
cache line from0x10 to 0x1f . This flush will
overwrite (and thus destroy) part of the the data

Linux Symposium 66

Cache Line Width

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 data
data

new DMA
new DMA

0x00

0x20

0x10 DMA
data

new DMA

CPU Cache DMA

CPU Cache DMA new data

new data

new data

Tim
e Line

CPU Writes data at 0x18

Device does DMA to main memory

CPU flushes the dirty cache line

Figure 2: Data destruction by interfering de-
vice and cache line writes

that was placed at0x10 to 0x17 by the DMA
from the device.

The above is only illustrative of some of the
problems. There are obviously many other sce-
narios where cache interference effects may
corrupt DMA data transfers.

2.3 Cache Coherency

In order to avoid the catastrophic consequences
of caching on DMA data, certain processors
exhibit a property called “coherency.” This
means that they take action to ensure that data
in the CPU cache and data in main memory
is identical (usually this is done by snooping
DMA transactions on the memory bus and tak-
ing corrective cache action before a problem is
caused).

Even if a CPU isn’t fully coherent, it can usu-

ally designate ranges of memory to be coherent
(in the simplest case by marking the memory as
uncacheable by the CPU). Such architectures
are called “partially coherent.”

Finally there is a tiny subset of CPUs that can-
not be made coherent by any means, and thus
the driver itself must manage the cache so as
to avoid the unfortunate problems described in
section 2.2.

2.4 Cache Management Instructions

Every CPU that is not fully coherent includes
cache management instructions in its reper-
toire. Although the actual instruction format
varies, they usually operate at the level of the
cache line and they usually perform one of
three operations:

1. Writeback (or flush): causes the cache
line to be synced back to main memory
(however, the data in the cache remains
valid).

2. Invalidate: causes the cache line to be
eliminated from the cache (often for a
dirty cache line this will cause the con-
tents to be erased). When the cpu next
references data in that cache line it will
be brought in fresh from main memory.

3. Writeback and Invalidate: causes an
atomic sequence of Writeback followed
by Invalidate (on some architectures, this
is the only form of cache manipulation in-
struction implemented).

When DMA is done to or from memory that
is not coherent, the above instructions must be
used to avoid problems with the CPU cache.
The DMA API contains an abstraction which
facilitates this.

Linux Symposium 67

2.5 Other Caches

Although the DMA APIs (both the PCI and
generic device ones) are concernedexclusively
with the CPU cache, there may be other caches
in the I/O system which a driver may need
to manage. The most obvious one is on the
I/O bus: Buses, like PCI, may possess a cache
which they use to consolidate incoming writes.
Such behaviour is termed “posting.” Since
there are no cache management instructions
that can be used to control the PCI cache (the
cache management instructions only work with
the CPU cache), the PCI cache employs special
posting rules to allow driver writers to control
its behaviour. The rules are essentially:

1. Caching will not occur on I/O mapped
spaces.

2. The sequence of reads and writes to the
memory mapped space will be preserved
(although the cache may consolidate write
operations).

One important point to note is that there is no
defined time limit to hold writes in the bus
cache, so if you want a write to be seen by the
device it must be followed by a read.

Suffice it to say that the DMA API does not
address PCI posting in any form. The basic
reason is that in order to flush a write from
the cache, a read of somewhere in the device’s
memory space would have to be done, but only
the device (and its driver) know what areas are
safe to read.

3 The New DMA API for Driver
Writers

By “driver writer”, we mean any person who
wishes to use the API to manage DMA co-
herency without wanting to worry about the

underlying bus (and architecture) implementa-
tion.

This part of the API and its relation to the PCI
DMA Mapping API is fairly well described
in [2] and also in other published articles [3].

