
How NOT to write kernel drivers

Arjan van de Ven
Red Hat, Inc.

arjanv@redhat.com, http://people.redhat.com/arjanv

Abstract

Quit a few tutorials, articles and books give
an introduction on how to write Linux kernel
drivers. Unfortionatly the things one should
NOT do in Linux kernel code is is either only
a minor appendix or, more commonly, com-
pletely absent. This paper tries to briefly touch
the areas in which the most common and seri-
ous bugs and do-nots are encountered.

1 Introduction

Quit a few tutorials, articles and books give
an introduction on how to write Linux kernel
drivers. Unfortionatly the things one should
NOT do in Linux kernel code is is either only
a minor appendix or, more commonly, com-
pletely absent.

With the growing popularity of Linux in the
last few years, more and more vendors are try-
ing to create linux drivers, and quite often that
is done by giving an engineer the windows
driver code and the assignment to have a linux
driver ready in 4 weeks.

In my job as Red Hat Linux kernel maintainer
such drivers quite often end up in my inbox
with the request to include it. Surprisingly
quite often these drivers share the same bugs
and “please don’t dothat” things.

This text and the corresponding talk is intended
to show several such bugs and why they are

bad. Quite a few will be of the “Oh but of
course” caliber but that’s usually the case with
bugs in hindsight.

My hope is that explaining why certain things
are wrong is enough to prevent such things
from cluttering up my inbox too much.

All of the code examples in this paper are
from real code, however they have been edited
slightly to fit the layout and non-essential bits
are removed for clarity.

2 Allocating memory

The Linux kernel has a diverse API for allo-
cating memory, unlike operating systems such
as Microsoft Windows and SCO Unixware.
Linux uses this set of functions and flags
one the one hand to be able to more aggres-
sively optimize the VM algorithms, and on the
other hand to provide safeguards against out-
of-memory deadlocks.

Quite often drivers that are ported from other
operating systems try to abstract the multitude
of allocators and flags into one function. Not
only does this void the VM tuning optimisa-
tions, it also leads to subtle and hard to debug
bugs.

2.1 GFP_KERNEL and GFP_ATOMIC

Most kernel tutorials describe that you
shouldn’t use GFP_KERNEL in interrupt con-

Ottawa Linux Symposium 2002 546

text because it can schedule (which is correct),
and as a result the following “abstraction” is
found quite often:

static int uhci_submit_iso_urb(

urb_t ∗urb)

{
...

tdm = kmalloc(some_size,

in_interrupt()

? GFP_ATOMIC : GFP_KERNEL);

...

}

from usb-uhci.c in kernel 2.4.9

which appears to take this “interrupt context”
requirement into account. However the entire
cunning plan falls appart when spinlocks en-
ter the picture: in_interrupt() might return false
even though scheduling is not allowed. Since
scheduling by kmalloc() is not the common
case, this bug won’t often show up in casual
testing.

2.2 vmalloc

Most tutorials warn about using kmalloc for al-
locating big areas of memory, and it seems a lot
of people also notice these limits in practice:

static inline void ∗
osi_malloc(unsigned int size)

{
void ∗ptr;

if (size > 2∗PAGE_SIZE)

return vmalloc(size);

ptr = kmalloc(size, GFP_NOFS);

if (ptr)

return ptr;

return vmalloc(size);

}

from OpenGFS 0.99.2

There are several problems with such an

approach. The first one is performance:
vmalloc() ’ed memory requires more
TLB’s, which are a rare resource on most
CPUs.

A more serious problem arises when the
osi_free() routine gets involved: it calls
vfree() for the vmalloc() ed memory,
and it’s illegal to callvfree() from inter-
rupt context. This abstraction makes it okay to
call theosi_free() function from interrupt
context sometimes, but not for big allocations.

A third issue that most tutorials don’t mention
is that while you can usevmalloc() to allo-
cate larger chunks of memory, the total amount
you can allocate is rather limited, in the or-
der of 64 Megabytes on modern machines (de-
pending on what PCI hardware is present).

