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Abstract

Coverage analysis measures how much of the
target code is run during a test and is a useful
mechanism for evaluating the effectiveness of a
system test or benchmark. In order to improve
the quality of the Linux® kernel, we are uti-
lizing GCOV, a test coverage program which is
part of GNU CC, to show how much of the ker-
nel code is being exercised by test suites such
as the Linux Test Project. This paper will dis-
cuss the issues that make code coverage analy-
sis a complicated task and how those issues are
being addressed. We will describe tools that
have been developed to facilitate analysis and
how these tools can be utilized for kernel, as
well as application code coverage analysis.

1 Introduction

The Linux Test Project (LTP) is a test suite for
testing the Linux kernel. Over the years, the
LTP has become a focal point for Linux testing
and Linux test tools. Just as the Linux kernel
is constantly under development, the LTP test
suite must also be constantly updated, modi-
fied, and improved upon to keep up with the
changes occurring in the kernel. As the Linux

Test Project test suite matures, its developers
constantly look for ways to improve its useful-
ness. Some of the considerations currently be-
ing addressed are what areas of the Linux ker-
nel test development efforts should focus on,
and proving that tests added to the LTP are
testing more than what was there before. In
order to gather data to support decisions for
these questions, analysis should be performed
to show what areas of the kernel are being exe-
cuted by any given test.

The design of a process for doing this analysis
took the following features into consideration:

1. Use existing tools as much as possible

2. Take a snapshot of coverage data at any
time

3. Clear coverage counters before a test ex-
ecution so just the coverage from the test
could be isolated

4. Provide output that looks nice and is easy
to read and compare

5. Show coverage percentages at any level of
directory or file
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6. Show execution counts for every instru-
mented line of every file

This paper is outlined as follows: Section 2
provides a general description of code cover-
age analysis. Sections 3 and 4 discuss GCOV
and other code coverage tools. Section 5 de-
scribes Linux kernel modifications necessary
to provide kernel code coverage. Test results
are presented in Section 6. Section 7 presents
the LCOV toolkit for processing and display-
ing GCOV results. Section 8 describes how the
results of kernel code coverage analysis can be
used to improve the Linux Test Project. Fu-
ture work planned on this project is discussed
in Section 9. Finally, conclusions are presented
in Section 10.

2 How code coverage analysis
works

Before examining possible methods for the
task of kernel code coverage analysis, it is im-
portant to first discuss some general concepts
of code coverage analysis.

Code coverage analysis shows what percentage
of an application has been executed by the test
process. The metrics derived from code cover-
age analysis can be used to measure the effec-
tiveness of the test process [Perry].

Statement coverage analysis [Cornett] breaks
the code down into basic blocks that exist be-
tween branches. By design, it is clear that if
any line in a basic block is executed a given
number of times, then every instruction within
the basic block would have been executed the
same number of times. This provides for a con-
venient way of showing how many times each
line of code in a program has been executed.

There are, however, a number of deficiencies
in this approach. The following piece of code

exhibits one of the main issues with statement
coverage analysis:

int *iptr = NULL;
if(conditional)

iptr = &i;
*iptr = j*10;

The above code may show 100% code cover-
age but will obviously fail miserably if the con-
ditional is ever false.

To deal with situations such as the one
demonstrated above, branch coverage analy-
sis [Marick] is required. Rather than focusing
on the basic blocks and the lines of code exe-
cuted, branch coverage looks at possible paths
a conditional can take and how often each path
through the conditional is taken. This will
account for problems such as those described
above because it will clearly show that the con-
ditional was never evaluated to be false. An-
other advantage of branch coverage analysis is
that knowledge of how many times each line of
code was executed can be derived by knowing
how many times each conditional was evalu-
ated for each possible outcome.

Although branch coverage analysis provides
a more accurate view of code coverage than
statement coverage, it is still not perfect. To
gain a better understanding of the path taken
through the entire conditional, the outcome of
each test in a complex conditional must be de-
termined. For instance:

struct somestructure* p = NULL;

if(i == 0 || (j == 1 && p->j == 10))
printf("got here\n");

If i is ever non-zero whenj is 1, then the NULL
pointerp will be dereferenced in the last part
of the conditional. There are paths through this
branch in both the positive and negative case
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that will never expose the potential segmenta-
tion fault.

Branch coverage would show how many times
the entire conditional was evaluated to true or
false, but it would not show the outcome of
each test that led to the decision.

