
Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Contents
Enabling Docking Station Support for the Linux Kernel 9

Kristen Carlson Accardi

Open Source Graphic Drivers—They Don’t Kill Kittens 19
David M. Airlie

kboot—A Boot Loader Based on Kexec 27
Werner Almesberger

Ideas on improving Linux infrastructure for performance on multi-core platforms 39
Maxim Alt

A Reliable and Portable Multimedia File System 57
J.-Y. Hwang, J.-K. Bae, A. Kirnasov, M.-S. Jang, & H.-Y. Kim

Utilizing IOMMUs for Virtualization in Linux and Xen 71
M. Ben-Yehuda, J. Mason, J. Xenidis, O. Krieger, L. Van Doorn, J. Nakajima,
A. Mallick, & E. Wahlig

Towards a Highly Adaptable Filesystem Framework for Linux 87
S. Bhattacharya & D. Da Silva

Multiple Instances of the Global Linux Namespaces 101
Eric W. Biederman

Fully Automated Testing of the Linux Kernel 113
M. Bligh & A.P. Whitcroft

Linux Laptop Battery Life 127
L. Brown, K.A. Karasyov, V.P. Lebedev, R.P. Stanley, & A.Y. Starikovskiy

The Frysk Execution Analysis Architecture 147
Andrew Cagney

Evaluating Linux Kernel Crash Dumping Mechanisms 153
Fernando Luis Vázquez Cao

Exploring High Bandwidth Filesystems on Large Systems 177
Dave Chinner & Jeremy Higdon

The Effects of Filesystem Fragmentation 193
Giel de Nijs, Ard Biesheuvel, Ad Denissen, Niek Lambert

The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux 209
M. Desnoyers & M.R. Dagenais

Linux as a Hypervisor 225
Jeff Dike

System Firmware Updates Utilizing Sofware Repositories 235
Matt Domsch & Michael Brown

The Need for Asynchronous, Zero-Copy Network I/O 247
Ulrich Drepper

Problem Solving With Systemtap 261
Frank Ch. Eigler

Perfmon2: a flexible performance monitoring interface for Linux 269
Stéphane Eranian

OCFS2: The Oracle Clustered File System, Version 2 289
Mark Fasheh

tgt: Framework for Storage Target Drivers 303
Tomonori Fujita & Mike Christie

More Linux for Less 313
Michael Hennerich & Robin Getz

Hrtimers and Beyond: Transforming the Linux Time Subsystems 333
Thomas Gleixner and Douglas Niehaus

Making Applications Mobile Under Linux 347
C. Le Goater, D. Lezcano, C. Calmels, D. Hansen, S.E. Hallyn, & H. Franke

The What, The Why and the Where To of Anti-Fragmentation 369
Mel Gorman and Andy Whitcroft

GIT—A Stupid Content Tracker 385
Junio C. Hamano

Reducing fsck time for ext2 file systems 395
V. Henson, Z. Brown, T. T’so, & A. van de Ven

Native POSIX Threads Library (NPTL) Support for uClibc. 409
Steven J. Hill

Playing BlueZ on the D-Bus 421
Marcel Holtmann

FS-Cache: A Network Filesystem Caching Facility 427
David Howells

Why Userspace Sucks—Or 101 Really Dumb Things Your App Shouldn’t Do 441
Dave Jones

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Enabling Docking Station Support for the Linux Kernel
Is Harder Than You Would Think

Kristen Carlson Accardi
Open Source Technology Center, Intel Corporation

kristen.c.accardi@intel.com

Abstract

Full docking station support has been a feature
long absent from the Linux kernel—for good
reason. From ACPI to PCI, full docking sta-
tion support required modifications to multiple
subsystems in the kernel, building on code that
was designed for server hot-plug features rather
than laptops with docking stations. This paper
will present an overview of the work we have
done to implement docking station support in
the kernel as well as a summary of the techni-
cal challenges faced along the way.

We will first define what it means to dock and
undock. Then, we will discuss a few varia-
tions of docking station implementations, both
from a hardware and firmware perspective. Fi-
nally, we will delve into the guts of the soft-
ware implementation in Linux—and show how
adding docking station support is really harder
than you would think.

1 Introduction and Motivation

It’s no secret that people have not been clam-
oring for docking station support. Most peo-
ple do not consider docking stations essential,
and indeed some feel they are completely un-
necessary. However, as laptops become thinner

and lighter, more vendors are seeking to replace
functionality that used to be built into the lap-
top with a docking station. Commonly, docking
stations will provide additional USB ports, PCI
slots, and sometimes extra features like built in
media card readers or Ethernet ports. Most ven-
dors seem to be marketing them as space saving
devices, and as an improved user experience for
mobile users who do not wish to manage a lot
of peripheral devices.

We embarked on the docking station project for
a few reasons. Firstly, we knew there were a
few members of the Linux community out there
who actually did use docking stations. These
people would hopefully post to the hotplug PCI
mailing lists every once in a while, wondering
if some round of I/O Hotplug patches would en-
able hot docking to work. Secondly, there was
a need to be able to implement a couple sce-
narios that dock stations provide a convenient
test case for. Many dock stations are actually
Peer-to-peer bridges with a set of buses and de-
vices located behind the bridge. Hot add with
devices with P2P bridges on them had always
been hard for us to test correctly due to lack of
devices. Also, the ACPI _EJD method is com-
monly used in AML code for docking stations,
but this method can also be applied to any hot-
pluggable tree of devices. Finally, we felt that
with the expanding product offerings for dock
stations, filling this feature gap would eventu-

10 • Enabling Docking Station Support for the Linux Kernel

ally become important.

2 Docking Basics

There are three types of docking that are de-
fined.

• Cold Docking/Undocking Laptop is
booted attached to the dock station.
Laptop is powered off prior to removal
from the dock station. This has always
been supported by Linux. The devices on
the dock station are enumerated as if they
are part of the laptop.

• Warm Docking/Undocking Laptop is
booted either docked or undocked. Sys-
tem is placed into a suspend state, and then
either docked or undocked. This may be
supported by Linux, assuming that your
laptop actually suspends. It depends really
on whether a driver’s resume routine will
rescan for new devices or not.

• Hot Docking/Undocking Laptop is
booted outside the dock station. Laptop is
then inserted into the dock station while
completely powered and operating. This
has recently had limited support, but only
with a platform specific ACPI driver.
Hotplugging new devices on the dock
station has never been supported.

Docking is controlled by ACPI. ACPI defines
a dock as an object containing a method called
_DCK. An example dock device definition is
shown in Figure 1.

_DCK is what ACPI calls a "control method".
Not only does it tell the OS that this ACPI ob-
ject is a dock, it also is used to control the iso-
lation logic on the dock connector.

Device (DOCK1) {
Name(_ADR, . . .)
Method(_EJ0, 0) {. . . }
Method(_DCK, 1) {. . . }

}

Figure 1: Example DSDT that defines a Dock
Device

When the user places their system into the
docking station, the OS will be notified with an
interrupt, and the platform will send a Device
Check notify. The notify will be sent to a no-
tify handler and then that handler is responsible
for calling the _DCK control method with the
proper arguments to engage the dock connec-
tor.

_DCK as defined in the ACPI specification
is shown in Figure 2. Assuming that _DCK
returned successfully, the OS must now re-
enumerate all enumerable buses (PCI) and also
all the other devices that may not be on enumer-
able buses that are on the dock.

Undocking is just like docking, only in reverse.
When the user hits the release button on the
docking station, the OS is notified with an eject
request. The notify handler must first execute
_DCK(0) to release the docking connector, and
then should execute the _EJ0 method after re-
moving all the devices that are on the docking
station from the OS.

The _DCK method is not only responsible for
engaging the dock connector, it seems to also
be a convenient place for system manufacturers
to do device initialization. This is all imple-
mentation dependent. I have seen _DCK meth-
ods that do things such as programming a USB
host controller to detect the USB hub on the
dock station, issuing resets for PCI devices, and
even attempting to modify PCI config space to
assign new bus numbers1 to the dock bridge.

1Highly unacceptable behavior

2006 Linux Symposium, Volume One • 11

This control method is located in the device object that represents the docking station
(that is, the device object with all the _EJx control methods for the docking station). The
presence of _DCK indicates to the OS that the device is really a docking station.

_DCK also controls the isolation logic on the docking connector. This allows an OS
to prepare for docking before the bus is activated and devices appear on the bus [1].

Arguments:
Arg0

1 Dock (that is, remove isolation from connector)
0 Undock (isolate from connector)

Return Code:
1 if successful, 0 if failed.

Figure 2: _DCK method as defined in the ACPI Specification

The only way to know for sure what the _DCK
method does is to disassemble the DSDT.

3 Driver Design Considerations

There are platform specific drivers in the ACPI
tree. The ibm_acpi drier had previously
implemented a limited type of docking sta-
tion support that would only work on certain
ibm laptops. Essentially, this driver would
hard code the device name of the dock to find
the dock, and then would execute the _DCK
method without rescanning any of the buses or
inserting any of the non-enumerable devices. It
suffers from being platform specific, which is
not ideal. We wanted to make a generic solu-
tion that would work for most platforms.

We originally assumed that all dock stations
were the same: a dock bridge would be located
on the dock station, which was a P2P bridge,
and all devices would be located behind the P2P
bridge. The IBM ThinkPad Dock II is an ex-
ample of this type of implementation, shown
in Figure 4. The same driver (acpiphp) that
could hotplug any device that had a P2P bridge

Notebook Docking

PCI-PCI

Bridge

Secondary
PCI Bus

PCI Adapter

Card Slot

PCI Bus

USB USB 2.0 Hub

Controller

UltraBay
PCI

IDE Controller

PC Card

Controller

ICH

PC Card

Slot
PC Card

Slot

CRT, DVI, Serial, Parallel, Mouse, Keyboard, etc.

Figure 4: The IBM ThinkPad Dock II
c©2006, Noritoshi Yoshiyama, Lenovo Japan,

Ltd—Used by Permission

on it could be used to hotplug the dock station
devices, with the minor addition of needing to
execute the _DCK method prior to scanning for
new devices.

These were bad assumptions.

3.1 Variations in dock device definitions

The dock device definition for a few IBM
ThinkPads that I had available is shown in Fig-
ure 5. The physical device is a P2P bridge.

12 • Enabling Docking Station Support for the Linux Kernel

IBM_HANDLE(dock, root, "_SB.GDCK", /* X30, X31, X40 */
"_SB.PCI0.DOCK", /* 600e/x,770e,...,X20-21 */
"_SB.PCI0.PCI1.DOCK", /* all others */
"_SB.PCI.ISA.SLCE", /* 570 */

);

Figure 3: Defining a dock station in ibm_acpi.c

It appears to fit the ACPI definition of a stan-
dard PCI hotplug slot, in that it exists under the
scope of PCI0, it has an _ADR function, and it
is ejectable (has an _EJ0). It contains the _DCK
method, indication that it is a docking station as
well. This was our original view of the docking

T20,T30,T41, T42 look like this:
Device (PCI0)

Device (DOCK)
{

Name (_ADR, 0x00040000)
Method (_BDN, 0, NotSerialized)
Name (_PRT, Package (0x06)
Method (_STA, 0, NotSerialized)
Method (_DCK, 1, NotSerialized)
Method (_EJ0, . . .)

Figure 5: IBM T20, T30, T41, T42 DSDT

station.

Unfortunately for us, not all dock stations are
the same. Sometimes system manufactures cre-
ate a "virtual" device to represent the dock.
It simply calls methods under the "real" dock
bridge. In this case, the acpiphp driver will
not recognize the GDCK device as an ejectable
slot because it has no _ADR. In addition, it
will not recognize the "real" dock device as
an ejectable PCI slot because _EJ0 is not de-
fined under the scope of the Dock(), but in-
stead under the virtual device GDCK. An ex-
ample of this type of DSDT is shown in Fig-
ure 6. There are also dock stations that do not

Notebook Docking

PCI Express Adapter

Card Slot

PCI Express

USB USB 2.0 Hub

Controller

UltraBay

ICH

CRT, DVI, Ethernet , Modem , Mouse, Keyboard, etc.

LPC
Super I/O

Serial
Port

Parallel
Port

USB-IDE

Controller

USB Media

Controller

Media

Card Slot
Media

Card Slot

Figure 7: The Lenovo ThinkPad Advanced
Dock Station

c©2006, Noritoshi Yoshiyama, Lenovo Japan,
Ltd—Used by Permission

utilize a P2P bridge for PCI devices, such as
the Lenovo ThinkPad Advanced Dock Station,
shown in Figure 7. In addition, there are dock
stations that do not have any PCI devices on
them at all. This made using the ACPI PCI hot-
plug driver a bit nonsensical. However, the nor-
mal ACPI driver model also didn’t work, be-
cause ACPI drivers will only load if a device
exists. However, we decided to move the im-
plementation from the PCI hotplug driver into
ACPI, because there really was nowhere else to
put it.

In order to decouple the dock functionality
from the hotplug functionality, the dock driver
needs to allow other drivers to be notified upon
a dock event, and also to register individual hot-
plug notification routines. This way, the dock

2006 Linux Symposium, Volume One • 13

Scope (_SB)
Device(GDCK)

Method (_DCK, 1, NotSerialized)
{

Store (0x00, Local0)
If (LEqual (GGID (), 0x03))
{

Store (_SB.PCI0.LPC.EC.SDCK (Arg0), Local0)
}
If (LEqual (GGID (), 0x00))
{

Store (_SB.PCI0.PCI1.DOCK.DDCK (Arg0), Local0)
}
Return (Local0)

}
Method (_EJ0, 1, NotSerialized)

. . .
Device (PCI1)

Device (DOCK)
{

Name (_ADR, 0x00030000)
Name (_S3D, 0x02)
Name (_PRT, Package (0x06)

Figure 6: Alternative dock definition

driver can just handle the dock notifications
from ACPI, and individual subsystems/drivers
can handle how to hotplug new devices. In the
case of PCI, acpiphp can still handle the de-
vice insertion, but it will not be used if there are
no PCI devices on the dock station.

4 Driver Implementation Details

The driver is located in drivers/acpi/
dock.c. It makes a few external functions
available to drivers who are interested in dock
events.

4.1 External Functions

int is_dock_device(acpi_

handle handle)

This function will check to see if an ACPI
device referenced by handle is a dock
device. This means that the device either
is a dock station, or a device on the dock
station.

int register_dock_

notifier(struct notifier_

block *nb)

Sign up for dock notifications. If a
driver is interested in being notified when
a dock event occurs, it can send in a
notifier_block and be called right
after _DCK has been executed, but before
any devices have been hotplugged.

14 • Enabling Docking Station Support for the Linux Kernel

int unregister_dock_

notifier(struct notifier_

block *nb)

Remove a driver’s notifier_block.

acpi_status register_

hotplug_dock_device (acpi_

handle, acpi_notify_

handler, void *)

Pass an ACPI notify handler to the dock
driver, to be called when a dock event
has occurred. This allows drivers such as
acpiphp which need to re-enumerate
buses after a dock event to register their
own routine to handle this activity.

acpi_status unregister_

hotplug_dock_device(acpi_

handle handle)

Remove a notify handler from the dock
station’s hotplug list.

4.2 Driver Init

At init time, the dock driver walks the ACPI
namespace, looking for devices which have de-
fined a _DCK method.

/∗ look for a dock station ∗/
acpi_walk_namespace(

ACPI_TYPE_DEVICE,

ACPI_ROOT_OBJECT, ACPI_UINT32_MAX,

find_dock, &num, NULL);

If we find a dock station, then we create a pri-
vate data structure to hold a list of devices de-
pendent on the dock station, and also hotplug
notify blocks.

We can detect devices dependent on the dock
by walking the namespace looking for _EJD
methods. _EJD is another method defined by
ACPI, that is associated with devices that have
a dependency on other devices. From the spec:

This object is used to specify the
name of a device on which the device,
under which this object is declared,
is dependent. This object is primar-
ily used to support docking stations.
Before the device indicated by _EJD
is ejected, OSPM will prepare the de-
pendent device (in other words, the
device under which this object is de-
clared) for removal [1].

So, to translate, all devices that are behind a
dock bridge should have an _EJD method de-
fined in them that names the dock.

Drivers or subsystems can register for dock no-
tifications if they control a device dependent on
the dock station. Drivers use the is_dock_
device() function to determine if they are
a device on a dock station. This allows for
re-enumeration of the subsystem after a dock
event if it is necessary. In the case of PCI de-
vices, the acpiphp driver is modified to de-
tect not only ejectable PCI slots, but also PCI
dock bridges or hotpluggable PCI devices. If
it does find one of these devices, then it will
request that the dock driver notify acpiphp
whenever a dock event occurs. When a system
docks, the acpiphp driver will treat the event
like any other PCI hotplug event, and rescan the
appropriate bus to see if new devices have been
added.

4.3 Dock Events

At driver init time, the dock driver registers
an ACPI event handler with the ACPI subsys-
tem. When a dock event occurs, the dock
driver event handler will be called. A dock
is a ACPI_NOTIFY_BUS_CHECK event type.
First, the event handler will make sure that we
are not already in the middle of docking. This
check is needed, because I found on some dock

2006 Linux Symposium, Volume One • 15

stations/laptop combos that false dock events
were being generated by the system—probably
due to a faulty physical connection. We ignore
these false events. It is also necessary to ensure
that the dock station is actually present before
performing the _DCK operation. This is ac-
complished by the dock_present() func-
tion. dock_present() just executes the
ACPI _STA method. _STA will report whether
or not the device is present.

if (!dock_in_progress(ds) &&
dock_present(ds)) {

begin_dock() just sets some state bits to in-
dicate that we are now in the middle of handling
a dock event.

begin_dock(ds);

dock() will execute the _DCK method with the
proper arguments.

dock(ds);

We confirm that the device is still present and
functioning after the _DCK method.

if (!dock_present(ds)) {
printk(KERN_ERR PREFIX

"Unable to dock!\n");
break;

}

We notify all drivers who have registered with
the register_dock_notifier() func-
tion. This allows drivers to do anything that
they want prior to handling a hotplug notifi-
cation. This can be important if _DCK does
something that needs to be undone. For exam-
ple, on the IBM T41, the _DCK method will
clear the secondary bus number for the parent
of the dock bridge2. This makes it a bit hard
for acpiphp to scan buses looking for new de-
vices. acpiphp can register a function that is

2also highly unacceptable

called by the notifier_call_chain that
will clean up this mistake prior to calling the
hotplug notification function.

notifier_call_chain(
&dock_notifier_list, event,
NULL);

Drivers or subsystems that need to be notified
so that devices can be hotplugged can register
a hotplug notification function with the dock
driver by using the register_hotplug_
dock_device() function. hotplug_
devices() just walks the list of hotplug no-
tification routines and calls each one of them in
the order that it was received.

hotplug_devices(ds, event);

We clear the dock state bits to indicate that we
are finished docking.

complete_dock(ds);

Now we alert userspace that a dock event has
occurred. This event should be sent to the acpid
program. If a userspace program is ever written
or modified to care about dock events, they can
use acpid to get those events.

if (acpi_bus_get_device(
ds→handle, &device))

acpi_bus_generate_event(
device, event, 0);

Undocking is mostly just the reverse of dock-
ing. An undock is a ACPI_NOTIFY_EJECT_
REQUEST type. Once again, we must not be
in the middle of handling a dock event, and the
dock device must be present in order to handle
the eject request properly.

if (!dock_in_progress(ds) &&
dock_present(ds)) {

Because undocking may remove the acpi_
device structure that we need to send dock

16 • Enabling Docking Station Support for the Linux Kernel

events to userspace, we send our undock noti-
fication to the acpid prior to actually executing
_DCK.

if (acpi_bus_get_device(
ds→handle, &device))

acpi_bus_generate_event(
device, event, 0);

We also must call all the hotplug routines to
notify them of the eject request. This is im-
portant to do prior to executing _DCK, since
_DCK will release the physical connection and
may make it impossible for clean removal of
some devices. Finally, we can call undock(),
which simply executes the _DCK method with
the proper arguments.

hotplug_devices(ds, event);
undock(ds);

The ACPI spec requires that all dock stations
(i.e. objects which define _DCK) also define an
_EJ0 routine. This must be called after _DCK
in order to properly undock. What this routine
actually does is system dependent.

eject_dock(ds);

At this point, a call to _STA should indicate that
the dock device is not present.

if (dock_present(ds))
printk(KERN_ERR PREFIX

"Unable to undock!\n");

The design of the driver was intentionally kept
strictly to handling dock events. For this rea-
son, this is the only thing of interest that this
driver does.

5 Conclusions

Dock stations make excellent test cases for hot-
plug related kernel code. Attempting to hot-
plug a device which can be a PCI bridge with

a tree of devices under it exposed some inter-
esting problems that apply to other devices be-
sides dock stations. Right now we require the
use of the pci=assign-buses parameter, mainly
because the BIOS may not reserve enough bus
numbers for us to insert a new dock bridge and
other buses behind it. I found a couple prob-
lems with how bus numbers are assigned dur-
ing my work which required patches to the PCI
core. In many ways the problems that are faced
with implementing hot dock are directly appli-
cable to hotplugging on servers. Therefore, it is
valuable work to continue, even if only 3 peo-
ple in the world still use a docking station. We
do believe that docking station usage will rise
as system vendors create more compelling uses
for them.

Dock station hardware implementations can re-
ally vary. It’s very common to have a P2P
bridge located on the dock station, with a tree of
devices underneath it, however, it isn’t the only
implementation. Because of this, it’s important
to handle docking separately from any hotplug
activity, so that all the intelligence for hotplug
can be handled by the individual subsystems or
drivers rather than in one gigantic dock driver.
I have only implemented changes to allow one
driver to hotplug after a dock, but more drivers
or subsystems may be modified in the future.

I have very limited testing done at this point,
and every time a new person tries the dock
patches, the design must be modified to handle
yet another hardware implementation. As us-
age increases, I expect that the implementation
described in this paper will evolve to something
which hopefully allows more and more laptop
docking stations to "just work" with Linux.

References

[1] Advanced Configuration and Power

2006 Linux Symposium, Volume One • 17

Interface specification. www.acpi.info,
3.0a edition.

[2] PCI Hot Plug specification.
www.pcisig.com, 1.1 edition.

[3] PCI Local Bus specification.
www.pcisig.com, 3.0 edition.

[4] PCI-to-PCI Bridge specification.
www.pcisig.com, 1.2 edition.

[5] Jonathan Corbet, Alessandro Rubini, and
Greg Kroah-Hartman. Linux Device
Drivers. O’Reilly,
http://lwn.net/Kernel/LDD3/.

18 • Enabling Docking Station Support for the Linux Kernel

Open Source Graphic Drivers—They Don’t Kill Kittens

David M. Airlie
Open Source Contractor
airlied@linux.ie

Abstract

This paper is a light-hearted look at the state
of current support for Linux / X.org graphics
drivers and explains why closed source drivers
are in fact responsible for the death of a lot of
small cute animals.

The paper discusses how the current trend of
using closed-source graphics drivers is affect-
ing the Open Source community, e.g. users are
claiming that they are running an open source
operating system which then contains a 1 MB
binary kernel module and 10MB user space
module. . .

The paper finally look at the current state of
open source graphics drivers and vendors and
how they are interacting with the kernel and
X.org communities at this time (this changes a
lot). It discusses methods for producing open
source graphics drivers such as the r300 project
and the recently started NVIDIA reverse engi-
neering project.

1 Current Official Status

This section examines the current status (as
of March 2006) of the support from various
manufactures for Linux, X.org[4], and DRI[1]
projects. The three primary manufacturers, In-
tel, ATI, NVIDIA, are looked at in depth along
with a brief overview of other drivers.

1.1 Intel

Currently Intel contract Tungsten Graphics to
implement drivers for their integrated graph-
ics chipsets. TG directly contribute code to
the Linux kernel, X.org, and Mesa projects to
support Intel cards from the i810 to the i945G.
Intel have previously released complete regis-
ter and programmer’s reference guides for the
i810 chipset; however, from the i830 chipset
onwards, no information was given to external
entities with the exception of Tungsten.

As of March 2006, all known Intel chipsets are
supported by the i810 X.org driver.

1.1.1 2D

The Intel integrated chipsets vary in the num-
ber and type of connectable devices. The desk-
top chipsets commonly only have native sup-
port for CRTs, and external devices are required
to drive DVI or tv-out displays. These exter-
nal devices are connected to the chipset using
either the DVO (digital video output) on i8xx,
or sDVO (serial digital video output) on i9xx.
These external devices are controlled over an
i2c bus. The mobile chipsets allow for an in-
built LVDS controller and sometimes in-built
tv-out controller.

Due to the number of external devices avail-
able from a number of manufacturers (e.g. Sil-

20 • Open Source Graphic Drivers—They Don’t Kill Kittens

icon Image, Chrontel), writing a driver is a
lot of hard work without a lot of manufacturer
datasheets and hardware. The Intel BIOS sup-
ports a number of these devices.

For this reason the driver uses the Video BIOS
(VBE) to do mode setting on these chipsets.
This means that unless the BIOS has a mode
pre-configured in its tables, or a mode is hacked
in (using tools like i915resolution), the driver
cannot set it. This stops the driver being used
properly on systems where the BIOS isn’t con-
figured properly (widescreen laptops) or the
BIOS doesn’t like the mode from the monitor
(Dell 2005FPW via DVI).

1.1.2 3D

The Intel chipsets have varying hardware sup-
port for accelerating 3D operations. Intel “dis-
tinguish” themselves for other manufacturers
by not putting support for TNL in hardware,
preferring to have optimized drivers do that
stuff in software. The i9xx added support for
HW vertex shaders; however, fragment shad-
ing is still software-based. The 3D driver for
the Intel chipsets supports all the features of the
chipset with the exception of Zone Rendering,
a tile-based rendering approach. Implementing
zone rendering is a difficult task which changes
a lot of how Mesa works, and the returns are
not considered great enough yet.

