
Developing Mobile Devices based on Linux

Tim Riker
Texas Instruments

Tim@Rikers.org, http://Rikers.org/

Abstract

This presentation will cover available com-
ponents of embedded solutions that leverage
Linux. We discuss bootloaders, Linux kernel
configuration, BusyBox, glibc, uClibc, GUI
choices such as Qtopia, TinyX, GPE, Kon-
queror, Dillo, and similar packages that make
up a commercial-grade consumer device. This
presentation is aimed at those who are just get-
ting into Linux on mobile or other embedded
devices.

1 Why Linux?

Linux is a stable, tested platform for produc-
tion use. The most often-used environment for
Linux is as a server for key business services.
Is it well suited for embedded use on mobile
devices? It is. Linux has a low total cost of
ownership as compared to other options. There
is a large pool of developers that are familiar
with the environment and this pool continues
to grow rapidly. The use of an Open Source
platform allows for flexible hardware and other
product design choices that can save money.
There is no dependency on a single vendor for
support.

The largest advantage is quick time to market.
The wealth of available projects that can be
leveraged means that resources can be directed
toward the specific value a product has to offer
without spending undue resources duplicating
what is done on devices that are otherwise sim-

ilar. This advantage truly comes to light when a
community is formed around the product. This
community can focus on enhancing the product
without direct development cost to the manu-
facturer. When planning the product lifetime,
thought should be given to seeding hardware
to key community members so that community
support is available early in the product life cy-
cle.

2 Special Needs of Mobile Devices

Mobile devices have features not often seen
in desktop or server systems. Most use flash
storage instead of traditional hard disk media.
NOR flash is a common choice for average-
sized storage, but becomes more expensive
with larger systems. It is relatively easy to han-
dle from a software perspective, and is com-
monly available as a direct memory mapped
device. NAND flash is cheaper for larger (ie:
>32MB) devices, but is not normally mapped
to a specific memory location. In addition,
flash devices track bad sectors and have error-
correction code. Special device drivers and
filesystems are required.

Removable storage is also an option. MMC
(MultiMediaCard) is one common small-form-
factor storage card. These use a 1-bit width
serial interface to access the flash. SD (Se-
cure Digital) storage cards can have an en-
hanced 4-bit interface that allows for faster data
transfer and I/O devices, but the licensing from
http://SDCard.org/ prohibits releasing



Linux Symposium 374

the source to any driver for these cards, so
they are not currently recommended for Linux-
based solutions.

Compact Flash (CF) storage cards are another
popular option. Testing has shown that most,
if not all, CF cards are unreliable when power-
cycled during a write. Consider this strongly
if power-cycles are likely to happen. Batteries
often run down on mobile devices.

2.1 Power needs in hardware

Power consumption is critical in a mobile de-
vice. If the device has a display, the light
is often the single largest power-consuming
component. Software should be configured to
be aggressive about turning off the lighting.
This is commonly user-configurable, and often
has a different setting when the device is con-
nected to external power. Wireless interfaces
are likely the next largest power consumer. It
is wise to spend time during product develop-
ment tuning the wireless setting for maximum
power conservation. Choosing a different wire-
less chipset can make a large difference in the
power needs of the device.

Linux has support for CPU scaling on a num-
ber of architectures. Research the devices that
are affected when the CPU speeds up or down
on different platforms. For example, on typical
StrongARM platforms, the LCD display must
be turned off during any CPU speed changes.
This may mean your product cannot leverage
CPU scaling in a useful manner. Other devices
that may be affected by CPU speed changes in-
clude audio, USB, serial, network, and many
other timing-sensitive devices.

CompactFlash and other removable devices
may still consume significant power while in
a suspended state. It is wise to add support
for removing power in software to most sys-
tem devices before entering a suspend state. It

is also wise to avoid polling of any hardware
device. As a general rule, interrupt-driven de-
vices will have a lower load on the CPU and
therefore consume less power. Physical keys
on the device are one common area where this
is overlooked. If the device has a power button,
it should be on a separate hardware interrupt
from the other keys on the device.