There are many other types of coverage for
dealing with a variety of corner cases. How-
ever, statement coverage and branch coverage
are the two types that will be focused on in this
paper since they are the only ones supported by
GCOV.

3 Methods considered

This section discusses some of the more pop-
ular techniques for collecting statement and
branch coverage data in a running system.

3.1 Estimation

At a most basic level, estimating techniques
could be used to collect code coverage within
a given program. Obviously, this method has
no redeeming value at all with regards to accu-
racy or reproducibility. The advantage to this
method, and the only reason it is mentioned, is
that it requires the least amount of effort. Given
a developer with sufficient knowledge of the
code, a reasonable estimate of code coverage
may be possible to estimate in a short amount
of time.

3.2 Profiling

Performance profilers are well known, easy to
use, and can be used to track coverage; how-
ever these uses are not the purpose for which
performance profilers were intended. Perfor-
mance profilers use statistical profiling rather
than exact profiling.

Readprofile is a simple statistical profiler that
stores the kernel PC value into a scaled his-
togram buffer on every timer tick. Readprofile
profiles only the kernel image, not user space
or kernel modules. It is also incapable of pro-
filing code where interrupts are disabled.

Oprofile, another statistical profiler, leverages
the hardware performance counters of the CPU
to enable the profiling of a wide variety of in-
teresting statistics which can also be used for
basic time-spent profiling. Oprofile is capa-
ble of profiling hardware and software inter-
rupt handlers, the kernel, shared libraries, and
applications.

All of these statistical profilers can be used
indirectly to gather coverage information, but
because they approximate event distribution
through periodic sampling via an interrupt,
they cannot be considered accurate for true
coverage analysis.

3.3 User-Mode Linux

User-mode Linux is an implementation of the
Linux kernel that runs completely in user
mode. Because it runs as a user mode appli-
cation, the possibility exists to utilize analy-
sis tools that were normally intended to run
against applications. These tools would not
normally work on kernel code, but User-mode
Linux makes it possible. To make use of this
feature in User-mode Linux, the kernel needs
to be configured to compile the kernel with the
necessary flags to turn on coverage tracking.
To do this, the “Enable GCOV support” option
must be selected under “Kernel Hacking” from
the configuration menu.

When GCOV support is turned on for User-
mode Linux, the necessary files for using
GCOV are created, and coverage is tracked
from boot until shutdown. However, interme-
diate results cannot be gathered, and counters
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cannot be reset during the run. So the resulting
coverage information will represent the boot
and shutdown process and everything executed
during the UML session. It is not possible to
directly gather just the coverage results of a
single test on the kernel.

3.4 GCOV-Kernel Patch

In early 2002, Hubertus Franke and Rajan
Ravindran published a patch to the Linux ker-
nel that allows the user space GCOV tool to
be used on a real, running kernel. This patch
meets the requirement to use existing tools. It
also provides the ability to view a snapshot of
coverage data at any time. One potential issue
with this approach is that it requires the use of
a kernel patch that must be maintained and up-
dated for the latest Linux kernel before cover-
age data can be gathered for that kernel.

The GCOV-kernel patch and GCOV user mode
tool were chosen to capture and analyze code
coverage data. The other methods listed above
were considered. However, the GCOV-kernel
patch was chosen because it allowed platform
specific analysis as well as the ability to easily
isolate the coverage provided by a single test.

4 GCOV Coverage Tool

Having decided to use the GCOV tool for LTP,
we first describe how GCOV works in user
space applications and then derive what modi-
fications need to be made to the kernel to sup-
port that functionality.

GCOV works in four phases:

1. Code instrumentation during compilation

2. Data collection during code execution

3. Data extraction at program exit time

4. Coverage analysis and presentation post-
mortem (GCOV program)

In order to turn on code coverage infor-
mation, GCC must be used to compile the
program with the flags “-fprofile-arcs
-ftest-coverage ”. When a file is
compiled with GCC and code coverage is
requested, the compiler instruments the code
to count program arcs. The GCC compiler
begins by constructing a program flow graph
for each function. Optimization is performed
to minimize the number of arcs that must
be counted. Then a subset of program basic
blocks are identified for instrumentation. With
the counts from this subset GCOV can recon-
struct program arcs and line execution counts.
Each instrumented basic block is assigned an
ID, blockno . GCC allocates a basic block
counter vectorcounts that is indexed by
the basic block ID. Within each basic block
the compiler generates code to increment its
relatedcounts [blockno ] entry. GCC also
allocates a data-objectstruct bb bbobj to
identify the name of the compiled file, the size
of thecounts vector and a pointer to the vec-
tor. GCC further creates a constructor function
_GLOBAL_.I.FirstfunctionnameGCOV