2.3 Other subtleties

Abstractions of the Linux memory alloca-
tors often also hides the deadlock avoidance
mechanisms Linux provides. In the write
path of a filesystem, usingGFP_KERNELor
GFP_ATOMICwill lead to deadlocks eventu-
ally. Such deadlocks might not show up in
your testing, but Murphy’s law guarantees that
your first big customer will hit the deadlock on
December 24th at 6pm.GFP_NOFSis there
for a reason, as isGFP_NOIOfor block de-
vice drivers. Using an abstraction for the al-
locator might appear to make your life eas-
ier by not having to understand these issues,
but sooner rather than later it’ll come back and
haunt you—or, worse, your users.

3 Synchronisation primitives

The Linux kernel provides a reasonably com-
plete set of synchronisation primitives in the
form of semaphores and spinlocks (both in
the normal form as the reader/writer vari-

Ottawa Linux Symposium 2002 547

ant). Rusty’s hamster even wrote documenta-
tion about when to use what primivive. These
primitives however do not form a perfect match
with that Microsoft Windows or Unixware pro-
vide as primitives.

Not seldom do I find self-written synchronisa-
tion primitives in submitted drivers, and as a
general rule they are all buggy.

/ ∗
∗ EnterCriticalSection:
∗ /

unsigned long

EnterCriticalSection(

DevInfo_pt pDev)

{
int retval;

#ifdef __SMP__

for (;;) {
retval=test_and_set_bit(SEMA_SRL,

&pDev−>Sema);

if (!retval)

break;

sleep_on(&pDev −>WaitQ);

}
return(retval);

#else / ∗ __SMP__ ∗ /

if (pDev −>Sema)

return(−1);

pDev−>Sema=−1;

return(0);

#endif

}

The code above is a typical example of driver-
code that tries to emulate a primitive from an-
other OS. The counterpart was as follows:

/ ∗
∗ LeaveCriticalSection
∗ /

void LeaveCriticalSection(DevInfo_pt

pDev)

{

#ifdef __SMP__

clear_bit(SEMA_SRL,&pDevi −>Sema);

wake_up(&pDev −>WaitQ);

#else

pDev−>Sema0;

#endif

}

It’s tempting to leave the “what’s wrong with
that” as an excercise to the reader; however it’s
better to nip such code in the but so here goes a
two-cpu example with 2 tasks, task A is hold-
ing the lock on cpu 1 and task B is trying to
acquire the lock on cpu 2. Figure 1 shows how
the mentioned code will leave task B sleeping
without it ever getting the critical section.

CPU 1

T0 Task A has has the sema bit set

T1 test_and_set Task B tries and sees someone has the sema bit

T2

T3

T4

T5

Task A releases with a clear_bit()

Task A waits up all waiters on the waitqueue

Task B puts itself on the waitqueue and sleeps

There’s nobody left to wake task B

....

....

....

....

....

....

....

....

clear_bit

wake_up

sleep_on

CPU 2 State

Figure 1: Timing diagram of the deadlock

Now it’s very well possible to try to fix the
above code to not have this deadlock. How-
ever, it’s far simpler to just use the linux
semaphores which provide all the functionality
required for this case.

Another problem with “home made locks” is
that they do not work on architectures that re-
order instructions and/or memory accesses ag-
gressively, such as PowerPC or Power4.

One thing pops up rather often in drivers ported
from other operating systems: recursive locks.
The linux kernel provides no recursive locks
(with the exception of the Big Kernel Lock,
see section 4). The philosophy is that lock-
ing should be taken into account when design-
ing your code, and in that case you don’t need
recursive semaphores or spinlocks. Recursive
locks have all sorts of subtle deadlock issues

Ottawa Linux Symposium 2002 548

which are beyond the scope of this text and
while you can write correct recursive locks,
just say no.

4 SMP

Despite popular belief, SMP safety is not
something you “weld” into your code as a
hindsight. SMP safety is something you need
to take into account right from the start. Make-
ing a (largish) piece of code SMP safe in hind-
sight leads to all kinds of lock-ordering night-
mares, makes you wish there were recursive
locks, and generally results in a suboptimal so-
lution. While I could give numerous drivers as
examples of how to not do it, the main kernel
with the Big Kernel Lock (BKL) is the best ex-
ample of this. The BKL was put in to make the
kernel work on SMP, in hindsight—and well,
it still results with nightmares with dozens and
dozens of races. It has been taking 5 years so
far to fix all the core subsystems to have proper
locking of their own.

