
Reverse engineering an advanced filesystem

Christoph Hellwig
LST e.V.
hch@lst.de

http://verein.lst.de/˜hch/

Abstract

TheVxFSfilesystem from VERITAS is an ex-
ample of a UNIX filesystem that not only of-
fers a broad range of advanced functionality,
such as extent based allocation, intent logging,
snapshoting, but also has on-disk formats with
various differences between the versions and
ports.

FreeVxFSis a freely available implementation
of the VxFS filesystem format for Linux, im-
plemented only by looking at the very rarely
available public documentation and reverse en-
gineering the SCO UnixWare version of the
commercially available VXFS driver.

1 Introduction

Today’s operating systems feature a wide vary
of commercially available advanced filesys-
tems. Only for a small number of such filesys-
tems (for examples IBM’sJFS2 family or
SGI’s XFS) does a freely available Linux ker-
nel implementation exist.

Linux contributors already have implemented
support for many simpler proprietary filesys-
tems likeFAT or EFS, but the there are only
few independent implementations of complex
filesystem designs such as Microsoft’sNTFS.

The VERITAS Filesystem (VxFS) originated
from a joint-venture of VERITAS and the Unix

System Laboratories (USL) in the early 90’s of
the last century to develop an advanced filesys-
tem for System V Release 4 Unix (SVR4),
featuring capabilities such as read-ahead log-
ging (commonly called journaling) and copy-
on-write snapshots at the filesystem level. To-
day it has been ported to a great number of
Unix derivatives such as Sunsoft Solaris, Se-
quent (IBM) Dynix/ptx, Hewlet-Packard HP-
UX, or Caldera OpenUnix; and non-Unix plat-
forms like Microsoft Windows 2000.

VxFS is a proprietary VERITAS product and
delivered in source or binary form to paying
customers. There is, on the other hand, no pub-
lic documentation of the on-disk format used
by VxFS, which makes implementations other
then VERITAS’ difficult to implement. There
is need to access VxFS-formated disks from
Linux for various reasons, like migration from
obsolete Unix platforms or access to foreign
files for development. (In the author’s case this
was the Linux-ABI binary emulation frame-
work).

In the first Quarter 2002, VERITAS announced
the commercial availability of the VERITAS
Foundation Suite for Linux, featuring a port
of their VxFS-implementation. Being tied to
obsolete versions of the Red Hat kernel pack-
age and priced in 4-digit US-dollar range, it is
not an option for most possible FreeVxFS uses,
though.

Ottawa Linux Symposium 2002 192

2 Legal Background

When implementing a non-trivial piece of soft-
ware that inter-operates with another software
you either need a written specification of the
interface, or you need to look at the other soft-
ware, using helper tools such as disassemblers;
this is calledreverse engineering. In the VxFS
case there is no proper documentation of the
filesystem’s layout as stored on disk soreverse
engineeringis the only available choice. In the
European Union reverse engineering of soft-
ware products is handled by the Directive on
Software Copyright Protection from 14 May
1991. In Article 6 (Decompilation) it states the
following:

The authorization of the
rightholder shall not be required
where reproduction of the code
and translation of its form within
the meaning of Article 4 (a) and
(b) are indispensable to obtain the
information necessary to achieve the
interoperability of an independently
created computer program with
other programs, provided that the
following conditions are met:...

As the creation of a Linux driver for a propri-
etary filesystem matches the terms of interop-
erability used in this EU law exactly, we are
explicitly allowed to examine an existing, li-
censed installation of VxFS to gain informa-
tion for implementing a free replacement for
Linux.

Another interesting legal problem came up
when the released driver was merged into
the official Linux kernel tree, as VERITAS
claimed the use of “vxfs” as driver name was
threatening their Trademark. The driver name
was changed to freevxfs to avoid further legal
problems.

3 Getting Started

Structure is more important than code—this
golden programming rule is even more impor-
tant when trying to archive format compatibil-
ity with an existing software.

To implement an independent driver for a
filesystem layout, one needs to know every sin-
gle structure that is written on disk in detail to
archive full compatibility. On the other hand
the inner workings of the drivers might be com-
pletely different, especially if they were written
for different environments (e.g. operating sys-
tems in this case).

Thus the first step to produce a free VERITAS
filesystem driver for Linux was to create a full
description of the disk layout that is not di-
rectly derived from the original code. As start-
ing point I used the public available documen-
tation of UNIX vendors shipping VxFS with
their products, but the results were discourag-
ing, there were only two documentation sets
that contain non trivial information about the
VxFS disk on-disk format: first the VxFS Sys-
tem Administrator’s [AdmGuide] has a chap-
ter titled “VxFS disk layout” which contains
a very high-level documentation of the basic
format elements; second the inode_vxfs (4)
[Inode] and fs_vxfs (4) [Fs] on HP-UX contain
a description of many fields of the VxFS su-
perblock and inode, but neither document de-
fines even one element of the VxFS structure
completely.

