
Porting drivers to the 2.5 kernel

Jonathan Corbet
LWN.net

corbet@lwn.net

Abstract

The 2.5 development series has brought with
it the usual large set of changes to the internal
driver API. The end result is a kernel that is
far more pleasant to program for, and a more
robust and reliable system. The cost of all
these changes, of course, is that kernel code—
including device drivers—must be updated to
work under the new regime. This paper will
give an overview of what has changed in the in-
ternal kernel API, why the changes were made,
and what must be done to make drivers work
again. Some familiarity with kernel program-
ming is assumed.

1 Introduction

2.5 was a busy time for kernel developers.
Much work was done to make kernel code
more reliable and less susceptible to com-
mon problems. There has also been a large
emphasis on improved performance on high-
end systems. The end result is that almost
no part of the kernel—and almost no inter-
nal API—was left untouched. The degree of
change varies from relatively small (for net-
work drivers, for example) to extreme (block
drivers). An awareness of these changes is
helpful for anybody who is interested in how
kernel development is proceeding, and crucial
for anybody who must make code work with
the new kernel.

This paper will start with the basic changes

which affect all drivers—module loading,
memory allocation, etc. Later sections will get
into the more advanced topics, including the
block layer, and memory management. Space
constraints make it impossible to get into much
detail here. A series of documents can be found
at the web site listed at the end of this paper;
those documents explore the topics found be-
low in much greater depth, and will be kept
current as the kernel evolves.

2 Loadable modules

The module loader was completely replaced in
2.5; the new implementation works almost en-
tirely within the kernel. Interestingly, moving
the module loader into the kernel resulted in
a net reduction in kernel code. This develop-
ment has forced a few changes in how modules
work, however.

2.1 Hello world

The obvious place to start is the classic “hello
world” program, which, in this context, is im-
plemented as a kernel module. The 2.4 version
of this module looked like:

#define MODULE
#include <linux/module.h>
#include <linux/kernel.h>

int init_module(void)
{

printk(KERN_INFO "Hello, world\n");
return 0;

}

void cleanup_module(void)

Linux Symposium 135

{
printk(KERN_INFO "Goodbye cruel world\n");

}

One would not expect that something this sim-
ple and useless would require much in the way
of changes, but, in fact, this module will not
quite work in a 2.5 kernel. So what do we have
to do to fix it up?

The first change is relatively insignificant; the
first line:

#define MODULE

is no longer necessary, since the kernel build
system defines it for you.

The biggest problem with this module, how-
ever, is that you have to explicitly declare
your initialization and cleanup functions with
module_init and module_exit , which
are found in<linux/init.h> . You really
should have done that for 2.4 as well, but you
could get away without it as long as you used
the namesinit_module and cleanup_
module . You can still get away with it, but
the new module code broke this way of doing
things once, and could do so again. It’s time to
bite the bullet and do things right.

With these changes, “hello world” now looks
like:

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>

static int hello_init(void) {
printk(KERN_ALERT "Hello, world\n");
return 0;

}

static void hello_exit(void) {
printk(KERN_ALERT "Goodbye, cruel world\n");

}

module_init(hello_init);
module_exit(hello_exit);

This module will now work—the “Hello,
world” message shows up in the system log

file. At least, once you have succeeded in
building the module properly. . .

2.2 Module compilation

One result of the module changes (combined
with significant changed in the kernel build
mechanism) is that compiling loadable mod-
ules has gotten a bit more complicated. In the
2.4 days, a makefile for an external module
could be put together in just about any old way;
the job of creating a loadable module was han-
dled in a single, simple compilation step. All
you really needed was a handy set of kernel
headers to compile against.

With the 2.5 kernel, you still need those head-
ers. You also, however, need a configured ker-
nel source tree and a set of makefile rules de-
scribing how modules are built. All this is re-
quired because the new module loader needs
some additional symbols defined at compila-
tion time; because all modules must now go
through a linking step (even single-file mod-
ules); and because the new modversions imple-
mentation requires a separate processing step.

One could certainly, with some effort, write a
new, standalone makefile which would handle
the above issues. But that solution, along with
being a pain, is also brittle; as soon as the mod-
ule build process changes again, the makefile
will break. Eventually that process will stabi-
lize, but, for a while, further changes are al-
most guaranteed.

So, now that you are convinced that you want
to use the kernel build system for external mod-
ules, how is that to be done? The first step
is to learn how kernel makefiles work in gen-
eral; makefiles.txt from a recent ker-
nel’s Documentation/kbuild directory
is recommended reading. The makefile magic
needed for a simple kernel module is minimal,
however. In fact, for a single-file module, a
single-line makefile will suffice:

Linux Symposium 136

obj-m := module.o

(where module is replaced with the actual
name of the resulting module, of course). The
kernel build system, on seeing that declaration,
will compile module.o from module.c ,
link it with vermagic.o from the kernel tree,
and leave the result inmodule.ko , which can
then be loaded into the kernel.

A multi-file module is almost as easy:

obj-m := module.o
module-objs := file1.o file2.o

In this case,file1.c andfile2.c will be
compiled, then linked intomodule.ko .