With the merging of the preemptible kernel
patch in the 2.5 series of the kernel, SMP safety
is even more important than before. With pre-
emption turned on, your code can be inter-
rupted at any point and acts as if it’s running
on an SMP machine.

There’s a simple list of questions you should
ask yourself for all code you write:

• What prevents the data I’m working on
from beeing freed under me

• What prevents my module from being un-
loaded under me

• What prevents a user from open-
ing/closing my device here

• What do I not want to happen to the
data/device I’m working with right now...

• . . . and what makes sure that that doesn’t
happen

Such a list can never be complete obviously,
and the only weapon you can use to make your
code SMP safe is your brain. Of course it helps
if you have access to SMP hardware, and even
booting an SMP kernel if you have only one
CPU will allow you to find certain types of
deadlocks.

5 All the world is not a VAX

#ifdef ALPHA
#define U32 unsigned int
#else
#define U32 unsigned long
#endif

from drivers/scsi/inia100.h,
kernel 2.4.9

The Linux kernel works on several architec-
tures, not just Intel x86. The kernel API has
evolved in a way that makes drivers basically
automatically portable between architectures.
That is, if the API is followed and no strange
assumptions are made, as was done in the
inia100.h example. Unfortunately, even if you
don’t follow the API the driver might at least
appearto work on a normal PC, since the PC
architecture makes certain consistency guaran-
tees and has certain behavior that other plat-
forms can’t provide.

5.1 PCI posting

One of the most common, and hardest to de-
bug, problems in PCI device drivers is the lack
of dealing withPCI posting. PCI postingis the
effect where the cpu writes some data to a cer-
tain PCI device, the PCI bridge (or, rather, any
component between the CPU and the actual de-
vice) is allowed to buffer this write as long as

Ottawa Linux Symposium 2002 549

it wants. The only constraint to this buffering
is that a read operation from a device will not
complete before all pending writes to this de-
vice are completed, hence effectively forcing a
“flush” of all pending writes.

A typical example of how this can easily go
wrong is shown below:

// —————————————————-
// Procedure: eeprom_stand_by
//

// Description: This routine lowers the
// EEPROM chip select (EECS) for a
// few microseconds.
// —————————————————-
static void

eeprom_stand_by(struct e100_priv

∗adapter)

{
u16 x;

x = readw(&CSR_EEPROM(adapter));

x &= ∼(EECS | EESK);

writew(x, &CSR_EEPROM(adapter));

udelay(EEPROM_STALL_TIME);

x |= EECS;

writew(x, &CSR_EEPROM(adapter));

udelay(EEPROM_STALL_TIME);

}

from the Intel e100 driver in
kernel 2.5.6

The intent of the programmer clearly is to clear
some bit in the cards memory space, wait a cer-
tain amount of time, enable it again and wait
some more time, effectively creating a peri-
odic waveform if the routine is called in se-
quence. However, due to posting, the first
writew() might not reach the card for a long
time and the udelay() is therefore totally miss-
ing the intended goal, it just warms the cpu a
bit. The end result in this case is that the eep-
rom contents is written out incorrectly to the

card.

The fix is obvious (and present in later ker-
nels); just adding areadl() immediately af-
ter bothwritew() to read and discard some
data from the card is enough.

Only recently started the more advanced PC
chipsets to do more aggressive posting, so this
bug probably will not, or only seldom, show
up on home PC’s. IA64 and other architec-
tures have had more aggressive posting in the
chipsets for a longer time already.

5.2 GFP_DMA

The GFP_DMA memory allocation flag was
originally intended to allocate ISA bus DMA-
able memory, however several architectures
give a different meaning to it nowadays. Since
the demise of the ISA bus, GFP_DMA should
not be used in driversat all; the PCI DMA API
has well defined ways of allocating and map-
ping memory for PCI use. The example below
shows the Intel e100 driver abuse GFP_DMA
to work around a performance issue in early
IA64 architecture code that deals with a miss-
ing IOMMU chip.