3 The bootloader

Choosing a bootloader has a big impact on
the development environment. Most embed-
ded systems do not have a traditional BIOS on-
board. They do not have APM or ACPI inter-
faces. Some rely on the bootloader to take part
in power-resume states; others just resume ex-
ecution at the next address after where they en-
tered suspend. Most bootloaders will initialize
RAM configuration, and startup other devices
in the system. Hardware designs may want to
insure that the Linux kernel can be booted with
a minimum of hardware setup so that there
does not need to be driver code for the remain-
ing hardware in the bootloader as well as in the
kernel.

The most common interface to a bootloader is
over a serial port. If the device has a keyboard
and display, that may be another choice, but
there is usually serial port support as well. The
bootloader should support flashing new code
on the device. New kernel images and filesys-
tem images are loaded over this interface and
stored to flash on the device. This requires
that the bootloader is able to deal with what-
ever styles of flash are on the device. Xmodem,
Ymodem, and even Zmodem code is available
in existing open bootloaders.

If the device will have removable media such
as CompactFlash storage cards, the bootloader
can be configured to read images from there
for flashing. This may be a good option for



Linux Symposium 375

upgrading devices in the field. Installing from
MMC or other types of storage devices may
require significant work implementing device
support in the bootloader.

Some embedded systems have built-in ethernet
interfaces and can use that for bootp or tftp up-
dates. This is not very common for a mobile
device.

For products with a USB client connection,
USB serial support can be implemented in the
bootloader. This will likely use a different USB
device ID than presented by the product in its
normal running state. If the product also has
USB host connectivity, then it can be imaged
off another working device. The kernel and
base filesystem should be in a separate area
for the device configuration in order to support
this.

The bootloader will need to be aware of any
partitioning in flash on the device. The kernel
will need access to this same information. This
information could then be shared with the ker-
nel by dedicating an area of flash to store it.
It could be compiled into both the bootloader
and the kernel. The cleanest approach is for the
bootloader to add it to the kernel command line
when booting. There will likely be other ker-
nel command-line options the bootloader will
want to store and pass on to the kernel. All
of these can be contained in one flash block
if desired. Some bootloaders understand the
filesystem, as well as the partitions on the de-
vice. This allows for one filesystem image that
contains the base binaries and libraries as well
as the kernel and its modules. This prevents the
kernel and modules from ever being out of sync
if they are all in the same image, which is a
nice feature from a customer support perspec-
tive. If the bootloader can read files from the
filesystem directly, then one can store the per-
manent kernel command-line options and other
bootloader configuration inside the filesystem.

This will likely not include flash partitioning
information, as the partitioning would need to
be known before the filesystem could be read.

Erasing the bootloader is a Bad Thing. Steps
should be taken to insure that it it protected.
This might mean putting it in ROM, or protect-
ing the flash block(s) it lives in, or other meth-
ods. OS updates in the field should not replace
the bootloader as part of the normal procedure.

4 Filesystems

Workstation and server filesystems like ext2 do
not scale well for embedded devices. Smaller
filesystems includeromfs and cramfs ,
which are read-only.cramfs includes com-
pression. Flash or ROM often is slow to ac-
cess. The time it takes to read and decompress
files is often faster than reading the same file
if stored uncompressed.cramfs may be both
the smallest and fastest choice for a read-only
filesystem. In most cases it is also important
to conserve memory. This implies that filesys-
tems should be used directly from flash rather
than using an initial ramdisk (initrd) whenever
possible.

Some applications on the device will create
temporary files. If the filesystem is read-only,
ramfs support should be added to store these
files. One way to handle this is to link /tmp to
/var/tmp then mount ramfs on /var and unpack
a tar archive into it, or just copy a tree from
someplace else on the filesystem. You may
want /dev linked in here as well if device files
need to have permission or ownership changed
at runtime.