Of course, all this assumes that you can get the
kernel build system to read and deal with your
makefile. The magic command to make that
happen is something like the following:

make -C /usr/src/linux \
SUBDIRS=\$PWD modules

Where/usr/src/linux is the path to the
source directory for the target kernel. This
command causesmake to head over to the ker-
nel source to find the top-level makefile; it then
moves back to the original directory to build
the module of interest.

Of course, typing that command could get tire-
some after a while. A trick posted by Gerd
Knorr can make things a little easier, though.
By looking for a symbol defined by the ker-
nel build process, a makefile can determine
whether it has been read directly, or by way
of the kernel build system. So the following
will build a module against the source for the
currently running kernel:

ifneq ($(KERNELRELEASE),)
obj-m := module.o
else
KDIR := /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)

default:
$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules

endif

Now a simple “make” will suffice. The make-
file will be read twice; the first time it will sim-
ply invoke the kernel build system, while the
actual work will get done in the second pass.
A makefile written in this way is simple, and
it should be robust with regard to kernel build
changes.

2.3 Module parameters

The oldMODULE_PARMmacro, which used to
specify parameters which can be passed to the
module at load time, is no more. The new pa-
rameter declaration scheme add type safety and
new functionality, but at the cost of breaking
compatibility with older modules.

Modules with parameters should now include
<linux/moduleparam.h> explicitly. Pa-
rameters are then declared withmodule_
param :

module_param(name, type, perm);

Where name is the name of the parame-
ter (and of the variable holding its value),
type is its type, andperm is the permis-
sions to be applied to that parameter’s sysfs
entry. The type parameter can be one of
byte , short , ushort , int , uint , long ,
ulong , charp , bool or invbool . That
type will be verified during compilation, so it
is no longer possible to create confusion by
declaring module parameters with mismatched
types. The plan is for module parameters to ap-
pear automatically in sysfs, but that feature had
not been implemented as of 2.5.69; for now, the
safest alternative is to setperm to zero, which
means “no sysfs entry.”

If the name of the parameter as seen outside the
module differs from the name of the variable

Linux Symposium 137

used to hold the parameter’s value, a variant on
module_param may be used:

module_param_named(name, value, type, perm);

Where name is the externally-visible name
andvalue is the internal variable.

String parameters will normally be declared
with thecharp type; the associated variable is
achar pointer which will be set to the param-
eter’s value. If you need to have a string value
copied directly into achar array, declare it as:

module_param_string(name, string, len, perm);

Usually, len is best specified as
sizeof(string) .

2.4 The module use count

In 2.4 and prior kernels, modules maintained
their “use count” with macros likeMOD_INC_
USE_COUNT. The use count, of course, is
intended to prevent modules from being un-
loaded while they are being used. This method
was always somewhat error prone, especially
when the use count was manipulated inside
the module itself. In the 2.5 kernel, reference
counting is handled differently.

The only safe way to manipulate the count of
references to a module is outside of the mod-
ule’s code. Otherwise, there will always be
times when the kernel is executing within the
module, but the reference count is zero. So this
work has been moved outside of the modules,
and life is generally easier for module authors.

Any code which wishes to call into a module
(or use some other module resource) must first
attempt to increment that module’s reference
count:

int try_module_get(&module);

It is also necessary to look at the return value;
a zero return means that the try failed (perhaps
the module is being unloaded), and the module
should not be used.

A reference to a module can be released with
module_put() .

Again, modules will not normally have to man-
age their own reference counts. The only ex-
ception may be if a module provides a refer-
ence to an internal data structure or function
that is not accounted for otherwise. In that
(rare) case, a module could conceivably call
try_module_get() on itself.

2.5 Exporting symbols

In 2.5, module symbols are not exported
by default. Chances are that change will
cause few problems. When you get a
chance, however, you can removeEXPORT_
NO_SYMBOLSlines from your module source.
Exporting no symbols is now the default, so
EXPORT_NO_SYMBOLSis a no-op.

The 2.4 inter_module_ functions have
been deprecated as unsafe. Thesymbol_
get() function exists for the cases when
normal symbol linking does not work well
enough. Its use requires setting up weak refer-
ences at compile time, and is beyond the scope
of this document.

2.6 Kernel version checking

2.4 and prior kernels would include, in each
module, a string containing the version of the
kernel that the module was compiled against.
Normally, modules would not be loaded if the
compile version failed to match the running
kernel.

In 2.5, things still work mostly that way. The
kernel version is loaded into a separate, “link-
once” ELF section, however, rather than be-

Linux Symposium 138

ing a visible variable within the module itself.
As a result, multi-file modules no longer need
to define__NO_VERSION__before includ-
ing <linux/module.h> .

The new “version magic” scheme also records
other information, including the compiler ver-
sion, SMP status, and preempt status; it is thus
able to catch more incompatible situations than
the old scheme did.

3 The device model

One of the more significant changes in the 2.5
development series is the creation of the inte-
grated device model. The device model was
originally intended to make power manage-
ment tasks easier through the maintenance of
a representation of the host system’s hardware
structure. A certain amount of mission creep
has occurred, however, and the device model is
now closely tied into a number of device man-
agement tasks—and other kernel functions as
well.