3.1 DMA Masks, Bouncing and IOMMUs

Every device has a particular attachment to a
bus. For most, this manifests itself in the num-
ber of address lines on the bus that the device
is connected to. For example, old ISA type
buses were only connected (directly) to the first
twenty four address lines. Thus they could only
directly access the first sixteen megabytes of
memory. If you needed to do I/O to an ad-
dress greater than this, the transfer had to go
via a bounce buffer: e.g. data was received
into a buffer guaranteed to be lower than six-
teen megabytes and then copied into the correct
place. This distinction is the reason why Linux
reserves a special memory zone for legacy (24
bit) DMA which may be accessed using flag
(GFP_DMA) or’d into the allocation flags.

Similarly, a 32 bit PCI bus can only access up
to the first four gigabytes of main memory (and
even on a 64 bit PCI bus, the device may be
only physically connected to the first 32 or 24
address lines).

Thus, the concept of adma maskis used to con-
vey this information. The API for setting the
dma mask is:

int dma_set_mask(struct
device *dev, u64 mask)

• dev —a pointer to the generic device.

• mask—a representation of the bus con-
nection. It is a bitmap where a 1 means
the line is connected and a zero means
it isn’t. Thus, if the device is only con-

Linux Symposium 68

nected to the first 24 lines, themask will
be0xffffff .

• returns true if the bus accepted the mask.

Note also that if you are driving a device capa-
ble of addressing up to 64 bits, you must also
be aware that the bus it is attached to may not
support this (i.e. you may be a 64 bit PCI card
in a 32 bit slot). So when setting the DMA
mask, you must start with the value you want
but be prepared that you may get a failure be-
cause it isn’t supported by the bus. For 64 bit
devices, the convention is to try 64 bits first but
if that fails set the mask to 32 bits.

Once you have set the DMA mask, the trou-
bles aren’t ended. If you need transfers to or
from memory outside of your DMA mask to
be bounced, you must tell the block2 layer us-
ing the

void blk_queue_bounce_limit
(request_queue_t *q, u64
mask)

• q—the request queue your driver is con-
nected to.

• mask—the mask (again 1s for con-
nected addresses) that an I/O transfer will
be bounced if it falls outside of (i.e.
address & mask != address)

function that it should take care of the bounc-
ing. Note, however, that bouncingonly needs
to occur for buses without an IOMMU. For
buses with an IOMMU, the mask serves only
as an indication to the IOMMU of what the
range of physical addresses available to the de-
vice is. The IOMMU is assumed to be able

2Character and Network devices have their own ways
of doing bouncing, but we will consider only the block
layer in the following

to address the full width of the memory bus
and therefore transfers to the device need not
be bounced by the block layer.

Thus, the driver writer must know whether the
bus is mapped through an IOMMU or not.
The means for doing this is to test the global
PCI_DMA_BUS_IS_PHYSmacro. If it is
true, the system generally has no IOMMU3

and you should feed the mask into the block
bounce limit. If it is false, then you should sup-
ply BLK_BOUNCE_ANY(informing the block
layer that no bouncing is required).

3.2 Managing block layer DMA transfers

It is the responsibility of the device driver
writer to manage the coherency problems in the
CPU cache when transferring data to or from
a device and also mapping between the CPU
virtual address and the device physical address
(including programming the IOMMU if such is
required).

By and large, most block devices are simply
transports: they move data from user applica-
tions to and from storage without much con-
cern for the actual contents of the data. Thus
they can generally rely on the CPU cache man-
agement implicit in the APIs for DMA setup
and tear-down. They only need to use explicit
cache management operations if they actually
wish to access the data they are transferring.
The use of device private areas for status and
messaging is covered in sections 3.5 and 3.6.