that invokes a global function
__bb_init_func(struct bb*) with
the bbobj passed as an argument. A pointer
to the constructor function is placed into
the “.ctors” section of the object code. The
linker will collocate all constructor function
pointers that exist in the various *.o files
(including from other programming paradigms
(e.g. C++)) into a single “.ctors” section of
the final executable. The instrumentation
and transformation of code is illustrated in
Figure 1.

In order to relate the various source code line
information with the program flow and the
counter vector, GCC also generates two out-
put files for eachsourcefile.c compiled:
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———————- file1.c ———————–

→ static ulong counts[numbbs];
→ static struct bbobj =
→ { numbbs, &counts,“file1.c”};
→ static void _GLOBAL_.I.fooBarGCOV()
→ { __bb_init_func(&bbobj); }

void fooBar(void)
{
→ counts[i]++;

<bb-i>
if (condition) {

→ counts[j]++;
<bb-j>

} else {
<bb-k>

}
}

→SECTION(“.ctors”’)
→ { &_GLOBAL_.I.fooBarGCOV }
——————————————————–
”→” indicates the lines of code inserted by the
compiler and<bb-x> denotes the x-th basic block
of code in this file and italic/bold code is added by
the GCC compiler. Notice that the arc from theif
statement into bb-k can be derived by subtracting
counts[j] from counts[i].

Figure 1: Code modification example

(i) sourcefile.bb , which contains a list of
source files (including headers) and functions
within those files and line numbers correspond-
ing to basic blocks in the source file, and (ii)
sourcefile.bbg contains a list of the pro-
gram flow arcs for each function which in com-
bination with the*.bb file enables GCOV to
reconstruct the program flow.

The glibc (C runtime library) linked with
the executable provides the glue and ini-
tialization invocation and is found in the
libgcc2.c . More specifically: it provides

the __bb_init_func(struct bb*)
function that links an object passed as an
argument to a globalbbobj list bb_head .
The runtime library also invokes all function
pointers found in the “.ctors” section, which
will result in all bbobj s being linked to the
bb_head list, as part of the_start wrapper
function.

At runtime, the counter vector entries are in-
cremented every time an instrumented basic
block is entered. At program exit time, the
GCOV enabled main wrapper function walks
thebb_head list and for eachbbobj encoun-
tered, it creates a filesourcefile.da (note
the source file name was stored in the structure)
and populates the file with the size of the vector
and the counters of the vector itself.

In the post mortem phase, the GCOV util-
ity integrates and relates the information of
the *.bbg, *.bb, and the *.da to produce the
*.gcov files containing per line coverage out-
put as shown in Figure 2. For instrumented
lines that are executed at least once, GCOV
prefaces the text with the total number of times
the line was executed. For instrumented lines
that were never executed, the text is prefaced
by the string###### . For any lines of code
that were not instrumented, such as comments,
nothing is added to the line by GCOV.

5 GCOV Kernel Support

The GCOV tool does not work as-is in con-
junction with the kernel. There are several rea-
sons for this. Though the compilation of the
kernel files also generates thebbobj s con-
structor, and the “.ctors” section, the resulting
kernel has no wrapper function to call the con-
structors in .ctors. Second, the kernel never ex-
its such that the *.da files can be created. One
of the initial overriding requirements was to
not modify the GCOV tool and the compiler.
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——————– example.c ———————

int main() {
1 int i;

1 printf("starting example\n");
11 for(i=0;i<10;i++) {
10 printf("Counter is at %d\n",i);
10 }

/* this is a comment */

1 if(i==1000) {
###### printf("This line should "

"never run\n");
###### }

1 return 0;
1 }

Figure 2: GCOV output

The first problem was solved by explic-
itly defining a “.ctors” section in the ker-
nel code. The new symbol __CTOR_LIST__
is located at the beginning of this sec-
tion and is made globally visible to the
linker. When the kernel image is linked,
__CTOR_LIST__ has the array of constructor
function pointers. This entire array is delim-
ited by the ctors_start = &__CTOR_LIST__
; ctors_end = &__DTOR_LIST__ variables,
where __DTOR_LIST__ is the starting address
of the ".dtors" section, which in turn contains
all destructor functions. By default the counter
vectors are placed in zero-filled memory and
do not need to be explicitly initialized. The
data collection starts immediately with the OS
boot. However, the constructors are not called
at initialization time but deferred until the data
is accessed (see below).