#if (defined __ia64__)

new_skb =

__dev_alloc_skb(skb_size,

GFP_ATOMIC|GFP_DMA);

// Try to alloc non-DMA skb if
// failed to get from the DMA zone

if (new_skb==NULL) {
new_skb =

dev_alloc_skb(skb_size);

}
#else

new_skb =

dev_alloc_skb(skb_size);

#endif

Ottawa Linux Symposium 2002 550

Intel e100 1.8.38 While the code will
work correctly for current IA64 systems, it’s
not guaranteed that newer IA64 machines
won’t have an IOMMU and that GFP_DMA
doesn’t actually result in PCI-reachable mem-
ory. The obviously right thing here was to fix
the performance bug in the architecture code,
or even making the architecture use the high-
mem mechanism.

5.3 Assuming PC resources

static void
qla2100_putc(int8_t c)
{
...

/ ∗ BAUD rate divisor LSB. ∗ /
OUTB(0x3f8+3, 0x83);
/ ∗ BAUD rate divisor MSB. ∗ /
/ ∗ 0xC = 9600 baud ∗ /
OUTB(0x3f8, 0xc);

...
}

Qlogic 2x00 v5.31 fiber channel
driver The above example is taken from a
fibre channel driver. The purpose is to have
some sort of serial console for tracing and
debugging (let’s pretend for a minute that
Linux doesn’t already have generic serial
console code).

Hardcoding architecture constants like0x3f8
(even if they haven’t changed in the last 20
years) is just inviting trouble. Some day some-
one will want to run your code on an IA64, or
a MIPS or even an ARM machine, and all hell
breaks loose. In addition, these “constants” ac-
tually recently started changing with the advent
of the legacy-free PC’s.

Another serious issue is that this code uses
IO resources without registering them with the
kernel; one can assume that even the most ex-
pensive intelligent UPS gets confused when

a driver like this interferes with the monitor-
ing application which happens to be connected
to this serial port (and yes, sysadmins do get
grumpy when in the middle of the night a bad
sector results the driver turning off the UPS due
to error handling calling this debug code).

5.4 On-disk and wire formats

Two of the major differences between architec-
tures that are actually visible to kernel drivers
are byte order and structure padding.

Both these items you normally don’t have to
care about; however, they do become important
when you put information on persistent stor-
age (when writing a filesystem for example) or
when sending information over a network.

The JFFS2 filesystem was sloppy in this re-
spect and stored its metadata on the (flash)
device in CPU byte order. After the filesys-
tem was in use for several months, on several
architectures, people started complaining that
they couldn’t take their device from one system
(powerpc) to another (x86) while still being
able to read the data. David Woodhouse can
testify that making a filesytem auto-sensing,
bi-endian is not something you want to do.

Using a defined byte order for the on disk for-
mat is certainly preferable. Verifying the cor-
rectness of code in this respect is normally non-
trivial if you only have access to x86 machines;
EXT3 uses the cunning trick to specify all on-
disk data (in the journal) in Big Endian order
so that any missing byte-order correction will
be noticed immediatly on a PC.

Structure padding is a similar issue:

struct example {
char foo;
u64 bar;

};

Ottawa Linux Symposium 2002 551

in the example above the size of
struct example will depend on the
architecture. Different architectures have
different requirements for minimal alignment
of data and the compiler will add invisible
padding betweenfoo andbar to satisfy the
architecture requirements.

This has 3 important consequences when this
structure needs to be written to persistent stor-
age or the network:

1. The size of the structure differs per archi-
tecture

2. The location of thebar data is in a dif-
ferent place in the bytes that make up
struct example

3. The code below isnot enough to clear the
entire structure

struct example ∗blah;
...
blah = kmalloc(sizeof(∗blah),

GFP_KERNEL);
if (!blah)

return −ENOMEM;
blah −>foo = 3;
blah −>bar = 40;
...