However, in terms of open source support for
3D graphics, Intel provide by far the best sup-
port via Tungsten Graphics.

1.2 ATI

ATI, once a fine upstanding citizen of then open
source world (well they got paid for it), no
longer have any interest in our little adventures
and have joined the kitten killers. The ATI

cards can be broken up into 3 broad categories,
pre-r300, r3xx-r4xx, and r5xx.

1.2.1 pre-r300

Thanks to the Weather Channel wanting open-
source drivers for the Radeon R100 and R200
family of cards, and paying the money, ATI
made available cut-down register specifications
for these chipsets to the open-source developer
community via their Developer Relations web-
site. These specifications allowed Tungsten
Graphics to implement basically complete 3D
drivers for the r100 and r200 series of cards.
However, ATI didn’t provide any information
on programming any company-proprietary fea-
tures such as Hyper-Z or TruForm. ATI’s en-
gineering also provided some support over a
number of years for 2D on these cards, such as
initial render acceleration, and errata for many
chips.

1.2.2 r300–r4xx

The R300 marked the first chipset that ATI
weren’t willing to provide any 3D support for
their cards. A 2D register spec and develop-
ment kit was provided to a number of devel-
opers, and errata support was provided by ATI
engineering. However, no information on the
3D sections of this chipset were ever revealed
to the open source community. A number of
OEMs have been provided information on these
cards, but no rights to use it for open-source
work.

ATI’s fglrx closed-source driver appeared with
support for many of the 3D features on the
cards; it, however, has had certain stability
problems and later versions do not always run
on older cards.

2006 Linux Symposium, Volume One • 21

This range of cards also saw the introduction
of PCI Express cards. Support for these cards
came quite late, and a number of buggy fglrx
releases were required before it was stabilised.

1.2.3 r5xx

The R5xx is the latest ATI chipset. This chipset
has a completely redesigned mode setting, and
memory controller compared to the r4xx, the
3D engine is mostly similiar. Again no infor-
mation has been provided to the open-source
community. As of this writing no support be-
yond vesa is available for these chipsets. ATI
have not released an open-source 2D driver or a
version of fglrx that supports these chips, mak-
ing them totally useless for any Linux users.

1.2.4 fglrx

The ATI fglrx driver supports r200, r300, and
r400 cards, and is built using the DRI frame-
work. It installs its own libGL (the DRI one
used to be insufficent for their needs) and a
quite large kernel module. FGLRX OpenGL
support can sometimes be a bit useless, Doom3
for example crashes horribly on fglrx when it
came out first.

1.3 NVIDIA

Most people have thought that NVIDIA were
always evil and never provided any specs,
which isn’t true. Back in the days of the riva
chipsets, the Utah-GLX project implemented
3D support for the NVIDIA chipsets using
NVIDIA-provided documentation.

1.3.1 2D

NVIDIA have some belief in having a driver
for their chipsets shipped with X.org even if it
only supports basic 2D acceleration. This at
least allows users to get X up and running so
they can download the latest binary driver for
their cards, or at least use X on PPC and other
non-x86 architectures. The nv driver in X.org is
supported by NVIDIA employees and despite it
being written in obfuscated C}ˆHhex code, the
source is there to be tweaked. BeOS happens
to have a better open source NVIDIA driver
with dual-head support, which may be ported
to X.org at some point.

1.3.2 3D

When it comes to 3D, the NVIDIA 3D drivers
are considered the best “closed-source” drivers.
From an engineering point of view, the drivers
are well supported, and NVIDIA interact well
with the X.org community when it comes to
adding new features. The NVIDIA driver pro-
vides support for most modern NVIDIA cards;
however, they recently dumped support for a
lot of older cards into a legacy driver and are
discontinuing support in the primary driver.
NVIDIA drivers commonly support all features
of OpenGL quite well.

1.4 Others

1.4.1 VIA and SiS

Other manufactures of note are Matrox, VIA,
and SiS. VIA and SiS both suffer from a se-
rious lack of interaction with the open-source
community, most likely due to some cultural
differences between Taiwanese manufacturers
and open-source developers. Both companies

22 • Open Source Graphic Drivers—They Don’t Kill Kittens

occasionally code-drop drivers for hardware
with bad license files, no response to feed-
back, but with a nice shiny press release or
get in touch with open-source driver writers
with promises of support and NDA’d documen-
tation, but nothing ever comes of it. Neither
company has a consistent approach to open
source drivers. VIA chipsets have good support
for features thanks to people taking their code
drops and making proper X.org drivers from
them (unichrome and openchrome projects),
and SiS chipsets (via Thomas Winischofer)
have probably by far the best 2D driver avail-
able in terms of features, but their 3D drivers
are a bit hit-and-miss, and only certain chipsets
are supported at all.

1.4.2 Matrox

Matrox provide open source drivers for their
chipsets below G550; however, newer chipsets
use a closed-source driver.

2 Closed Source Drivers—Reasons

So a question the author is asked a lot is why he
believes closed source drivers are a bad thing.
I don’t consider them bad so much as pure
evil, in the kitten-killing, seal-clubbing sense.
Someone has to hold an extreme view on these
things, and in the graphics driver case that is
the author’s position. This sections explores
some of the reasons why open-source drivers
for graphics card seems to be going the oppo-
site direction to open-source drivers for every
other type of hardware.

This is all the author’s opinion and doesn’t try
to reflect truth in any way.

2.1 Reason—Microsoft

The conspiracy theorists among us (I’m not a
huge fan), find a way to blame Microsoft for ev-
ery problem in Linux. So to keep them happy,
I’ve noticed two things.

• Microsoft decided to use a vendor’s chip
in the XBOX series→ no specs anymore.

• Chipset vendors puts DirectX 8.0 support
into a chip→ no specs anymore.

Hope this keeps that section happy.

2.2 Reason—???

Patents and fear of competitors or patent
scumsucking companies bringing infringement
against the latest chipset release and delaying
it, is probably a valid fear amongst chip manu-
facturers. They claim releasing chipset docs to
the public may make it easier for these things to
be found; however, most X.org developers have
no problem signing suitable NDAs with manu-
facturers to access specs. Open source drivers
may show a company’s hand to a greater de-
gree. This is probably the most valid fear and
it is getting more valid due to the great U.S.
patent system.

2.3 Reason—Profit

Graphics card manufacturing is a very compet-
itive industry, especially in the high-end gam-
ing, 3–6 month development cycle, grind-out-
as-many-different-cards-as-you-can world that
ATI and NVIDIA inhabit. I can’t see how open
sourcing drivers would slow down these cy-
cles or get in the way—apart from the fact that
the dirty tricks to detect and speed up quake 3

2006 Linux Symposium, Volume One • 23

might be spotted easier (everyone spots them in
the closed source drivers anyways). It doesn’t
quite explain Matrox and those guys who don’t
really engage in the gamer market to any great
degree. It also doesn’t really explain fglrx
which are some of the most unsuitable drivers
for gaming on Linux.

Also things like SLI and Crossfire bring to
question some of the profit motivation; the
number of SLI and Crossfire users are certainly
less than the number of Linux users.

3 Closed Source Drivers—Killing
Kittens

3.1 Fluffy—Open Source OS

Linux is an open source OS. Linux has become
a highly stable OS due to its open source nature.
The ability for anyone to be able to fix a bug in
any place in the OS, within reason, is very use-
ful for implementing Linux in a lot of server
and embedded environments. Things like Win-
dows CE work for embedded systems as long
as you do what MS wanted you to do; Linux
works in these systems because you don’t have
to follow the plan of another company: you
are free to do your own things. Closed source
drivers take this freedom away.

If you load a 1MB binary into your Linux ker-
nel or X.org, you are NO LONGER RUN-
NING AN OPEN SOURCE OS. Lots of users
don’t realise this, they tell their friends all about
open source, but use NVIDIA drivers.

3.2 Mopsy—Leeching

So on to why the drivers are a bad thing. Linux
developers have developed a highly stable OS

and provide the source to it, X.org is finally get-
ting together a window system with some mod-
ern features in it and are providing the source
to it. These developers are also providing the
ideas and infrastructure for these things openly.
Closed source vendors are just not contribut-
ing to the pool of knowledge and features in
any decent ways. Open source developers are
currently implementing acceleration architec-
tures and memory management systems that
the closed source drivers have had for a few
years. These areas aren’t exactly the family
jewels, surely some code might have been con-
tributed or some ideas on how things might be
done.

3.3 Kitty—niche systems

There are a lot of niche systems out there, in-
stallations in the thousands that normally don’t
interest the likes of NVIDIA or ATI. The au-
thor implements embedded graphics systems,
and originally use ATI M7s but now uses In-
tel chipsets where possible. These sales, while
not significant to ATI or NVIDIA on an individ-
ual basis, add up to a lot more than the SLI or
CrossFire sales ever will. However these niche
systems usually require open source drivers in
order to do something different. For example,
the author’s systems require a single 3D appli-
cation but not an X server. Implementing this
is possible using open source drivers; however,
doing so with closed source driver is not pos-
sible. Also, for non-x86 systems such as PPC
or Sparc, where these chips are also used, get-
ting a functional driver under Linux just isn’t
possible.

3.4 Spot—out-dated systems

Once a closed vendor has sold enough of a card,
it’s time to move on and force people somehow

24 • Open Source Graphic Drivers—They Don’t Kill Kittens

to buy later cards. Supporting older cards is
no longer a priority or profitable. This allows
them to stop support for these cards at a cer-
tain level and not provide any new features on
those cards even if it possible. Looking at the
features added to the open-source radeon driver
since its inception shows that continuing devel-
opment on these cards is possible in the open
source community. NVIDIA recently relegated
all cards before a certain date to their legacy
drivers. Eventually these drivers will probably
stop being updated, meaning running a newer
version of Linux on those systems will become
impossible.

4 Open Source Drivers—Future

This section discusses the future plans of open
source graphic driver development. This paper
was written in March 2006, and a lot may have
happened between now and the publishing date
in July.1 The presentation at the conference will
hopefully have all-new information.

4.1 Intel

Going forwards, Intel appear to be in the best
positions. Recent hirings show their support
for open source graphics, and Tungsten Graph-
ics have added a number of features to their
drivers and are currently implementing an open
source video memory manager initially on the
Intel chipsets. Once the mode-setting issues are
cleared up, the drivers will be the best example
out there.

The author has done some work to implement
BIOS-less mode setting on these cards for cer-
tain embedded systems, and hopes that work

1[Well, besides an awful lot of formatting, copyedit-
ing, and such—OLS Formatting Team.]

can be taken forward to cover all cards and in-
tegrated into the open source X.org driver and
become supported by Intel/TG.

4.2 ATI

4.2.1 R3xx + R4xx 3D support

The R300 project is an effort to provide an
open-source 3D driver for the r300 and greater
by reverse engineering methods. The project
has used the fglrx and Windows drivers to re-
verse engineer the register writes used by the
r3xx cards. The method used involved running
a simple OpenGL application and changing one
thing at a time to see what registers were writ-
ten by the driver. There are still a few prob-
lems with this approach in terms of stability, as
certain card setup sequences for certain cards
are not yet known (radeon 9800s fall over a
lot). These sequences are not that easy to dis-
cover; however, tracing the fglrx startup using
valgrind might help a lot.

While this project has been highly successful
in terms of implementing the feature set of the
cards, the lack of documentation and/or engi-
neering support hamper any attempts to make
this a completely stable system.

4.2.2 R5xx 2D support

A 2D driver for the R5xx series of cards from
the author may appear; however, the author
would like to engage ATI so as to avoid getting
sued into the ground, due to a lot of information
being available under NDA via an OEM. Most
of the driver has, however, been reverse engi-
neered by tracing the outputs from the video
bios when asked to set a mode, using a mod-
ified x86 emulator.

2006 Linux Symposium, Volume One • 25

4.3 NVIDIA

Recently an X.org DRI developer (Stephane
Marcheu) announced the renoveau project [3],
an attempt to build open-source 3D drivers for
NVIDIA cards. This project will use the same
methods as the r300 project to attempt to get at
first a basic 3D driver for the NVIDIA cards.

5 Reverse Engineering Methodolo-
gies

This section just looks at some of the com-
monly used reverse engineering methodologies
in developer graphics drivers.

5.1 2D Modesetting

Most cards come with a video BIOS that can set
modes. Using a tool like LRMI[2], the Linux
Real Mode Interface, the BIOS can be run in-
side an emulator. When the BIOS uses an inl
or outl instruction to write to the card, LRMI
must actually do this for it, so these calls can
be trapped and used to figure out the sequence
of register writes necessary to set a particular
mode on a particular chipset. Multiple runs can
be used to track exactly where the mode infor-
mation is emitted.

This method has been used by the author
in writing mode-setting code for Intel i915
chipsets, for intelfb and X.org, and also for
looking at the R520 mode setting.

Another method, if a driver exists for a card
under Linux already: a number of developers
have discussed using an mmap trick, whereby
a framework is built which loads the driver,
and fakes the mmap for the card registers.

The framework then catches all the segmenta-
tion faults and logs them while passing them
through. This has been used by Ben Herren-
schmidt for radeonfb suspend/resume support
on Apple drivers. An enhancement to this by
the author (who was too lazy to write an mmap
framework for x86) uses a valgrind plugin to
track the mmap and read/writes to an mmaped
area. This solution isn’t perfect (it only allows
reading back writes after they happen), but it
has been sufficent for work on the i9xx reverse
engineering.

5.2 3D

Most 3D cards have some form of two-
section drivers, a kernel-space manager and a
userspace 3D driver linked into the applica-
tion via libGL. The kernel-space code normally
queues up command buffers from the userspace
driver. The userspace driver normally mmaps
the command queues into its address space. An
application linked with libGL can do some sim-
ple 3D operations and then watch the command
buffers as the app fills them. Tweaking what
the highlevel application does allows different
command buffers to be compared and a map of
card registers vs. features can be built up. The
r300 project has been very successful with this
approach.

The r300 project also have a tool that runs un-
der Windows, that constantly scans the shared
buffers used by the windows drivers, and
dumps them whenever they change in order to
do similiar work.

6 Conclusion

This paper has looked at the current situa-
tion with graphics driver support for Linux and

26 • Open Source Graphic Drivers—They Don’t Kill Kittens

X.org from card manufacturers. It looks at why
closed source drivers are considered evil and
looks at what the open source community is do-
ing to try and provide drivers for open source
cards. Just remember, save those kittens.

References

[1] DRI Project.
http://dri.freedesktop.org.

[2] Linux Real Mode Interface.
http://lrmi.sf.net.

[3] The Renoveau Project.
http://renoveau.sf.net/.

[4] The X.org Project.
http://www.x.org/.

kboot—A Boot Loader Based on Kexec

Werner Almesberger
werner@almesberger.net

Abstract

Compared to the “consoles” found on tradi-
tional Unix workstations and mini-computers,
the Linux boot process is feature-poor, and the
addition of new functionality to boot loaders of-
ten results in massive code duplication. With
the availability of kexec, this situation can be
improved.

kboot is a proof-of-concept implementation of
a Linux boot loader based on kexec. kboot uses
a boot loader like LILO or GRUB to load a reg-
ular Linux kernel as its first stage. Then, the full
capabilities of the kernel can be used to locate
and to access the kernel to be booted, perform
limited diagnostics and repair, etc.

1 Oh no, not another boot loader !

There is already no shortage of boot loaders for
Linux, so why have another one ? The moti-
vation for making kboot is simply that the boot
process of Linux is still not as good as it could
be, and that recent technological advances have
made it comparably easy to do better.

Looking at traditional Unix servers and work-
stations, one often finds very powerful boot en-
vironments, offering a broad choice of possible
sources for the kernel and other system files to
load. It is also quite common to find various

tools for hardware diagnosis and system soft-
ware repair. On Linux, many boot loaders are
much more limited than this.

Even boot loaders that provide several of these
advanced features, like GRUB, suffer from the
problem that they need to replicate functional-
ity or at least include code found elsewhere,
which creates an ever increasing maintenance
burden. Similarly, any drivers or protocols the
boot loader incorporates, will have to be main-
tained in the context of that boot loader, in par-
allel with the original source.

New boot loader functionality is not only re-
quired because administrators demand more
powerful tools, but also because technologi-
cal progress leads to more and more complex
mechanisms for accessing storage and other de-
vices, which a boot loader eventually should be
able to support.

It is easy to see that a regular Linux system hap-
pens to support a superset of all the functional-
ity described above.

With the addition of the kexec system call to
the 2.6.13 mainline Linux kernel, we now have
an instrument that allows us to build boot load-
ers with a fully featured Linux system, tailored
according to the needs of the boot process and
the resources available for it.

Kboot is a proof-of-concept implementation of
such a boot loader. It demonstrates that new
functionality can be merged from the vast code

28 • kboot—A Boot Loader Based on Kexec

base available for Linux with great ease, and
without incurring any significant maintenance
overhead. This way, it can also serve as a plat-
form for the development of new boot concepts.

The project’s home page is at http://
kboot.sourceforge.net/

The remainder of this section gives a high-level
view of the role of a boot loader in general,
and what kboot aims to accomplish. Additional
technical details about the boot process, includ-
ing tasks performed by the Linux kernel when
bringing up user space, can be found in [1].

Section 2 briefly describes Eric Biederman’s
kexec [2], which plays a key role in the op-
eration of kboot. Section 3 introduces kboot
proper, explains its structure, and discusses its
application. Section 4 gives an outlook on fu-
ture work, and we conclude with section 5.

1.1 What a boot loader does

After being loaded by the system’s firmware, a
boot loader spends a few moments making it-
self comfortable on the system. This includes
loading additional parts, moving itself to other
memory regions, and establishing access to de-
vices.

After that, it typically tries to interact with
the user. This interaction can range from
checking whether the user is trying to get the
boot loader’s attention by pressing some key,
through a command line or a simple full-screen
menu, to a lavish graphical user interface.

Whatever the interface may be, in the end its
main purpose is to allow the user to select, per-
haps along with some other options, which op-
erating system or kernel will be booted. Once
this choice is made, the boot loader proceeds to
load the corresponding data into memory, does
some additional setup, e.g., to pass parameters

to the operating system it is booting, and trans-
fers control to the entry point of the code it has
loaded.

In the case of Linux, two items deserve special
mention: the boot parameter line and the initial
RAM disk.

The boot parameter line was at its inception in-
tended primarily as a means for passing a “boot
into single user mode” flag to the kernel, but
this got a little out of hand, and it is nowadays
often used to pass dozens if not hundreds of
bytes of essential configuration data to the ker-
nel, such as the location of the root file system,
instructions for how certain drivers should ini-
tialize themselves (e.g., whether it is safe for
the IDE driver to try to use DMA or not), and
the selection and tuning of items included in a
generic kernel (e.g., disabling ACPI support).

Since a kernel would often not even boot with-
out the correct set of boot parameters, a boot
loader must store them in its configuration, and
pass them to the kernel without requiring user
action. At the same time, users should of course
be able to manually set and override such pa-
rameters.

The initial RAM disk (initrd), which at the time
of writing is gradually being replaced by the
initial RAM file system (initramfs), provides an
early user space, which is put into memory by
the boot loader, and is thus available even be-
fore the kernel is fully capable to interact with
its surroundings. This early user space is used
for extended setup operations, such as the load-
ing of driver modules.

Given that the use of initrd is an integral part of
many Linux distributions, any general-purpose
Linux boot loader must support this functional-
ity.

2006 Linux Symposium, Volume One • 29

Boot

process

Hard− and firmware

New device drivers
New protocols

Combination of services
New file systems Convenience

Compatible "look and feel"

Administration User experience

Figure 1: The boot process exists in a world full of changes and faces requirements from many
directions. All this leads to the need to continuously grow in functionality.

1.2 What a boot loader should be like

A boot loader has much in common with the
operating system it is loading: it shares the
same hardware, exists in the same administra-
tive context, and is seen by the same users.
From all these directions originate require-
ments on the boot process, as illustrated in fig-
ure 1.

The boot loader has to be able to access at least
the hardware that leads to the locations from
which data has to be loaded. This does not
only include physical resources, but also any
protocols that are used to communicate with
devices. Firmware sometimes provides a set
of functions to perform such accesses, but new
hardware or protocol extensions often require
support that goes beyond this. For example, al-
though many PCs have a Firewire port, BIOS
support for booting from storage attached via
Firewire is not common.

Above basic access mechanisms lies the do-
main of services the administrator can combine
more or less freely. This begins with file system

formats, and gets particularly interesting when
using networks. For example, there is noth-
ing inherently wrong in wanting to boot kernels
that happen to be stored in RPM files on an NFS
server, which is reached through an IPsec link.

The hardware and protocol environment of the
boot process extends beyond storage. For ex-
ample, keyboard or display devices for users
with disabilities may require special drivers.
With kboot, such devices can also be used to
interact with the boot loader.

Last but not least, whenever users have to per-
form non-trivial tasks with the boot loader, they
will prefer a context similar to what they are
used to from normal interaction with the sys-
tem. For instance, path names starting at the
root of a file system hierarchy tend to be easier
to remember than device-local names prefixed
with a disk and partition number.

In addition to all this, it is often desirable if
small repair work on an unbootable system can
be done from the boot loader, without having
to find or prepare a system recovery medium,
or similar.

30 • kboot—A Boot Loader Based on Kexec

kboot −f

Kernel memory
(before rebooting)

Kernel
code

Kernel memory
(while and after rebooting)

Kernel
code

Jump to kernel setup

Order pages

1 3

Copy file(s) through user space
into kernel memory

file

4

Run kexec reboot
code

2

Figure 2: Simplified boot sequence of kexec.

The bottom line is that a general-purpose boot
loader will always grow in functionality along
the lines of what the full operating system can
support.

1.3 The story so far

The two principal boot loaders for Linux on the
i386 platform, LILO and GRUB, illustrate this
trend nicely.

LILO was designed with the goal in mind of
being able to load kernels from any file system
the kernel may support. Other functionality has
been added over time, but growth has been lim-
ited by the author’s choice of implementing the
entire boot loader in assembler. 1

GRUB appeared several years later and was
written in C from the beginning, which helped

1LILO was written in 1992. At that time, 32-bit real
mode of the i386 processor was not generally known, and
the author therefore had to choose between programming
in the 16-bit mode in which the i386 starts, or implement-
ing a fully-featured 32-bit protected mode environment,
complete with real-mode callbacks to invoke BIOS func-
tions. After choosing the less intrusive of the two ap-
proaches, there was the problem that no suitable and rea-
sonably widely deployed free C compiler was available.
Hence the decision to write LILO in assembler.

it to absorb additional functionality more
quickly. For instance, GRUB can directly read
a large number of different file system formats,
without having to rely on external help, such as
the map file used by LILO. GRUB also offers
limited networking support.

Unfortunately, GRUB still requires that any
new functionality, be it drivers, file systems, file
formats, network protocols, or anything else, is
integrated into GRUB’s own environment. This
somewhat slows initial incorporation of new
features, and, worse yet, leads to an increas-
ing amount of code that has to be maintained in
parallel with its counterpart in regular Linux.

In an ideal boot loader, the difference between
the environment found on a regular Linux sys-
tem and that in the boot loader would be re-
duced to a point where integration of new fea-
tures, and their subsequent maintenance, is triv-
ial. Furthermore, reducing the barrier for work-
ing on the boot loader should also encourage
customization for specific environments, and
more experimental uses.

The author has proposed the use of the Linux
kernel as the main element of a boot loader
in [1]. Since then, several years have passed,
some of the technology has first changed, then

2006 Linux Symposium, Volume One • 31

matured, and with the integration of the key el-
ement required for all this into the mainstream
kernel, work on this new kind of boot loader
could start in earnest.

2 Booting kernels with kexec

One prediction in [1] came true almost immedi-
ately, namely that major changes to the bootimg
mechanism described there were quite prob-
able: when Eric Biederman released kexec,
it swiftly replaced bootimg, being technologi-
cally superior and also better maintained.

Unfortunately, adoption of kexec into the main-
stream kernel took much longer than anyone
expected, in part also because it underwent de-
sign changes to better support the very elegant
kdump crash dump mechanism [3], and it was
only with the 2.6.13 kernel that it was finally
accepted.

2.1 Operation

This is a brief overview of the fundamental as-
pects of how kexec operates. More details can
be found in [4], [5], and also [3].

As shown in figure 2, the user space tool
kexec first loads the code of the new kernel
plus any additional data, such as an initial RAM
disk, into user space memory, and then invokes
the kexec_load system call to copy it into
kernel memory (1). During the loading, the
user space tool can also add or omit data (e.g.,
setup code), and perform format conversions
(e.g., when reading from an ELF file).

After that, a reboot system call is made to
boot the new kernel (2). The reboot code tries
to shut down all devices, such that they are in a

defined and inactive state, from which they can
be instantly reactivated after the reboot.

Since data pages containing the new kernel
have been loaded to arbitrary physical locations
and could not occupy the same space as the
code of the old kernel before the reboot any-
way, they have to be moved to their final desti-
nation (3).

Finally, the reboot code jumps to the entry point
of the setup code of the new kernel. That kernel
then goes through its initialization, brings up
drivers, etc.

2.2 Debugging

The weak spot of kexec are the drivers: some
drivers may simply ignore the request to shut
down, others may be overzealous, and deac-
tivate the device in question completely, and
some may leave the device in a state from
which it cannot be brought back to life, be
this either because the state itself is incorrect
or irrecoverable, or because the driver simply
does not know how to resume from this specific
state.

Failure may also be only partial, e.g., VGA of-
ten ends up in a state where the text does not
scroll properly until the card is reset by loading
a font.