For setup of a singlephysically contiguous4

3This is an inherent weakness of the macro. Obvi-
ously, it is possible to build a system where some buses
go via an IOMMU and some do not. In a future revision
of the DMA API, this may be made a device specific
macro

4physically contiguous regions of memory for DMA
can be obtained fromkmalloc() and __get_
free_pages() . They may specificallynot be allo-
cated on the stack (because data destruction may be

Linux Symposium 69

DMA region, the function is

dma_addr_t dma_map_single
(struct device *dev,
void *ptr, size_t size,
enum dma_data_direction
direction)

• ptr —pointer to the physically contigu-
ous data (virtual address)

• size –the size of the physically contigu-
ous region

• direction —the direction, either to the
device, from the device or bidirectional
(see section 3.4 for a complete descrip-
tion)

• returns a bus physical address which may
be passed to the device as the location for
the transfer

and the corresponding tear-down after the
transfer is complete is achieved via

void dma_unmap_single
(struct device *dev,
dma_addr_t dma_addr,
size_t size, enum
dma_data_direction
direction)

• dma_addr —the physical address re-
turned by the mapping setup function

• size , direction —the exact values
passed into the corresponding mapping
setup function

The setup and tear-down functions also take
care of all the necessary cache flushes associ-
ated with the DMA transaction.5

caused by overlapping cache lines, see section 2.2) or
vmalloc()

5they use thedirection parameter to get this

3.3 Scatter-Gather Transfers

By and large, almost any transfer that crosses a
page boundary will not be contiguous in phys-
ical memory space (because each contiguous
page in virtual memory may be mapped to a
non-contiguous page in physical memory) and
thus may not be mapped using the API of sec-
tion 3.2. However, the block layer can con-
struct a list of each separate page and length
in the transfer. Such a list is called a Scatter-
Gather (SG) list. The device driver writer must
map each element of the block layer’s SG list
into a device physical address.

The API to set up a SG transfer for a given
struct request *req is

int blk_rq_map_sg
(request_queue_t *q,
struct request *req, struct
scatterlist *sg)

• q—the queue the request belongs to

• sg —a pointer to a pre allocated phys-
ical scatterlist which must be at least
req->nr_phys_segments in size.

• returns the number of entries insg which
were actually used

Once this is done, the SG list may be mapped
for use by the device:

int dma_map_sg(struct
device *dev, struct
scatterlist *sg, int nents,
enum dma_data_direction
direction)

• sg —a pointer to a physical scatterlist
which was filled in by

right, so be careful when assigning directions to ensure
that they are correct.

Linux Symposium 70

• nents —the allocated size of the SG list.

• direction —as per the API in sec-
tion 3.2

• returns the number of entries of thesg
list actually used. This value must be
less than or equal tonents but is oth-
erwise not constrained (if the system has
an IOMMU, it may chose to do all SG in-
side the IOMMU mappings and thus al-
ways return just a single entry).

• returns zero if the mapping failed.

Once you have mapped the SG list, you may
loop over the number of entries using the fol-
lowing macros to extract the busy physical ad-
dresses and lengths

dma_addr_t sg_dma_address
(struct scatterlist *sge)

• sge –pointer to the desired entry in the SG
list

• returns the busy physical DMA address
for the given SG entry

unsigned int sg_dma_len
(struct scatterlist *sge)

• returns the length of the given SG entry

and program them into the device’s SG hard-
ware controller. Once the SG transfer has com-
pleted, it may be torn down with

void dma_unmap_sg (struct
device *dev, struct
scatterlist *sg, int nents,
enum dma_data_direction
direction)

• nents should be the number of entries
passed in todma_map_sg() not the
number of entries returned.

3.4 Accessing the Data Between Mapping and
Unmapping

Since the cache coherency is normally man-
aged by the mapping and unmapping API, you
may not access the data between the map and
unmap without first synchronizing the CPU
caches. This is done using the DMA synchro-
nization API. The first

void dma_sync_single(struct
device *dev, dma_addr_t
dma_handle, size_t size,
enum dma_data_direction
direction)

• dma_handle —the physical address of
the region obtained by the mapping func-
tion.