The second problem is the generation of the
*.da files. This problem is solved by the in-
troduction of a /proc/gcov file system that can
be accessed from “user space” at any time.
The initialization, creation, and access of the
/proc/gcov filesystem is provided as a load-
able module “gcov-proc” in order to mini-
mize modifications to the kernel source code
itself. When the module is loaded, the con-

structor array is called and thebbobj s are
linked together. After that thebb_head
list is traversed and a/proc/gcov filesys-
tem entry is created for eachbbobj encoun-
tered. It is accomplished as follows: the ker-
nel source tree’s basename (e.g. /usr/src/linux-
2.5.xx) is stripped from the filename indicated
in the bbobj . The program extension (e.g.
*.c) of the resulting relative file path (e.g.
arch/i386/kernel/mm.c) is changed to (*.da)
to form the path name of the entry. Next,
this pathname is traversed under the /proc/gcov
filesystem and, for newly encountered levels
(directory), a directory node is created. This
process is accomplished by maintaining an in-
ternal tree data structure that linksbbobj s and
proc_entries together. Because GCOV
requires all *.c, *.bb, *.bbg, and *.da files to be
located in the same directory, three symbolic
links for the *.{c | bb | bbg } files are created
in their appropriate kernel source path. This is
shown in Figure 3.

Reading from the *.da file gives access to
the underlying vector of the corresponding
file in the format expected by the GCOV
tool. Though the data is accessed on a
per file basis, a /proc/gcov/vmlinux file to
dump the entire state of all vectors is pro-
vided. However, reading the full data from
/proc/gcov/vmlinux would require a change of
GCOV. Resetting the counter values for the en-
tire kernel is supported through writing to the
/proc/gcov/vmlinux file using‘echo “0” >
/proc/gcov/vmlinux’ . Individual file
counters can be reset as well by writing to
its respective *.da file under the /proc/gcov
filesystem.

5.1 Dynamic Module Support

Dynamic modules are an important feature that
reduces the size of a running kernel by com-
piling many device drivers separately and only
loading code into the kernel when a specific
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Figure 3: Data structures maintained by the gcov-proc loadable module

driver is needed. Like the kernel, the mod-
ule compile process inserts the coverage code
making counter collection automatic through
code execution. In order to access the GCOV
results through /proc/, the “.ctors” section of
the module code needs to be executed dur-
ing the dynamic load. As stated above, the
GCOV enabled kernel locates the array of con-
structor routine function pointers starting from
ctors_start to ctors_end . Due to the
dynamic nature of a module, its constructors
are not present in this section. Instead, to ob-
tain the constructor address of the dynamic
module, two more variables were added to
“struct module” (ie. ctors start and end) the
data structure which is passed along by the
modutils to the kernel each time a module is
loaded. When the dynamic module is loaded,
the kernel invokes the constructor which results
in the linkage of thebbobj to the tail of the
bb_head . If the gcov-proc module has al-
ready been loaded, then the /proc/gcov filesys-
tem entries are added. If the gcov-proc module
is not loaded, their creation is deferred until the
gcov-proc is loaded. Once when gcov-proc is
loaded, the /proc/gcov filesystem is created by
traversing thebb_head list.

Dynamic modules will create their proc file
system under /proc/gcov/module/{path to the
dynamic module source}. A module’s .da and
symbolic links *.{c | bb | bbg} will be auto-
matically removed at the time of module un-
loading.

Up to Linux 2.5.48, all the section address ma-
nipulation and module loading part are per-
formed by modutils. Accordingly we modi-
fied the modutils source to store the construc-
tor address of the module which is loaded and
pass that to the kernel as an argument. Starting
with Linux 2.5.48, Rusty Russell implemented
an in-kernel module loader, which allows the
kernel to obtain the constructor instead of re-
quiring modifications to the modutils.