Many of these problems have not become vis-
ible yet, because those drivers have not been
subjected to this specific shutdown and reboot
sequence so far.

The developers of kexec and kdump have made
a great effort to make kexec work with a large
set of hardware, but given the sheer number of
drivers in the kernel and also in parallel trees,
there are doubtlessly many more problems still
awaiting discovery.

32 • kboot—A Boot Loader Based on Kexec

udev

dropbear

kexec

etc.

kboot utils

kboot shell

uClibc/glibc

Lean kernel

(sh, cat, mount, ...)
BusyBox

Figure 3: The software stack of the kboot envi-
ronment.

Since kboot is the first application of kexec
that should attract interest from more than a
relatively small group of developers, many of
the expected driver conflicts will surface in the
form of boot failures occurring under kboot, af-
ter which they can be corrected.

3 Putting it all together

Kboot bundles the components needed for a
boot loader, and provides the “glue” to hold
them together. For this, it needs very little
code: as of version 10, only roughly 3’500
lines, about half of this shell scripts. Already
LILO exceeds this by one order of magnitude,
and GRUB further doubles LILO’s figure.2

Of course, during its build process, kboot pulls
in various large packages, among them the
entire GCC tool chain, a C library, Busy-
Box, assorted other utilities, and the Linux
kernel itself. In this regard, kboot resembles
more a distribution like Gentoo, OpenEmbed-
ded, or Rock Linux, which consist mainly of

2These numbers were obtained by quite unscientifi-
cally running wc-l on a somewhat arbitrary set of the
files in the respective source trees.

Firmware

kboot

Boot loader

kexec

legacy OS
Reboot to

Main system
("booted environment")

initramfs
Kernel

Figure 4: The boot sequence when using kboot.

meta-information about packages maintained
by other parties.

3.1 The boot environment

Figure 3 shows the software packages that con-
stitute the kboot environment. Its basis is a
Linux kernel. This kernel only needs to support
the devices, file systems, and protocols that will
be used by kboot, and can therefore, if space
is an issue, be made considerably smaller than
a fully-featured production kernel for the same
machine.

In order to save space, kboot can use uClibc [6]
instead of the much larger glibc. Unfortunately,
properly supporting a library different from the
one on the host system requires building a dedi-
cated version of GCC. Since uClibc is sensitive
to the compiler version, kboot also builds a lo-
cal copy of GCC for the host. To be on the safe
side, it also builds binutils.

After this tour de force, kboot builds the appli-
cations for its user space, which include Busy-
Box [7], udev [8], the kexec tools [2], and

2006 Linux Symposium, Volume One • 33

dropbear [9]. BusyBox provides a great many
common programs, ranging from a Bourne
shell, through system tools like “mount,” to a
complete set of networking utilities, including
“wget” and a DHCP client. Udev is responsible
for the creation of device files in /dev. It is
a user space replacement for the kernel-based
devfs. The kexec tools provide the user space
interface to kexec.

Last but not least, dropbear, an SSH server and
client package, is included to demonstrate the
flexibility afforded by this design. This also of-
fers a simple remote access to the boot prompt,
without the need to set up a serial console for
just this purpose.

3.2 The boot sequence

The boot sequence, shown in figure 4, is as
follows: first, the firmware loads and starts
the first-stage boot loader. This would typi-
cally be a program like GRUB or LILO, but
it could also be something more specialized,
e.g., a loader for on-board Flash memory. This
boot loader then immediately proceeds to load
kboot’s Linux kernel and kboot’s initramfs.

The kernel goes through the usual initialization
and then starts the kboot shell, which updates
its configuration files (see section 3.5), may
bring up networking, and then interacts with the
user.

If the user chooses, either actively or through
a timeout, to start a Linux system, kboot then
uses kexec to load the kernel and maybe also
an initial RAM disk.

Although not yet implemented at the time of
writing, kboot will also be able to boot legacy
operating systems. The plan is to initially avoid
the quagmire of restoring the firmware envi-
ronment to the point that the system can be

booted from it, but to hand the boot request
back to the first stage boot loader (e.g., with
lilo-R or grub-set-default), and to
reboot through the firmware.

3.3 The boot shell

At the time of writing, the boot shell is fairly
simple. After initializing the boot environment,
it offers a command line with editing, com-
mand and file name completion, and a history
function for the current session.

The following types of items can be entered:

• Names of variables containing a com-
mand. These variables are usually defined
in the kboot configuration file, but can also
be set during a kboot session.3 The vari-
able is expanded, and the shell then pro-
cesses the command. This is a slight gen-
eralization of the label in LILO, or the
title in GRUB.

• The path to a file containing a bootable
kernel. Path names are generalized in
kboot, and also allow direct access to de-
vices and some network resources. They
are described in more detail in the next
section. When such a path name is en-
tered, kboot tries to boot the file through
kexec.

• The name of a block device containing the
boot sector of a legacy operating system,
or the path to the corresponding device
file.

• An internal command of the kboot shell.
It currently supports cd and pwd, with the
usual semantics.

3In the latter case, they are lost when the session ends.

34 • kboot—A Boot Loader Based on Kexec

Syntax Example Description
variable my_kernel Command stored in a variable
/path /boot/bzImage-2.6.13.2 Absolute path in booted environment
//path cat //etc/fstab Absolute path in kboot environment
path cd linux-2.6.14 Relative path in current environment
device hda7 Device containing a boot sector
/dev/device /dev/hda7 Device file of device with boot sector
device:/path hda1:/bzImage File or directory on a device
device:path hda1:bzImage (implicit /dev/)
/dev/device:/path /dev/sda6:/foo/bar File or directory on a device
/dev/device:path /dev/sda6:foo/bar (explicit /dev/)
host:/path server:/home/k/bzImage-a File or directory on an NFS server
http://host/path http://server/foo File on an HTTP server
ftp://host/path ftp://server/foo/bar File on an FTP server

Table 1: Types of path names recognized by kboot.

• A shell command. The kboot shell per-
forms path name substitution, and then
runs the command. If the command uses
an executable from the booted environ-
ment, it is run with chroot, since the shared
libraries available in the kboot environ-
ment may be incompatible with the expec-
tations of the executable.

With the exception of a few helper programs,
like the command line editor, the kboot shell is
currently implemented as a Bourne shell script.

3.4 Generalized path names

Kboot automatically mounts file systems of
the booted environment, on explicitly specified
block devices, and—if networking is enabled—
also from NFS servers. Furthermore, it can
copy and then boot files from HTTP and FTP
servers.

For all this, it uses a generalized path name
syntax that reflects the most common forms of
specifying the respective resources. E.g., for

NFS, the host:path syntax is used, for HTTP, it
is a URL, and paths on the booted environment
look just like normal Unix path names. Table 1
shows the various forms of path names.

Absolute paths in the kboot environment are an
exception: they begin with two slashes instead
of one.

We currently assume that there is one principal
booted system environment, which defines the
“normal” file system hierarchy on the machine
in question. Support for systems with multiple
booted environments is planned for future ver-
sions of kboot.

3.5 Configuration files

When kboot starts, it only has access to the con-
figuration files stored in its initramfs. These
were gathered at build time, either from the user
(who placed them in kboot’s config/ direc-
tory), or from the current configuration of the
build host.

This set of files includes kboot’s own config-
uration /etc/kboot.conf, /etc/fstab,

2006 Linux Symposium, Volume One • 35

/etc/fstab
/etc/hosts

kboot.conf
Build environment

kboot

kboot.conf
fstab
hosts

Mount /etcCopy latest
versions

Booted
environment

Figure 5: Some of the configuration files used
by kboot.

and /etc/hosts. The kboot build process
also adds a file /etc/kboot-features
containing settings needed for the initialization
of the kboot shell.

Kboot can now either use these files, or it can,
at the user’s discretion, try to mount the file
system containing the /etc directory of the
booted environment, and obtain more recent
copies of them.

The decision of whether kboot will use its own
copies, or attempt an update first, is made at
build time. It can be superseded at boot time by
passing the kernel parameter kboot=local.

3.6 When not to use kboot

While kboot it designed to be a flexible and ex-
tensible solution, there are areas where this type
of boot loader architecture does not fit.

If only very little persistent storage is available,
which is a common situation in small embed-
ded systems, or if large enough storage devices

would be available, but cannot be made an inte-
gral part of the boot process, e.g., removable or
unreliable media, only a boot loader optimized
for tiny size may be suitable.

Similarly, if boot time is critical, the time spent
loading and initializing an extra kernel may be
too much. The boot time of regular desktop or
server type machines already greatly exceeds
the minimum boot time of a kernel, which em-
bedded system developers aim to bring well be-
low one second [10], so loading another kernel
does not add too much overhead, particularly if
the streamlining proposed below is applied.

Finally, the large hidden code base of kboot
is unsuitable if high demands on system reli-
ability, at least until the point when the kernel
is loaded, require that the number of software
components be kept to a minimum.

3.7 Extending kboot

The most important aspect of kboot is not the
set of features it already offers, but that it makes
it easy to add new ones.

New device drivers, low-level protocols (e.g.,
USB), file systems, network protocols, etc., are
usually directly supported by the kernel, and
need no or only little additional support from
user space. So kboot can be brought up to date
with the state of the art by a simple kernel up-
grade.

Most of the basic system software runs out of
the box on virtually all platforms supported by
Linux, and particularly distributions for em-
bedded systems provide patches that help with
the occasional compatibility glitches. They
also maintain compact alternatives to packages
where size may be an issue.

Similarly, given that kboot basically provides a
regular Linux user space, the addition of new

36 • kboot—A Boot Loader Based on Kexec

ornaments and improvements to the user inter-
face, which is an area with a continuous de-
mand for development, should be easy.

When porting kboot to a new platform,
the foremost—and also technically most
demanding—issue is getting kexec to run.
Once this is accomplished, interaction with the
boot loader has to be adapted, if such inter-
action is needed. Finally, any administrative
tools that are specific to this platform need to
be added to the kboot environment.

4 Future work

At the time of writing, kboot is still a very
young program, and has only been tested by a
small number of people. As more user feed-
back arrives, new lines of development will
open. This section gives an overview of cur-
rently planned activities and improvements.

4.1 Reducing kernel delays

The Linux kernel spends a fair amount of time
looking for devices. In particular, IDE or SCSI
bus scans can try the patience of the user, also
because they repeat similar scans already done
by the firmware. The use of kboot now adds
another round of the same.

A straightforward mechanism that should help
to alleviate such delays would be to predict
their outcome, and to stop the scan as soon as
the list of discovered devices matches the pre-
diction. Such a prediction could be made by
kboot, based on information obtained from the
kernel it is running under, and be passed as a
boot parameter to be interpreted by the kernel
being booted.

Once this is in place, one could also envision
configuring such a prediction at the first stage

boot loader, and passing it directly to the first
kernel. This way, slow device scans that are
known to always yield the same result could be
completely avoided.

4.2 From shell to C

At the time of writing, the boot shell is a
Bourne shell script. While this makes it easy
to integrate other executables into the kboot
shell, execution speed may become an issue,
and also other language properties, such as the
difficulty of separating name spaces, and how
easily subtle quoting bugs may escape discov-
ery, are turning into serious problems.

Rewriting the kboot shell in C should yield
a program that is still compact, but easier to
maintain.

4.3 Using a real distribution

The extensibility of kboot can be further in-
creased by replacing its build process, which
is very similar to that of buildroot [11], with
the use of a modular distribution with a large
set of maintained packages. In particular Open-
Embedded [12] and Rock Linux [13] look very
promising.

The reasons for not reusing an existing build
process already from the beginning were
mainly that kboot needs tight control over the
configuration process (to reuse kernel configu-
ration, and to propagate information from there
to other components) and package versions (in
order to know what users will actually be build-
ing), the sometimes large set of prerequisites,
and also problems encountered during trials.

4.4 Modular configuration

Adding new functionality to the kboot environ-
ment usually requires an extension of the build

2006 Linux Symposium, Volume One • 37

process and changes to the kboot shell. For
common tasks, such as the addition of a new
type of path names, it would be desirable to be
able to just drop a small description file into the
build system, which would then interface with
the rest of kboot over a well-defined interface.

Regarding modules: at the time of writing,
kboot does not support loadable kernel mod-
ules.

5 Conclusions

Kboot shows that a versatile boot loader can be
built with relative little effort, if using a Linux
kernel supporting kexec and a set of programs
designed with the space constraints of embed-
ded systems in mind.

By making it considerably easier to synchro-
nize the boot process with regular Linux devel-
opment, this kind of boot loader architecture
should facilitate more timely support for new
functionality, and encourage developers to ex-
plore new ideas whose implementation would
have been considered too tedious or too arcane
in the past.

References

[1] Almesberger, Werner. Booting Linux:
The History and the Future, Proceedings
of the Ottawa Linux Symposium 2000,
July 2000.
http://www.almesberger.net/
cv/papers/ols2k-9.ps

[2] Biederman, Eric W. Kexec tools and
patches. http://www.xmission.
com/~ebiederm/files/kexec/

[3] Goyal, Vivek; Biederman, Eric W.;
Nellitheertha, Hariprasad. Kdump, A
Kexec-based Kernel Crash Dumping
Mechanism, Proceedings of the Ottawa
Linux Symposium 2005, vol. 1, pp.
169–180, July 2005. http://www.
linuxsymposium.org/2005/
linuxsymposium_procv1.pdf

[4] Pfiffer, Andy. Reducing System Reboot
Time with kexec, April 2003. http://
www.osdl.org/archive/andyp/
kexec/whitepaper/kexec.pdf

[5] Nellitheertha, Hariprasad. Reboot Linux
Faster using kexec, May 2004.
http://www-128.ibm.com/
developerworks/linux/
library/l-kexec.html

[6] Andersen, Erik. uClibc.
http://www.uclibc.org/

[7] Andersen, Erik. BUSYBOX.
http://busybox.net/

[8] Kroah-Hartman, Greg; et al. udev.
http://www.kernel.org/pub/
linux/utils/kernel/hotplug/
udev.html

[9] Johnston, Matt. Dropbear SSH server
and client. http://matt.ucc.asn.
au/dropbear/dropbear.html

[10] CE Linux Forum. BootupTimeResources,
CE Linux Public Wiki.
http://tree.celinuxforum.
org/pubwiki/moin.cgi/
BootupTimeResources

[11] Andersen, Erik. BUILDROOT. http:
//buildroot.uclibc.org/

[12] OpenEmbedded.
http://oe.handhelds.org/

[13] Rock Linux.
http://www.rocklinux.org/

38 • kboot—A Boot Loader Based on Kexec

Ideas on improving Linux infrastructure for
performance on multi-core platforms

Maxim Alt
Intel Corporation

maxim.alt@intel.com

Abstract

With maturing compiler technologies, compile-
time analysis can be a very powerful tool for
optimizing and monitoring code on any ar-
chitecture. In combination with modern run-
time analysis tools and existing program inter-
faces to monitor hardware counters, we will
survey modern techniques for analyzing per-
formance issues. We propose using perfor-
mance counter data and sequences of perfor-
mance events to trigger event handlers in ei-
ther the application or the operating system. In
this way, sequence of performance events can
be your debugging breakpoint or a callback.
This paper will try to bridge the capabilities of
advanced performance monitoring with com-
mon software development infrastructure (de-
buggers, gcc, loader, process scheduler). One
proposed approach is to extend the run-time en-
vironment with an interface layer that will filter
performance profiles, capture sequences of per-
formance hazards, and provide summary data
to the OS, debuggers, or application.

With the introduction of hyper-threading tech-
nology several years ago, there were obvious
challenges to look beyond a single running pro-
cess to monitor and schedule compute intensive
processes on multi-threaded cores. Multi-level
memory hierarchy and scaling on SMP systems
complicated the situation even further, causing

essential changes in kernel scheduler and per-
formance tools. In the era of parallel and plat-
form computing, we rely less on single exe-
cution process performance—with each com-
ponent optimized by the compiler—and it be-
comes important to evaluate performance of the
platform as a whole. The new concept of per-
formance adaptive schedulers is one example
of intelligently maximizing the performance on
platform level of CMP systems. Performance
data at higher granularity and a concept of pro-
cessor efficiency per functionality can be ap-
plied to making intelligent decisions on process
scheduling in the operating system.

Towards the end, we will suggest particular im-
provements in performance and run-time tools
as a reflection of proposed approaches and tran-
sition to platform-level optimization goals.

1 Introduction

This paper introduces a series of ideas for
bringing together existing disparate technolo-
gies to improve tools for the detection and ame-
lioration of performance hazards.

About 20 years ago, an exceptionally thin 16-
bit real-time iRMX operating system had an
extremely simple but important built-in fea-
ture: when debugging race conditions in shared

40 • Ideas on improving Linux infrastructure for performance on multi-core platforms

memory at any point of run-time execution, a
developer could bring the system to a halt, set
an internal OS breakpoint at an address and the
operating system would halt whenever a value
was being written at the specified address. No
high level debugger was needed to debug race
conditions, nor were they capable.

With the introduction of hyper-threading tech-
nology, many software vendors started to ex-
periment with running their multi-threaded
software on hyper-threaded processors. With
the increase the number of processors, those
vendors expected to get good scaling after elim-
ination of synchronization and scheduling is-
sues. These issues are quite difficult to track,
debug, or find with Gdb or VTune analyzer.

The problem of debugging synchronization is-
sues in multi-threaded applications is growing
more important and more complex with the ad-
vent of parallelizing compilers and language
support for multithreading, such as OpenMP.
The compiler has knowledge of program se-
mantics, but does not generally have run-time
information. The OS is in a position to make
decisions based on run-time information, but
it doesn’t have the semantic information that
was available to the compiler, since it sees
only the binary. Further, any run-time analysis
and decision-making affects application perfor-
mance, either directly by using CPU time, or
indirectly by effects such as cache pollution.

Spin locks are an example of the kind of
construct for which higher-level information
would be helpful. The compiler can easily de-
tect spin lock constructs using simple pattern-
recognition. From the run-time perspective a
spin lock is a loop that repeatedly reads a shared
memory address and compares it to a loop-
invariant a value. A spin-lock is a useful syn-
chronization mechanism if the stall is not long.
For long stalls, it wastes a lot of processor
time. Typically, after spinning for some num-
ber of cycles, the thread will yield to let other

threads make progress. If the OS could iden-
tify which threads were waiting for a lock and
which threads held the lock, it could adjust pri-
orities to maximize throughput automatically.

Another relevant example of how a scheduler
might use performance data is not based on de-
bugging. Consider two processes running con-
currently: two floating point intensive loops,
where only one of which has long memory
stalls. Should the scheduling of the processes
alter? For example, two floating point inten-
sive loops with unknown memory latency or
two loops of unknown execution property or
two blocks of code of unknown programming
construct?

This question was raised by my colleagues in
[1] about 3 years ago, where it was discussed
how beneficial it would be if the OS scheduler
had built-in micro-architectural intelligence.

Another issue with debugging the performance
of an application using spin locks is that it typi-
cally doesn’t provide much insight to know that
the spin-lock library code is hot. The appli-
cation programmer needs to know which lock
is being held. That information can be gath-
ered from the address of the lock, but often it
is more useful to have a stack trace gathered
at the time the lock is identified as hot. This
requires sampling the return stack in the per-
formance monitor handler, not just the current
instruction pointer.

A process or a code block (hot block or block of
interest) can be characterized by performance
and code profiles, where the code profile is rep-
resented by a hierarchy of basic programming
constructs, and the performance profile is rep-
resented by execution path along with registers
image captured at any given point in time. In
this paper we will describe a set of new profile-
guided static and dynamic approaches for effi-
cient run-time decisions: debugging, analyzing
and scheduling.

2006 Linux Symposium, Volume One • 41

Please refer to Appendix A for an overview of
existing technologies, tools and utilities.

2 Bridging the Technlogies

I would like to explore extending the scope of
sampling-analysis hybrid tools for example by
profiling with helper threads[10.5].

This section will provide a series of examples
on how to combine building block components
to get useful sample-analyze schemas, which
could potentially turn into standalone tools:

- A Pintool doing Pronto. Given the non-
existent ability of Pin to sample performance
counters in optimize/analyze mode, a hybrid
tool when Pronto is based on a Pintool would
allow dynamic implementation of collecting
performance data via pintool instrumentation.
If sampling is needed then a sampling driver
can be initiated and called from a pintool using
PAPI. The PAPI interface allows you to start,
stop, and read the performance counters (e.g.
calls to PAPI_start and PAPI_stop using Pin’s
instrumentation interface). PAPI does require a
kernel extension. This idea may also be imple-
mented through a static HP’s Caliper tool1

- A Pintool to seek for hotspots. Hotspot analy-
sis can be done by defining “what it means to be
a hotspot” by a pintool, or statically by parsing
sampling data with scripts.

- A Pintool which uses performance feedback
data. Theoretically, a Pintool could be built
which uses performance data which has been
collected (perhaps by some other tool) on previ-
ous runs. Intel has a file format for storing per-
formance monitor unit data (“.hpi” files) which

1http://h21007.www2.hp.com/dspp/
tech/tech_TechSoftwareDetailPage_IDX/
1,1703,1174,00.html (currently available for
Itanium microarchitecture only)

are used by the compiler. Pintool reads events
and performance counters dynamically as it ex-
ecutes a binary.

- A Pintool to recognize event patterns. Se-
quitur can be used for static or dynamic anal-
ysis (with a certain performance overhead) for
complex grammars or in the context of this pa-
per, event sequences.

2.1 Performance Overhead of Sample-
analyze Workflow

Pintools instrumentation can be intrusive and
the overhead is dependent upon the particular
tool used. The generated code under pintool
is the only code that executes, and the origi-
nal code is kept for reference. Because instru-
mentation can perturb the performance behav-
ior of the application, it is desirable to be able
to collect performance data during an uninstru-
mented run, and use that data during a later in-
strumentation or execution run.

In addition, Sequitur performance for generic
grammars containing many symbols may be
extremely heavy2.

2.2 Developers’ Pain

As one could imagine, the multi-threaded ap-
plication developers who are debugging and
running on multi-core architectures need profil-
ing tools (such as VTune analyzer or EMON) to
be aware of the stack frame and the execution

2Incorporation of the Sequitur algorithm into your in-
strumentation is an essential part of the techniques de-
scribed in this paper. Due to the significant performance
overhead, Sequitur is not used in generic form, and re-
quires tailoring for particular usage cases with simplified
grammar. It helps to find performance hazards and se-
quences of events of interest, or these, which character-
izes the application process.

42 • Ideas on improving Linux infrastructure for performance on multi-core platforms

context. The tools also need to take into ac-
count procedure inlining. It would also be use-
ful if the simple data derived out of these tools
could be used by the run-time environment to
adapt the environment for better throughput.

In this section we would consider code exam-
ples known to cause much pain when debug-
ging or scheduling. Then, we will suggest ways
to adjust the Linux infrastructure to leverage
and integrate existing tools mentioned above to
address these painful situations.

2.3 Profile-guided Debugging

A very common example is when you pro-
file a multi-threaded application with frequent
inter-process communications and interlock-
ing. Many enterprise applications (web servers,
data base servers, application servers, telecom-
munication applications, distributed content
providers, etc.) suffer from complex synchro-
nization issues when scaled. While optimizing
such application with standard profiling tools,
it is common to observe most of the cycles
being spent in synchronization objects them-
selves. For example, wait for an object, idle
loops, spin loops on shared memory.

Whether the implementation of synchroniza-
tion objects is proprietary or via POSIX threads
[15], a hot spot is noted as entering/leaving the
critical section or locking/unlocking the shared
object. Deeper analysis of such hotspots usu-
ally shows there is not much to optimize fur-
ther on a micro-architectural level unless one
is trying to optimize the performance of glibc.
The real question is how to find out what ob-
jects actually originated a problematic idle or
spin time in a millions-of-code-lines applica-
tion with hundreds of locks? To track and in-
strument locks is not an easy task; it is similar
to tracking memory allocations. Standard de-
bugger techniques are not effective in identify-
ing the underlying application issue.

Spinlock (mutex_t *m) {
Int I;
For (i=0; I < spin_count; i++)

if (pthread_mutex_trylock(m) != EBUSY) return;
pthread_mutex_lock(m); //or sometimes Sleep(M)

}

Figure 1: Spin lock

spin_start:
pause
Test [mem], val ; pre-read to save the

; atomic op penalty
J Skip_xchg
Lock cmpxchg [mem], val ; shows bus serial-

; ization stall

Skip_xchg:
jnz spin_start

Figure 2: Spin Lock Loop

A standard adaptive spin lock implementation
looks similar to Figure 1 where inner spin lock
loop translates to instructions shown in Fig-
ure 2.

Let’s analyze what characterizes this code. One
obvious implication of using atomic operations
(for entering/leaving critical section it is atomic
add/dec) is that such operations serialize the
memory bus, which yields significant stalls due
to pipeline flush and cache line invalidation for
[mem].

The code in Figure 2 would generate similar
performance event patterns on most architec-
tures. Following are the properties which char-
acterize the code block profile:

• Very short loop (2–5 instructions)

• Very short loop containing nop or
rep nop (pause)

• Contains instruction with Lock prefix
yielding bus serialization

• Contains either xchg or dec or add in-
struction

2006 Linux Symposium, Volume One • 43

The performance event profile for this block
has the following properties:

• Likely branch misprediction at the ‘loop’
statement

• Very high CPI (cycles per instruction), as
there is no parallelism possible

• Data bus utilization ratio (> 50%)

• Bus Not Ready ratio (> 0.01)

• Burst read contribution to data bus utiliza-
tion (> 50%)

• Processor/Bus Writeback contribution to
data bus utilization (> 50%)

• Parallelization ratio (< 1)

• Microops per instruction retired (> 2)

• Memory requests per instruction (> 0.1)

• Modified data sharing ratio (> 0.1)

• Context switches is high

We can define the grammar which consists of:
loop length, loops with nops, locks, adds, dec,
xchg; misprediction branches, high CPI, con-
text switches, high data bus utilization.