The device model presents a bit of a steep
learning curve when first encountered. The fact
that the whole thing is still (as of 2.5.69) in
a state of fairly serious flux doesn’t help, es-
pecially considering that the documentation is,
in many cases, a few revisions behind the ac-
tual code. But the underlying concepts are not
that hard to understand, and driver program-
mers will benefit from a grasp of what’s going
on.

The fundamental task of the driver model is to
maintain a set of internal data structures which
reflect the architecture and state of the under-
lying system. Among other things, the driver
model tracks:

• Which devices exist in the system, what
power state they are in, what bus they are

attached to, and which driver is responsi-
ble for them.

• The bus structure of the system; which
buses are connected to which others (i.e.,
a USB controller can be plugged into a
PCI bus), and which devices each bus can
potentially support (along with associated
drivers), and which devices actually exist.

• The device drivers known to the sys-
tem, which devices they can support, and
which bus type they know about.

• What kinds of devices (“classes”) exist,
and which real devices of each class are
connected. The driver model can thus an-
swer questions like “where is the mouse
(or mice) on this system?” without the
need to worry about how the mouse might
be physically connected.

• And many other things.

Underneath it all, the driver model works by
tracking system configuration changes (hard-
ware and software) and maintaining a complex
“web woven by a spider on drugs” data struc-
ture to represent it all.

Many driver programmers will be able to get
away with ignoring the device model alto-
gether; most of the gory details are handled at
the bus level. There are times, however, when
an understanding of what’s going on can be
useful. A full discussion of the device model
would require a talk of its own (indeed, there
are two on the OLS schedule); suffice to say,
for now, that details can be found on the web
site.

4 Support interfaces

Now that we know how to compile a module,
it’s time to look at the various other changes it

Linux Symposium 139

will need to be adapted for. We’ll start with
various low-level support interfaces used by
many or most drivers (and other modules).

4.1 Memory allocation

The 2.5 development series has brought rela-
tively few changes to the way device drivers
will allocate and manage memory. In fact,
most drivers should work with no changes in
this regard. There are a few improvements
that have been made, however, that are worth a
mention. These include some changes to page
allocation, and the new “mempool” interface.

4.1.1 Allocation flags

The old <linux/malloc.h> include file
is gone; it is now necessary to include
<linux/slab.h> instead.

The GFP_BUFFERallocation flag is gone (it
was actually removed in 2.4.6). That will
bother few people, since almost nobody used
it. For reference, here is the full set of 2.5 al-
location flags, from the most restrictive to the
least:

GFP_ATOMIC: a high-priority allocation
which will not sleep; this is the flag to
use in interrupt handlers and other non-
blocking situations.

GFP_NOIO: blocking is possible, but no
I/O will be performed.

GFP_NOFS: no filesystem operations will
be performed.

GFP_KERNEL: a regular, blocking allo-
cation.

GFP_USER: a blocking allocation for
user-space pages.

GFP_HIGHUSER: for allocating user-
space pages where high memory may be
used.

The __GFP_DMA and __GFP_HIGHMEM
flags still exist and may be added to the above
to direct an allocation to a particular mem-
ory zone. In addition, 2.5.69 added some new
modifiers:

__GFP_REPEAT: This flag tells the page
allocater to “try harder,” repeating failed
allocation attempts if need be. Alloca-
tions can still fail, but failure should be
less likely.

__GFP_NOFAIL: Try even harder; allo-
cations with this flag must not fail. Need-
less to say, such an allocation could take a
long time to satisfy.

__GFP_NORETRY: Failed allocations
should not be retried; instead, a failure
status will be returned to the caller
immediately.

The__GFP_NOFAILflag is sure to be tempt-
ing to programmers who would rather not code
failure paths, but that temptation should be re-
sisted most of the time. Only allocations which
truly cannot be allowed to fail should use this
flag.

4.1.2 Page-level allocation

For page-level allocations, thealloc_
pages() and get_free_page() func-
tions (and variants) exist as always. They are
now defined in<linux/gfp.h> . There are
a few new ones as well. On NUMA systems,
the allocator will do its best to allocate pages
on the same node as the caller. To explicitly
allocate pages on a different NUMA node, use:

Linux Symposium 140

struct page *
alloc_pages_node(int node_id,

unsigned int gfp_mask,
unsigned int order);

4.1.3 vmalloc_to_page()

Occasionally, it is necessary to find astruct
page pointer for a page obtained from
vmalloc() ; usually this need arises in the
implementation ofnopage() methods. In the
past, a driver had to walk through the page
tables to find this pointer. As of 2.5.5 (and
2.4.19), however, all that is needed is a call to:

struct page *vmalloc_to_page(void *address);

This call is not a variant ofvmalloc() —
it allocates no memory. It simply returns a
pointer to thestruct page associated with
an address obtained fromvmalloc() .