• size —The size of the region passed into
the mapping function.

synchronizes only areas mapped by the
dma_map_single API, and thus only works
for physically contiguous areas of memory.
The other

void dma_sync_sg
(struct device *dev,
struct scatterlist
*sg, int nelems, enum
dma_data_direction
direction)

• The parameters should be identical to
those passed in todma_map_sg

synchronizes completely a given SG list (and
is, therefore, rather an expensive operation).
The correct point in the driver code to invoke
these APIs depends on thedirection pa-
rameter:

Linux Symposium 71

• DMA_TO_DEVICE—Usually flushes the
CPU cache. Must be calledafter you last
modify the data andbeforethe device be-
gins using it.

• DMA_FROM_DEVICE—Usually invali-
dates the CPU cache. Must be calledafter
the device has finished transferring the
data andbeforeyou first try to read it.

• DMA_BIDIRECTIONAL—Usually does
a writeback/invalidate of the CPU cache.
Must be calledbothafter you finish writ-
ing it but before you hand the data to the
deviceandafter the device finishes with it
but before you read it.

3.5 API for coherent and partially coherent ar-
chitectures

Most devices require a control structure (or a
set of control structures), to facilitate commu-
nication between the device and its driver. For
the driver and its device to operate correctly on
an arbitrary platform, the driver would have to
insert the correct cache flushing and invalidate
instructions when exchanging data using this.

However, almost every modern platform has
the ability to designate an area of memory as
coherent between the processor and the I/O de-
vice. Using such a coherent area, the driver
writer doesn’t have to worry about synchronis-
ing the memory. The API for obtaining such
an area is

void * dma_alloc_coherent
(struct device *dev,
size_t size, dma_addr_t
*dma_handle, int flag)

• dev —a pointer to the generic device

• size —requested size of the area

• dma_handle —a pointer to the area the
physically usable address will be placed
(i.e. this should be the address given to
the device for the area)

• flag —a memory allocation flag. Either
GFP_KERNELif the allocation may sleep
while finding memory orGFP_ATOMIC
if the allocation may not sleep

• returns the virtual address of the area or
NULL if no coherent memory could be al-
located

Note that coherent memory may be a con-
strained system resource and thusNULL may
be returned even forGFP_KERNELalloca-
tions.

It should also be noted that the tricks platforms
use to obtain coherent memory may be quite
expensive, so it is better to minimize the allo-
cation and freeing of these areas where possi-
ble.

Usually, device drivers allocate coherent mem-
ory at start of day, both for the above reason
and so an in-flight transaction will not run into
difficulties because the system is out of coher-
ent memory.

The corresponding API for releasing the coher-
ent memory is

void dma_free_coherent
(struct device *dev,
size_t size, void *vaddr,
dma_addr_t dma_handle)

• vaddr —the virtual address returned by
dma_alloc_coherent

• dma_handle —the device physical ad-
dress filled in at allocation time

Linux Symposium 72

3.6 API for fully incoherent architectures

This part of the API has no correspondance
with any piece of the old DMA Mapping API.
Some platforms (fortunately usually only older
ones) are incapable of producing any coher-
ent memory at all. Even worse, drivers which
may be required to operate on these platforms
usually tend to have to also operate on plat-
forms which can produce coherent memory
(and which may operate more efficiently if it
were used). In the old API, this meant it was
necessary to try to allocate coherent memory,
and if that failed allocate and map ordinary
memory. If ordinary memory is used, the driver
must remember that it also needs to enforce the
sync points. This leads to driver code which
looks like

memory = pci_alloc_coherent(...);
if (!memory) {

dev->memory_is_not_coherent = 1;
memory = kmalloc(...);
if (!memory)

goto fail;
pci_map_single(...);

}

....

if (dev->memory_is_not_coherent)
pci_dma_sync_single(...);

Which cannot be optimized away. The non-
coherent allocation additions are designed to
make this code more efficient, and to be opti-
mized away at compile time on platforms that
can allocate coherent memory.

void *dma_alloc_noncoherent
(struct device *dev,
size_t size, dma_addr_t
*dma_handle, int flag)

• the parameters are identical to those of
dma_alloc_coherent in section 3.5.