5.2 SMP Issues

One of the first concerns with this approach
was data accuracy on symmetric multiproces-
sors (SMPs). SMP environments introduce the
possibility of update races leading to inaccu-
rate GCOV counter data. The machine level
increment operation used to update the GCOV
counter is not atomic. In CISC and RISC
architectures such as Intel® and PowerPC®,
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memory increment is effectively implemented
as load, add, & store. In SMP environments,
this can result in race conditions where multi-
ple readers will load the same original value,
then each will perform the addition and store
the same new value. Even if the operation is
atomic on a uniprocessor, caching on SMPs
can lead to unpredictable results. For exam-
ple, in the case of three readers, each would
read the value n, increment and store the value
n+1. After all three readers were complete the
value would be n+1. The correct value, after
serializing the readers, should be n+3. This
problem exists on SMPs and multi-threaded
environments using GCOV in kernel or user
space. Newer versions of GCC are experiment-
ing with solutions to this issue for user space by
duplicating the counter array for each thread.
The viability of this approach is questionable in
the kernel where GCOV would consume about
2 megabytes per process. We discuss this issue
further in the Future Work section (10).

A test was constructed to observe the anomaly.
A normally unused system call was identified
and was used so the exact expected value of
the coverage count would be known. Two user
space threads running on different CPUs made
a total of 100K calls to thesethostname
system call. This test was performed 35 times
and the coverage count was captured. On av-
erage, the coverage count for the lines in the
sethostname kernel code was 3% less than
the total number of times the system call was
made.

The simplest solution was to ensure that
counter addition was implemented as atomic
operations across all CPUs. This approach was
tested on the x86 architecture where aLOCK
instruction prefix was available. The LOCK
prefix uses the cache coherency mechanism, or
locks the system bus, to ensure that the original
operation is atomic system-wide. An Assem-
bler pre-processor was constructed to search

the assembly code for GCOV counter operands
(LPBX2 labels). When found, the LOCK pre-
fix would be added to these instructions. A
GCC machine dependentaddition operation
was also constructed for x86 to accomplish the
same task.

The results of the sethostname test on the
new locking gcov kernel (2.5.50-lock-gcov)
showed no difference between measured cov-
erage and expected coverage.

5.3 Data Capture Accuracy

Another effect on data accuracy is that captur-
ing GCOV data is not instantaneous. When we
start capturing the data (first item on bb_head)
it may have valuevorig. By the time the last
item on bb_head is read, the first item may now
have valuevnew. Even if no other work is being
performed, reminiscent of the Heisenberg ef-
fect, the act of capturing the GCOV data mod-
ifies the data itself. In Section 8 we observed
that 14% of the kernel is covered just from run-
ning the data capture. So 14% coverage is the
lowest result we would expect to see from run-
ning any test.

5.4 GCOV-Kernel Change Summary

In summary, the following changes were made
to the linux kernel:

(a) modified head.S to include symbols which
identify the start and end of the .ctors sec-
tion

(b) introduced a new file kernel/gcov.c where
the __bb_init_func(void) func-
tion is defined

(c) added two options to the configure file, (i)
to enable GCOV support and (ii) enable
the GCOV compilation for the entire ker-
nel. If the latter is not desired, then it is
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the responsibility of the developer to ex-
plicitly modify the Makefile to specify the
file(s). For this purpose we introduced
GCOV_FLAGS as a global macro.

(d) Modified kernel/module.c to deal with dy-
namic modules.

(e) An assembler pre-processor was written to
address issues with inaccurate counts on
SMP systems

Everything else is kept in the gcov-proc mod-
ule.

6 GCOV patch Evaluation

This section summarizes several experiments
we conducted to evaluate the GCOV-kernel im-
plementation. Unless otherwise stated all tests
were conducted on a generic hardware node
with a two-way SMP, 400 MHz Pentium® II,
256 MB RAM. The Red Hat 7.1 distribution
(with 2.5.50 Linux kernel) for a workstation
was running the typical software (e.g. In-
etd, Postfix), but remained lightly loaded. The
GCC 2.96 compiler was used.

The total number of counters in all the .da
files produced by GCOV was calculated for
2.5.50. 336,660 counters * 4 bytes/counter
⇒ 1.3 Mbytes of counter space in the ker-
nel1. The average number of counters per
file is 718. drivers/scsi/sym53c8xx.chad the
most lines instrumented with 4,115. Andin-
clude/linux/prefetch.hwas one of 28 files that
had only one line instrumented.

