
Reliable NAS from Dirt Cheap Commodity
Hardware

Benjamin C.R. LaHaise
bcrl@kvack.org

Abstract

To many of us, the integrity of our data is
paramount. Unfortunately, the most cost ef-
fective commodity hardware available tends to
omit important features like ECC memory, or
only provides it at a substantial cost premium.
To address this, an approach that makes use
of concepts taken from NAS and clustering,
combined with a novel trick to obtain a CRC
on data blocks from existing ethernet NICs
is used. The resulting code is built on top
of the existing Linux Network Block Device,
network drivers and async io. Details rang-
ing from design considerations to performance
tuning and implementation provide an interest-
ing story on how to attain a much easier, and
cheaper, reliable storage solution.

1 Introduction

Anyone who uses computers can tell you that
they will inevitably break. From software bugs,
to hardware errata, or just plain old age, the
components of systems will always fail at some
point in their deployed lifespan. Hardware
vendors try to address various subsets of these
failures, but frequently only in high end sys-
tems. Even in the case of hardware specifically
designed to cope with a common mode of fail-
ure, RAID controllers are lost when a failed
SCSI device locks the bus.

Over the last few years, low end hardware

has come to provide capabilities well beyond
the needs of many server systems. Relatively
cheap IDE drives cost less than a third the
amount for a comperable SCSI device. As an
end user, that difference in the price perfor-
mance ratio raises more than a few eyebrows.
Several companies sell products into this niche,
yet there are a number of failure modes which
their devices fail to address. Data corruption
is still possible when disks make use of non-
error correcting memory, or firmware bugs ex-
ist (what body of software is bug-free?). So
what is a user that wishes to make use of the
price point of commodity hardware to do if
their data is truely valuable?

Take one kernel hacker, random bits of hard-
ware, several discussions over beer at confer-
ences, this problem, and mix. The result is
netmd.o .

2 What is Netmd?

Netmd at its core is a hybrid between the Linux
RAID implementation (known as md) and the
network block device (known as nbd), and is
quite similar to DRBD. DRBD allows users to
mirror disks over a network, yet it runs under
the assumption that the underlying hardware is
reliable and will detect any errors which cor-
rupt user data. Netmd changes this by making
use of an end to end CRC on sectors to check
if any of the BEs have unknowingly corrupted
read or write data. All told, netmd is much eas-



Linux Symposium 259

ier to use than either drbd or nbd while provid-
ing guarantees about data integrity.

3 Design Criteria

The front end system runs the netmd kernel
module. To provide the greatest likelyhood of
the software being correct, simplicity is strong
goal for the resulting code.

suffered from a simple single bit error, or more
gross errors resulting in so called fractured
blocks (ie, the case where the sector number it-
self is corrupt and the wrong data is read back
from disk). The basic assumption netmd makes
is that your front end hardware is reliable and
the bulk of errors will come from the back end
systems which house all of the disks. A front
end system running NetMD looks very much
like an NBD, but provides reliability guaran-
tees.

The simplest configuration for NetMD (see
Figure 3) consists of a front end system and
three back end systems networked via a switch
or hub. A minimum of three back ends are re-
quired for NetMD to establish quorum and pro-
vide the ability to hot swap one back end at a
time. Additional BEs can be added to improve
the performance and reliability of a NetMD
setup (such as in Figure 3).

Unlike nbd, which operates over TCP, NetMD
instead operates over UDP to take advantage
of the packet nature of the underlying network.
This allows writes to be optimized using mul-
ticast to deliver data to all BEs simultaneously.
BEs may also snoop read requests to rapidly re-
ply if the data is still available in its local cache.

In fact, the main data integrity feature of
NetMD comes from the ethernet packets which
are used to transmit read and write requests
over the network. All ethernet frames are pro-
tected from transmission errors by a trailing

32 bit CRC. Many ethernet cards are able to
record the CRC of an incoming packet. By
compensating for the header of each packet,
the data CRC can be extracted at low CPU cost.



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