An alternative to /dev is to include devfs sup-
port in the kernel. You may be able to avoid
using devfsd by considering the needs of all the
applications that will be included on the device
and configuring default devices permissions in
the kernel.



Linux Symposium 376

Many handheld portable devices use jffs2. This
is a compressed journaled filesystem that un-
derstands NOR flash directly. It will need a
few free blocks to use as workspace in each
mounted partition. jffs2 has undergone a great
deal of testing to insure that it is always in a
readable state even when writes are interrupted
by a powerfail or hard reboot. jffs2 support on
NAND flash chips is in progress and may be
complete by the time you read this. There are
other flash filesystems like YAFFS designed
just for NAND flash devices. This is a reason-
able option with a lot of flash and where com-
pression at the filesystem level is not needed.
Removable storage media will still need to use
vfat if it is going to be moved to other devices.

Some systems have dedicated partitions in
flash for diagnostics or additional code that
handles reflashing the device in the case where
the normal filesystem is not usable. The im-
pact of requiring this extra flash space should
be considered carefully. Reflashing code can
be added to the bootloader in much less space.
User-space tools can be used for this task as
long as the device can get to that point using
the existing filesystem. If the device includes
removable media access, diagnostics can be
shipped on the removable media and the boot-
loader configured to load a kernel and filesys-
tem from there.

5 Kernel device drivers

Embedded devices often do not include com-
ponents like PCI, ISA, MCA busses. All de-
vices that will not be present should be turned
off in the kernel config to save space. These
are not always obvious choices. For example,
if the device includes a CompactFlash slot, all
of the PCMCIA card drivers would be avail-
able as card options. There is no clear list of
which drivers are exclusively for pcmcia cards
and do not need to be available as they would

not be inserted in a CompactFlash slot.

5.1 Connectivity

Many mobile Linux devices include some form
of networking. This is probably not a normal
ethernet interface but can include WiFi, Blue-
tooth, IrDA, USB, ppp over serial, cell phone,
etc. Some devices will have multiple options
available. Very good IPv6 support is available
under Linux, but be aware that the IPv6 stack
is larger than IPv4 or other options.

6 Libraries

Larger Linux systems are commonly based on
the GNU C Library. This is not well suited to
small devices. To quote the maintainer:

. . . glibc is not the right thing for [an
embedded OS]. It is designed as a
native library (as opposed to embed-
ded). Many functions (e.g., printf)
contain functionality which is not
wanted in embedded systems.

—Ulrich Drepper
<drepper@cygnus.com>

24 May 1999

Other alternatives will be smaller, but may re-
quire some modifications to source that is be-
ing ported. This should not be a large task
when compared with the other aspects of the
port. Alternatives include uClibc, dietlibc,
newlib, and using pieces from things such as
the Minix C library, libc5, *BSD libraries, etc.
uClibc is the best choice today, as it is un-
der the LGPL license to allow for commercial
applications, includes shared library support,
pthreads, c++, and even most locale features.
It is configurable so you can remove things



Linux Symposium 377

you don’t need. uClibc is tested for compli-
ance with POSIX and ISO standards and passes
more tests than glibc.

Other libraries included on the device should
be reviewed closely to insure that they do not
include components that are not needed. Many
of these have compile-time options to exclude
large portions of the functionality.

If no applications are going to be added to
the system at a later date, library reduction
tools can be used to remove the unneeded por-
tions. Some examples of these tools include
mklibs, lipo, and libraryopt. The python script
mklibs.py is used in the Debian project on
multiple architectures and is the best place to
start.