4.1.4 Memory pools

Memory pools were one of the very first
changes in the 2.5 series—they were added to
2.5.1 to support the new block I/O layer. The
purpose of mempools is to help out in situ-
ations where a memory allocation must suc-
ceed, but sleeping is not an option. To that
end, mempools pre-allocate a pool of memory
and reserve it until it is needed. Mempools
make life easier in some situations, but they
should be used with restraint; each mempool
takes a chunk of kernel memory out of circula-
tion and raises the minimum amount of mem-
ory the kernel needs to run effectively.

A full discussion of mempools doesn’t fit into
this document; see the web site for details on
their use.

4.2 Per-CPU variables

The 2.5 kernel makes extensive use of per-CPU
data—arrays containing one object for each
processor on the system. Per-CPU variables
are not suitable for every task, but, in situations
where they can be used, they do offer a couple
of advantages:

• Per-CPU variables have fewer locking re-
quirements since they are (normally) only
accessed by a single processor.

• Restricting each processor to its own area
eliminates cache line bouncing and im-
proves performance.

Examples of per-CPU data in the 2.5 kernel in-
clude lists of buffer heads, lists of hot and cold
pages, various kernel and networking statis-
tics (which are occasionally summed together
into the full system values), timer queues,
and so on. There are currently no drivers
using per-CPU values, but some applications
(i.e., networking statistics for high-bandwidth
adapters) might benefit from their use. See the
web site listed at the end of this paper for a full
description of how to use per-CPU data.

4.3 Timekeeping

One might be tempted to think that the ba-
sic task of keeping track of the time would
not change that much from one kernel to the
next. And, in fact, most kernel code which
worries about times (and time intervals) will
likely work unchanged in the 2.5 series. Code
which gets into the details of how the kernel
manages time may well need to adapt to some
changes, however.

Linux Symposium 141

4.3.1 Internal clock frequency

One change whichshouldn’t be problematic
for most code is the change in the internal clock
rate on the x86 architecture. In previous ker-
nels,HZ was 100; in 2.5 it has been bumped
up to 1000. If your code makes any assump-
tions about whatHZ really was (or, by ex-
tension, whatjiffies really signified), you
may have to make some changes now.

4.3.2 Kernel time variables

With a 1KHz clock, a 32-bitjiffies will
overflow in just under 50 days, leading to oc-
casional problems. So the 2.5 kernel has a
new counter calledjiffies_64 . With 64
bits to work with,jiffies_64 will not wrap
around in a time frame that need concern most
of us—at least until some future kernel starts
using a petahertz internal clock.

For what it’s worth, on most architectures,
the classic, 32-bitjiffies variable is now
just the least significant half ofjiffies_64 .
Note that, on 32-bit systems, a 64-bit
jiffies value raises concurrency issues. It
is deliberately not declared as avolatile
value (for performance reasons), so the possi-
bility exists that code like:

u64 my_time = jiffies_64;

could get an inconsistent version of the vari-
able, where the top and bottom halves do not
match. To avoid this possibility, code access-
ing jiffies_64 should usextime_lock ,
which is the new seqlock type as of 2.5.60. In
most cases, though, it will be easier to just use
the convenience function provided by the ker-
nel:

#include <linux/jiffies.h>
u64 my_time = get_jiffies_64();

Users of the internalxtime variable will no-
tice a couple of similar changes. One is that
xtime , too, is now protected byxtime_
lock (as it is in 2.4 as of 2.4.10), so any code
which plays around with disabling interrupts
or such before accessingxtime will need to
change. The best solution is probably to use:

struct timespec current_kernel_time(void);

which takes care of locking for you.xtime
also now is astruct timespec rather than
struct timeval ; the difference being that
the sub-second part is calledtv_nsec , and is
in nanoseconds.

4.3.3 Timers

The kernel timer interface is essentially un-
changed since 2.4, with one exception. The
new function:

void add_timer_on(struct timer_list *timer,
int cpu);

will cause the timer function to run on the given
CPU with the expiration time hits.

4.3.4 Delays

The 2.5 kernel includes a new macro
ndelay() , which delays for a given
number of nanoseconds. It can be useful for
interactions with hardware which insists on
very short delays between operations. On most
architectures, however,ndelay(n) is equal
to udelay(1) for waits of less than one
microsecond.

4.4 Delayed tasks and workqueues

The longstanding task queue interface was
removed in 2.5.41; in its place is a new
“workqueue” mechanism. Workqueues are

Linux Symposium 142

very similar to task queues, but there are some
important differences. Among other things,
each workqueue has one or more dedicated
worker threads (one per CPU) associated with
it. So all tasks running out of workqueues have
a process context, and can thus sleep. Note
that access to user space is not possible from
code running out of a workqueue; there sim-
ply is no user space to access. Drivers can
create their own work queues—with their own
worker threads—but there is a default queue
(for each processor) provided by the kernel that
will work in most situations.

See the web site for a detailed discussion of
workqueues.

4.5 DMA support

The direct memory access (DMA) support
layer has been extensively changed in 2.5, but,
in many cases, device drivers should work
unaltered. For developers working on new
drivers, or for those wanting to keep their code
current with the latest API, there are a fair num-
ber of changes to be aware of.