It is necessary to quantify each of the perfor-
mance counters’ values (also called knobs) so
we could establish a trigger for potential per-
formance hazard. From the properties of spin
lock block we can define a rule for a block
to become the hot block or the block of inter-
est. Then, similar to hot stream data prefetch
example in Appendix A, we will use Sequitur
to detect hot blocks containing event sequences
within the defined grammar as you can see be-
low in Figure 5

In order to simplify the problem for the spin
lock detection, we may limit ourselves to the

analysis of only code profile, as the entire per-
formance profile is a direct result of having an
instruction with a ‘lock’ prefix (e.g. a ‘lock’
prefix on any instruction results in data bus se-
rialization, yielding known set of performance
stalls). The ‘spin lock’ code properties can
be dynamically obtained at run-time by instru-
mentation. We can use the Pin command line
knob facility to define a block’s heat. For ex-
ample these knobs may be:

• Matched number of samples to trigger the
hazard

• Number of consecutive samples

• Minimum and maximum length for hot
block

• Minimum spins to consider it hot

• Maximum number of instructions to con-
sider loop short

This technique3 would allow us to insert a
breakpoint on an event of performance hazard -
the hot spin lock according to user’s definition
of a performance concern. The debugger would
be able to stop and display stack frame of the
context when the given sequence of events had
occurred.4

The described dynamic mechanism (one of the
suggested “sample-analyze” workflows) de-
tects a block of interest and breaks the execu-
tion on a performance issue.

3For the spin lock profile, running the sampling along
pintool instrumented executable is safe and correct, since
main characteristics of spin lock could not be disrupted
by instrumented code shown above

4Ideas for a standalone profiling tool - Assume we
have an ability to improve an open source (PAPI-based)
or proprietary (VTune analyzer) profiling tool. Instead
of Int 3 insertion we could insert a macro operation to
dump a stack frame and register contents by the sampling
driver. The existing symbol table would allow track-
ing source-level performance hazards defined by the pin-
tool’s knobs.

44 • Ideas on improving Linux infrastructure for performance on multi-core platforms

// Run in optimize mode only - no need for sampling mode run

for (each basic block)
for (each instruction in block) {
if (Instruction is branch) {
target = TargetAddress(ins);
if (trace_start < target && target < address(ins) &&

(target - address < short loop knob)) {
Insert IfCall (trace_count--);
Insert ThenCall (spin_count++);
New grammar (knobs);

}
}

if ((instruction in block has lock prefix) &&
(instruction is either xchg, cmpxhg, add, dec)) {
if (grammar->AddEvent(address(ins)) &&

(block_heat++ > hot block knob)) {
Insert Interrupt 3; // for debugging the application

}
}

}

Figure 3: Pintool’s trace instrumentation pseudocode

For the static profiling schema we will modify
this workflow as follows:

On run-time side, as follows:

- Pintool instrumentation inserting software-
generated interrupts would stay the same as in
dynamic case. Pintool would read the informa-
tion about hot spin locks from static profiling
results (PGO) or pronto repository

-Allow the debugger to read pronto repository
directly. This data would contain pairs, such as
(ip address, number of times the IP is reached -
signifying the heat of the block)

On compile-time side:

- A newly developed pintool that would be sim-
ilar in functionality to PGO and profrun util-
ity without sampling. However this pintool
would contain same detection algorithm by the

Sequitur as described in Figure 3, which de-
tects hot spin locks according to user defined
knob values marking the heat. In this man-
ner, pronto_tool is virtually replaced with the
Sequitur. Upon detection of a hot block, the
pintool spills the pair (ip, frequency) into the
pronto repository.

- Due to unique code properties, the current
implementation of PGO and profrun utility al-
ready contain the needed information about
spin lock block’s code profile. We still need
to build a script which would replace analysis
tool pronto_tool and is based on parsing profile
data with the Sequitur. This mechanism would
extract event patterns matching our definition
of the spin lock block’s heat. The detected pair
(ip address, number of times this IP has been
reached until block became hot) is inserted into
profiling info, and subsequently passed to the
debugger

2006 Linux Symposium, Volume One • 45

This would summarize another suggestion on
a new standalone run-time tool that reads in the
profile data and use it to find hot locks, and then
tells the debugger the IP of those blocks so it
can stop there.

With our attempt to characterize code by its
performance profile, one may ask how adequate
the mapping between an actual code block and
its performance profile is. Would a sequence
of events spanned by performance properties
symbolize a spin lock code, or in other words,
how uniquely do code block properties define
the code itself? For performance debugging or
adaptation the functionality of a hot block itself
is not important. Rather, what important is it’s
algorithm mapping on the micro-architecture
and the stalls caused by this mapping. There-
fore, it is sufficient to accurately describe a per-
formance hazard and signal when its properties
have occurred.

2.4 Performance Adaptive Run-time
Scheduler

Consider running a high performance multi-
threaded application. Many computation and
memory intensive applications (rendering, en-
coding, signal processing, etc.) suffer from
complex scheduling issues when scaling on
modern multi-threaded and multi-processor
architectures. Often, the developers opti-
mize these applications by parallelizing single
threaded computation to run multiple threads.
In order to make the application run well in par-
allel, the developers perform functional decom-
position.5

Then, the OS scheduler takes over the de-
cision on how to schedule these functionally

5Functional decomposition is the analysis of the ac-
tivity of a system as the product of a set of subordinate
functions performed by independent subsystems, each
with its own characteristic domain of application.

decomposed threads onto the available hard-
ware. Since the OS scheduler is not aware of
micro-architecture, functional decomposition,
or OpenMP, parallelization often leads to per-
formance degradation. In order to analyze this
phenomenon there were many researches on in-
formed multi-threaded schedulers [12], symbi-
otic job scheduling for SMP [13], [14], and
MASA [1]. In this paper we will take an ap-
proach of bridging existing profiling tools and
advanced compiler technologies to take a step
further in solving this problem.

As an example, consider open source LAME
mp3 encoder6. It is clear that the applica-
tion is both computation and memory intensive,
where computation is mostly floating point.
Functional decomposition of hotspot function
lame_ecnode_mp3_frame() is equivalent to a
functional decomposition of L3psycho_anal()
function. All decomposed threads at any point
in time could unfold into a situation when run-
ning processes utilize similar resources on the
same physical core (e.g. threads are: floating
point intensive, floating point intensive, heavy
integer computations, heavy integer computa-
tions, long memory latency operations, long
memory latency operations).

As in the previous section, running a thread’s
profile consists of performance and code prop-
erties. Below, we will analyze such properties
and the knobs defining the heat:

Following is the structure of properties for
floating point operations intensive code block:

- Estimated functional imbalance originated by
compiler’s scheduler

- Estimated CPI by the compiler’s scheduler

- Outer loop iteration count

6http://lame.sourceforge.net/
download/download.html

46 • Ideas on improving Linux infrastructure for performance on multi-core platforms

You can see similar characteristics in integer
intensive and memory intensive code blocks.
These code block properties ignore possible
coding style inhibitors and are agnostic to some
optimization techniques (such as code motion).
Nested loops and non-inlined calls within a
loop are being merged into single region at the
run-time, since the block of interest in this case
would be an outer block encapsulating multiple
iterations to the same instruction pointer.

Event profile to determine performance proper-
ties for floating point intensive block:

- Balanced execution and parallelism – actual
cycles per instruction ratio

- Microops per instruction retired for very long
latency instructions (FP)

- FP assist and saturation event per retired
FLOPs

- Retired FLOPs per relative number to instruc-
tion retired

- Conversion operations RTDC per relative
number to instruction retired

- SSE instruction retired per instruction retired

Event profile for memory intensive block:

- Data bus utilization ratio (> 30%)

- Bus Not Ready ratio (> 0.001)

- Burst read contribution to data bus utilization
(> 30%)

- Processor/Bus Writeback contribution to data
bus utilization (> 30%)

- Microops per instruction retired (> 2) for re-
peat instructions

- Memory requests per instruction (> 0.1)

- Modified data sharing ratio (> 0.1)

In order to write a pintool for this topic, it is
necessary to be able to deliver some compile-
time derived data to the run-time. In par-
ticular, some code block characteristics can
be easily determined by the compiler’s sched-
uler: For example, CPI and other parallelism
metrics, scheduled memory operations, sched-
uled floating point operations, etc. Com-
pilers can output such information via ob-
ject code annotations, optimizer reports, or
post-compilation scripts that can strip required
statistic on the generated assembly code. The
recent changes in GCC’s vectorizer and op-
timizer include Tree SSA7. It is possible to
get the compiler scheduler’s reports using
--ftree-vectorizer-verbose com-
piler option. The code block properties derived
from the compiler scheduler’s data only needed
on hot blocks. However, the compiler does not
know which block is hot unless PGO or Pronto
was used.

On the run-time side, Pin has a disassembly en-
gine built-in. A pintool would be able to eas-
ily determine functional unit imbalance in a hot
block if it isn’t available from the compiler. As-
suming that Pin has the ability to retrieve some
compiler scheduler data, there are a few ways to
create a pintool to determine whether running
code has properties of floating point or mem-
ory intensive hot blocks:

For the compile time:

- A “2-model” compilation can usually do both:
determine and process hot block properties.
Generated assembly, PGO and Pronto reposi-
tory can be concurrently processed with a script
to extract the instruction level parallelism (ILP)
information per hot block

7Static Single Assignment for Trees [18]: new
GCC 4.x optimizer: http://gcc.gnu.org/
projects/tree-ssa/\#intro

2006 Linux Symposium, Volume One • 47

- Extend the code’s debug-info into information
containing ILP of basic blocks during compila-
tion. It is an estimated value, not based on run-
time performance. The scheduler’s compile-
time data could be passed through an exe-
cutable itself as a triple (start block address, end
block address, parallelism data). Pintool has an
extensive set of APIs that accesses debug info.

For the run-time:

- Instrument the binary with a pintool that
traces loops with a large number of counts (a
potential knob). Then, count the number of
floating point, memory and integer operations
in a loop.

- PGO and Pronto may also contain ILP related
ratios, which are derived from basic sampling
during profiling run (with PAPI interface). Ex-
tending the Pronto repository to carry paral-
lelism info can improve the ability of pintool’s
instrumentation analysis.

Additional run-time instrumentation can be
based on the performance profile of the hot
computational intensive blocks by running
sampling along with instrumentation.8

This schema shows the feasibility of obtain-
ing a process property. However, possible
performance overhead of sampling and pro-
cessing (even if it is incorporated in one
instrumentation-sampling step) may be too
heavy to make run-time decisions for the OS
scheduler.

Now we will analyze the data collection pro-
cess for the performance profile-aware OS
scheduler. First, let’s exclude 2-step models as
inappropriate schemas for OS scheduling. As-
sume the OS cannot contain low overhead con-
tinuous sampling, then, a pintool instrumenta-

8The unique performance profile reflecting compute
intensive block properties would not be disrupted by in-
strumentation performance overhead

tion embedded into a running process cannot be
extensive but can be discrete.

We will also assume that estimated ILP infor-
mation and compiler scheduler’s data can be
retrieved via debug information for each basic
block9. Instrumentation can count frequency
and count of each basic block determining the
estimated heat of the block.

On the run-time side, we would require imple-
mentation of one of the following: limited sam-
pling, processing of Pronto repository, or de-
composing compiler scheduler decision for the
length of one basic block. We propose that con-
text switch time might be an appropriate place
to insert this lightweight process.

Pin instrumentation can be done on a basic
block granularity with Pin itself setting up in-
strumentation calls, which is greatly improves
performance.

Thus, we are considering three approaches for
dynamic performance adaptive scheduler:

1. Annotation, no instrumentation. A lim-
ited lightweight instrumentation is done only
on the level of basic blocks. This instrumenta-
tion would not be based on performance coun-
ters, clock cycles or actual ILP info. This is
assuming some basic compiler scheduling data
can be incorporated in to an executable using
mechanisms similar to debug symbols. This
would provide an estimated code block profile.
As soon as a code block gets to a specified heat
(user pre-defined knob on loop iteration count),
the pintool triggers an internal OS scheduling
event carrying the code profile signature.

2. Limited sampling. As noted earlier, limited
sampling may be possible at the OS scheduler’s

9The Pronto data is mapped using debug info in
DWARF2 format. Some compiler-based info such
as predicted ratios IPC or FPU/ALU/SIMD utilization
could be added to pronto repository data derived from
pre-characterized hot blocks

48 • Ideas on improving Linux infrastructure for performance on multi-core platforms

checkpoint, such as context switch. This could
refine information obtained from item 1 above
and give more accurate data on actual ILP. A
single sampling iteration over basic block could
detect performance profile hazards based on
counters which are specific to compute inten-
sive blocks shown above. A trial sampling run
would last only during the length of a single it-
eration of the loop, assuming a context switch
had occurred several times during execution of
a large loop count.

3. Instrumentation under “2-compile” model.
Assuming ILP information can be incorporated
into the binary, we would use PGO or Pronto
mechanisms to generate actual sampling ratios
within the profile feedback repository. After a
training run we collect the profile information
which includes each basic block’s frequency
and count, along with its ILP info. Assuming
this information is available in the binary, this
would indicate to the OS scheduler the perfor-
mance properties of the running process. This
workflow would be enabled by a simple pin-
tool instrumentation that is analyzing each ba-
sic block’s information.

From the workflow above, there is an ob-
vious conclusion that the loader/linker has
to have certain abilities to map and main-
tain new information passed within the gener-
ated binary. Investigating the glibc code on
potential changes for loader/linker in elf/dl-
open.c, dl-sym.c and dl-load.c, we noted a
possibility of creating a number of loading
threads that could load libraries in paral-
lel. With _dl_map_object_from_fd() each of
the threads would retrieve various informa-
tion carried in the executable by link-time
procedure of locating symbols. In this way
hashing mechanism for objects with large
amount of symbols can be parallelized in
dl_lookup_symbol_x(), calling the expensive
hashing algorithm do_lookup_x(). However,
conducting this experiment any further is out

of scope for this paper.

It is appropriate to comment on describing
possible workflow combinations of “sampling-
analysis” of the static algorithm for the OS per-
formance adaptive scheduler. Due to the nature
of the usage model, the static algorithm may be
suitable for feasibility study or prototyping an
approach, but least likely used in real life and
therefore is not mentioned in this paper in de-
tail.

Each of the workflows discussed require certain
capabilities to be developed:

1. Sampling drivers are closed source but can
be distributed. The open source interface for
TB5 format analysis should be implemented by
PAPI or VTune Analyzer/SEP.

Most of the performance events required for
determining the code’s performance profile are
public.

2. Compiler (GCC). The performance anal-
ysis tool with basic profile feedback and vec-
torizer reports mechanisms already exist. The
following enhancements would be needed:

- The vectorizer reports must include compiler
scheduling information on parallelism.

- Mechanisms to incorporate compiler reports
per basic block in to a binary need to be devel-
oped.

- A utility which collects sampling data for pro-
file feedback needs to be developed based on
the PAPI interface.

3. Pronto repository and profrun utility.
These utilities currently exist as a part of Intel
Compiler, but are closed source because they
use the VTune TB5 file format. The following
enhancements would be needed:

- PAPI interface for profrun utility and Pronto
repository

2006 Linux Symposium, Volume One • 49

- Pronto using pintool instrumentation

4. Pin. The following enhancements would be
needed:

- API extensions to retrieve compiler scheduler
info that are embedded into a binary

- Compiler scheduler decomposition API (an
APIs that retrieve compiler’s scheduler infor-
mation, especially related to ILP)

- API ability to read Pronto repository from
memory or a file

- A ‘timer’ pintool to help development activi-
ties to track performance (via gettime())

- New pintool instrumentation libraries to pro-
vide description of hazardous performance
event sequences based on common code and
performance profiles

- New Pin APIs that can perform independent
sampling via PAPI interface to hide architecture
dependences, “A Pintool doing Pronto”

- For each pintool instrumentation to specify
a set of performance counters that may be af-
fected by instrumentation itself.10

5. Loader/linker. The loader can be easily
instrumented with the Pin interface relying on
IMG_ API set. Following enhancements would
be needed:

- Properly dispatch additional compiler’s
scheduler information embedded into binary,
similarly to the debug info

- For faster linking, improve the OS loader’s
speed by creating loading threads

10These performance counters or ratios may not be
present on your architecture with specified name but on
modern architectures assumed to have similar ones

6. VTune analyzer. Following enhancements
would be filed to Intel VTune development
team:

- Ability to recognize and sample pintool in-
strumented code.

- Capability to receive a signal from instru-
mented code in order to display and translate
process context and stack frame.

7. Debugger (GDB):

- Compile-time feedback: Enable reading basic
block ILP information along with debug infor-
mation incorporated by the compiler’s sched-
uler

- Run-time feedback: Enable reading Pronto
repository with (frequency, count) information
of the BBL. It may eliminate the need for pin-
tool instrumentation for the debugger.

- Consider scripting language to describe event
sequence and pintool instrumentation algo-
rithms.

8. OS Scheduler:

- Need to have the ability to retrieve process
profile signature which characterizes perfor-
mance and code constructs derived from run-
ning executable.

In order to test the feasibility of the sug-
gested tools without changes in the kernel, we
can write emulation application with the user
mode simplified scheduler’s algorithm by set-
ting affinity with process’s profile data.

- Have the option of signaling to the pintool in-
strumentation process that a context switch is
about to occur and start a lightweight instru-
mentation mechanism with non-intrusive sam-
pling for one iteration of a basic block. Pintool
may communicate with the OS scheduler via
ioctl, considering the events are coming from a
driver.

50 • Ideas on improving Linux infrastructure for performance on multi-core platforms

3 Conclusion

In this paper we surveyed ideas spanning sev-
eral technologies and tools developed by a
vast community during past 10 years. We
tried to bridge recent accomplishments in
mainstream compiler technology, performance
counters, pattern recognition algorithms, ad-
vanced binary instrumentation tools, debugging
approaches and advanced dynamic optimiza-
tion techniques. Many of these technologies
were also inherited from previous researches
on databases optimizations and compression al-
gorithms. Demonstrated complex workflows
incorporating “sample-analyze” technologies
into enhanced run-time Linux infrastructure
make another step towards advanced dynamic
optimizations, debugging and process schedul-
ing. Quantifying the significance and useful-
ness of the proposed approaches is a subject of
a separate research and experiments.

Please refer to Appendix B for potential appli-
cations of the suggested ideas.

4 Acknowledgements

I would like to thank my colleagues and high-
light their involvement in supplying important
supporting materials, thoughts and comments:

Siddha Suresh, Venkatesh Pallipadi: Intel,
Open Source Technology Center

John Piper, Anton Chernoff, Shalom Gold-
enberg: Intel, Dynamic Optimization Labs;

Robert Cohn, Harish Patil: Intel

Raymond Paik: Intel, Channel Product Group

5 Appendix A. Technology Back-
ground and Current Situation

Most modern micro-processors have a PMU—
virtual or physical performance monitoring unit
that contains hundreds or even thousands of
performance counters and events. Modern
micro-architectural profiling technology is di-
vided into two distinct steps: sampling and
analysis. The sampling mechanism records in-
struction pointers (IP) with performance coun-
ters as in (IP, frequency, count) or (IP, value).
The analysis processes sampling data on the
maximum time spent in repeated blocks (hot
blocks), possibly including: disassembly, map-
ping to the source code, affiliating to a function,
a process or a thread;

As the building blocks of the proposed work-
flow, it is important to overview existing tools
and technology. Some of these tools are Open
Source, some are proprietary or have a closed
source engine with a BSD-style license for free
distribution.

Sampling tools:

Well-known profiling tools and programming
interfaces (such as VTune analyzer, EMON,
PAPI, Compiler’s profile guided optimization
(PGO) with sampling) are usually system-wide
and process agnostic. Sampling tools can be at-
tached to any running process, but do not have
access to full run-time environment and func-
tionality context: thread storage, register val-
ues, loop count, frequency and stack.

Another type of sampling tool does not have
the concept of time and is built upon executed
instructions along the execution path. Such
tools are not aware of stalls and clock cycles,
but can sample executed instruction properties
such as instruction count, instruction operands,
branches, addresses, functions, images, etc.

2006 Linux Symposium, Volume One • 51

Pin [8], [17] can be considered as a “JIT” (just-
in-time) compiler, with the originating binary
execution intercepted at a specified granularity.
This execution is almost identical to the origi-
nal. Pin contains examples of instrumentation
tools like basic block profilers, cache simula-
tors, instruction trace generators, etc. It is easy
to derive new Pin-based tools using the exam-
ples as a template.

Analysis tools:

Well known analysis tools are compilers and
debuggers. Beyond actual code generation and
instruction scheduling, the compiler has the
ability to report on optimizations, scheduler
heuristics and decisions, and predicted perfor-
mance counter ratios (please refer to [5]). The
compiler can determine code profile and esti-
mate performance profile of any code block,
specifying execution balance across CPU units.

Some sampling tools such as VTune and
EMON incorporate data analysis within them.

There are advanced parts of a compiler’s op-
timizer which can be standalone tools that are
able to parse sampling files and extract profile
data.

Before moving onto another class of tools,
there are also more sophisticated data analy-
sis tools which work in formal language envi-
ronments. As Sequitur originated from com-
pression algorithms, it is capable of defining
a sequence of events as a grammar and trace
event samples on correct expression composi-
tion from given sequences of samples. The Se-
quitur algorithm description can be found in
[9]. The implementation of sequitur has pub-
lic versions.

Hybrid tools:

The series of following tools are a hybrid be-
tween sampling and analysis. Most require a

complex build model with up to 3-compilation
model process, (see Figure 5).

Profile-guided optimization (PGO for Intel
Compilers or Profile feedback for GCC) is
a part of many modern compilers [3], [4].
Currently, the PGO mostly samples executed
branches, calls, frequency and loop counts with
following output of the data in an intermedi-
ate format to the disk. The PGO analysis is
also a part of compiler’s optimizer, which is in-
voked with second compilation. It assists the
compiler’s scheduler to make better decisions
by using actual run-time data instead of heuris-
tics targeting probable application behavior.

As an extension of the PGO mechanism, a
tool incorporating a trace of run-time specific
events and samples (for instance, actual mem-
ory latency, cache misses) has been developed.
This mechanism can be considered as a bun-
dled sampling tool of profrun utility with anal-
ysis tool pronto_tool [6], [16], which we will
refer to as Pronto. Rather then just being a natu-
ral extension of PGO capabilities these tools are
standalone and not incorporated into the com-
piler. Architecture-wise, profrun is built upon
proprietary sampling drivers spilling the data
on the disk, which is called Pronto repository.
Profrun is currently incorporated in the Intel
Compiler package using Intel sampling drivers,
but conceptually can be based on open source
PAPI interface, see [7] for PAPI documenta-
tion. The pronto_tool reads and analyzes the
Pronto repository for various data representa-
tion. A typical output is shown in Figure 4.

A hybrid tool Pintools, based on Pin, is a crit-
ical component of this paper’s focus. Pintools
incorporate into a single executable targeted in-
strumentation and analysis. This is an imple-
mentation powered by Pin API callbacks pro-
viding instrumentation for any running image
at any granularity. Pintools mechanism can
be considered a generic binary instrumentation
template to create your own hybrid of sampling

52 • Ideas on improving Linux infrastructure for performance on multi-core platforms

$ profrun -dcache mark
$ pronto_tool -d 10 pgopti.hpi

PRONTO: Profiling module "mark":
PRONTO: Reading samples from TB5 file ’pgopti.tb5’
PRONTO: Reading samples for module at path: ’mark’

Dumping PRONTO Repository

Sample source 0: pgopti.tb5 UID: TYPE = TB5SAMP (54423553 414d5000
80ac9d3c 8f39c501 0043363d 8f39c501 00000000 00000000)

Module: "mark"
Event: "DCache miss": 35 samples
#0 : 1 samples: [0x00001c70] mark.c:main(20:14)

total latency=17 maximum latency= 17
[0:7]=0 [8:15]=0 [16:31]=1 [32:99]=0 [100:inf]=0

#1 : 5757 samples: [0x00001701] mark.c:main(23:21)
total latency= 43132 maximum latency= 366
[0:7]=4070 [8:15]=1668 [16:31]=18 [32:99]=0 [100:inf]=1

#29 : 5786 samples: [0x00001700] mark.c:main(23:42)
total latency= 40047 maximum latency= 439
[0:7]=5294 [8:15]=433 [16:31]=55 [32:99]=0 [100:inf]=4

Figure 4: pronto_tool output

and analysis implementations. Current Pin in-
strumentation capabilities can extract only pro-
files that are not related to actual clock cycles.
For example, taken branches, loop iterations
counts, calls, memory references, etc.

Other examples of more sophisticated pintools-
based technologies are helper threads [10.2]
and hot stream data prefetch [2].

Helper thread technology, or software-based
speculative pre-computation (SSP) was orig-
inated from complex database architectures
and based on compiler-based pre-execution
[10.1] to generate a thread that would prefetch
long latency memory accesses in runtime.
This is the 3-compilation model static tech-
nique. Its implementation is currently done
in Intel Compilers [16] with Pronto mecha-
nisms (option used for the first compilation

sources
Early

lowering
Apply profile data SSP transform transform

SSP-optimized
object
code

instrumented
executable Instrumented execution .dpi files

Third compilation

instrument
ed

object sources
Early

lowering
transform transform transform

First compilation
Add

counters
to each

optimized
object codesources

Early
lowering transform transform transform

Second compilation

Apply profile data

optimized
executable

Monitored execution
Using “profrun”

.hpi files
Dcache miss events

Figure 5: Helper Threads (SSP) build diagram

--prof-gen-sampling, for the second
--prof-use --ssp, and for the third with
--ssp). The workflow diagram is shown in
Figure 5.