6.1 LOCK Overhead

A micro-benchmark was performed to esti-
mate the overhead of using the LOCK pre-
fix. From two separate loops, multiple incre-
ment and locked increment instructions were

1in GCC 3.1 and higher counters are 8 bytes.

Test kernel runtime (sec)

2.5.50 596.5
2.5.50-gcov 613.0
2.5.50-gcov-lock 614.0

Table 1: Results: System and User times (in
seconds) for 2.5.50 kernel compiles using three
test kernels.

called. The runtime for the loops were mea-
sured and an estimate of the average time per
instruction was calculated. The increment in-
struction took 0.015µs, and the locked incre-
ment instruction took 0.103µs. This represents
a 586% instruction runtime increase when us-
ing the LOCK prefix. At first this might seem
like a frightening and unacceptable overhead.
However, if the actual effect on sethostname
runtime is measured, it is 19.5µs per system
call with locking and 13.9µs per call without
locking. This results in a more acceptable 40%
increase. However, further testing is required
to ensure results do not vary depending on lock
contention.

6.2 Performance Results

Finally, a larger scale GCOV test was per-
formed by comparing compile times for the
Linux kernel. Specifically each test kernel was
booted and the time required to compile (ex-
ecutemake bzImage) the Linux 2.5.50 kernel
was measured. Table 1 shows runtimes (in sec-
onds) as measured by/bin/time for the three
kernels tested. These results show a 3% over-
head for using the GCOV kernel and a very
small additional overhead from using the lock-
ing GCOV kernel.
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Figure 4: Partial LCOV output for fs/jfs

Figure 5: Example LCOV output for a file

7 Using GCOV and LCOV to gen-
erate output

Once the .da files exist, GCOV is capable
of analyzing the files and producing coverage
output. To see the coverage data for a user
space program, one may simply run ‘gcov pro-
gram.c’ where program.c is the source file. The
.da file must also exist in the same directory.

The raw output from GCOV is useful, but not
very readable. In order to produce nicer look-
ing output, a utility called LCOV was writ-
ten. LCOV automates the process of extracting
the coverage data using GCOV and producing
HTML results based on that data [Lcovsite].

The LCOV tool first calls GCOV to generate

the coverage data, then calls a script called gen-
info to collect that data and produce a .info file
to represent the coverage data. The .info file is
a plaintext file with the following format:

TN: [test name]
SF: [path and filename of the \

source file]
FN: [function start line number],\

[function name]
DA: [line number],[execution count]
LH: [number of lines with count > 0]
LF: [number of instrumented lines]
end_of_record

Once the .info file has been created, the gen-
html script may be used to create html output
for all of the coverage data collected. The gen-
html script will generate both output at a direc-
tory level as illustrated in Figure 4 and output
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HTML

genhtml.pl

.info file

geninfo.pl

.da files

Running
Code

Figure 6: lcov flow

on a file level as illustrated in Figure 5. The ba-
sic process flow of the LCOV tool is illustrated
in Figure 6. The commands used to generate
kernel results are as follows:

1. Load the gcov-proc kernel module.

2. lcov -zerocounters
This resets the counters, essentially call-
ing ‘echo “0” > /proc/gcov/vmlinux’

3. Run the test.

4. lcov -c -o kerneltest.info
This produces the .info file described
above.

5. genhtml -o [outputdir]
kerneltest.info
The final step produces HTML output
based on the data collected in step 3.

The original intent of the LCOV tool was for
kernel coverage analysis, so it contains some
features, such as resetting the counters through
/proc, that are only for use with the gcov-
proc module. However, the LCOV tool can
also be used for analyzing the coverage of user
space applications, and producing HTML out-
put based on the data collected. The process
for using LCOV with applications is mostly the
same. In order for any coverage analysis to
take place, the application must be compiled
with GCC using the-fprofile-arcs and
-ftest-coverage flags. The application
should be executed from the directory it was
compiled in, and for GCOV to work on user
space programs, the application must exit nor-
mally. The process for using LCOV with an
application is as follows:

1. Run the program following your test pro-
cedure, and exit.

2. lcov -directory [dirname]
-c -o application.info
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3. genhtml -o [outputdir]
application.info

LCOV can also be used to manipulate .info
files. Information describing coverage data
about files in a .info file may be extracted
or removed. Runninglcov -extract
file.info PATTERN will show just the
data in the .info file matching the given pattern.
Running lcov -remove file.info
PATTERNwill show all data in the given
.info file except for the records matching
the pattern, thus removing that record. Data
contained in .info files may also be combined
by running lcov -a file1.info -a
file2.info -a file3.info... -o
output.info producing a single file (out-
put.info) containing the data from all files
passed to lcov with the-a option.