The most evident change is the creation of the
new generic DMA layer. A new set of generic
DMA functions has been added which is in-
tended to provide a DMA support API that is
not specific to any particular bus. The new
functions look much like the older PCI-based
ones; changing from one API to the other is
a fairly automatic job. The full set of equiv-
alences between old and new DMA functions
may be found on the web site.

There has been one significant change in
the creation of scatter/gather streaming DMA
mappings. The 2.4 version ofstruct
scatterlist used a char * pointer
(calledaddress) for the buffer to be mapped,
with a struct page pointer that would be
used only for high memory addresses. In 2.5,

the address pointer is gone, and all scat-
terlists must be built usingstruct page
pointers.

Other developments of interest here include
support for DAC (64-bit) PCI DMA, an inter-
face for explicitly non-coherent mappings, and
PCI pools.

5 Kernel preemption

One significant change introduced in 2.5 is the
preemptible kernel. Previously, a thread run-
ning in kernel space would run until it returned
to user mode or voluntarily entered the sched-
uler. In 2.5, if preemption is configured in,
kernel code can be interrupted at (almost) any
time. As a result, the number of challenges
relating to concurrency in the kernel goes up.
But this is actually not that big a deal for code
which was written to handle SMP properly—
most of the time. If you have not yet got-
ten around to implementing proper locking for
your 2.4 driver, kernel preemption should give
you yet another reason to get that job done.

The preemptible kernel means that your driver
code can be preempted whenever the sched-
uler decides there is something more important
to do. “Something more important” could in-
clude re-entering your driver code in a differ-
ent thread. There is one big, important excep-
tion, however: preemption will not happen if
the currently-running code is holding a spin-
lock. Thus, the precautions which are taken
to ensure mutual exclusion in the SMP envi-
ronment also work with preemption. So most
(properly written) code should work correctly
under preemption with no changes.

That said, code which makes use of per-CPU
variables should take extra care. A per-CPU
variable may be safe from access by other pro-
cessors, but preemption could create races on
the same processor. Code using per-CPU vari-

Linux Symposium 143

ables should, if it is not already holding a spin-
lock, disable preemption if the possibility of
concurrent access exists. Usually, macros like
get_cpu_var() should be used for this pur-
pose.

Should it be necessary to control preemption
directly (something that should happen rarely),
some macros in<linux/preempt.h> will
be helpful. A call topreempt_disable()
will keep preemption from happening, while
preempt_enable() will make it possible
again. If you want to re-enable preemp-
tion, but don’t want to get preempted imme-
diately (perhaps because you are about to fin-
ish up and reschedule anyway),preempt_
enable_no_resched() is what you need.

One interesting side-effect of the preemption
work is that it is now much easier to tell if a
particular bit of kernel code is running within
some sort of critical section. A single vari-
able in the task structure now tracks the pre-
emption, interrupt, and softirq states. A new
macro,in_atomic() , tests all of these states
and returns a nonzero value if the kernel is run-
ning code that should complete without inter-
ruption.

6 Sleeping and waiting

Contrary to expectations, the classic func-
tionssleep_on() and interruptible_
sleep_on() were not removed in the 2.5 se-
ries. It seems that they are still needed in a
few places where (1) taking them out is quite a
bit of work, and (2) they are actually used in a
way that is safe. Most authors of kernel code
should, however, pretend that those functions
no longer exist. There are very few situations
in which they can be used safely, and better al-
ternatives exist.

6.1 Safe sleeping

Most of those alternatives have been around
since 2.3 or earlier. In many situations, one can
use thewait_event() macros:

DECLARE_WAIT_QUEUE_HEAD(queue);
wait_event(queue, condition);
int wait_event_interruptible (queue, condition);

These macros work as they did in 2.4:
condition is a boolean condition which
will be tested within the macro; the wait
will end when the condition evaluates
true. It is worth noting that these macros
have moved from<linux/sched.h> to
<linux/wait.h> , which seems a more
sensible place for them. There is also a new
one:

int wait_event_interruptible_timeout(
queue, condition, timeout);

which will terminate the wait if the timeout ex-
pires.

In many situations,wait_event() does
not provide enough flexibility—often because
tricky locking is involved. The longstanding
“manual sleep” method can be used in these
cases. In 2.5, however, a set of helper functions
has been added which makes this task easier.
The modern equivalent of a manual sleep looks
like:

DECLARE_WAIT_QUEUE_HEAD(queue);
DEFINE_WAIT(wait);

while (! condition) {
prepare_to_wait(&queue, &wait,

TASK_INTERRUPTIBLE);
if (! condition)

schedule();
finish_wait(&queue, &wait)

}

Use prepare_to_wait_exclusive()
instead when an exclusive wait is needed.
Note that the new macroDEFINE_WAIT()
is used here, rather thanDECLARE_
WAITQUEUE(). The former should be
used when the wait queue entry is to be used
with prepare_to_wait() , and should

Linux Symposium 144

probablynot be used in other situations unless
you understand what it is doing (which we’ll
get into next).