As a dynamic equivalent to this technique, the

2006 Linux Symposium, Volume One • 53

Program
 image

Instrumented execution
With profiling

Analyze instrumentation mode: Run-1, Sampling on

Hot data
stream

Access,
stride

Prefetch
insertion

Sequitur Grammar Analyze
Data reference

sequence

New optimized
 image

Run-2, Sampling Off

Optimize instrumentation mode: Run-3

Figure 6: Hot data stream prefetch injection al-
gorithm

mechanism described in [7] incorporates Pin-
tool for dynamic instrumentation of memory
read bursts in the sampling mode; the Sequitur
for fast dynamic analysis of memory access
sequences with long latencies; and matching
mechanism for sequences that would benefit by
prefetching (called hot data streams detection
phase). Based on hot data streams, the Pin can
inject prefetching instructions as shown in Fig-
ure 6.

6 Appendix B. Usage Model Exam-
ples On Proposed Workflows

Here are some potential applications of pro-
file guided debugging and performance adap-
tive scheduling:

1. OS scheduling decisions may be based
on occurring patterns of hardware perfor-
mance events, event hazards detection or
platform resource utilization hazards:

Some event sequences can determine a
hazard, upon which the OS scheduler may
redefine priorities in the run queue and
affinity to a logical/physical CPU.

2. Hyper-threading and Dual Core. Immedi-
ate performance gains. If a recurring pat-
tern of utilization similar CPU resources
was detected, the thread affinity assigned
should distribute to run these threads on

different physical cores. This approach
expected to show immediate performance
gains on HT-enabled system on a series of
dedicated applications.

3. Independence of usage model while
adopting Dual-Core/Multi-Core. In order
to adopt DC/MC for maximizing the sys-
tem performance, a user should be aware
of system usage model. With perfor-
mance adaptive scheduling infrastructure,
the usage model alternation will become
less relevant for performance. In turn, it
may stimulate efficient adoption of multi-
core technology by application develop-
ers, since user awareness of usage model
will not affect extracting optimal perfor-
mance from the software.

4. Simplify software development schemes.
Background/foreground and process pri-
ority management based on performance
.

5. Hybrid of OpenMP & MPI for high per-
formance programming will be simpli-
fied. A performance-adaptive OS Sched-
uler will handle optimal scheduling depen-
dent on processor’s resource utilization for
each OpenMP thread.

6. Power utilization optimization and energy
control. Modern micro-architectures have
an extensive set of energy control related
performance counters. When power re-
strictions are enforced for a process execu-
tion, the number of stall cycles due to plat-
form resource saturation should be mini-
mized. The optimized scheduling for pro-
cesses on preventing such platform perfor-
mance hazards to occur should be handled
by OS scheduler.

7. Dynamic Capacity planning analysis. An-
alyzing profiling data logs per thread and

54 • Ideas on improving Linux infrastructure for performance on multi-core platforms

detection of certain event sequence haz-
ards may assist in identifying capacity re-
quirements for the application.

8. Out-of-order execution layer for stati-
cally scheduled codes, better utilization of
“free” CPU cycles and compensation for
possible compiler’s scheduler inefficien-
cies.

Having performance feedback based OS
scheduler will provide information with
additional granularity (on top of the com-
piler scheduler) for filling the empty cy-
cles generated by the compiler (or if
present, even during OOO execution on
x86).

9. Virtualization Technology. When a code
is running on virtual processing units, and
utilizing a virtual pool of resources, it is
important to provide optimal performance,
a dynamic code migration suggestion. The
assignment between virtual and physical
processing unit should be done based on
actual performance execution statistics. If
Linux is a “guest” OS, the presence of per-
formance adaptive scheduling mechanism
will allow the OS scheduler to be aware
of resource utilization across all the virtual
processes.

10. Profile-guided debugging proposal targets
most difficult areas of debugging - perfor-
mance debugging and scalability issues.
See [10].6 on examples on how to utilize
Helper Threads technology for memory
debugging. By combining principles of
Profile-Guided optimization and conven-
tional debugging mechanisms we showed
it is possible to architect a debugger’s ex-
tension to set a breakpoint at a perfor-
mance or power pattern occurrence. As
a result, variety of metrics for the perfor-
mance may be reflected in the debugging,
such as: ratio mips/watt, instruction level

parallelism. State-of-the-art debuggers al-
low users to manually define a breakpoint
on expressions which involve values ob-
tained from the memory during the appli-
cation execution. This approach assists
to extend the mechanisms to combine the
expression values received from CPU and
chipset performance counters in run-time.

Examples of possible breakpoints which
would be set by a user who debugs multi-
threaded applications are:

• Hazardous spin locks

• Shared memory race conditions

• Too long or too short object waits

• Heavy ITLB, Instruction or Trace
Cache misses

• Power consuming blocks; Floating
point intensive procedures

• Loops with extremely low CPIs; low
power blocks

• Long latency memory bus operations

• Irregular data structure accesses;
alignment issues during run-time

• Queue and pipeline flushes, unex-
pected long latency execution

• Opcode or series of opcodes being
executed

• Hyper-threading contentions or race
conditions

• OpenMP issues

There are already working applications with
Pin-based instrumentation for simulation and
performance prediction purposes. Extending
these simulation technologies [15], similar to
the PGD technique generating Interrupt 3, we
would be able to emit other interrupts, signals
and eventually generate an alternate sequence
of events.

2006 Linux Symposium, Volume One • 55

References

[1] “Enhancements for Hyper-Threading
Technology in the Operating Systems –
Seeking the Optimal Scheduling”, by
Jun Nakajima and Venkatesh Pallipadi,
Intel Corporation

[2] “Dynamic Hot Data Stream Prefetching
for General-Purpose Programs”, by
Trishul M.Chilimbi and Martin Hirzel,
Microsoft Research and University of
Coloroado

[3] Compiler for PGO (profile feedback)
and its repository data coverage:
http://gcc.gnu.org/
onlinedocs/gccint/
Profile-information.htm

[4] Compiler optimizer, gcc4.1:
http://gcc.gnu.org/

onlinedocs/gcc-4.1.0/gcc/

Optimize-Options.html

[5] Compiler for vectorization and reports:
http://www.gnu.org/software/

gcc/projects/tree-ssa/

vectorization.html

[6] Pronto repository content, Profrun and
pronto_tool – Intel Compiler tools,
based on 2-compile model:
http://www.intel.com/

software/products/compilers/

clin/docs/main_cls/index.htm

[7] PAPI: http://icl.cs.utk.edu/
papi/overview/index.html

[8] Pin & pintool: http:
//rogue.colorado.edu/pin;
Pin manual for x86:
http://rogue.colorado.edu/

pin/documentation.php;
Pin related papers: http://rogue.
colorado.edu/pin/papers.html

[9] Sequitur: For Sequitur Algorithm
description see:

[9.1] “Compression and explanation in
hierarchical grammars”, by Craig G.
Nevill-Manning and Ian H. Witten,
University of Waikato, New Zealand

[9.2] “Identifying Hierarchical Structure in
Sequences: A linear time algorithm”,
Craig G.Nevill-Manning and Ian
H.Witten, University of Waikato, New
Zealand, 1997

[9.3] “Efficient Representation and
Abstractions for Quantifying and
Exploiting Data Reference Locality”,
by Trishul M.Chilimbi, Microsoft
Research, 2001

[10] Helper threads and compiler based
pre-execution:

[10.1] For concept overview see “Compiler
Based Pre-execution”, Dongkeun Kim
dissertation, University of Maryland,
2004,

[10.2] Threads: Basic Theory and Libraries:
http://www.cs.cf.ac.uk/Dave/

C/node29.html

[10.3] Usage model for helper threads in
“Helper threads via Multi-threading”,
IEEE Micro, 11/2004

[10.4] “Helper Threads via Virtual
Multithreading on an experimental
Itanium 2 Processor-based platform”,
by Perry Wang et al, Intel, 2002

Helper threads and pre-execution
technology for:

[10.5] Profiling, see “Profiling with Helper
threads”, T.Tokunaga and T. Sato
(Japan), 2006

56 • Ideas on improving Linux infrastructure for performance on multi-core platforms

[10.6] Debugging, see “HeapMon: A helper
thread approach to programmable,
automatic, and low overhead memory
bug detection”, IBM Journal of
Research and Development, by
R.Shetty et al., 2005

[11] “Dynamic run-time architecture
technique for enabling continuous
optimizations” by Tipp Moseley,
Daniel A. Connors, etc., University of
Colorado

[12] “Chip Multithreading Systems Need a
New Operating System Scheduler” by
Alexandra Fedorova, Christopher
Small, et all, Harward University &
Sun Micro.

[13] “Methods for Modeling Resource
Contention on Simultaneous
Multithreading Processors” by Tipp
Moseley, Daniel A. Connors,
University of Colorado

[14] “Pthreads Primer, A guide to
multithreaded programming”, Bill
Lewis and Daniel J. Berg, SunSoft
Press, 1996

[15] SimPoint toolkit by UCSD:
http://www-cse.ucsd.edu/

~calder/simpoint/simpoint_

overview.htm

[16] Intel Compiler Documentation –
keywords: Software-based Speculative
Precomputation (SSP); Profrun utility,
prof-gen-sampling:
http://www.intel.com/

software/products/compilers/

clin/docs/main_cls/index.htm

[17] “Pin: Building Customized Program
Analysis Tools with Dynamic
Instrumentation,” by Chi-Keung Luk,
Robert Cohn, Robert Muth, Harish

Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi,
Kim Hazelwood. Programming
Language Design and Implementation
(PLDI), Chicago, IL, June 2005

[18] Tree SSA: A new optimization
infrastructure for GCC, by Diego
Novillo, Red Hat Canada, 2003:
http://people.redhat.com/

dnovillo/pub/tree-ssa/

papers/tree-ssa-gccs03.pdf;
http://gcc.gnu.org/projects/

tree-ssa/#intro

A Reliable and Portable Multimedia File System

Joo-Young Hwang, Jae-Kyoung Bae, Alexander Kirnasov,
Min-Sung Jang, Ha-Yeong Kim

Samsung Electronics, Suwon, Korea
{jooyoung.hwang, jaekyoung.bae, a78.kirnasov}@samsung.com

{minsung.jang, hayeong.kim}@samsung.com

Abstract

In this paper we describe design and imple-
mentation of a database-assisted multimedia
file system, named as XPRESS (eXtendible
Portable Reliable Embedded Storage System).
In XPRESS, conventional file system metadata
like inodes, directories, and free space infor-
mation are handled by transactional database,
which guarantees metadata consistency against
various kinds of system failures. File sys-
tem implementation and upgrade are made easy
because metadata scheme can be changed by
modifying database schema. Moreover, us-
ing well-defined database transaction program-
ming interface, complex transactions like non-
linear editing operations are developed easily.
Since XPRESS runs in user level, it is portable
to various OSes. XPRESS shows streaming
performance competitive to Linux XFS real-
time extension on Linux 2.6.12, which indi-
cates the file system architecture can provide
performance, maintainability, and reliability al-
together.

1 Introduction

Previously consumer electronics (CE) devices
didn’t use disk drives, but these days disks are

being used for various CE devices from per-
sonal video recorder (PVR) to hand held cam-
corders, portable media players, and mobile
phones. File systems for such devices have re-
quirements for multimedia extensions, reliabil-
ity, portability and maintainability.

Multimedia Extension Multimedia extensions
required for CE devices are non-linear editing
and advanced file indexing. As CE devices
are being capable of capturing and storing A/V
data, consumers want to personalize media data
according to their preference. They make their
own titles and shares with their friends via in-
ternet. PVR users want to edit recorded streams
to remove advertisement and uninterested por-
tions. Non-linear editing system had been only
necessary in the studio to produce broadcast
contents but it will be necessary also for con-
sumers. Multimedia file system for CE devices
should support non-linear editing operations ef-
ficiently. File system should support file index-
ing by content-aware attributes, for example the
director and actor/actress of a movie clip.

Reliability On occurrence of system fail-
ures(e.g. power failures, reset, and bad blocks),
file system for CE devices should be recovered
to a consistent state. Implementation of a reli-
able file system from scratch or API extension
to existing file system are difficult and requires
long stabilization effort. In case of appending

58 • A Reliable and Portable Multimedia File System

multimedia API extension (e.g. non-linear edit
operations), reliability can be a main concern.

Portability Conventional file systems have
dependency on underlying operating system.
Since CE devices manufacturers usually use
various operating systems, file system should
be easily ported to various OSes.

Maintainability Consumer devices are diverse
and the requirements for file system are slightly
different from device to device. Moreover, file
system requirements are time-varying. Main-
tainability is desired to reduce cost of file sys-
tem upgrade and customization.

In this paper, we propose a multi-media file sys-
tem architecture to provide all the above re-
quirements. A research prototype named as
“XPRESS”(eXtensible Portable Reliable Em-
bedded Storage System) is implemented on
Linux. XPRESS is a user-level database-
assisted file system. It uses a transactional
Berkeley database as XPRESS metadata store.
XPRESS supports zero-copy non-linear edit
(cut & paste) operations. XPRESS shows per-
formance in terms of bandwidth and IO la-
tencies which is competitive to Linux XFS.
This paper is organized as follows. Archi-
tecture of XPRESS is described in section 2.
XPRESS’s database schema is presented in sec-
tion 3. Space allocation is detailed in section 4.
Section 5 gives experimental results and discus-
sions. Related works are described in section 6.
We conclude and indicate future works in sec-
tion 7.

2 Architecture

File system consistency is one of important file
system design issue because it affects overall
design complexity. File system consistency
can be classified into metadata consistency and

data consistency. Metadata consistency is to
support transactional metadata operations with
ACID (atomicity, consistency, isolation, dura-
bility) semantics or a subset of ACID. Typical
file system metadata consist of inodes, directo-
ries, disk’s free space information, and free in-
odes information. Data consistency means sup-
porting ACID semantics for data transactions
as well. If a data transaction to update a portion
of file is aborted due to some reasons, the data
update is complete or data update is discarded
at all.

There have been several approaches of imple-
menting file system consistency; log structured
file system [11] or journaling file system [2].
In log structured file system, all operations are
logged to disk drive. File system is structured
as logs of consequent file system update op-
erations. Journaling is to store operations on
separate journal space before updating the file
system. Journaling file system writes twice (to
journal space and file system) while log struc-
tured file system does write once. However
journaling approach is popular because it can
upgrade existing non-journaling file system to
journaling file system without losing or rewrit-
ing the existing contents.

Implementation of log structured file system or
journaling is a time consuming task. There
have been a lot of researches and implemen-
tation of ACID transactions mechanism in
database technology. There are many stable
open source databases or commercial databases
which provide transaction mechanism. So we
decide to exploit databases’ transaction mech-
anism in building our file system. Since we
aimed to design a file system with performance
and reliability altogether, we decided not to
save file contents in database. Streaming per-
formance can be bottlenecked by database if
file contents are stored in db. So, only meta-
data is stored in database while file contents are
stored to a partition. Placement of file contents

2006 Linux Symposium, Volume One • 59

on the data partition is guided by multimedia
optimized allocation strategy.

Storing file system metadata in database makes
file system upgrades and customization much
easier than conventional file systems. XPRESS
handles metadata thru database API and is not
responsible for disk layout of the metadata. File
system developer has only to design high level
database schema and use well defined database
API to upgrade existing database. To upgrade
conventional file systems, developer should
handle details of physical layout of metadata
and modify custom data structures.

XPRESS is implemented in user level because
user level implementation gives high portabil-
ity and maintainability. File system source
codes are not dependent on OS. Kernel level
file systems should comply with OS specific
infrastructures. Linux kernel level file system
compliant to VFS layer cannot be ported eas-
ily to different RTOSes. There can be a over-
head which is due to user level implementa-
tion. XPRESS should make system calls to
read/write block device file to access file con-
tents. If file data is sparsely distributed, context
switching happens for each extent. There was
an approach to port existing user level database
to kernel level[9] and develop a kernel level
database file system. It can be improved if us-
ing Linux AIO efficiently. Current XPRESS
does not use Linux AIO but has no significant
performance overhead.

Figure 1 gives a block diagram of XPRESS file
system. XPRESS is designed to be independent
of database. DB Abstraction Layer (DBAL) is
located between metadata manager and Berke-
ley DB. DBAL defines basic set of interfaces
which modern databases usually have. SQL or
complex data types are not used. XPRESS has
not much OS dependencies. OSAL of XPRESS
has only wrappers for interfacing block device
file which may be different across operating
systems.

Figure 1: Block Diagram of XPRESS File Sys-
tem

There are four modules handling file system
metadata; superblock, directory, inode, and al-
loc modules. Directory module implements the
name space using a lookup database (dir.db)
and path_lookup function. The function
looks up the path of a file or a directory through
recursive DB query for each token of the path
divided separated by ’/’ character. The flow-
ing is the simple example for the process of this
function. Superblock module maintains free in-
odes. Inode module maintains the logical-to-
physical space mappings for files. Alloc mod-
ule maintains free space.

In terms of file IO, file module calls inode mod-
ule to updates or queries extents.db and
reads or writes file contents. The block de-
vice file corresponding to the data partition (say
“/dev/sda1”) is opened for read/write mode
at mount time and its file descriptor is saved
in environment descriptor, which is referred
to by every application accessing the partition.
XPRESS does not implement caching but relies

60 • A Reliable and Portable Multimedia File System

on Linux buffer cache. XPRESS supports both
direct IO and cached IO. For cached IO, the
block device file is opened without O_DIRECT
flag while opened with O_DIRECT in case of
direct IO.

Support for using multiple partitions concur-
rently, XPRESS manages mounted partitions
information using environment descriptors. A
environment descriptor has information about a
partition and its mount point, which is used for
name space resolution. Since all DB resources
(transaction, locking, logging, etc) correspond-
ing to a partition belongs to a DB environment
and separate logging daemon is ncessary for
separate environment, a new logging daemon
is launched on mounting a new partition.

3 Transactional Metadata Manage-
ment

3.1 Choosing Database

As the infrastructure of XPRESS, database
should conform to the following requirements.
First, it should have transactional operation
and recovery support. It is important for im-
plementing metadata consistency of XPRESS.
Second, it should be highly concurrent. Since
file system is used by many threads or pro-
cesses, database should support and have high
concurrency performance as well. Third, it
should be light-weight. Database does not have
to support many features which are unneces-
sary for file system development. It only has to
provide API necessary for XPRESS efficiently.
Finally, it should be highly efficient. Database
implemented as a separate process has cleaner
interface and maintainability; however library
architecture is more efficient.

Berkeley DB is an open source embed-
ded database that provides scalable, high-

performance, transaction-protected data man-
agement services to applications. Berkeley DB
provides a simple function-call API for data
access and management. Berkeley DB is em-
bedded in its application. It is linked directly
into the application and runs in the same ad-
dress space as the application. As a result, no
inter-process communication, either over the
network or between processes on the same ma-
chine, is required for database operations. All
database operations happen inside the library.
Multiple processes, or multiple threads in a
single process, can all use the database at the
same time as each uses the Berkeley DB li-
brary. Low-level services like locking, transac-
tion logging, shared buffer management, mem-
ory management, and so on are all handled
transparently by the library.

Berkeley DB offers important data manage-
ment services, including concurrency, transac-
tions, and recovery. All of these services work
on all of the storage structures. The library pro-
vides strict ACID transaction semantics, by de-
fault. However, applications can relax the isola-
tion or the durability. XPRESS uses relaxed se-
mantics for performance. Multiple operations
can be grouped into a single transaction, and
can be committed or rolled back atomically.
Berkeley DB uses a technique called two-phase
locking to support highly concurrent transac-
tions, and a technique called write-ahead log-
ging to guarantee that committed changes sur-
vive application, system, or hardware failures.

If a BDB environment is opened with a recov-
ery option, Berkeley DB runs recovery for all
databases belonging to the environment. Re-
covery restores the database to a clean state,
with all committed changes present, even af-
ter a crash. The database is guaranteed to be
consistent and all committed changes are guar-
anteed to be present when recovery completes.

2006 Linux Symposium, Volume One • 61

DB unit key data structure secondary index
super partition partition number superblock data RECNO -

dir partition parent INO/file name INO B-tree INO (B tree)
inode partition INO inode data RECNO -

free space partition PBN length B-tree length(B tree)
extents file file offset PBN/length B-tree -

Table 1: Database Schema, INO: inode number, RECNO: record number, PBN: physical block
number

3.2 Database Schema Design

XPRESS defines five databases to store file sys-
tem metadata and their schema is shown in Ta-
ble 1. Each B-tree database has a specific key-
comparison function that determines the order
in which keys are stored and retrieved. Sec-
ondary index is used for performance accelera-
tion.

Superblock DB The superblock database,
super.db, stores file system status and in-
ode bitmap information. As overall file sys-
tem status can be stored in just one record,
and inode bitmap also needs just a few records,
this database has RECNO structure, and does
not need any secondary index. Super database
keeps a candidate inode number, and when a
new file is created, XPRESS uses this inode
number and then replaces the candidate inode
number with another one selected after scan-
ning inode bitmap records.

Directory DB The dir database, dir.db,
maps directory and file name information to in-
ode numbers. The key used is a structure with
two values: the parent inode number and the
child file name. This is similar to a standard
UNIX directory that maps names to inodes. A
directory in XPRESS is a simple file with a spe-
cial mode bit. As XPRESS is user-level file sys-
tem, it does not depend on Linux VFS layer. As
a result it cannot use directory related caches

of Linux kernel (i.e., dentry cache), instead,
database cache will be used for that purpose.

Inode DB The inode database, inode.db,
maps inode numbers to the file information
(e.g., file size, last modification time, etc.).
When a file is created, a new inode record is
inserted into this database, and when a file is
deleted, the inode record is removed from this
database. XPRESS assigns inode numbers in
an increasing order and upper limit on the num-
ber of inodes is determined when creating the
file system. It will be possible to make sec-
ondary indices for inode.db for efficiency
(e.g., searching files whose size is larger than
1M). But currently no secondary index is used.

Free Space DB The free-space database,
freespace.db, manages free extents of the par-
tition. Initially free-space database has one
record whose data is just one big extent which
means a whole partition. When a change in
file size happens this database will update its
records.

Extents DB A file in XPRESS consists of sev-
eral extents of which size is not fixed. The ex-
tents database, extents.db, maps file offset
to physical blocks address of the extent includ-
ing the file data. As this database corresponds
to each file, its life-time is also same with that
of a file. The exact database name is identified
with an inode number; extents.db is just
database file name. This database is only dy-
namically removable while all other databases

62 • A Reliable and Portable Multimedia File System

are going on with the file system.

3.3 Transactional System Calls

A transaction is atomic if it ensures that all the
updates in a transaction are done altogether or
none of them is done at all. After a trans-
action is ether committed or aborted, all the
databases for file system metadata are in con-
sistent. In multi-process or multi-thread envi-
ronment, concurrent operation should be pos-
sible without any interference of other opera-
tions. We can say this property isolated. An
Operation will have already been committed to
the databases or is in the transaction log safely
if the transaction is committed. So the file sys-
tem operations are durable which means file
system metadata is never lost.

Each file system call in XPRESS is protected
by a transaction. Since XPRESS system calls
are using the transactional mechanism provided
by Berkeley DB, ACID properties are enabled
for each file system call of XPRESS. A file sys-
tem call usually involves multiple reads and up-
dates to metadata. An error in the middle of
system call can cause problems to the file sys-
tem. By storing file system metadata in the
databases and enabling transactional operations
for accessing those databases, file system is
kept stable state in spite of many unexpected
errors.

An error in updating any of the databases dur-
ing a system call will cause the system call,
which is protected by a transaction, to be
aborted. There can be no partially done system
calls. XPRESS ensures that any system call is
complete or not started at all. In this sense, a
XPRESS system call is atomic.

Satisfying strict ACID properties can cause per-
formance degradation. Especially in file sys-
tem, since durability may not be strict condi-

tion, we can relax this property for better per-
formance. XPRESS compromises durability
by not syncing the log on transaction commit.
Note that the policy of durability applies to all
databases in an environment. Flushing takes
place periodically and the cycle of flushing can
be configurable. Default cycle is 10 seconds.

Every XPRESS system call handles three types
of failures; power-off, deadlock, and unex-
pected operation failure. Those errors are han-
dled according to cases. In case of power-off
we are not able to handle immediately. After
the system is rebooted, recovery procedure will
be automatically started. Deadlock may occur
during transaction when the collision between
concurrent processes or threads happened. In
this case, one winning process access database
successfully and all other processes or threads
are reported deadlock. They have to abort
and retry their transactions. In case of unex-
pected operation failure, on-going transaction
is aborted and system calls return error to its
caller.

3.4 Non-linear Editing Support

Non-linear editing on A/V data means cutting
a segment of continuous stream and inserting a
segment inside a stream. This is required when
users want to remove unnecessary portion of a
stream; for example, after recording two hours
of drama including advertisement, user wants
to remove the advertisement segments from the
stream. Inserting is useful when a user wants
to merge several streams into one title. These
needs are growing because consumers capture
many short clips during traveling somewhere
and want to make a title consisting of selected
segments of all the clips.

Conventional file systems does not consider
this requirement, so to support those opera-
tions, a portion of file should be migrated. If

2006 Linux Symposium, Volume One • 63

front end of a file is to be cut, the remain-
ing contents of the file should be copied to a
new file because the remaining contents are not
block aligned. File systems does assume block
aligned starting of a file. In other words, they
do not assume that a file does not start in the
middle of a block. Moreover, a block is not
assumed to be shared by different files. This
has been general assumptions about had disk
file system because disk is a block based device
which means space is allocated and accessed in
blocks. The problem is more complicated for
inserting. A file should have a hole to accom-
modate new contents inside it and the hole may
not be block-aligned. So there can be breaches
in the boundaries of the hole.