To get a suitable description despite this lack
of human readable-format description, reverse
engineering techniques had to be applied.
There are three major reverse engineering pro-
cedures in the context of software: disassem-
bly, use of symbolic debugging information,
and protocol snooping. For the development
of FreeVxFS, only the first two were used, as
protocol snooping of block storage devices re-

Ottawa Linux Symposium 2002 193

quires special and only rarely available hard-
ware (with hardware-emulators like Bochs this
is in the process of becoming easier).

4 Symbolic Debugging

Any modern C compiler has a mode to include
information about the source-level representa-
tion with a binary program to allow high-level
debugging with tools like GNU gdb.

VERITAS’ VxFS product does not contain any
program with such debug information, but it
contains C headers files to allow access to its
structures from custom programs.

Technically these files could be directly used
by a free implementation of VxFS to use its
definition similar to free programs using other
system headers on proprietary operating sys-
tems. The problem with this approach is that
it requires the compilation of the driver to hap-
pen only on systems with licensed installations
of VERITAS’ filesystem product, thus disal-
lowing a free operating system to be used as
development host.

So instead of directly using the header files,
the structural information is extracted from
the them using the aforementioned debugging
methods to create a set of new and entirely free
headers that define the VxFS on-disk format.
The program that pulls in the headers is very
simple, as it needs to have no functionality at
all—it exists only to allow debugging informa-
tion to be generated.

#include <sys/types.h>
#include <sys/time.h>

/* fix compilation with gcc */
#define uint8_t __junk

#include <sys/fs/vx_machdep.h>
#include <sys/fs/vx_gemini.h>

#include <sys/fs/vx_param.h>
#include <sys/fs/vx_layout.h>

main()
{
}

Once compiled with debugging options en-
abled (e.g.gcc -g), we have a binary suit-
able for attacking with a debugger such as gdb.
This process is time-consuming as the names
of the different record types have to be guessed
from the previously mentioned public docu-
mentation and often one of the custom types
embeds a number of other such types. In ad-
dition all scalar types are shown in form of
C language basic types by gdb and all type-
def information is lost. To allow a portable
format description that can also be used (e.g.
on computers with 64-bit wide longwords) all
occurrences of types that have different sizes
on different Linux ports must be replaced with
proper, explicitly sized types. The follow-
ing example gdb session shows the definition
of the on-disk inode used by VxFS (struct
vx_dinode):

(gdb) ptype struct vx_dinode
type = struct vx_dinode {

struct vx_icommon di_ic;
}
(gdb) ptype struct vx_icommon
type = struct vx_icommon {

long int ic_mode;
long int ic_nlink;
long int ic_uid;
long int ic_gid;
vxhyper_t ic_size;
struct timeval ic_atime;
struct timeval ic_mtime;
struct timeval ic_ctime;
char ic_aflags;
char ic_orgtype;
u_short ic_eopflags;
long int ic_eopdata;
union vx_ftarea ic_ftarea;
long int ic_blocks;
long int ic_gen;

Ottawa Linux Symposium 2002 194

vxhyper_t ic_vversion;
union vx_org ic_org;
long int ic_iattrino;

}
(gdb)

The symbolic debugging information was the
most useful resource during the FreeVxFS de-
velopment.

5 Disassembly

The author has examined most of the
UnixWare VxFS binary driver module with
various disassemblers.

The simplest form of disassembly can be pro-
duced by the programobjdump from the
GNU binutils package. Its output for trivial vn-
ode operations appears in Figure 1.

Commercially available disassemblers like
DataRescue’s IDA Pro (the windows version
runs under Linux/wine) offer additional fea-
tures such as the naming of data types or addi-
tional symbol resolving that should not be dis-
cussed further here.

Although this uncovered a number of inter-
esting facts like the exorbitant stack usage
in VERITAS’s driver, the disassembly of the
UnixWare VxFS driver did not uncover a no-
table amount of information useful for the
current publicly available read-only FreeVxFS
versions. On the other hand, the slowly pro-
gressing development of write support would
be impossible without the use of disassembly,
mostly because a number of bitmap operations
in the block/inode allocators is not documented
in any other way than the program itself.

6 Implementation

As already mentioned previously, FreeVxFS
targets the Linux kernel from version 2.4 up-

wards. There are various reasons for this
choice:

• Linux is the free operating system with
the biggest overall user count. The 2.4
kernel was the upcoming stable release
when the development was started.

• The Linux kernel allows runtime load-
ing of independently developed filesys-
tem modules. This allowed the early
FreeVxFS development to happen with-
out ties to the direct kernel development
and with very short turnaround times.

• All recent Linux kernels feature a rich set
of generic routines that can be used in
filesystem code. Starting with the 2.4 ker-
nel most of the data I/O path is handled by
such generic code, thus letting filesystem
developers concentrate on difficult aspects
of their particular filesystem implementa-
tion.

The early FreeVxFS development was done as
a project separate from the main Linux ker-
nel tree and supported different kernel versions
with the same codebase. Starting with the 2.4.6
prereleases it merged into the official Linux
kernel tree and is maintained as part of it.