The difference here is that the drivermustuse
a special synchronization API,6 to synchronize
this area between data transfers

dma_cache_sync (void
*vaddr, size_t size,
enum dma_data_direction
direction)

• vaddr —the virtual address of the mem-
ory to sync (this need not be at the begin-
ning of the allocated region)

• size —the size of the region to sync
(again, this may be less than the allocated
size)

• direction —see section 3.4 for a dis-
cussion of how to use this.

Note that the placement of these synchroniza-
tion points should be exactly as described in
section 3.4. The platform implementation will
choose whether coherent memory is actually
returned. However, if coherent memory is re-
turned, the implementation will take care of
making sure the synchronizations become nops
(on a fully coherent platform, the synchroniza-
tions will compile away to nothing).

Using this API, the above driver example be-
comes

memory = dma_alloc_noncoherent(...);
if (!memory)

goto fail;

...

dma_cache_sync(...);

The (possibly) non-coherent memory area is
freed using

6The driver could also use the API of section 3.4 but
the point of having a separate one is that it may be opti-
mized away on platforms that are partially non-coherent

Linux Symposium 73

void dma_free_noncoherent
(struct device *dev,
size_t size, void *vaddr,
dma_addr_t dma_handle)

• The parameters are identical to those of
dma_free_coherent in section 3.4

Since there are very few drivers that need to
function on fully non-coherent platforms, this
API is of little use in modern systems.

3.7 Other Extensions in the New API

There are two other extensions over the old
DMA Mapping API. They are

int dma_get_cache_alignment
(void)

• returns the cache alignment width of the
platform (see section 2.2). Note, the value
returned guarantees only to be a power of
two and greater than or equal to the cur-
rent processor cache width. Thus its value
may be relied on to separate data variables
where I/O caching effects would destroy
data.

int dma_is_consistent
(dma_addr_t dma_handle)

• returns true if the physical memory area at
dma_handle is coherent

And

void dma_sync_single_range
(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset,
size_t size, enum
dma_data_direction
direction)

• offset —the offset from the
dma_handle

• size —the size of the region to be syn-
chronized

which allows a partial synchronization of a
mapped region. This is useful because on most
CPUs, the cost of doing a synchronization is
directly proportional to the size of the region.
Using this API allows the synchronization to
be restricted only to the necessary parts of the
data.

4 Implementing the DMA API for
a Platform

In this section we will explore how the DMA
API should be implemented from a platform
maintainer’s point of view. Since implementa-
tion is highly platform specific, we will con-
centrate on how the implementation was done
for the HP PA-RISC[4] platform.

4.1 Brief Overview of PA-RISC

CPU

U2/Uturn
IOMMU

Cujo

PCI64

Dino Wax Lasi

EISA LASIPCI32

IOMMU
U2/Uturn

Memory

GSC/10 GSC/8

Runway

Figure 3: An abridged example of PA-RISC
architecture

An abridged version of a specific PA-RISC ar-
chitecture7 is given in Figure 3. It is particu-

7The illustration is actually from a C360 machine,
and does not show every bus in the machine

Linux Symposium 74

larly instructive to note that the actual chips in-
volved (Cujo, U2/Uturn, Wax etc.) vary from
machine to machine, as do the physical bus
connections, so the first step that was required
for PA-RISC was to build a complete model of
the device layout from the runway bus on down
in the generic device model[5].

4.2 Converting to the Device Model

Since PA-RISC already had its own device type
(struct parisc_device), it was fairly
simple to embed a generic device in this, as-
sign it to a newparisc_bus_type and
build up the correct device structure. For
brevity, instead of giving all the PA-RISC spe-
cific buses (like Lasi, GSC, etc) their own
bus type, they were all simply assigned to the
parisc_bus_type .

The next problem was that of attaching the PCI
bus. Previously, PCI buses could only have
other PCI buses as parents, so a new API8 was
introduced to allow parenting a PCI bus to an
arbitrary generic device. At the same time, oth-
ers were working on bringing the EISA bus un-
der the generic device umbrella [6].