We solve those problems by using byte-
precision extents allocation. XPRESS allows
physical extent not aligned with disk block size.
After cutting a logical extent, the physical ex-
tents corresponding to the cut logical extent can
be inserted into other file. Implementation of
those operations involves updating databases
managing the extents information. Data copy
is not required for the editing operations, only
extents info is updated accordingly.

4 Extent Allocation and Inode
Management

In this section, the term “block” refers to the al-
location unit in XPRESS. The block size can be
configurable at format time. For byte-precision
extents, block size is configured to one byte.

4.1 Extent Allocation

There were several approaches for improving
contiguity of file allocation. Traditionally (FAT,
ext2, ext3) disc free space was handled by

means of bitmaps. Bit 0 at position n of the
bitmap designates, that n-th disc block is free
(can be allocated for the file). This approach
has several drawbacks; searching for the free
space is not effective and bitmaps do not explic-
itly provide information on contiguous chunks
of the free space.

The concept of extent was introduced in order
to overcome mentioned drawbacks. An extent
is a couple, consisting from block number and
length in units of blocks. An extent represents
a contiguous chunk of blocks on the disk. The
free space can be represented by set of corre-
sponding extents. Such approach is used for
example in XFS (with exception of real-time
volume). In case of XFS the set of extents is
organized in two B+ trees, first sorted by start-
ing block number and second sorted by size of
the extent. Due to such organization the search
for the free space becomes essentially more ef-
ficient compared to the case of using bitmaps.

One way to increase the contiguity comes from
increasing the block size. Such approach is es-
pecially useful for real time file systems which
deal with large video streams in combination
with idea of using special volume specifically
for these large files. Similar approach is uti-
lized in XFS for real-time volume. Another
way to improve file locality on the disc is preal-
location. This technique can be described as an
allocation of space for the file in advance before
the file is being written to. Preallocation can be
accomplished whether on application or on the
file system level. Delayed allocation can also
be used for contiguous allocation. This tech-
nique postpones an actual disc space allocation
for the file, accumulating the file contents to
be written in the memory buffer, thus providing
better information for the allocation module.

XPRESS manages free space by using ex-
tents. Allocation algorithm uses two databases:
freespace1.db and freespace2.db,

64 • A Reliable and Portable Multimedia File System

which collect the information on free ex-
tents which are not occupied by any files
on the file system. The freespace1.db
orders all free extents by left end and the
freespace2.db, which is secondary in-
dexed db of freespace1.db, orders all free
extents by length. Algorithm tries to allocate
entire length of req_len as one extent in the
neighborhood of the last_block. If it fails,
then it tries to allocate maximum extent within
neighborhood. If no free extent is found within
neighborhood, it tries to allocate maximum free
extent in the file system. After allocating a
free extent, neighborhood is updated and it
tries the same process to allocate the remain-
ing, which iterate until entire requested length
is allocated. Search in neighborhood is accom-
plished in left and right directions using two
cursors on freespace1.db. The neighbor-
hood size is determined heuristically propor-
tional to the req_len.

Pre-allocation is important for multi-threaded
IO applications. When multiple IO threads
try to write files, the file module tries to pre-
allocate extents enough to guarantee disk IO ef-
ficiency. Otherwise, disk blocks are fragmented
because contiguous blocks are allocated to dif-
ferent files in case that multiple threads are al-
locating simultaneously. Pre-allocation size of
XPRESS is by default 32Mbytes which may
be varying according to disk IO bandwidth.
On file close, unused spaces among the pre-
allocated extents are returned to free space
database, which is handled by FILE module of
XPRESS.

4.2 Inode Management

File extents are stored in extents.db. Each
file extent is represented by logical file offset
and corresponding physical extent. Both offset
and physical extent are specified with byte pre-
cision in order to provide facilities for partial

Figure 2: Logical to physical mapping

truncation that is truncation of some portion of
the file from a specified position of the file with
byte precision.

Let us designate a logical extent starting from
the logical file offset a mapped to a physical
extent [b,c] as [a,[b,c]] for explanations in the
following. A logical file interval may contain
some regions which do not have physical im-
age on the disc; such regions are referred as
holes. The main interface function of the IN-
ODE module is xpress_make_segment_
op(). The main parameters of the function
are type of the operation (READ, WRITE and
DELETE) and logical file segment, specified
by logical offset and the length.

extents.db is read on file access to con-
vert a logical segment to a set of physical ex-
tents. Figure 2 shows an example of seg-
ment mapping. Logical segment [start, end]
corresponds to following set of physical ex-
tents; {[start,[e,f]], [a,[g,h]], [b,[]], [c,[f,g]],
[d,[i,k]]}, where the logical extent [b,c] is a file
hole. In case of read operation to extents.
db, the list of physical extents is retrieved and
returned to the file module.

When specified operation is WRITE and speci-
fied segment contains yet unmapped area - that
is writing to the hole or beyond end of file is
accomplished, then allocation request may be
generated after aligning the requested size to
the block size since as was mentioned alloca-
tion module uses blocks as units of allocation.
In Figure 3, blocks are allocated when writing
the segment [start,end] of the file.

2006 Linux Symposium, Volume One • 65

Figure 3: Block allocation details

Figure 4: Throughput with 1 thread

Xpress allows to perform partial file truncate
operation as well, as cut and paste operation.
First operation removes some fragment of the
file, while the latter also inserts the removed
file portion into specified position of another
file. On partial truncate operation, a truncated
logical segment is left as a hole. On cut op-
eration, logical segment mapping is updated to
avoid hole. On paste operation, mapping is up-
dated to avoid overwriting as well.

5 Experimental Results

Test platform is configured as following. Target
H/W : Pentium4 CPU 1.70GHz with 128MB
RAM and 30GB SAMSUNG SV3002H IDE
disk
Target O/S : Linux-2.6.12
Test tools : tiotest(tiobench[1]), rwrt

XPRESS consistency semantic is metadata
journaling and ordered data writing which is

Figure 5: Throughput with 4 threads

similar to XFS file system and ext3 with or-
dered data mode. Hence we chose XFS and
ext3 as performance comparison targets. As
XFS file system provides real-time sub-volume
option, we also used it as one of compari-
son targets. By calling it XFS-RT, we will
distinguish it from normal XFS. tiotest is
threaded I/O benchmark tool which can test
disk I/O throughput and latency. rwrt is a ba-
sic file I/O application to test ABISS (Adaptive
Block IO Scheduling System)[3]. It performs
isochronous read operations on a file and gath-
ers information on the timeliness of system re-
sponses. It gives us I/O latencies or jitters of
streaming files, which is useful for analyzing
streaming quality. We did not use XPRESS’s
I/O scheduling and buffer cache module be-
cause we can get better performance with the
Linux’s native I/O scheduling and buffer cache.

IO Bandwidth Comparison
Figure 4 and Figure 5 show the results of I/O
throughput comparison for each file system.
These two tests are conducted with tiotest
tool whose block size option is 64KB which
means the unit of read and write is 64KB. In
both cases, there is no big difference between
all file systems.

IO Latency Comparison
We used both tiotest and rwrt tool to mea-
sure I/O latencies in case of running multiple

66 • A Reliable and Portable Multimedia File System

Figure 6: MAX latency with 1 thread

Figure 7: MAX latency with 4 threads

concurrent I/O threads. The rwrt is dedi-
cated for profiling sequential read latencies and
tiobench is used for profiling latencies of write,
random write, read, and random read opera-
tions.

Figure 6 and Figure 7 show the maximum I/O
latencies for each file system obtained from
tiotest. The maximum I/O latency is a
little low on XPRESS file system. In terms
of write latency, XPRESS outperforms others
while maximum read latencies are similar.

To investigate read case more, we conducted
the rwrt with the number of threads from 1
to 8 and measure the read latencies for each
read request. Each process tries its best to
read blocks of a file. The results of these
tests include the latencies of each read request
whose size is 128Kbyte. Table 2 shows the

File System Average Std Dev Max
2 threads

Ext3 8.47 26.03 512
XFS 8.62 25.15 239

XFS-RT 8.96 25.66 260
XPRESS 8.62 24.93 262

4 threads
Ext3 17.9594 72.70 877
XFS 17.8389 72.70 528

XFS-RT 18.7506 74.33 524
XPRESS 17.8467 71.79 413

8 threads
Ext3 36.38 166.47 1144
XFS 36.35 166.86 1049

XFS-RT 38.34 171.39 1023
XPRESS 36.33 166.38 923

Table 2: Read Latencies Statistics. All are mea-
sured in milliseconds.

statistics of the measured read latencies for 2,
4, and 8 threads. The average latencies are
nearly the same for all experimented file sys-
tems. XPRESS show slightly smaller standard
deviation than others and improvement regard-
ing the maximum latencies. Please note that
XPRESS maximum latency is 413 milliseconds
while the max latency of XFS-RT is 524 mil-
liseconds.

Jitters during Streaming at a Constant Data
Rate
The jitters performance is important from
user’s point of view because it leads to a low
quality video streaming. We performed rwrt
tool with ABISS I/O scheduling turned off. The
rwrt is configured to read a stream with a
constant specified data rate, say 3MB/sec or
5MB/sec. Table 3 shows jitter statistics for
each file system when running single thread
with 5MB/sec rate, four concurrent threads at
5MB/sec rates, and six concurrent threads at
3MB/sec rates, respectively. The results of
these tests include the jitters of each read re-

2006 Linux Symposium, Volume One • 67

File System Average Std Dev Max
1 thread (5MB/s)

Ext3 3.97 2.44 43
XFS 3.91 2.03 46

XFS-RT 3.94 1.79 25
XPRESS 3.89 1.92 40

4 threads (each 5MB/sec)
Ext3 18.00 41.72 694
XFS 15.67 30.25 249

XFS-RT 19.22 34.63 267
XPRESS 17.93 38.83 257

6 threads (each 3MB/sec)
Ext3 24.80 48.43 791
XFS 23.81 42.20 297

XFS-RT 26.57 43.48 388
XPRESS 23.66 45.31 337

Table 3: Jitter Statistics. All are measured in
milliseconds.

quest whose size is 128Kbyte. Mean values of
experimented file systems are nearly the same.
XPRESS, XFS, and XFS-RT show the similar
standard deviation of jitters which is much less
than that of ext3.

Metadata and Data Separation
Metadata access patterns are usually small re-
quests while streaming accesses are continuous
bulk data transfer. By separating metadata and
data partitions on different media, performance
can be optimized according to their workload
types. XPRESS allows metadata to be placed
in separate partition which can be placed on
another disk or NAND flash memory. Table 4
summarizes the effect of changing the db par-
tition. This is test for extreme case since we
used ramdisk, which is virtual in-memory disk,
as a separate disk. However, we can identify
the theoretical possibility of performance en-
hancement from this test. According to the re-
sult, the enhancement happens mainly on write
test by 11%. We expect using separate parti-
tion will reduce latencies significantly, which

configuration write read
same disk 25.20 27.82

separate disk 28.20 28.53

Table 4: Placing metadata on ramdisk and data
on a disk. All are measured in MB/s.

are not shown here.

Non-linear Editing
To test cut-and-paste operation, we prepared
two files each of which is of 131072000 bytes,
then cut the latter half (= 65,536,000 bytes)
of one file and append it to the other file. In
XPRESS, this operation takes 0.274 seconds.
For comparison, the operation is implemented
on ext3 by copying iteratively 65536 bytes,
which took 3.9 seconds. The performance gap
is due to not copying file data but updating file
system metadata (extents.db and inode.
db). In XPRESS, the operation is atomic trans-
action and can be undone if it fails during the
operation. However our implementation of the
operation on ext3 does not guarantee atomicity.

6 Related Works

Traditionally file system and database has been
developed separately without depending on
each other. They are aimed for different pur-
poses; file system is for byte streaming and
database is for advanced query support. Re-
cently there is a growing needs to index files
with attributes other than file name. For exam-
ple, file system containing photos and emails
need to be indexed by date, sender, or sub-
jects. XML document provides jit(just-in-
time) schema to support contents based index-
ing. Conventional file system is lack of in-
dexing that kind of new types of files. There
has been a few works to implement database
file systems to enhance file indexing; BFS[5],

68 • A Reliable and Portable Multimedia File System

GnomeStorage[10], DBFS[6], kbdbfs[9], and
WinFS[7]. Those are not addressing streaming
performance issues. For video streaming, data
placement on disk is important. While con-
ventional database file systems resorts to DB
or other file systems for file content storage,
XPRESS controls placement of files content by
itself.

Compared to custom multimedia file systems
(e.g. [12], [8], [4]), XPRESS has a well-defined
file system metadata design and implementa-
tion framework and file system metadata is pro-
tected by transactional databases. Appending
multimedia extensions like indexing and non-
linear editing is easier. Moreover since it is im-
plemented in user level, it is highly portable to
various OSes.

7 Conclusions and Future Works

In this paper we described a novel multime-
dia file system architecture satisfying stream-
ing performance, multimedia extensions (non-
linear editing), reliability, portability, and
maintainability. We described detailed design
and issues of XPRESS which is a research pro-
totype implementation. In XPRESS, file sys-
tem metadata are managed by a transactional
database, so metadata consistency is ensured
by transactional DB. Upgrade and customiza-
tion of file system is easy task in XPRESS be-
cause developers don’t have to deal with meta-
data layout in disk drive. We also implement
atomic non-linear editing operations using DB
transactions. Cutting and pasting A/V data
segments is implemented by extents database
update without copying segment data. Com-
pared to ext3, XFS, and XFS real-time sub-
volume extension, XPRESS showed competi-
tive streaming performance and more determin-
istic response times.

This work indicates feasibility of database-
assisted multimedia file system. Based on
the database and user level implementation, it
makes future design change and porting easy
while streaming performance is not compro-
mised at the same time. Future works are appli-
cation binary compatibility support using sys-
tem call hijacking, appending contents-based
extended attributes, and encryption support.
Code migration to kernel level will also be
helpful for embedded devices having low com-
puting power.

References

[1] Threaded i/o tester.
http://sourceforge.net/
projects/tiobench/.

[2] M. Cao, T. Tso, B. Pulavarty,
S. Bhattacharya, A. Dilger, and
A. Tomas. State of the art: Where we are
with the ext3 filesystem. In Proceeding
of Linux Symposium, July 2005.

[3] Giel de Nijs, Benno van den Brink, and
Werner Almesberger. Active block io
scheduling system. In Proceeding of
Linux Symposium, pages 109–126, July
2005.

[4] Pallavi Galgali and Ashish Chaurasia.
San file system as an infrastructure for
multimedia servers. http:
//www.redbooks.ibm.com/
redpapers/pdfs/redp4098.pdf.

[5] Dominic Giampaolo. Practical File
System Design with the Be File System.
Morgan Kaufmann Publishers, Inc.,
1999. ISBN 1-55860-497-9.

[6] O. Gorter. Database file system.
Technical report, University of Twente,
aug 2004. http://ozy.student.

2006 Linux Symposium, Volume One • 69

utwente.nl/projects/dbfs/
dbfs-paper.pdf.

[7] Richard Grimes. Revolutionary file
storage system lets users search and
manage files based on content, 2004.
http://msdn.microsoft.com/
msdnmag/issues/04/01/WinFS/
default.aspx.

[8] R. L. Haskin. Tiger Shark — A scalable
file system for multimedia. IBM Journal
of Research and Development,
42(2):185–197, 1998.

[9] Aditya Kashyap. File System
Extensibility and Reliability Using an
in-Kernel Database. PhD thesis, Stony
Brook University, 2004. Technical
Report FSL-04-06.

[10] Seth Nickell. A cognitive defense of
associative interfaces for object
reference, Oct 2004. http://www.
gnome.org/~seth/storage/
associative-interfaces.pdf.

[11] Mendel Rosenblum and John K.
Ousterhout. The design and
implementation of a log-structured file
system. ACM Transactions on Computer
Systems, 10(1):26–52, 1992.

[12] Philip Trautman and Jim Mostek.
Scalability and performance in modern
file systems.
http://linux-xfs.sgi.com/
projects/xfs/papers/xfs_
white/xfs_white_paper.%html.

70 • A Reliable and Portable Multimedia File System

Utilizing IOMMUs for Virtualization in Linux and Xen

Muli Ben-Yehuda
muli@il.ibm.com

Jon Mason
jdmason@us.ibm.com

Orran Krieger
okrieg@us.ibm.com

Jimi Xenidis
jimix@watson.ibm.com

Leendert Van Doorn
leendert@us.ibm.com

Asit Mallick
asit.k.mallick@intel.com

Jun Nakajima
jun.nakajima@intel.com

Elsie Wahlig
elsie.wahlig@amd.com

Abstract

IOMMUs are hardware devices that trans-
late device DMA addresses to proper ma-
chine physical addresses. IOMMUs have
long been used for RAS (prohibiting de-
vices from DMA’ing into the wrong memory)
and for performance optimization (avoiding
bounce buffers and simplifying scatter/gather).
With the increasing emphasis on virtualization,
IOMMUs from IBM, Intel, and AMD are be-
ing used and re-designed in new ways, e.g.,
to enforce isolation between multiple operating
systems with direct device access. These new
IOMMUs and their usage scenarios have a pro-
found impact on some of the OS and hypervisor
abstractions and implementation.

We describe the issues and design alterna-
tives of kernel and hypervisor support for new
IOMMU designs. We present the design and
implementation of the changes made to Linux
(some of which have already been merged into
the mainline kernel) and Xen, as well as our
proposed roadmap. We discuss how the inter-
faces and implementation can adapt to upcom-

ing IOMMU designs and to tune performance
for different workload/reliability/security sce-
narios. We conclude with a description of some
of the key research and development challenges
new IOMMUs present.

1 Introduction to IOMMUs

An I/O Memory Management Unit (IOMMU)
creates one or more unique address spaces
which can be used to control how a DMA op-
eration from a device accesses memory. This
functionality is not limited to translation, but
can also provide a mechanism by which device
accesses are isolated.

IOMMUs have long been used to address the
disparity between the addressing capability of
some devices and the addressing capability of
the host processor. As the addressing capability
of those devices was smaller than the address-
ing capability of the host processor, the devices
could not access all of physical memory. The
introduction of 64-bit processors and the Phys-
ical Address Extension (PAE) for x86, which

72 • Utilizing IOMMUs for Virtualization in Linux and Xen

allowed processors to address well beyond the
32-bit limits, merely exacerbated the problem.

Legacy PCI32 bridges have a 32-bit interface
which limits the DMA address range to 4GB.
The PCI SIG [11] came up with a non-IOMMU
fix for the 4GB limitation, Dual Address Cy-
cle (DAC). DAC-enabled systems/adapters by-
pass this limitation by having two 32-bit ad-
dress phases on the PCI bus (thus allowing 64
bits of total addressable memory). This mod-
ification is backward compatible to allow 32-
bit, Single Address Cycle (SAC) adapters to
function on DAC-enabled buses. However, this
does not solve the case where the addressable
range of a specific adapter is limited.

An IOMMU can create a unique translated ad-
dress space, that is independent of any address
space instantiated by the MMU of the proces-
sor, that can map the addressable range of a de-
vice to all of system memory.

When the addressable range of a device is lim-
ited and no IOMMU exists, the device might
not be able to reach all of physical memory. In
this case a region of system memory that the
device can address is reserved, and the device
is programmed to DMA to this reserved area.
The processor then copies the result to the tar-
get memory that was beyond the “reach” of the
device. This method is known as bounce buffer-
ing.

In IOMMU isolation solves a very different
problem than IOMMU translation. Isolation re-
stricts the access of an adapter to the specific
area of memory that the IOMMU allows. With-
out isolation, an adapter controlled by an un-
trusted entity (such as a virtual machine when
running with a hypervisor, or a non-root user-
level driver) could compromise the security or
availability of the system by corrupting mem-
ory.

The IOMMU mechanism can be located on the

device, the bus, the processor module, or even
in the processor core. Typically it is located on
the bus that bridges the processor/memory ar-
eas and the PCI bus. In this case, the IOMMU
intercepts all PCI bus traffic over the bridge and
translates the in- and out-bound addresses. De-
pending on implementation, these in- and out-
bound addresses, or translation window, can be
as small as a few megabytes to as large as the
entire addressable memory space by the adapter
(4GB for 32-bit PCI adapters). If isolation is
not an issue, it may be beneficial to have ad-
dresses beyond this window pass through un-
modified.

AMD IOMMUs: GART, Device Exclusion
Vector, and I/O Virtualization Technology

AMD’s Graphical Aperture Remapping Table
(GART) is a simple translation-only hardware
IOMMU [4]. GART is the integrated transla-
tion table designed for use by AGP. The sin-
gle translation table is located in the proces-
sor’s memory controller and acts as an IOMMU
for PCI. GART works by specifying a physical
memory window and list of pages to be trans-
lated inside that window. Addresses outside the
window are not translated. GART exists in the
AMD Opteron, AMD Athlon 64, and AMD Tu-
rion 64 processors.

AMD’s Virtualization (AMD-V(TM) / SVM)
enabled processors have a Device Exclusion
Vector (DEV) table define the bounds of a
set of protection domains providing isolation.
DEV is a bit-vectored protection table that as-
signs per-page access rights to devices in that
domain. DEV forces a permission check of
all device DMAs indicating whether devices
in that domain are allowed to access the cor-
responding physical page. DEV uses one bit
per physical 4K page to represent each page in
the machine’s physical memory. A table of size
128K represents up to 4GB.

2006 Linux Symposium, Volume One • 73

AMD’s I/O Virtualization Technology [1] de-
fines an IOMMU which will translate and pro-
tect memory from any DMA transfers by pe-
ripheral devices. Devices are assigned into a
protection domain with a set of I/O page tables
defining the allowed memory addresses. Be-
fore a DMA transfer begins, the IOMMU inter-
cepts the access and checks its cache (IOTLB)
and (if necessary) the I/O page tables for that
device. The translation and isolation functions
of the IOMMU may be used independently of
hardware or software virtualization; however,
these facilities are a natural extension to virtu-
alization.

The AMD IOMMU is configured as a capabil-
ity of a bridge or device which may be Hyper-
Transport or PCI based. A device downstream
of the AMD IOMMU in the machine topol-
ogy may optionally maintain a cache (IOTLB)
of its own address translations. An IOMMU
may also be incorporated into a bridge down-
stream of another IOMMU capable bridge.
Both topologies form scalable networks of dis-
tributed translations. The page structures used
by the IOMMU are maintained in system mem-
ory by hypervisors or privileged OS’s.

The AMD IOMMU can be used in conjunction
with or in place of of the GART or DEV. While
GART is limited to a 2GB translation window,
the AMD IOMMU can translate accesses to all
physical memory.

Intel Virtualization Technology for Directed
I/O (VT-d)

Intel Virtualization Technology for Directed
I/O Architecture provides DMA remapping
hardware that adds support for isolation of de-
vice accesses to memory as well as translation
functionality [2]. The DMA remapping hard-
ware intercepts device attempts to access sys-
tem memory. Then it uses I/O page tables to

determine whether the access is allowed and
its intended location. The translation structure
is unique to an I/O device function (PCI bus,
device, and function) and is based on a multi-
level page table. Each I/O device is given the
DMA virtual address space same as the phys-
ical address space, or a purely virtual address
space defined by software. The DMA remap-
ping hardware uses a context-entry table that is
indexed by PCI bus, device and function to find
the root of the address translation table. The
hardware may cache context-entries as well as
the effective translations (IOTLB) to minimize
the overhead incurred for fetching them from
memory. DMA remapping faults detected by
the hardware are processed by logging the fault
information and reporting the faults to software
through a fault event (interrupt).

IBM IOMMUs: Calgary, DART, and Cell

IBM’s Calgary PCI-X bridge chips provide
hardware IOMMU functionality to both trans-
late and isolate. Translations are defined by a
set of Translation Control Entries (TCEs) in a
table in system memory. The table can be con-
sidered an array where the index is the page
number in the bus address space and the TCE
at that index describes the physical page num-
ber in system memory. The TCE may also con-
tain additional information such as DMA di-
rection access rights and specific devices (or
device groupings) that each translation can be
considered valid. Calgary provides a unique
bus address space to all devices behind each
PCI Host Bridge (PHB). The TCE table can be
large enough to cover 4GB of device accessi-
ble memory. Calgary will fetch translations as
appropriate and cache them locally in a man-
ner similar to a TLB, or IOTLB. The IOTLB,
much like the TLB on an MMU, provides a
software accessible mechanism that can invali-
date cache entries as the entries in system mem-
ory are modified. Addresses above the 4GB

74 • Utilizing IOMMUs for Virtualization in Linux and Xen

boundary are accessible using PCI DAC com-
mands. If these commands originate from the
device and are permitted, they will bypass the
TCE translation. Calgary ships in some IBM
System P and System X systems.

IBM’s CPC925 (U3) northbridge, which can
be found on JS20/21 Blades and Apple G5
machines, provides IOMMU mechanisms us-
ing a DMA Address Relocation Table (DART).
DART is similar to the Calgary TCE table, but
differs in that the entries only track validity
rather than access rights. As with the Cal-
gary, the U3 maintains an IOTLB and provides
a software-accessible mechanism for invalidat-
ing entries.

The Cell Processor has a translation- and
isolation-capable IOMMU implemented on
chip. Its bus address space uses a segmented
translation model that is compatible with the
MMU in the PowerPC core (PPE). This two-
level approach not only allows for efficient
user level device drivers, but also allows ap-
plications running on the Synergistic Process-
ing Engine (SPE) to interact with devices di-
rectly. The Cell IOMMU maintains two lo-
cal caches—one for caching segment entries
and another for caching page table entries, the
IOSLB and IOTLB, respectively. Each has a
separate software accessible mechanism to in-
validate entries. However, all entries in both
caches are software accessible, so it is possi-
ble to program all translations directly in the
caches, increasing the determinism of the trans-
lation stage.