6.2 Wait queue changes

In addition to being more concise and less er-
ror prone, usingprepare_to_wait() can
yield higher performance in situations where
wakeups happen frequently. This improvement
is obtained by causing the process to be re-
moved from the wait queue immediately upon
wakeup; that removal keeps the process from
seeing multiple wakeups if it doesn’t otherwise
get around to removing itself for a bit.

The automatic wait queue removal is imple-
mented via a change in the wait queue mech-
anism. Each wait queue entry now includes its
own “wake function,” whose job it is to handle
wakeups. The default wake function (which
has the surprising namedefault_wake_
function()), behaves in the customary
way: it sets the waiting task into theTASK_
RUNNINGstate and handles scheduling issues.
The DEFINE_WAIT() macro creates a wait
queue entry with a different wake function,
autoremove_wake_function() , which
automatically takes the newly-awakened task
out of the queue.

And that, of course, is howDEFINE_WAIT()
differs from DECLARE_WAITQUEUE()—
they set different wake functions. How the se-
mantics of the two differ is not immediately
evident from their names, but that’s how it
goes. (The new runtime initialization function
init_wait() differs from the olderinit_
waitqueue_entry() in exactly the same
way).

If need be, you can define your own wake
function—though the need for that should be
quite rare (the only user, currently, is the sup-
port code for theepoll() system calls). See

the web site for details on how this is done.

One other change that most programmers
won’t notice: a bunch of wait queue cruft from
2.4 (two different kinds of wait queue lock,
wait queue debugging) has been removed from
2.5.

6.3 Completions

Completions are a simple synchronization
mechanism that is preferable to sleeping and
waking up in some situations. If you have a
task that must simply sleep until some pro-
cess has run its course, completions can do it
easily and without race conditions. They are
not strictly a 2.5 feature, having been added in
2.4.7, but they merit a quick summary here.

A completion is, essentially, a one-shot
flag that says “things may proceed.” Work-
ing with completions requires including
<linux/completion.h> and creating
a variable of typestruct completion .
This structure may be declared and initialized
statically with:

DECLARE_COMPLETION(my_comp);

A dynamic initialization would look like:

struct completion my_comp;
init_completion(&my_comp);

When your driver begins some process whose
completion must be waited for, it’s simply a
matter of passing your completion event to
wait_for_completion() :

void
wait_for_completion(struct completion *comp);

When some other part of your code has decided
that the completion has happened, it can wake
up anybody who is waiting with one of:

void complete(struct completion *comp);
void complete_all(struct completion *comp);

Linux Symposium 145

The first form will wake up exactly one wait-
ing process, while the second will wake up
all processes waiting for that event. Note
that completions are implemented in such a
way that they will work properly even if
complete() is called beforewait_for_
completion() .

If you do not usecomplete_all() , you
should be able to use a completion structure
multiple times without problem. It does not
hurt, however, to reinitialize the structure be-
fore each use—so long as you do it before initi-
ating the process that will callcomplete() !
The macroINIT_COMPLETION() can be
used to quickly reinitialize a completion struc-
ture that has been fully initialized at least once.

7 Interrupt handling

The kernel’s handling of device interrupts has
been massively reworked in the 2.5 series. For-
tunately, very few of those changes are visible
to the rest of the kernel; most well-written code
should “just work” under 2.5. There are, how-
ever, two important exceptions: the return type
of interrupt handlers has changed, and drivers
which depend on being able to globally disable
interrupts will require some changes for 2.5.

7.1 Interrupt handler return values

Prior to 2.5.69, interrupt handlers returned
void . There is, however, one useful thing that
interrupt handlers can tell the kernel: whether
the interrupt was something they could handle
or not. If a device starts generating spurious
interrupts, the kernel would like to respond by
blocking interrupts from that device. If no in-
terrupt handler for a given IRQ has been reg-
istered, the kernel knows that any interrupt on
that number is spurious. When interrupt han-
dlers exist, however, they must tell the kernel
about spurious interrupts.

So, interrupt handlers now return an
irqreturn_t value; void handlers will
no longer compile. If your interrupt handler
recognizes and handles a given interrupt, it
should returnIRQ_HANDLED. If it knows that
the interrupt was not on a device it manages,
it can returnIRQ_NONEinstead. The macro
IRQ_RETVAL(handled) can also be used;
handled should be nonzero if the handler
could deal with the interrupt. The “safe” value
to return, if, for some reason you are not sure,
is IRQ_HANDLED.

7.2 Disabling interrupts

In the 2.5 kernel, it is no longer possible
to globally disable interrupts. In particular,
the cli() , sti() , save_flags() , and
restore_flags() functions are no longer
available. Disabling interrupts across all pro-
cessors in the system is simply no longer done.
This behavior has been strongly discouraged
for some time, so most codeshouldhave been
converted by now.

The proper way to do this fixing, of course,
is to figure out exactly which resources were
being protected by disabling interrupts. Those
resources can then be explicitly protected with
spinlocks instead. The change is usually fairly
straightforward, but it does require an under-
standing of what is really going on.