The code above does not clear the (invisible)
padding, and for in-kernel use that’s not a prob-
lem. However when exposing this struct out-
side the kernel, it is very important to real-
ize that the padding bytes are uninitialized and
hence can contain just about anything that ever
was in memory, including the root password
or parts of gpg keys. Things like that usually
make sure that your module ends up on bug-
traq just before the meeting with a big potential
customer.

6 Using int for flags

A common bug that causes portability issues
is the use of anint variable for storing the
CPU flags in withspin_lock_irqsave .

void

mgsl_sppp_tx_timeout(

struct net_device ∗dev)

{
struct mgsl_struct ∗info =

dev−>priv;

int flags;

...

spin_lock_irqsave(

&info −>irq_spinlock, flags);

usc_stop_transmitter(info);

spin_unlock_irqrestore(

&info −>irq_spinlock, flags);

}

from drivers/char/synclink.c
kernel 2.4.9

On 64 bit architectures, the CPU flags
are 64 bit, and the code such as quoted
above will fail to work quite spectacularly.
spin_lock_irqsave is specified to take
an unsigned long variable for flags, and
thankfully kernels 2.5.10 and later will cause a
compiler warning if this isn’t the case.

7 Files

Just about all kernel tutorials and books warn
you to not open configuration files from inside
the kernel. Unfortionatly that doesn’t seem to
stop people from doing so anyway.

static void chandev_read_conf(void)

{
#define CHANDEV_FILE \

"/etc/chandev.conf"

...

Ottawa Linux Symposium 2002 552

set_fs(KERNEL_DS);

if(stat(CHANDEV_FILE,

&statbuf)==0)

{
set_fs(KERNEL_DS);

if((fd=open(CHANDEV_FILE,

O_RDONLY,0))!= −1)

{
curr=0;

left=statbuf.st_size;

while((len=read(fd,

&buff[curr],left)) >0)

{
curr+=len;

left −=len;

}
....

}

drivers/char/s390/misc/chandev.c

in kernel 2.4.9/s390

Apart from the aesthetic issues involving the
kernel setting policy on userspace, and the
problem that writing a secure parser is non-
trivial (both of which doesn’t seem to impress
people enough to not write code like this), there
is the issue ofwhichfile is it.

There are several reasons why this isn’t as clear
as it might look on first sigh. In recent 2.4 and
2.5 kernels, each process has its own names-
pace (and hence effectively its own root direc-
tory). Autoloading the driver will result in the
module usinginit ’s namespace, while manu-
ally loading it by root will result in the module
using the namespace root currently happens to
be in. chroot will have similar surprise ef-
fects, as will loading the module from an initial
ramdisk.

The initial ramdisk case just makes a system
harder to administer, but the other two cases
actually carry a slight security risk: while one
needs to be root to load modules, root might
not realize he is not in theinit namespace;

this gives a non-root user the ability to feed a
config file to the kernel (and either merely af-
fect the settings, or worse, exploit vulnerabili-
ties in the parser).

8 Just yuck

8.1 Overriding system calls

There are certain things that should just not
be done in kernel space. The most evil
one is overriding or adding system calls
from modules. For historical reasons, the
sys_call_table symbol is exported for
the use in the Linux ABI patches that allow
the kernel to run binaries from other linux-
like operating systems (Unixware, Solaris etc).
Linux ABI only needed this to call existing
function calls, and has long since been fixed
to do so directly.

Unfortionatly this export seems to have opened
the door for other modules to override exist-
ing system calls with different behavior. The
mix of modules that do this consists of several
filesystems of IBM origin, binary only security
tools, and oprofile, a performance monitoring
tool.

void oplock_init(void)

{
TRACE0(TRACE_SMB, 5,

TRCID_OPLOCK_INIT,

"Loading kernel"

" oplock support\n");

old_sys_fcntl =

sys_call_table[__NR_fcntl];

old_sys_fcntl64 =

sys_call_table[__NR_fcntl64];

sys_call_table[__NR_fcntl] =

(long)&newsys_fcntl;

sys_call_table[__NR_fcntl64] =

(long)&newsys_fcntl64;

}

Ottawa Linux Symposium 2002 553

glue layer for IBM GFPS binary
only (C++) filesystem

Apart from the SMP races in such code (it’s
impossible to get the locking against module
unloading working), overriding system calls is
just too evil for words.