2 Linux IOMMU support and the
DMA mapping API

Linux runs on many different platforms. Those
platforms may have a hardware IOMMU em-
ulation such as SWIOTLB, or direct hard-
ware access. The software that enables these

IOMMUs must abstract its internal, device-
specific DMA mapping functions behind the
generic DMA API. In order to write generic,
platform-independent drivers, Linux abstracts
the IOMMU details inside a common API,
known as the “DMA” or “DMA mapping”
API [7] [8]. As long as the implementation con-
forms to the semantics of the DMA API, a well
written driver that is using the DMA API prop-
erly should “just work” with any IOMMU.

Prior to this work, Linux’s x86-64 architec-
ture included three DMA API implementa-
tions: NOMMU, SWIOTLB, and GART. NOMMU

is a simple, architecture-independent imple-
mentation of the DMA API. It is used when
the system has neither a hardware IOMMU nor
software emulation. All it does is return the
physical memory address for the memory re-
gion it is handed as the DMA address for the
adapter to use.

Linux includes a software implementation
of an IOMMU’s translation function, called
SWIOTLB. SWIOTLB was first introduced in
arch/ia64 [3] and is used today by both
IA64 and x86-64. It provides translation
through a technique called bounce buffering.
At boot time, SWIOTLB sets aside a large phys-
ically contiguous memory region (the aper-
ture), which is off-limits to the OS. The size
of the aperture is configurable and ranges from
several to hundreds of megabytes. SWIOTLB

uses this aperture as a location for DMAs that
need to be remapped to system memory higher
than the 4GB boundary. When a driver wishes
to DMA to a memory region, the SWIOTLB

code checks the system memory address of
that region. If it is directly addressable by
the adapter, the DMA address of the region is
returned to the driver and the adapter DMAs
there directly. If it is not, SWIOTLB allocates a
“bounce buffer” inside the aperture, and returns
the bounce buffer’s DMA address to the driver.
If the requested DMA operation is a DMA read

2006 Linux Symposium, Volume One • 75

(read from memory), the data is copied from
the original buffer to the bounce buffer, and the
adapter reads it from the bounce buffer’s mem-
ory location. If the requested DMA operation is
a write, the data is written by the adapter to the
bounce buffer, and then copied to the original
buffer.

SWIOTLB treats the aperture as an array, and
during a DMA allocation it traverses the array
searching for enough contiguous empty slots in
the array to satisfy the request using a next-fit
allocation strategy. If it finds enough space to
satisfy the request, it passes the location within
the aperture for the driver to perform DMA op-
erations. On a DMA write, SWIOTLB performs
the copy (“bounce”) once the driver unmaps
the IO address. On a DMA read or bidirec-
tional DMA, the copy occurs during the map-
ping of the memory region. Synchronization
of the bounce buffer and the memory region
can be forced at any time through the various
dma_sync_xxx function calls.

SWIOTLB is wasteful in CPU operations and
memory, but is the only way some adapters
can access all memory on systems without an
IOMMU. Linux always uses SWIOTLB on IA64
machines, which have no hardware IOMMU.
On x86-64, Linux will only use SWIOTLB when
the machine has greater than 4GB memory and
no hardware IOMMU (or when forced through
the iommu=force boot command line argu-
ment).

The only IOMMU that is specific to x86-64
hardware is AMD’s GART. GART’s implemen-
tation works in the following way: the BIOS
(or kernel) sets aside a chunk of contiguous
low memory (the aperture), which is off-limits
to the OS. There is a single aperture for all
of the devices in the system, although not ev-
ery device needs to make use of it. GART

uses addresses in this aperture as the IO ad-
dresses of DMAs that need to be remapped to

system memory higher than the 4GB bound-
ary. The GART Linux code keeps a list of
the used buffers in the aperture via a bitmap.
When a driver wishes to DMA to a buffer, the
code verifies that the system memory address
of the buffer’s memory falls within the device’s
DMA mask. If it does not, then the GART

code will search the aperture bitmap for an
opening large enough to satisfy the number of
pages spanned by the DMA mapping request.
If it finds the required number of contiguous
pages, it programs the appropriate remapping
(from the aperture to the original buffer) in the
IOMMU and returns the DMA address within
the aperture to the driver.

We briefly described seven different IOMMU
designs. AMD’s GART and IBM’s DART pro-
vide translation but not isolation. Conversely,
AMD’s Device Exclusion Vector provides iso-
lation but not translation. IBM’s Calgary and
Cell are the only two architectures available to-
day which provide both translation and isola-
tion. However, AMD’s and Intel’s forthcoming
IOMMUs will soon be providing these capabil-
ities on most x86 machines.

3 Xen IOMMU support

Xen [5] [6] is a virtual machine monitor for
x86, x86-64, IA64, and PowerPC that sup-
ports execution of multiple guest operating sys-
tems on the same physical machine with high
performance and resource isolation. Operat-
ing systems running under Xen are either para-
virtualized (their source code is modified in or-
der to run under a hypervisor) or fully virtu-
alized (source code was designed and written
to run on bare metal and has not been mod-
ified to run under a hypervisor). Xen makes
a distinction between “physical” (interchange-
ably referred to as “pseudo-physical”) frames

76 • Utilizing IOMMUs for Virtualization in Linux and Xen

and machine frames. An operating system run-
ning under Xen runs in a contiguous “physi-
cal” address space, spanning from physical ad-
dress zero to end of guest “physical” memory.
Each guest “physical” frame is mapped to a
host “machine” frame. Naturally, the physical
frame number and the machine frame number
will be different most of the time.

Xen has different uses for IOMMU than tradi-
tional Linux. Xen virtual machines may strad-
dle or completely reside in system memory
over the 4GB boundary. Additionally, Xen
virtual machines run with a physical address
space that is not identity mapped to the ma-
chine address space. Therefore, Xen would like
to utilize the IOMMU so that a virtual machine
with direct device access need not be aware of
the physical to machine translation, by present-
ing an IO address space that is equivalent to
the physical address space. Additionally, Xen
would like virtual machines with hardware ac-
cess to be isolated from other virtual machines.

In theory, any IOMMU driver used by Linux on
bare metal could also be used by Linux under
Xen after being suitably adapted. The changes
required depend on the specific IOMMU, but
in general the modified IOMMU driver would
need to map from PFNs to MFNs and allo-
cate a machine contiguous aperture rather than
a pseudo-physically contiguous aperture. In
practice, as of Xen’s 3.0.0 release, only a mod-
ified version of SWIOTLB is supported.

Xen’s controlling domain (dom0) always uses a
modified version of SWIOTLB. Xen’s SWIOTLB

serves two purposes. First, since Xen domains
may reside in system memory completely
above the 4GB mark, SWIOTLB provides a
machine-contiguous aperture below 4GB. Sec-
ond, since a domain’s pseudo-physical memory
may not be machine contiguous, the aperture
provides a large machine contiguous area for
bounce buffers. When a stock Linux driver run-
ning under Xen makes a DMA API call, the call

always goes through dom0’s SWIOTLB, which
makes sure that the returned DMA address is
below 4GB if necessary and is machine con-
tiguous. Naturally, going through SWIOTLB on
every DMA API call is wasteful in CPU cycles
and memory and has a non-negligible perfor-
mance cost. GART or Calgary (or any other
suitably capable hardware IOMMU) could be
used to do in hardware what SWIOTLB does in
software, once the necessary support is put in
place.

One of the main selling points of virtualization
is machine consolidation. However, some sys-
tems would like to access hardware directly in
order to achieve maximal performance. For ex-
ample, one might want to put a database virtual
machine and a web server virtual machine on
the same physical machine. The database needs
fast disk access and the web server needs fast
network access. If a device error or system se-
curity compromise occurs in one of the virtual
machines, the other is immediately vulnerable.
Because of this need for security, there is a need
for software or hardware device isolation.

Xen supports the ability to allocate different
physical devices to different virtual machines
(multiple “driver domains” [10]). However,
due to the architectural limitations of most PC
hardware, notably the lack of an isolation ca-
pable IOMMU, this cannot be done securely.
In effect, any domain that has direct hardware
access is considered “trusted.” For some sce-
narios, this can be tolerated. For others (e.g., a
hosting service that wishes to run multiple cus-
tomers virtual machines on the same physical
machine), this is completely unacceptable.

Xen’s grant tables are a software solution to the
lack of suitable hardware for isolation. Grant
tables provide a method to share and transfer
pages of data between domains. They give (or
“grant”) other domains access to pages in the
system memory allocated to the local domain.
These pages can be read, written, or exchanged

2006 Linux Symposium, Volume One • 77

(with the proper permission) for the purpose of
providing a fast and secure method for domains
to receive indirect access to hardware.

How does data get from the hardware to the lo-
cal domain that wishes to make use it, when
only the driver domain can access the hard-
ware directly? One alternative would be for
the driver domain to always DMA into its own
memory, and then pass the data to the local
domain. Grant tables provide a more efficient
alternative by letting driver domains DMA di-
rectly into pages in the local domain’s memory.
However, it is only possible to DMA into pages
specified within the grant table. Of course, this
is only significant for non-privileged domains
(as privileged domains could always access the
memory of non-privileged domains). Grant ta-
bles have two methods for allowing access to
remote pages in system memory: shared pages
and page flipping.

For shared pages, a driver in the local do-
main’s kernel will advertise a page to be shared
via a hypervisor function call (“hypercall” or
“hcall”). The hcall notifies the hypervisor that
other domains are allowed to access this page.
The local domain then passes a grant table ref-
erence ID to the remote domain it is “granting”
access to. Once the remote domain is finished,
the local domain removes the grant. Shared
pages are used by block devices and any other
device that receives data synchronously.

Network devices, as well as any other device
that receives data asynchronously, use a method
known as page flipping. When page flipping, a
driver in the local domain’s kernel will adver-
tise a page to be transferred. This call notifies
the hypervisor that other domains can receive
this page. The local domain then transfers the
page to the remote domain and takes a free page
(via producer/consumer ring).

Incoming network packets need to be inspected
before they can be transferred, so that the in-

tended destination can be deduced. Since block
devices already know which domain requested
data to be read, there is no need to inspect
the data prior to sending it to its intended do-
main. Newer networking technologies (such
as RDMA NICs and Infiniband) know when a
packet is received from the wire for which do-
main is it destined and will be able to DMA it
there directly.

Grant tables, like SWIOTLB, are a software im-
plementation of certain IOMMU functionality.
Much like how SWIOTLB provides the transla-
tion functionality of an IOMMU, grant tables
provide the isolation and protection functional-
ity. Together they provide (in software) a fully
functional IOMMU (i.e., one that provides both
translation and isolation). Hardware accelera-
tion of grant tables and SWIOTLB is possible,
provided a suitable hardware IOMMU exists on
the platform, and is likely to be implemented in
the future.

4 Virtualization: IOMMU design
requirements and open issues

Adding IOMMU support for virtualization
raises interesting design requirements and is-
sues. Regardless of the actual functionality of
an IOMMU, there are a few basic design re-
quirements that it must support to be useful in a
virtualized environment. Those basic design re-
quirements are: memory isolation, fault isola-
tion, and virtualized operating system support.

To achieve memory isolation, an operating sys-
tem or hypervisor should not allow one vir-
tual machine with direct hardware access to
cause a device to DMA into an area of physi-
cal memory that the virtual machine does not
own. Without this capability, it would be possi-
ble for any virtual machine to have access to the

78 • Utilizing IOMMUs for Virtualization in Linux and Xen

memory of another virtual machine, thus pre-
cluding running an untrusted OS on any virtual
machine and thwarting basic virtualization se-
curity requirements.

To achieve fault isolation, an operating system
or hypervisor should not allow a virtual ma-
chine that causes a bad DMA (which leads to a
translation error in the IOMMU) to affect other
virtual machines. It is acceptable to kill the er-
rant virtual machine or take its devices off-line,
but it is not acceptable to kill other virtual ma-
chines (or the entire physical machine) or take
devices that the errant virtual machines does
not own offline.

To achieve virtualized operating system sup-
port, an operating system or hypervisor needs
to support para-virtualized operating systems,
fully virtualized operating systems that are not
IOMMU-aware, and fully virtualized IOMMU-
aware operating systems. For para-virtualized
OS’s, the IOMMU support should mesh in
seamlessly and take advantage of the existing
OS IOMMU support (e.g., Linux’s DMA API).
For fully virtualized but not IOMMU-aware
OS’s, it should be possible for control tools to
construct IOMMU translation tables that mir-
ror the OS’s pseudo-physical to machine map-
pings. For fully virtualized IOMMU aware op-
erating systems, it should be possible to trap,
validate, and establish IOMMU mappings such
that the semantics the operating system expects
with regards to the IOMMU are maintained.

There are several outstanding issues and open
questions that need to be answered for IOMMU
support. The first and most critical question is:
“who owns the IOMMU?” Satisfying the isola-
tion requirement requires that the IOMMU be
owned by a trusted entity that will validate ev-
ery map and unmap operation. In Xen, the only
trusted entities are the hypervisor and privi-
leged domains (i.e., the hypervisor and dom0 in
standard configurations), so the IOMMU must
be owned by either the hypervisor or a trusted

domain. Mapping and unmapping entries into
the IOMMU is a frequent, fast-path operation.
In order to impose as little overhead as possi-
ble, it will need to be done in the hypervisor.
At the same time, there are compelling rea-
sons to move all hardware-related operations
outside of the hypervisor. The main reason is
to keep the hypervisor itself small and igno-
rant of any hardware details except those ab-
solutely essential, to keep it maintainable and
verifiable. Since dom0 already has all of the re-
quired IOMMU code for running on bare metal,
there is little point in duplicating that code in
the hypervisor.

Even if mapping and unmapping of IOMMU
entries is done in the hypervisor, should dom0
or the hypervisor initialize the IOMMU and
perform other control operations? There are
arguments both ways. The argument in favor
of the hypervisor is that the hypervisor already
does some IOMMU operations, and it might as
well do the rest of them, especially if no clear-
cut separation is possible. The arguments in fa-
vor of dom0 are that it can utilize all of the bare
metal code that it already contains.

Let us examine the simple case where a physi-
cal machine has two devices and two domains
with direct hardware access. Each device will
be dedicated to a separate domain. From the
point of view of the IOMMU, each device has
a different IO address space, referred to sim-
ply as an “IO space.” An IO space is a vir-
tual address space that has a distinct translation
table. When dedicating a device to a domain,
we either establish the IO space a priori or let
the domain establish mappings in the IO space
that will point to its machine pages as it needs
them. IO spaces are created when a device is
granted to a domain, and are destroyed when
the device is brought offline (or when the do-
main is destroyed). A trusted entity grants ac-
cess to devices, and therefore necessarily cre-
ates and grants access to their IO spaces. The

2006 Linux Symposium, Volume One • 79

same trusted entity can revoke access to de-
vices, and therefore revoke access and destroy
their IO spaces.

There are multiple considerations that need
to be taken into account when designing an
IOMMU interface. First, we should differen-
tiate between the administrative interfaces that
will be used by control and management tools,
and “data path” interfaces which will be used
by unprivileged domains. Creating and de-
stroying an IO space is an administrative inter-
face; mapping a machine page is a data path
operation.

Different hardware IOMMUs have different
characteristics, such as different degrees of de-
vice isolation. They might support no isola-
tion (single global IO address space for all de-
vices in the system), isolation between different
busses (IO address space per PCI bus), or iso-
lation on the PCI Bus/Device/Function (BDF)
level (i.e., a separate IO address space for each
logical PCI device function). The IO space cre-
ation interface should expose the level of iso-
lation that the underlying hardware is capable
of, and should support any of the above isola-
tion schemes. Exposing a finer-grained isola-
tion than the hardware is capable of could lead
software to a false sense of security, and ex-
posing a coarser grained isolation would not be
able to fully utilize the capabilities of the hard-
ware.

Another related question is whether several de-
vices should be able to share the same IO ad-
dress space, even if the hardware is capable
of isolating between them. Let us consider a
fully virtualized operating system that is not
IOMMU aware and has several devices dedi-
cated to it. Since the OS is not capable of uti-
lizing isolation between these devices and each
IO space consumes a small, yet non-negligible
amount of memory for its translation tables,
there is no point in giving each device a sep-
arate IO address space. For cases like this, it

would be beneficial to share the same IO ad-
dress space among all devices dedicated to a
given operating system.

We have established that it may be beneficial
for multiple devices to share the same IO ad-
dress space. Is it likewise beneficial for multi-
ple consumers (domains) to share the same IO
address space? To answer this question, let us
consider a smart IO adapter such as an Infini-
band NIC. An IB NIC handles its own trans-
lation needs and supports many more concur-
rent consumers than PCI allows. PCI dedicates
3 bits for different “functions” on the same
device (8 functions in total) whereas IB sup-
ports 24 bits of different consumers (millions
of consumers). To support such “virtualization
friendly” adapters, one could run with transla-
tion disabled in the IOMMU, or create a single
IO space and let multiple consumers (domains)
access it.

Since some hardware is only capable of hav-
ing a shared IO space between multiple non-
cooperating devices, it is beneficial to be able to
create several logical IO spaces, each of which
is a window into a single large “physical IO
space.” Each device gets its own window into
the shared address space. This model only pro-
vides “statistical isolation.” A driver program-
ming a device may guess another device’s win-
dow and where it has entries mapped, and if it
guesses correctly, it could DMA there. How-
ever, the probability of its guessing correctly
can be made fairly small. This mode of oper-
ation is not recommended, but if it’s the only
mode the hardware supports. . .

Compared to creation of an IO space, mapping
and unmapping entries in it is straightforward.
Establishing a mapping requires the following
parameters:

• A consumer needs to specify which IO
space it wants to establish a mapping

80 • Utilizing IOMMUs for Virtualization in Linux and Xen

in. Alternatives for for identifying IO
spaces are either an opaque, per-domain
“IO space handle” or the BDF that this IO
space translates for.

• The IO address in the IO address space
to establish a mapping at. The main ad-
vantage of letting the domain pick the IO
address it that it has control over how
IOMMU mappings are allocated, enabling
it to optimize their allocation based on its
specific usage scenarios. However, in the
case of shared IO spaces, the IO address
the device requests may not be available
or may need to be modified. A reasonable
compromise is to make the IO address a
“hint” which the hypervisor is free to ac-
cept or reject.

• The access permissions for the given map-
ping in the IO address space. At a mini-
mum, any of none, read only, write
only, or read write should be sup-
ported.

• The size of the mapping. It may be
specified in bytes for convenience and to
easily support different page sizes in the
IOMMU, but ultimately the exact size of
the mapping will depend on the specific
page sizes the IOMMU supports.

To reduce the number of required hypercalls,
the interface should support multiple mappings
in a single hypervisor call (i.e., a “scatter gather
list” of mappings).

Tearing down a mapping requires the following
parameters:

• The IO space this mapping is in.

• The mapping, as specified by an IO ad-
dress in the IO space.

• The size of the mapping.

Naturally, the hypervisor needs to validate that
the passed parameters are correct. For example,
it needs to validate that the mapping actually
belongs to the domain requesting to unmap it,
if the IO space is shared.

Last but not least, there are a number of miscel-
laneous issues that should be taken into account
when designing and implementing IOMMU
support. Since our implementation is targeting
the open source Xen hypervisor, some consid-
erations may be specific to a Xen or Linux im-
plementation.

First and foremost, Linux and Xen already in-
clude a number of mechanisms that either em-
ulate or complement hardware IOMMU func-
tionality. These include SWIOTLB, grant tables,
and the PCI frontend / backend drivers. Any
IOMMU implementation should “play nicely”
and integrate with these existing mechanisms,
both on the design level (i.e., provide hardware
acceleration for grant tables) and on the imple-
mentation level (i.e., do not duplicate common
code).

One specific issue that must be addressed stems
from Xen’s use of page flipping. Pages that
have been mapped into the IOMMU must be
pinned as long as they are resident in the
IOMMU’s table. Additionally, any pages that
are involved in IO may not be relinquished by
a domain (e.g., by use of the balloon driver).

Devices and domains may be added or removed
at arbitrary points in time. The IOMMU sup-
port should handle “garbage collection” of IO
spaces and pages mapped in IO when the do-
main or domains that own them die or the
device they map is removed. Likewise, hot-
plugging of new devices should also be han-
dled.

2006 Linux Symposium, Volume One • 81

5 Calgary IOMMU Design and Im-
plementation

We have designed and implemented IOMMU
support for the Calgary IOMMU found in high-
end IBM System X servers. We developed it
first on bare metal Linux, and then used the
bare metal implementation as a stepping-stone
to a “virtualization enabled” proof-of-concept
implementation in Xen. This section describes
both implementations. It should be noted that
Calgary is an isolation-capable IOMMU, and
thus provides isolation between devices resid-
ing on different PCI Host Bridges. This capa-
bility is directly beneficial in Linux even with-
out a hypervisor for its RAS capabilities. For
example, it could be used to isolate a device
in its own IO space while developing a driver
for it, thus preventing DMA related errors from
randomly corrupting memory or taking down
the machine.

5.1 x86-64 Linux Calgary support

The Linux implementation is included at the
time of this writing in 2.6.16-mm1. It is com-
posed of several parts: initialization and detec-
tion code, IOMMU specific code to map and
unmap entries, and a DMA API implementa-
tion.

The bring-up code is done in two stages: detec-
tion and initialization. This is due to the way
the x86-64 arch-specific code detects and ini-
tializes IOMMUs. In the first stage, we detect
whether the machine has the Calgary chipset.
If it does, we mark that we found a Calgary
IOMMU, and allocate large contiguous areas
of memory for each PCI Host Bridge’s trans-
lation table. Each translation table consists of
a number of entries that total the addressable
range given to the device (in page size incre-
ments). This stage uses the bootmem allocator

and happens before the PCI subsystem is ini-
tialized. In the second stage, we map Calgary’s
internal control registers and enable translation
on each PHB.

The IOMMU requires hardware-specific code
to map and unmap DMA entries. This part of
the code implements a simple TCE allocator
to “carve up” each translation table to differ-
ent callers, and includes code to create TCEs
(Translation Control Entries) in the format that
the IOMMU understands and writes them into
the translation table.

Linux has a DMA API interface to abstract the
details of exactly how a driver gets a DMA’able
address. We implemented the DMA API for
Calgary, which allows generic DMA mapping
calls to be translated to Calgary specific DMA
calls. This existing infrastructure enabled the
Calgary Linux code to be more easily hooked
into Linux without many non-Calgary specific
changes.

The Calgary code keeps a list of the used pages
in the translation table via a bitmap. When
a driver make a DMA API call to allocate a
DMA address, the code searches the bitmap for
an opening large enough to satisfy the DMA
allocation request. If it finds enough space
to satisfy the request, it updates the TCEs in
the translation table in main memory to let the
DMA through. The offset of those TCEs within
the translation table is then returned to the de-
vice driver as the DMA address to use.

5.2 Xen Calgary support

Prior to this work, Xen did not have any support
for isolation-capable IOMMUs. As explained
in previous sections, Xen does have software
mechanisms (such as SWIOTLB and grant ta-
bles) that emulate IOMMU-related functional-
ity, but does not have any hardware IOMMU

82 • Utilizing IOMMUs for Virtualization in Linux and Xen

support, and specifically does not have any
isolation-capable hardware IOMMU support.

We added proof-of-concept IOMMU support
to Xen. The IOMMU support is composed
of a thin “general IOMMU” layer, and hard-
ware IOMMU specific implementations. At
the moment, the only implementation is for
the Calgary chipset, based on the bare-metal
Linux Calgary support. As upcoming IOM-
MUs become available, we expect more hard-
ware IOMMU implementations to show up.

It should be noted that the current implemen-
tation is proof-of-concept and is subject to
change as IOMMU support evolves. In the-
ory it targets numerous IOMMUs, each with
distinct capabilities, but in practice it has only
been implemented for the single isolation-
capable IOMMU that is currently available. We
anticipate that by the time you read this, the in-
terface will have changed to better accommo-
date other IOMMUs.

The IOMMU layer receives the IOMMU re-
lated hypercalls (both the “management” hcalls
from dom0 and the IOMMU map/unmap hcalls
from other domains) and forwards them to the
IOMMU specific layer. The following hcalls
are defined:

• iommu_create_io_space – this call
is used by the management domain
(dom0) to create a new IO space that is at-
tached to specific PCI BDF values. If the
IOMMU supports only bus level isolation,
the device and function values are ignored.

• iommu_destroy_io_space – this
call is used to destroy an IO space, as iden-
tified by a BDF value.

Once an IO space exists, a domain can ask
to map and unmap translation entries in its
IOMMU using the following calls:

• u64 do_iommu_map(u64 ioaddr,
u64 mfn, u32 access, u32
bdf, u32 size);

• int do_iommu_unmap(u64
ioaddr, u32 bdf, u32 size);

When mapping an entry, the domain passes the
following parameters:

• ioaddr – The address in the IO space
that the domain would like to establish a
mapping at. This is a hint; the hypervisor
is free to use it or ignore it and return a
different IO address.

• mfn – The machine frame number that
this entry should map. In the current Xen
code base, a domain running on x86-64
and doing DMA is aware of the physi-
cal/machine translation, and thus there is
no problem with passing the MFN. In fu-
ture implementations this API will proba-
bly change to pass the domain’s PFN in-
stead.

• access – This specifies the Read/Write
permission of the entry (read here refers
to what the device can do—whether it can
only read from memory, or can write to it
as well).

• bdf – The PCI Bus/Device/Function of
the IO space that we want to map this in.
This parameter might be changed in later
revisions to an opaque IO-space identifier.