With all these core and architecture specific
changes, PA-RISC now has a complete generic
device model layout of all of its I/O compo-
nents and is ready for full conversion to the
new DMA API.

4.3 Converting to the DMA API

Previously for PA-RISC, the U2/Uturn
(IOMMU) information was cached in the
PCI devicesysdata field and was placed
there at bus scan time. Since the bus scan-
ning was done from the PA-RISC specific
code, it knew which IOMMU the bus was
connected to. Unfortunately, this scheme

8pci_scan_bus_parented()

doesn’t work for any other bus type, so an
API9 was introduced to obtain a fake PCI
device for a givenparisc_device and
place the correct IOMMU in thesysdata
field. PA-RISC actually has an architecture
switch (see struct hppa_dma_ops in
asm-parisc/dma-mapping.h) for the
DMA functions. All the DMA functions really
need to know is which IOMMU the device
is connected to and the device’sdma_mask,
making conversion quite easy since the only
PCI specific piece was extracting the IOMMU
data.

Obviously, in the generic device model, the
field platform_data is the one that we
can use for caching the IOMMU informa-
tion. Unfortunately there is no code in any
of the scanned buses to allow this to be pop-
ulated at scan time. The alternative scheme
we implemented was to take the generic de-
vice passed into the DMA operations switch
and, if platform_data was NULL, walk
up theparent fields until the IOMMU was
found, at which point it was cached in the
platform_data field. Since this will now
work for every device that has a generic device
(which is now every device in the PA-RISC
system), the fake PCI device scheme can be
eliminated, and we have a fully implemented
DMA API.

4.4 The Last Wrinkle—Non-Coherency

There are particular PA-RISC chips (the PCX-
S and PCX-T) which are incapable of allo-
cating any coherent memory at all. Fortu-
nately, none of these chips was placed into a
modern system,or indeed into a system with
an IOMMU, so all the buses are directly con-
nected.

Thus, an extra pair of functions was added
to the DMA API switch for this platform

9ccio_get_fake()

Linux Symposium 75

which implemented noncoherent allocations as
akmalloc() followed by a map, and also for
the dma_cache_sync() API. On the plat-
forms that are able to allocate coherent mem-
ory, the noncoherent allocator is simply the co-
herent one, and the cache sync API is a nop.

5 Future Directions

The new DMA API has been successful on
platforms that need to unify the DMA view of
disparate buses. However, the API as designed
is really driver writer direct to platform. There
are buses (USB being a prime example) which
would like to place hooks to intercept the DMA
transactions for programming DMA bridging
devices that are bus specific rather than plat-
form specific. Work still needs doing to inte-
grate this need into the current framework.

Acknowledgements

I would like to thank Grant Grundler and
Matthew Wilcox from the PA-RISC linux port-
ing team for their help and support transition-
ing PA-Linux to the generic device model and
subsequently the new DMA API. I would also
like to thank HP for their donation of a PA-
RISC C360 machine and the many people who
contributed to the email thread[7] that began all
of this.

References

[1] David S. Miller, Richard Henderson, and
Jakub JelinekDynamic DMA Mapping
Linux Kernel 2.5
Documentation/DMA-mapping.txt

[2] James E.J. BottomleyDynamic DMA
mapping using the generic deviceLinux
Kernel 2.5.
Documentation/DMA-API.txt

[3] Jonathan CorbetDriver Porting: DMA
ChangesLinux Weekly News,http:
//lwn.net/Articles/28092

[4] The PA-RISC linux team
http://www.parisc-linux.org

[5] Patrick MochelThe (New) Linux Kernel
Driver ModelLinux Kernel 2.5
Documentation/driver-model/*.txt

[6] Marc Zyngiersysfs stuff for EISA bus
http://marc.theaimsgroup.
com/?t=103696564400002

[7] James Bottomley[RFC] generic device
DMA implementation
http://marc.theaimsgroup.
com/?t=103902433500007

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