It is still possible to disable all inter-
rupts locally with local_save_flags()
or local_irq_disable() . A single inter-
rupt can be disabled globally withdisable_
irq() . Some of the spinlock operations also
disable interrupts on the local processor, of
course.

Linux Symposium 146

8 Asynchronous I/O

One of the key “enterprise” features added to
the 2.5 kernel is asynchronous I/O (AIO). The
AIO facility allows user processes to initiate
multiple I/O operations without waiting for any
of them to complete; the status of the opera-
tions can then be retrieved at some later time.
Block and network drivers are already fully
asynchronous, and thus there is nothing spe-
cial that needs to be done to them to support
the new asynchronous operations. Character
drivers, however, have a synchronous API, and
will not support AIO without some additional
work. For most char drivers, there is little ben-
efit to be gained from AIO support. In a few
rare cases, however, it may be beneficial to
make AIO available to your users. The web
site has details on how to do that.

9 Block drivers

The first big, disruptive changes to the 2.5 ker-
nel came from the reworking of the block I/O
layer. As 2.5 heads towards its final phases, the
block layer is still seeing a lot of attention. As
one might guess, the result of all this work is a
great many changes as seen by driver authors—
or anybody else who works with block I/O.
The transition may be painful for some, but it’s
worth it: the new block layer is easier to work
with and offers much better performance than
its predecessor.

Space constraints make it impossible to cover
all of the block layer changes here; they could
easily justify an entire paper to themselves.
These changesarecovered in detail on the web
site listed at the end of the paper. Here, how-
ever, we’ll have to content ourselves with an
overview.

So, what has changed with the block layer?

• A great deal of old cruft is gone. For
example, it is no longer necessary to
work with a whole set of global arrays
within block drivers. These arrays (blk_
size , blksize_size , hardsect_
size , read_ahead , etc.) have simply
vanished.

• As part of the cruft removal, most of the
<linux/blk.h> macros (DEVICE_
NAME, DEVICE_NR, CURRENT, INIT_
REQUEST, etc.) have been removed, and
the file itself should go away soon. It
is still possible to implement a simple
request loop for straightforward devices
where performance is not a big issue, but
the mechanisms have changed.

• The io_request_lock is gone; lock-
ing is now done on a per-queue basis.

• Request queues have, in general, gotten
more sophisticated. There is simple sup-
port for tagged command queueing, along
with features like request barriers and
queue-time device command generation.

• Buffer heads are no longer used in the
block layer; they have been replaced with
the new “bio ” structure. The new rep-
resentation of block I/O operations is de-
signed for flexibility and performance; it
encourages keeping large operations in-
tact. Simple drivers can pretend that the
bio structure does not exist, but most
performance-oriented drivers—i.e., those
that want to implement clustering and
DMA—will need to be changed to work
with bio s.

One of the most significant features of
thebio structure is that it represents I/O
buffers directly withpage structures and
offsets, not in terms of kernel virtual ad-
dresses. By default, I/O buffers can be lo-
cated in high memory, on the assumption
that computers equipped with that much

Linux Symposium 147

memory will also have reasonably modern
I/O controllers. Support operations have
been provided for tasks likebio splitting
and the creation of DMA scatter/gather
maps.

• Sector numbers can now be 64 bits wide,
making it possible to support very large
block devices.

• The rudimentary gendisk (“generic
disk”) structure from 2.4 has been greatly
improved in 2.5; generic disks are now
used extensively throughout the block
layer. The most significant change for
block driver authors may be the fact that
partition handling has been moved up into
the block layer, and drivers no longer need
know anything about partitions. That is,
of course, the way things should always
have been.

The end result is a fair amount of short-term
pain for maintainers of block drivers. It does
not take long, however, to realize that the new
interface is easier to program for and far more
robust.

10 Network drivers

Here’s the good news for people maintaining
network drivers: once you have deal with the
basic changes that affect all drivers and load-
able modules, your driver will likely work as
it is. The API that was presented to drivers in
2.4 is essentially unchanged. There has been
no gratuitous network driver breakage in 2.5.

The bad news is: a bunch of useful new stuff
has been added in 2.5. If you want your driver
to use the features of 2.5 to get the best perfor-
mance out of your hardware, you will have to
spend some time dealing with changes.

10.1 NAPI

The most significant change, perhaps, is the
addition of NAPI (“New API”), which is de-
signed to improve the performance of high-
speed networking. NAPI works throughinter-
rupt mitigation (reducing the thousands of in-
terrupts per second that accompany high net-
work traffic) andpacket throttling (keeping
packets out of the kernel if they will be dropped
anyway). NAPI was also backported to the
2.4.20 kernel.

Converting drivers to NAPI is essentially a
two-step process:

• Your driver should no longer process in-
coming packets in its interrupt handler.
Instead, it should disable further “packet
available” interrupts and tell the network-
ing system to begin polling the interface.

• A new poll() method must be created
which processes all available incoming
packets (up to a kernel-specified limit).
A new function, netif_receive_
skb() has been set up to accept packets
from poll() methods.

The web site has the inevitable details.