8.2 Depending on userspace program names

Writing kernel code that depends on filenames
of programs in userspace prevents people from
arranging their system the way they want, and
also can lead to “interesting” surprises.

Sometimes filenames are unavoidable; the ker-
nel has a series of filenames forinit it tries
when booting, while allowing a command line
override. modprobe and/sbin/hotplug
are also called by the kernel to provide im-
proved plug-and-play behavior; however the
filenames of both are /proc settings, and the
bootup scripts are expected to set the proper
values if the provided defaults are not correct.

A different kind of problem is if the kernel de-
cides to behave differently based on the name
of the program that is running:

Boolean

cxiIsSambaThread()

{
return (!strcmp(current −>comm,

"smbd"));

}

glue layer for IBM GFPS binary
only (C++) filesystem

There is no guarantee that Samba is the only
binary that is namedsmbd, and changing be-
havior based on such a test can lead to interest-
ing surprises for other programs. There even
can be a security angle if this test is used for
enhancing permissions.

8.3 Long udelay

I have been told that drivers for Microsoft
Windows can sleep in a lot more places than
Linux drivers. Several drivers I’ve seen that are
ported from Windows or are shared with Win-
dows depended on this and the Linux variant
of the driver gets into trouble as a result. The
common solution between such drivers seems
to be to just use the busy-waitingudelay()
macro.

static uint8_t

qla2100_mailbox_command(....)

{
...

cnt = 0x100000 ∗2; / ∗ 22 secs ∗ /

for(; cnt > 0 && !ha −>flags;

cnt −−)

{
/ ∗ Check for pending interrupts. ∗ /

data = RD_REG_WORD(

® −>istatus);

...

udelay(10);

}
}

from Qlogic qla2x00 driver
version 4.28

In the above driver code snippet the
qla2100_mailbox_command()
function, which has to be called with the
io_request_lock spinlock acquired and
local interrupts disabled, busy waits for about
20 seconds. This is thankfully not the common
case, but since the spinlock in question is
required for doing any IO at all, 22 seconds is
usually enough to kill a system (especially if
hardware watchdogs are involved). And even
if it doesn’t, writing a driver like this will not
make you popular with the low latency people.

There is no clear-cut way to fix such problems

Ottawa Linux Symposium 2002 554

in an afternoon. In the qla2x00 case, it re-
quired a complete redesign of all the locking
and some surgery in the structure of the driver.
As a side effect the lock hold times and con-
tention reduced significantly (even ignoring the
long busy waits since those are not really in fast
paths); fixing these issues pays off in more than
one way.

8.4 Floating point

Everybody knows using floating point in the
kernel isn’t allowed (with the exception of
carefully selected places where MMX is used
to speed up RAID XOR performance and
such). However it’s rather easy to put floating
point in by accident:

#define NTSC 14.31818

#define calc_freq(n,m,k) \
((NTSC ∗ (n+8))/((m+2) ∗(1 <<k)))

...

int fi;

fi = calc_freq(n,m,k);

drivers/video/trident_fb.{c,h}
2.4.18pre

The first define is actually in the header file and
all the use is in the C file, where the author
probably no longer realized the NTSC constant
was a float. Compiling the kernel with the
-msoft-float flag finds such problems fast
before random userspace floating point results
get corrupted.

9 Conclusion

This paper only touches the tip of the iceberg of
problems found in kernel modules; however I
hope that it has become clear that adding ab-
straction layers for the Linux kernel API to
glue drivers from other operating systems to
Linux, is a bad idea. Beyond that it’s mostly a

matter of common sense and having a good de-
sign of a driver; due to the open source nature
of the Linux kernel there’s plenty of good (but
also of bad) examples available for borrowing
a design idea.

10 Legalese

The IBM GFPS glue layer code is governed by
the following license:
COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 2001 International Business Machines

All rights reserved.

Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
3. The name of the author may not be used to endorse
or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AU-
THOR “AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

all other code is copyrighted by the respec-

Ottawa Linux Symposium 2002 555

tive authors and licensed under the terms of the
GNU GPL.

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