Like most filesystem drivers, FreeVxFS de-
velopment was done incrementally in the
beginning—that means support for the dif-
ferent parts of the on-disk format was im-
plemented after the previous one was im-
plemented, component-tested, and considered
functional. A feature of the VxFS layout (actu-
ally only in the > v1 disk layout, but FreeVxFS
doesn’t support the historic VxFS v1 filesys-
tems anyway) made this traditional approach
impossible very early. The issue is that most
of the metadata describing a filesystem is not
directly stored in the superblock but in data

Ottawa Linux Symposium 2002 195

blocks pointed to by regular inodes—this in-
cludes the inode table itself! (This is found
by its containing extent to avoid endless recur-
sion.)

To get past this point, a huge amount of code
(almost half of the FreeVxFS implementation)
had to be implemented at once, without pre-
vious testing of individual components. Of
course this led to a number of very hard-to-
debug problems and accounted for more than
two-thirds of the development time.

7 Work in Progress and Future
Plans

During the last month the FreeVxFS driver in
the main kernel tree was steadily improved by
bugfixes reported and/or fixed by the users. In
addition support for different VxFS variants
(block size, superblock locations) was added to
support a broader range of target systems.

Ongoing major short-term development in-
cludes support for byte-swapping in the filesys-
tem driver, allowing access to filesystems that
were created on computers using a different
byteorder than the accessing system (a feature
VERITAS’ driver is still lacking!) and a proper
way to handle VxFS filesystems for HP-UX
that have various small differences in the lay-
out of important layout elements (e.g. the in-
ode).

The most important long-term development
project is to implement support for writing to
VxFS filesystems. This feature is already func-
tional in early stages, but fragments the filesys-
tems so badly that it is of no practical use.

References

[AdmGuide] VxFS System Administrator’s
GuideVERITAS Inc.

http://ou800doc.caldera.com
/ODM_FSadmin
/CONTENTS.html .

[Inode] inode (vxfs) - format of a VxFS inode
Hewlett-Packard Company.
http://devresource.hp.com
/STK/man/11.00
/inode_vxfs_4.html , (1997).

[Fs] fs (vxfs) - fs format of VxFS file system
volumeHewlett-Packard Company.
http://devresource.hp.com
/STK/man/11.00
/fs_vxfs_4.html , (1997).

Ottawa Linux Symposium 2002 196

Figure 1: Disassembly viaobjdump

0000000000075ba0 <vx_open>:
75ba0: 8b 54 24 04 mov 0x4(%esp,1),%edx
75ba4: 57 push %edi
75ba5: 33 ff xor %edi,%edi
75ba7: 56 push %esi
75ba8: 8b 02 mov (%edx),%eax
75baa: 8b 70 28 mov 0x28(%eax),%esi
75bad: 8b 40 24 mov 0x24(%eax),%eax
75bb0: 83 f8 01 cmp $0x1,%eax
75bb3: 75 57 jne 75c0c <vx_open+0x6c>
75bb5: 8b 86 a4 01 00 00 mov 0x1a4(%esi),%eax
75bbb: 25 00 f0 00 ff and $0xff00f000,%eax
75bc0: 3d 00 90 00 00 cmp $0x9000,%eax
75bc5: 74 3d je 75c04 <vx_open+0x64>
75bc7: 8b 44 24 10 mov 0x10(%esp,1),%eax
75bcb: a9 00 00 08 00 test $0x80000,%eax
75bd0: 75 2a jne 75bfc <vx_open+0x5c>
75bd2: 6a 01 push $0x1
75bd4: 56 push %esi
75bd5: e8 fc ff ff ff call 75bd6 <vx_open+0x36>
75bda: 83 c4 08 add $0x8,%esp
75bdd: 8b 46 5c mov 0x5c(%esi),%eax
75be0: 85 c0 test %eax,%eax
75be2: 75 0a jne 75bee <vx_open+0x4e>
75be4: 8b 46 58 mov 0x58(%esi),%eax
75be7: 3d ff ff ff 7f cmp $0x7fffffff,%eax
75bec: 76 05 jbe 75bf3 <vx_open+0x53>
75bee: bf 4f 00 00 00 mov $0x4f,%edi
75bf3: 56 push %esi
75bf4: e8 fc ff ff ff call 75bf5 <vx_open+0x55>
75bf9: 83 c4 04 add $0x4,%esp
75bfc: 8b c7 mov %edi,%eax
75bfe: 5e pop %esi
75bff: 5f pop %edi
75c00: c3 ret
75c01: 83 c7 00 add $0x0,%edi
75c04: bf 59 00 00 00 mov $0x59,%edi
75c09: eb f1 jmp 75bfc <vx_open+0x5c>
75c0b: 90 nop
75c0c: 5e pop %esi
75c0d: 5f pop %edi
75c0e: 33 c0 xor %eax,%eax
75c10: c3 ret
75c11: 83 c7 00 add $0x0,%edi
75c14: 81 ff 00 00 00 00 cmp $0x0,%edi
75c1a: 81 ff 00 00 00 00 cmp $0x0,%edi

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