8 Applying results to test develop-
ment

The real benefit of code coverage analysis is
that it can be used to analyze and improve
the coverage provided by a test suite. In this
case, the test suite being improved is the Linux
Test Project. 100% code coverage is neces-
sary (but not sufficient) for complete functional
testing. It is an important goal of the LTP to
improve coverage by identifying untested re-
gions of kernel code. This section provides a
measure of LTP coverage and how the GCOV-
kernel can improve future versions of the LTP
suite.

Results were gathered by running the LTP un-
der a GCOV enabled kernel. There are a few
things that must be taken into consideration.

It is obviously not possible to cover all of the
code. This is especially true for architecture
and driver specific code. Careful considera-
tion and planning must be done to create a ker-

ID Test KC DC TC

LTP LTP 35.1 0.0 100.0
CP Capture 14.4 0.3 97.7
MK Mkbench 17.0 0.0 99.9
LM Lmbench 22.0 0.3 98.5
SJ SPECjAppServer 23.6 1.2 95.1
X Xserver 24.7 1.7 93.0

XMLS X+MK+LM+SJ 29.4 3.1 89.5
B Boot 40.1 16.2 59.5

Table 2: Benchmarks: KC: kernel coverage;
DC: delta coverage; TC: test coverage

nel configuration that will accurately describe
which kernel features are to be tested. This
usually means turning on all or most things and
turning off drivers that do not exist on the sys-
tem under test.

In order to take an accurate measurement for
the whole test suite, a script should be written
to perform the following steps:

1. Load the gcov-proc kernel module

2. ‘echo “0” > /proc/gcov/vmlinux’ to reset
the counters

3. Execute a script to run the test suite with
desired options

4. Gather the results using LCOV

Using a script to do this will minimize variance
caused by unnecessary user interaction. Reset-
ting the counters is important to isolating just
the coverage that was caused by running the
test suite.

Alternatively, a single test program can be ana-
lyzed using the same method. This is mostly
useful when validating that a new test has
added coverage in an area of the kernel that was
previously uncovered.

Coverage tests were performed on a IBM®
Netfinity 8500R 8-way x 700 MHz SMP run-
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ning the 2.5.50 Linux kernel. LTP is a test suite
for validating the Linux kernel. The version of
LTP used in this test was ltp-20030404. LTP
hits 47,172 of the 134,396 lines of kernel code
instrumented by GCOV-kernel (35%)2. This
figure alone suggests significant room for LTP
improvement. However, to get an accurate pic-
ture of LTP usefulness it is also important to
make some attempt to categorize the kernel
code. This way we can determine how much
of the importantkernel code is being covered
by LTP. For the purposes of this work we have
collected coverage information from a set of
benchmarks. This set is intended to represent
one reasonable set of important kernel code.
The code is important because it is used by our
set of popular benchmarks. Table 2 shows the
coverage for LTP and our suite of tests.Boot
captures the kernel coverage during the boot
process.Xservercaptures the kernel coverage
for starting the Xserver.Captureis the cover-
age resulting from a counter reset immediately
followed by a counter capture. The columnKC
(kernel coverage)specifies the percentage of
kernel code covered by the test.DC (delta cov-
erage)is the percent of kernel code covered by
the test, but not covered by LTP.

Although LTP coverage is not yet complete, we
see that it exercises all but 3.1% of the kernel
code used by the combined test XMLS. An-
other useful view of the data is the code cov-
ered by LTP divided by the code covered by
the test,percent of test coverage covered by
LTP. The columnTC (test coverage)shows
these results. For example, LTP covered (hit)
99.9% of the kernel code covered (used) by
mkbench. This figure is particularly useful be-
cause it does not depend on the amount of ker-
nel code instrumented. LTP provides almost
90% coverage of the important code used by

2Results are based on one run of the LTP test suite.
Although the number of times any one line is hit can
vary randomly, we would expect much smaller variance
when considering hits greater than zero.

our combined test, XMLS. This result shows
very good LTP coverage for the given test suite.
Boot should be considered separately because
much of the code used during boot is never
used again once the operating system is run-
ning. But even here, LTP covers 60% of the
code used during the boot process.