10.2 Receiving packets in non-interrupt mode

Network drivers tend to send packets into the
kernel while running in interrupt mode. There
are occasions where, instead, packets will be
received by a driver running in process context.
There is no problem with this mode of opera-
tion, but it is possible that the networking soft-
ware interrupt which performs packet process-
ing may be delayed, reducing performance. To
avoid this problems, drivers handing packets to
the kernel outside of interrupt context should
use:

int netif_rx_ni(struct sk_buff *skb);

Linux Symposium 148

instead ofnetif_rx() .

10.3 Other 2.5 features

A number of other networking features were
added in 2.5. Here is a quick summary of de-
velopments that driver developers may want to
be aware of.

Ethtool support. Ethtool is a utility which can
perform detailed configuration of network in-
terfaces; it can be found on the gkernel Source-
Forge page. This tool can be used to query net-
work information, tweak detailed operating pa-
rameters, control message logging, and more.
Supporting ethtool requires implementing the
SIOCETHTOOL ioctl() command, along
with (parts of, at least) the lengthy set of eth-
tool commands. See<linux/ethtool.h>
for a list of things that can be done. Imple-
menting the message logging control features
requires checking the logging settings before
eachprintk() call; there is a set of conve-
nience macros in<linux/netdevice.h>
which make that checking a little easier.

VLAN support . The 2.5 kernel has support for
802.1q VLAN interfaces; this support has also
been working its way into 2.4, with the core
being merged in 2.4.14.

TCP segmentation offloading. The TSO fea-
ture can improve performance by offloading
some TCP segmentation work to the adaptor
and cutting back slightly on bus bandwidth.
TSO is an advanced feature that can be tricky
to implement with good performance; see the
tg3 or e1000 drivers for examples of how it’s
done.

11 User space access

Thekiobuf abstraction was introduced in 2.3
as a low-level way of representing I/O buffers.
Its primary use, perhaps, was to represent zero-

copy I/O operations going directly to or from
user space. A number of problems were found
with the kiobuf interface, however; among
other things, it forced large I/O operations to
be broken down into small chunks, and it was
seen as a heavyweight data structure. So, in
2.5.43, kiobufs were removed from the kernel.
Direct access to user space remains possible,
however, as we’ll see.

The modern equivalent ofmap_user_
kiobuf() is a function calledget_user_
pages() :

int get_user_pages(
struct task_struct *task,
struct mm_struct *mm,
unsigned long start,
int len,
int write,
int force,
struct page **pages,
struct vm_area_struct **vmas);

task is the process performing the mapping;
the primary purpose of this argument is to say
who gets charged for page faults incurred while
mapping the pages. This parameter is almost
always passed as “current ”. The memory
management structure for the user’s address
space is passed in themmparameter; it is usu-
ally current->mm . Note thatget_user_
pages() expects that the caller will have a
read lock onmm->mmap_sem. The start
andlen parameters describe the user-buffer to
be mapped;len is in pages. If the memory
will be written to,write should be non-zero.
The force flag forces read or write access,
even if the current page protection would oth-
erwise not allow that access. Thepages array
(which should be big enough to holdlen en-
tries) will be filled with pointers to thepage
structures for the user pages. Ifvmas is non-
NULL, it will be filled with a pointer to the
vm_area_struct structure containing each
page.

Linux Symposium 149

The return value is the number of pages actu-
ally mapped, or a negative error code if some-
thing goes wrong. Assuming things worked,
the user pages will be present (and locked) in
memory, and can be accessed by way of the
struct page pointers. Be aware, of course,
that some or all of the pages could be in high
memory.

There is no equivalentput_user_pages()
function, so callers ofget_user_pages()
must perform the cleanup themselves. There
are two things that need to be done: marking
of modified pages, and releasing them from
the page cache. If your device modified the
user pages, the virtual memory subsystem may
not know about it, and may fail to write the
pages to permanent storage (or swap). That,
of course, could lead to data corruption and
grumpy users. The way to avoid this problem
is to call:

int set_page_dirty_lock(struct page *page);

for each page in the mapping.

Finally, every mapped page must be released
from the page cache, or it will stay there for-
ever; simply pass each page structure to:

void put_page(struct page *page);

After you have released the page, of course,
you should not access it again.

For a good example of how to useget_
user_pages() in a char driver, see the
definition of sgl_map_user_pages() in
drivers/scsi/st.c .

12 Conclusion

This paper is drawn from the LWN.net “Port-
ing Drivers to 2.5” series, which can be found
at:

http://lwn.net/Articles/
driver-porting/

Those articles contain much more detail than
was possible to squeeze into this paper. They
are also being maintained as kernel develop-
ment continues; there are, beyond a doubt,
things that have changed since this paper was
written. If nothing else, the kernel developers
will eventually figure out how they want to sup-
port larger device numbers. The driver-porting
web site will have the latest information on ker-
nel API changes.

13 Acknowledgments

Previous versions of this material have been
improved by comments from Jens Axboe, Ja-
mal Hadi Salim, Greg Kroah-Hartman, An-
drew Morton, Rusty Russell, and others I
have certainly forgotten. The creation of the
“driver porting” series of articles was funded
by LWN.net subscribers.

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