7 Applications

There are many basic tools that run on top of
Linux and make up a basic distribution. Many
of the GNU tools could be here. GNU fileutils,
textutils, grep, modutils, and many others are
found in most every Linux distribution, hence
the GNU/Linux naming convention. While this
is the norm for a desktop distribution, it is
likely that none of the binaries or libraries on
an embedded Linux system will be the GNU
flavor. Applications like BusyBox and Tiny-
Login are not GNU packages, nor is uClibc.

BusyBox includes close to 200 different ap-
plications in one multicall binary that is under
600k. This allows you to hardlink or symlink
to the single binary, and depending on how it is
called, it acts as each of those different applica-
tions. Each applet is normally less feature-rich
than the GNU equivalent, but much smaller in
size. If you were to include the normal binaries
for all of these from a GNU/Linux distribution,
you could have over 5 MB of binaries. Each
applet in BusyBox can be enabled or disabled
so it’s likely that your version will be much

smaller when you only include the programs
you need.

Your system will likely want to have some ser-
vices and perhaps a way to get shell access re-
motely. A small inetd (24k) with a minimal tel-
netd (32k) could do the trick. The latest version
of BusyBox includes both of these. Expansion
capabilities might warrant including pcmcia-cs
and hotplug code. Use caution in this area as
well. Linux supports a lot of PCMCIA hard-
ware but the size of included drivers can add
up quickly.

8 Crypto

For secure access OpenSSH is the com-
mon choice on Linux desktops and servers.
OpenSSH client (215k) and server (254k) nor-
mally uses OpenSSL (181k). When OpenSSL
is compiled for a smaller set of supported
hashes and algorithms, it can be smaller, but
even then it is large as compared to most em-
bedded applications. The author is still search-
ing for a small ssh/sshd solution.

FreeSWAN is another secure access method. It
is normally even larger, close to 2M in size.
FreeSWAN supports Opportunistic Encryption
which can be very useful in an enterprise envi-
ronment. Normal IPSec support is also valu-
able for many solutions. Adding hardware
crypto support as provided by the Texas In-
struments OMAP161x chips and converting all
crypto systems in the kernel and userland over
to use this can save memory as well as boost
performance.

9 Package Management

For devices that are expandable, some form of
package management is needed. Many desk-
top systems use RPM or dpkg for this purpose.
Both of these are large binaries and more im-



Linux Symposium 378

portantly they normally have a large amount
of package information stored on the filesys-
tem. BusyBox includes a stripped-down ver-
sion of both rpm and dpkg which might be a
good starting place. The Handhelds.org project
has a package manager called ipkg that is small
and better suited for embedded systems. The
Debian installer uses .udebs for about the same
purpose. ipkg packages and udeb’s do not nor-
mally include man pages or other supporting
files, but have just the minimum files included.
These packages are both the same format as a
.deb file.

Note that Linux Standards Base requires the
ability to install rpm files. It also requires many
things like libgcc_s and glibc that the embed-
ded device may not provide.

10 Graphical User Interface

There are many choices of GUIs for a mobile
device. The Sharp Zaurus models use Qtopia
with Qt/Embedded. These are available un-
der the GPL, but using these versions requires
that all applications available for the platform
are also under the GPL. These components are
also available from Trolltech under a different
license as royalty-bearing components. This
allows applications to use licenses other than
the GPL. These components might be the only
ones on the device that are not free. The base
files needed for a common Qtopia and Qt/E
configuration would be about 3 MB in size.
This does not include the applications.

The Handhelds.org distribution can use X11
and GTK as the basis for an environment called
GPE (GPE Palmtop Environment). This uses
TinyX from the XFree86 version of the X Win-
dow System. The X server itself will be around
700k and the X11 and GTK libraries add up to
about 3 MB. Note that this system retains all
the remote display options of a normal X Win-

dow System desktop machine.

Smaller systems are available such as Pixel or
NanoGUI. These might not include advanced
web browsers or other large applications, but
they are appropriate for smaller devices. A cus-
tom interface could be built on top of systems
like DirectFB, GTKfb, Qt/E, SDL, or by writ-
ing directly to the Linux framebuffer.