Another benefit of code coverage analysis in
the Linux Test Project is that it provides a
method of measuring the improvement of the
LTP over time. Coverage data can be gener-
ated for each version of LTP released and com-
pared against previous versions. Great care
must be taken to ensure stable test conditions
for comparison. The same machine and same
kernel config options are used each time, how-
ever the most recent Linux kernel and the most
recent version of LTP is used. Changing both is
necessary to prove that the code coverage pro-
vided by LTP is increasing with respect to the
changes that are occurring in the kernel itself.
Since features, and thus code, are more often
added to the kernel than removed, this means
that tests must constantly be added to the LTP
in order to improve the effectiveness of LTP as
a test suite.

9 Future Work

Obviously, the tools and methods described
in this paper are useful in their current state.
However, there is some functionality that is
still required. LCOV should be modified to
process and present branch coverage data cur-
rently produced by GCOV. This information
would give a better picture of kernel coverage.
Many other enhancements are currently being
designed or developed against the existing set
of tools.

It would be very useful to know kernel cover-
age for a specific process or group of processes.
This could be done by introducing a level of in-
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direction, so process-specific counters can be
accessed without changing the code. This ap-
proach could utilize Thread Local Store (TLS)
which is gaining popularity[Drepper]. TLS
uses an entry in the Global Descriptor Table
and a free segment register as the selector to
provide separate initialized and uninitialized
global data for each thread. GCC would be
modified to reference the TLS segment register
when accessing global variables. For a GCOV
kernel, the storage would have to be in ker-
nel space (Thread Kernel Storage) The chal-
lenge here is to efficiently provide the indirec-
tion. Even if the cost of accessing TLS/TKS is
low, it is probably infeasible to gather coverage
data for all processes running on a system. The
storage required would be considerable. So, a
mechanism for controlling counter replication
would be necessary.

Some parts of the kernel code are rarely used.
For example,init code is used once and re-
moved from the running image after the kernel
boots. Also, a percentage of the kernel code
is devoted to fault management and is often
not tested. The result of this rarely used code
is to reduce the practically achievable cover-
age. Categorizing the kernel code could iso-
late this code, provide a more realistic view of
LTP results, and help focus test development
on important areas in the kernel. The kernel
code could be divided into at least three cate-
gories. Init and error path code being two sep-
arate categories. The rest of the kernel code
could be considered mainline code. Cover-
age would then be relative to the three cate-
gories. A challenge to some of this categoriza-
tion work would be to automate code identi-
fication, so new kernels could be quickly pro-
cessed. In Section 8 we attempted to defineim-
portantkernel code based on lines hit by some
popular benchmarks. This approach could also
be pursued as a technique for categorizing ker-
nel code.

Finally, a nice feature to have with the system
would be the ability to quickly identify the cov-
erage specific to a particular patch. This could
be accomplished with a modified version of
the diff program that is GCOV output format
aware. Such a system would perform normal
code coverage on a patched piece of code, then
do a reversal of the patch against GCOV output
to see the number of times each line of code in
the patch was hit. This would allow a patch de-
veloper to see how much of a patch was being
tested by the current test tools and, if necessary,
develop additional tests to prove the validity of
the patch.

10 Conclusions

This paper described the design and implemen-
tation of a new toolkit for analyzing Linux ker-
nel code coverage. The GCOV-kernel patch
implements GCOV functionality in the kernel
and modules, and provides access to results
data through a /proc/gcov filesystem. LCOV
processes the results and creates user friendly
HTML output. The test results show minimal
overhead when using the basic GCOV-kernel.
The overhead of an SMP-safe extension can be
avoided when precise counter data is not neces-
sary. This paper also described how this toolkit
is being used to measure and improve the ef-
fectiveness of a test suite such as the Linux Test
Project.

This system is already sufficient for use in pro-
ducing data that will expose the areas of the
kernel that must be targeted when writing new
tests. It will then help to ensure that the new
tests written for the Linux Test Project are suc-
cessful in providing coverage for those sections
of code that were not covered before. The ac-
tual implementation of the methods and tools
described above as a means of improving the
Linux Test Project is just beginning as of the
time this paper was written. However, several
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tests such as mmap09, as well as LVM and de-
vice mapper test suites have been written based
solely on coverage analysis. Many other tests
are currently in development.
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