The Qtopia interface has gotten more atten-
tion lately and is currently ahead of the GPE
work. The OPIE project has enhanced Qtopia
and is starting work on a next-generation li-
brary that would replace the Qtopia library and
clean up the interface in the process. This new
project should be available under LGPL, and if
it was configured to run on top of TinyX using
Qt/X11 instead of Qt/E, could avoid a per-unit
royalty. Removing duplicate code between X
and Qt/X11 could drop the storage size down
very close to that of Qt/E and Qtopia. This
retains the remote display options that the X
Window System provides, while leaving a path
to use much of the available Qt widgets and ap-
plications.

11 Web Browser

As time progresses, an embedded web browser
will become more and more important.
Browsers like Netscape and Mozilla are large.
Other browsers might use the same engine but
be much more space-constrained. Browsers
like Dillo and ViewML are less feature-rich,
but even smaller. Text-based browsers like
lynx or links could be wrapped with a graphical
front end, but this would be time-consuming
and not in line with the goals of those projects.
There are commercial options like Opera to
consider as well. Konqueror Embedded, which
uses Qt, is a good mix of size and features.
Some minor interface tweaks could make it
even better.



Linux Symposium 379

12 A Small Example

The TuxScreen project is very tightly storage-
constrained. There is no web browser in the
Linux-based base filesystem image. This de-
vice is a Desktop phone with a StrongARM
1100, a 640x480x8 color touch screen, and
only 4 MB of flash storage. In this space we
have a 128k bootloader partition (with only
32k used) and a 4MB minus 128k jffs2 root
partition. In the root partition is the ker-
nel and modules, uClibc, BusyBox, TinyLo-
gin, pcmcia-cs, lrzsz, inetd, telnetd, XFree86
TinyX, rxvt, matchbox (a window manager),
and more, with over 500k left in writable space.
For devices that are only remote displays, this
is a reasonable target size.

13 Where to Go from Here?

There are many Linux consulting companies
that can help with a new product release.
Monta Vista and Metroworks are two of the
larger players in that space. Red Hat also has
a group focused on embedded work. Some
of these solutions might include other royalty-
bearing components or have the option to
spread out the engineering cost over the prod-
uct lifecycle. There are plenty of individual
consultants active in embedded systems work
based on Linux. Some are looking for perma-
nent placement and some work on a consulting
basis. You should determine the finances of
your project and pick a solution that matches
with that plan.

The big benefits of going with Linux as the so-
lution is this large available pool of resources
to draw from and the ability to have all the
source so you retain the option of doing the
work internally or through another vendor. Do
not ignore the benefit of growing a commu-
nity around your product. The work that ac-
tive, qualified developers in the community do

to improve your software solution is a valuable
benefit. Much of it will be available to you for
merely the time it costs to monitor those activ-
ities. You can effectively kill off this effort by
making it difficult for others to get involved.
This will likely have a detrimental effect on
your product sales.

When working out the details of contract work,
you will likely want to add a requirement that
all work be pushed upstream. This implies that
it will be peer-reviewed by other Linux devel-
opers and may need to be fixed to comply with
existing Linux kernel code. This is a very im-
portant part of new work done in the kernel.
Without it, you and your product will be stuck
with an old version of the kernel which the
community and other vendors will not be eager
to support. When the changes are pushed up-
stream, they are much more likely to get fixed
as the kernel develops. A few free units of
fun hardware in the right hands can go a long
ways as far as overall software development
expenses go.

Conclusion

We have touched on many projects that can be
leveraged to offer rapid time to market when
developing mobile and other embedded de-
vices based on Linux. I hope this has been
useful. There are many useful web sites that
offer more information. The author plans to
add links to all of the projects mentioned here
and others as well in the wiki found onhttp:
//eLinux.org/wiki/ if you would like
more details. Good luck with your projects,
and welcome to the community.



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