• size – How large is this entry? The cur-
rent implementation only supports a sin-
gle IOMMU page size of 4KB, but we an-
ticipate that future IOMMUs will support
large page sizes.

The return value of this function is the IO ad-
dress where the entry has been mapped.

2006 Linux Symposium, Volume One • 83

When unmapping an entry, the domain passes
the BDF, the IO address that was returned and
the size of the entry to be unmapped. The hy-
pervisor validates the parameters, and if they
validate correctly, unmaps the entry.

An isolation-capable IOMMU is likely to ei-
ther have a separate translation table for dif-
ferent devices, or have a single, shared transla-
tion table where each entry in the table is valid
for specific BDF values. Our scheme supports
both usage models. The generic IOMMU layer
finds the right translation table to use based on
the BDF, and then calls the hardware IOMMU-
specific layer to map or unmap an entry in it.
In the case of one domain owning an IO space,
the domain can use its own allocator and the
hypervisor will always use the IO addresses the
domain wishes to use. In the case of a shared
IO space, the hypervisor will be the one con-
trolling IO address allocation. In this case IO
address allocation could be done in cooperation
with the domains, for example by adding a per
domain offset to the IO addresses the domains
ask for—in effect giving each domain its own
window into the IO space.

6 Roadmap and Future Work

Our current implementation utilizes the
IOMMU to run dom0 with isolation enabled.
Since dom0 is privileged and may access all
of memory anyway, this is useful mainly as a
proof of concept for running a domain with
IOMMU isolation enabled. Our next immedi-
ate step is to run a different, non privileged and
non trusted “direct hardware access domain”
with direct access to a device and with isolation
enabled in the IOMMU.

Once we’ve done that, we plan to continue
in several directions simultaneously. We in-
tend to integrate the Calgary IOMMU support

with the existing software mechanisms such as
SWIOTLB and grant tables, both on the inter-
face level and the implementation (e.g., sharing
for code related to pinning of pages involved
in ongoing DMAs). For configuration, we are
looking to integrate with the PCI frontend and
backend drivers, and their configuration mech-
anisms.

We are planning to add support for more IOM-
MUs as hardware becomes available. In partic-
ular, we look forward to supporting Intel and
AMD’s upcoming isolation-capable IOMMUs.

Longer term, we see many exciting possibili-
ties. For example, we would like to investigate
support for other types of translation schemes
used by some devices (e.g. those used by In-
finiband adapters).

We have started looking at tuning the IOMMU
for different performance/reliability/security
scenarios, but do not have any results yet.
Most current-day machines and operating sys-
tems run without any isolation, which in theory
should give the best performance (least over-
head on the DMA path). However, IOMMUs
make it possible to perform scatter-gather co-
alescing and bounce buffer avoidance, which
could lead to increased overall throughput.

When enabling isolation in the IOMMU, one
could enable it selectively for “untrusted” de-
vices, or for all devices in the system. There
are many trade-offs that can be made when en-
abling isolation: one example is static versus
dynamic mappings, that is, mapping the entire
OS’s memory into the IOMMU up front when it
is created (no need to make map and unmap hy-
percalls) versus only mapping those pages that
are involved in DMA activity. When using dy-
namic mappings, what is the right mapping al-
location strategy? Since every IOMMU imple-
ments a cache of IO mappings (an IOTLB), we
anticipate that the IO mapping allocation strat-
egy will have a direct impact on overall system

84 • Utilizing IOMMUs for Virtualization in Linux and Xen

performance.

7 Conclusion: Key Research and
Development Challenges

We implemented IOMMU support on x86-64
for Linux and have proof-of-concept IOMMU
support running under Xen. We have shown
that it is possible to run virtualized and non-
virtualized operating systems on x86-64 with
IOMMU isolation. Other than the usual woes
associated with bringing up a piece of hard-
ware for the first time, there are also interest-
ing research and development challenges for
IOMMU support.

One question is simply how can we build bet-
ter, more efficient IOMMUs that are easier to
use in a virtualized environment? The upcom-
ing IOMMUs from IBM, Intel, and AMD have
unique capabilities that have not been explored
so far. How can we best utilize them and what
additional capabilities should future IOMMUs
have?

Another open question is whether we can use
the indirection IOMMUs provide for DMA ac-
tivity to migrate devices that are being accessed
directly by a domain, without going through
an indirect software layer such as the backend
driver. Live virtual machine migration (“live”
refers to migrating a domain while it continues
to run) is one of Xen’s strong points [9], but at
the moment it is mutually incompatible with di-
rect device access. Can IOMMUs mitigate this
limitation?

Another set of open question relate to the ongo-
ing convergence between IOMMUs and CPU
MMUs. What is the right allocation strategy
for IO mappings? How to efficiently support
large pages in the IOMMU? Does the fact that

some IOMMUs share the CPU’s page table for-
mat (e.g., AMD’s upcoming IOMMU) change
any fundamental assumptions?

What is the right way to support fully virtu-
alized operating systems, both those that are
IOMMU-aware, and those that are not?

We continue to develop Linux and Xen’s
IOMMU support and investigate these ques-
tions. Hopefully, the answers will be forthcom-
ing by the time you read this.

8 Legal

Any statements about support or other commitments
may be changed or canceled at any time without no-
tice. All statements regarding future direction and
intent are subject to change or withdrawal without
notice, and represent goals and objectives only. In-
formation is provided “AS IS” without warranty of
any kind. The information could include technical
inaccuracies or typographical errors. Improvements
and/or changes in the product(s) and/or the pro-
gram(s) described in this publication may be made
at any time without notice.

References

[1] AMD I/O Virtualization Technology
(IOMMU) Specification, 2006, http:
//www.amd.com/us-en/assets/
content_type/white_papers_
and_tech_docs/34434.pdf.

[2] Intel Virtualization Technology for
Directed I/O Architecture Specification,
2006, ftp://download.intel.
com/technology/computing/
vptech/Intel(r)_VT_for_
Direct_IO.pdf.

2006 Linux Symposium, Volume One • 85

[3] IA-64 Linux Kernel: Design and
Implementation, by David Mosberger
and Stephane Eranian, Prentice Hall
PTR, 2002, ISBN 0130610143.

[4] Software Optimization Guide for the
AMD64 Processors, 2005, http:
//www.amd.com/us-en/assets/
content_type/white_papers_
and_tech_docs/25112.PDF.

[5] Xen and the Art of Virtualization, by
B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer, in
Proceedings of the 19th ASM
Symposium on Operating Systems
Principles (SOSP), 2003.

[6] Xen 3.0 and the Art of Virtualization, by
I. Pratt, K. Fraser, S. Hand, C. Limpach,
A. Warfield, D. Magenheimer,
J. Nakajima, and A. Mallick, in
Proceedings of the 2005 Ottawa Linux
Symposium (OLS), 2005.

[7] Documentation/DMA-API.txt.

[8] Documentation/DMA-mapping.txt.

[9] Live Migration of Virtual Machines, by
C. Clark, K. Fraser, S. Hand,
J. G. Hanseny, E. July, C. Limpach,
I. Pratt, A. Warfield, in Proceedings of
the 2nd Symposium on Networked
Systems Design and Implementation,
2005.

[10] Safe Hardware Access with the Xen
Virtual Machine Monitor, by K. Fraser,
S. Hand, R. Neugebauer, I. Pratt,
A. Warfield, M. Williamson, in
Proceedings of the OASIS ASPLOS
2004 workshop, 2004.

[11] PCI Special Interest Group
http://www.pcisig.com/home.

86 • Utilizing IOMMUs for Virtualization in Linux and Xen

Towards a Highly Adaptable Filesystem Framework for
Linux

Suparna Bhattacharya
Linux Technology Center
IBM Software Lab, India
suparna@in.ibm.com

Dilma Da Silva
IBM T.J. Watson Research Center, USA

dilmasilva@us.ibm.com

Abstract

Linux R© is growing richer in independent gen-
eral purpose file systems with their own unique
advantages, however, fragmentation and diver-
gence can be confusing for users. Individual
file systems are also adding an expanding num-
ber of options (e.g. ext3) and variations (e.g.
reiser4 plugins) to satisfy new requirements.
Both of these trends indicate a need for im-
proved flexibility in file system design to ben-
efit from the best of all worlds. We explore
ways to address this need, using as our basis,
KFS (K42 file system), a research file system
designed for fine-grained flexibility.

KFS aims to support a wide variety of file struc-
tures and policies, allowing the representation
of a file or directory to change on the fly to
adapt to characteristics not well known a priori,
e.g. list-based to tree-based, or small to large
directory layouts. It is not intended as yet an-
other file system for Linux, but as a platform
to study trade-offs associated with adaptability
and evaluate new algorithms before incorpora-
tion on an established file system. We hope
that ideas and lessons learnt from the experi-
ence with KFS will be beneficial for Linux file
systems to evolve to be more adaptable and for
the VFS to enable better building-block-based
code sharing across file systems.

1 Introduction

The Linux 2.6 kernel includes over 40 filesys-
tems, about 0.6 million lines of code in total.
The large number of Linux filesystems as well
as their sheer diversity is a testament to the
power and flexibility of the Linux VFS. This
has enabled Linux to support a wide range of
existing file system formats and protocols. In-
terestingly, this has also resulted in a growing
number of new file systems that have been de-
veloped for Linux. The 2.5 development series
saw the inclusion of four(ext3, reiserFS, JFS,
and XFS) general purpose journalling filesys-
tems, while in recent times multiple cluster
filesystems have been submitted to the mainline
kernel, providing users a slew of alternatives to
choose from. Allowing multiple independent
general purpose filesystems to co-exist has also
had the positive effect of enabling each to in-
novate in parallel within its own space making
different trade-offs and evolving across multi-
ple production releases. New file systems have
a chance to prove themselves out in the real
world, letting time pick the best one rather than
standardize on one single default filesystem[6].

At the same time, the multiplicity of filesystems
that essentially address very similar needs also
sometimes leads to unwarranted fragmentation
and divergence from the perspective of users

88 • Towards a Highly Adaptable Filesystem Framework for Linux

who may find themselves faced with complex
administrative choices with associated lock-in
to a file system format chosen at a certain point
in time. This is probably one reason why
most users tend to simply adopt the default
file system provided by their Linux distribution
(i.e. ext3 or reiserfs), despite the availability of
possibly more advanced filesystems like XFS
and JFS, which might have been more suitable
for their primary workloads. Each individual
filesystem has been evolving to expand its ca-
pabilities by adding support for an increasing
number of options and variations, to satisfy new
requirements, and make continuous improve-
ments while also maintaining compatibility.

We believe that these trends point to a need for
a framework for a different kind of flexibility
in file system design for the Linux kernel, one
that allows continuous adaptability to evolv-
ing requirements, but reduces duplicate effort
while providing users the most appropriate lay-
out and capabilities for the workload and file
access patterns they are running.

This work has two main goals: (1) to inves-
tigate how far a design centered on support-
ing dynamic customization of services can help
to address Linux’s needs for flexible file sys-
tems and (2) to explore performance benefits
and trade-offs involved in a design for flexibil-
ity.

The basis of our exploration is the HFS/KFS
research effort started a decade ago. In the
Hurricane File System (HFS), the support for
dynamic alternatives for file layout were mo-
tivated by the scalability requirements of the
workloads targetted by the Hurricane operating
system project. The K42 File System (KFS)
built on the flexibility basis of HFS, expand-
ing it by encorporating the architectural prin-
ciples in the K42 Research Operating System
project. While KFS was designed as a sepa-
rate filesystem of its own, in this work we ex-
plore what it would take to apply similar tech-

niques to existing filesystems, where such fine-
grained flexibility was not an original design
consideration. We also update KFS to work
with Linux 2.6, aiming at carrying out exper-
imental work that can provide concrete infor-
mation about the impact of KFS’s approach on
addressing workload-specific performance re-
quirements.

The rest of the paper is organized as fol-
lows: Section 2 illustrates how adaptability
is currently held in Linux filesystems; Sec-
tion 3 presents the basic ideas from KFS’s de-
sign; Section 4 discusses KFS’s potential as an
adaptable filesystem framework for Linux and
Section 5 describes required future work to en-
able this vision. Section 6 concludes.

2 Adaptability in Linux filesystems

2.1 Flexibility provided by the VFS layer

The Linux Virtual File System (VFS) [24] is
quite powerful in terms of the flexibility it pro-
vides for implementing filesystems, whether
disk-based filesystems, network filesystems or
special purpose pseudo filesystems. This flex-
ibility is achieved by abstracting key filesys-
tem objects, i.e. the super block, inode and file
(for both files and directories) including the ad-
dress space mapping, the directory entry cache,
and methods associated with each of these ob-
jects. It is possible to allow different inodes in
the same filesystem to have different operation
vectors. This is used, for example, by ext3 to
support different journalling modes elegantly,
by some types of stackable/filter filesystems
to provide additional functionality to an exist-
ing filesystem, and even for specialized access
modes determined by open mode, e.g. execute-
in-place support. Additionally, the inclusion of
extended attributes support in the VFS methods

2006 Linux Symposium, Volume One • 89

allows customizable persistent per-inode state
to be maintained, which can be used to specify
variations in functional behavior at an individ-
ual file level.

The second aspect of flexibility ensues from
common code provided for implementation
of various file operations, i.e. generic rou-
tines which can be invoked by filesystems
or wrapped with additional filesystem-specific
code. The bulk of interfacing between
the VFS and the Virtual Memory Manager
(VMM), including read-ahead logic, page-
caching and access to disk blocks for block-
device-based filesystems, happens in this man-
ner. Some of these helper routines (e.g.
mpage_writepages()) accept function pointers
as arguments, e.g. for specifying a filesystem
specific getblock() routine, which also allows
for potential variation of block mapping and
consistency and allocation policies even within
the same filesystem.

Another category of helper routines called
libfs [4] is intended for simplifying the task
of writing new virtual filesystems, though cur-
rently targeted mainly at stand-alone virtual
filesystems developed for special-purpose in-
terfacing between kernel and user space, as an
alternative to using ioctls or new system calls.

2.2 Flexibility within individual filesystems

Over time, the need to satisfy new requirements
while maintaining on-disk compatibility to the
extent possible has led individual filesystems
to incorporate a certain degree of variability
within each filesystem specific implementation,
using mount options, fcntls/ioctls, file attributes
and internal layering. In this sub-section we
cover a few such examples. While we limit this
discussion to a few disk-based general purpose
filesystems, similar approaches apply to other
filesystem types as well.

We do not presently consider file systems that
are not intended to be part of the mainline
Linux kernel tree.

2.2.1 Ext3 options and backward compati-
bility

One of the often cited strengths of the ext3
filesystem is its high emphasis on backwards
and forwards compatibility and dependability,
even as it continues evolving to incorporate
new features and enhancements. This has been
achieved through a carefully designed compati-
bility bitmap scheme [22], the use of mount op-
tions and tune2fs to turn on individual features
per filesystem, conversion utilities to ease mi-
gration to new incompatible features (e.g. us-
ing resize2fs-type capability), and per-file flags
and attributes that can be controlled through the
chattr command.

Three compatibility bitmaps in the super block
determine if and how an old kernel would
mount a filesystem with an unknown feature
bit marked in each of these bitmaps: read-write
(COMPAT), read-only (RO_COMPAT), and in-
compatible (INCOMPAT)). For safety reasons,
though, the filesystem checker e2fsck takes the
stringent approach of not touching a filesystem
with an unknown feature bit even if it is in the
COMPAT set, recommending the usage of a
newer version of the utility instead. Backward
compatibility with an older kernel is useful
during a safe revert of an installation/upgrade
or in enabling the disk to be mounted from
other Linux systems for emergency recovery
purposes. For these reasons interesting tech-
niques have been used in the development of
features like directory indexing [16] making in-
terior index nodes look like deleted directory
entries and clearing directory-indexing flags
when updating directories in older kernels to
ensure compatibility as far as possible. Simi-
lar considerations are being debated during the

90 • Towards a Highly Adaptable Filesystem Framework for Linux

design of file pre-allocation support to avoid
exposing uninitialized pre-allocated blocks if
mounted by an older kernel. With the inclusion
of per-inode compatibility flags, the granularity
of backward compatibility support can be nar-
rowed down to a per-file level. This may be
useful during integration of extent maps.

The use of mount options and tune2fs makes it
possible for new, relatively less established or
incompatible features to be turned on option-
ally with explicit administrator knowledge for
a few production releases before being made
the default. Also, in the future, advanced fea-
ture sets may be bundled into a higher level
group that signifies a generational advance of
the filesystem [23]. Mount options are also
used for setting consistency policies (i.e. jour-
nalling mode) on a per filesystem basis. Ad-
ditionally, ext3 makes use of persistent file at-
tributes (through the introduction of the chattr
command), in combination with the ability to
use different operation vectors for different in-
odes, to allow certain features/policies (e.g. full
data journalling support for certain log files,
preserving reservation beyond file close for
slow-growing files) to be specified for individ-
ual files.

2.2.2 JFS and XFS

Although JFS [20] does not implement compat-
ibility bitmaps as ext3 does, its on-disk layout
is scalable, and backward compatibility has not
been much of an issue. The on-disk directory
structure was changed shortly after JFS was
ported from OS/2 R© to Linux, causing a ver-
sion bump in the super block. Since then, there
has been no need to change the on-disk layout
of JFS. The kernel will still support the older,
OS/2-compatible, format.

JFS uses extent-based data structures and uses
40 bits to store block offsets and addresses. The

on-disk layout supports various block sizes, al-
though the kernel currently only supports a 4
KB block size. Without increasing the block
size, JFS can support files and partitions up to 4
petabytes in length. B+ trees are used to imple-
ment both the extent maps and directories. In-
odes are dynamically allocated as needed, and
extents of free inodes are reclaimed. JFS can
store file names in 16-bit unicode, translating
from the code page specified by the iocharset
mount option. The default is to do no transla-
tion.

JFS supports most mount options and chattr
flags that ext3 does. Journaling can be tem-
porarily disabled with the nointegrity mount
flag. This is primarily intended to speed up
the population of a partition, for instance, from
backup media, where recovery would involve
reformatting and restarting the process, with no
risk of data loss.

XFS [21] also has a scalable ondisk layout, uses
extent based structures, variable block sizes,
dynamic inode allocation and separate alloca-
tion groups. It supports an optional real-time
allocator suitable for media streaming applica-
tions.

2.2.3 Reiser4 plugins

Much like ext3 and JFS, the reiserfs v3 filesys-
tem included in the current Linux kernel uses
mount options and persistent inode attributes
(set via chattr) to provide new features and vari-
ability of policies. For example, the hash func-
tion for directories can be selected by a mount
option, as can some tuning of the block alloca-
tor, while tail-merging can be disabled on both
a per mount point or per inode basis. It supports
the same journalling modes as ext3.

The next generation of reiserfs, the reiser4
filesystem [15] (not yet in the mainline Linux

2006 Linux Symposium, Volume One • 91

kernel), includes an internal layering architec-
ture that is intended to allow for the develop-
ment for different kinds of plugins to make ex-
tensions to the filesystem without having to up-
grade/format to a new version. This approach
enables the addition of new features like com-
pression, support for alternate semantics, di-
rectory ordering, security schemes, block allo-
cation and consistency policies, and node bal-
ancing policies for different items. The stated
goal of this architecture is to enable and encour-
age developers to build plugins to customize
the filesystem with features desired by applica-
tions. From the available material at this stage,
it is not clear to us yet the extent to which plug-
ins are intended to address fine-grain flexibility
or dynamic changes of on-disk data representa-
tion beyond tail formatting and item merging in
dancing trees. Also, at a first glance our (possi-
bly mistaken) perception is that reiser4 flexibil-
ity support comes with the price of complexity:
the code base is large, and the interfaces appear
to be tied to reiser4 internals.

2.3 Limitations of current approaches

While there is a considerable amount of flexi-
bility within the existing framework, both at the
VFS level and within individual file systems,
there are some observations and issues emerg-
ing with the evolution of multiple new filesys-
tems and new generations of filesystems that
have been in existence for a while.

• Code commonality is supported at higher
levels but not for lower level data manip-
ulation, e.g. with the inclusion of extents
support for ext3 there would be over 5 B+
separate tree implementations across indi-
vidual filesystems.

• While the combination of per-inode oper-
ation vectors and persistent attribute flags

allows for flexibility at per inode level, and
alternate allocation schemes can poten-
tially be encapsulated in the get_blocks()
function pointer used for a given opera-
tion, there is no general framework to sup-
port different layouts for different files in
a cohesive manner, to move from an old
scheme to a new one in a modular fashion,
or supply different meta-data or data allo-
cation policies for a group of files, because
the inode representation is typically fixed
upfront.

• There is no framework for filesystems
to provide their building blocks for use
by other filesystems, for example even
though OCFS2 [5] chose to start with a lot
of code from ext3 as its base, this involved
copying source code and then editing it to
add all the function it needed for clustering
support and scalability. As a result, exten-
sions like 64-bit and extents support from
OCFS2 can not be applied back as exten-
sions to ext3 as an option. Because of its
long history of simplicity and dependabil-
ity, ext2/3 is often the preferred choice for
basing experimentation for advanced ca-
pabilities [9], so the ability to specialize
behaviour starting from a common code
base is likely to be useful.

• Difficulty with making changes to the on-
disk format for an existing file system re-
sults in implementers getting locked into
supporting a change once made, and hence
requires very careful consideration and
make take years into real deployment es-
pecially for incompatible features. Even
compatible features on ext2/3 are incom-
patible with older filesystem checkers.

92 • Towards a Highly Adaptable Filesystem Framework for Linux

3 Overview of KFS

KFS builds on the research done by the Hurri-
cane File System (HFS) [14, 13, 12]. HFS was
designed for (potentially large-scale) shared-
memory multiprocessors, based on the prin-
ciple that, in order to maximize performance
for applications with diverse requirements, a
file system must support a wide variety of file
structures, file system policies, and I/O inter-
faces. As an extreme example, HFS allows
a file’s structure to be optimized for concur-
rent random-access write-only operations by 10
threads, something no other file system can do.
HFS explored its flexibility to achieve better
performance and scalability. It proved that its
flexibility came with little processing or I/O
overhead. KFS took HFS’s principles further
by eliminating global data structures or poli-
cies. KFS runs as a file system for the K42 [10]
and Linux operating systems.

The basic aspect of KFS’s enablement of fine-
grained customization is that each virtual or
physical resource instance (e.g., a particular
file, open file instance, block allocation map)
is implemented by a different set of (C++) ob-
jects. The goal of this object-oriented design is
to allow each file system element to have the
logical and physical representation that better
matches its size and access pattern characteris-
tics. Each element in the system can be ser-
viced by the object that best fits its require-
ments; if the requirements change, the compo-
nent representing the element in KFS can be re-
placed accordingly. Applications can achieve
better performance by using the services that
match their access patterns, scalability, and
synchronization requirements.

When a KFS file system is mounted, the blocks
on disk corresponding to the superblock are
read, and a SuperBlock object is instantiated to
represent it. A BlockMap object is also instanti-
ated to represent block allocation information.

Another important object instantiated at file
system creation time is the RecordMap, which
keeps the association between file system ele-
ments, their object type, and their disk location.
In many traditional Unix file systems, this as-
sociation is fixed and implicit: every file or di-
rectory corresponds to an inode number; inode
location and inode data representation is fixed
a priori. Some file systems support dynamic
block allocation for inodes and a set of alter-
native inode representations. In KFS, instead
of trying to accommodate new possibilities for
representation and dynamic policies incremen-
tally, we take the riskier route of starting with
a design intended to support change and diver-
sity of representations. KFS explores the im-
pact of an architecture centered on supporting
the design and deployment of evolving alter-
native representations for file system resources.
The goal is to learn how far this architecture
can go in supporting flexibility, and what are
the trade-offs involved in this approach.

An element (file or directory) in KFS is rep-
resented in memory by two objects: one pro-
viding a logical view of the object (called Log-
ical Server Object, or LSO), and one encap-
sulating its persistent characteristics (Physical
Server Object, or PSO).

Figure 1 portrays the scenario where three files
are instantiated: a small file, a very large file,
and a file where extended allocation is being
used. These files are represented by a common
logical object (LSO) and by PSO objects tai-
lored for their specific characteristics: PSOs-
mall, PSOextent, PSOlarge. If the small file
grows, the PSOsmall is replaced by the appro-
priate object (e.g., PSOlarge). The RecordMap
object is updated in order to reflect the new ob-
ject type and the (potential) new file location on
disk.

KFS file systems may spawn multiple disks.
Figure 2 pictures a scenario where file X is
being replicated on the two available disks,

2006 Linux Symposium, Volume One • 93

PSOsmall PSOlarge

SuperBlock

BlockMap

LSO

RecordMap

LSO LSO

PSOextent

Figure 1: Objects representing files with different size and access pattern characteristics in KFS.

while file Y is being striped on the two disks
in a round-robin fashion, and file Z is also be-
ing replicated, but with its content being com-
pressed before going to disk.

In the current KFS implementation, when a file
is created the choice of object implementation
to be used is explicitly made by the file system
code based on simplistic heuristics. Also, the
user could specify intended behavior by chang-
ing values on the appropriate objects residing
on /proc or use of extended attributes to provide
hints about the data elements they are creating
or manipulating.

As the file system evolves, compatibility with
“older” formats is kept as long as the file sys-
tem knows how to instantiate the object type to
handle the old representation.

The performance experiments with KFS for
Linux 2.4 indicate that KFS’s support for flexi-
bility doesn’t result in unreasonable overheads.
KFS on Linux 2.4 (with an implementation of
inode and directory structures matching ext2)
was found to run with a performance similar
to ext2 on many workloads and 15% slower
on some. These results are described in [18].
New performance data is being made available
at [11] as we tune KFS’s integration with Linux
2.6.

There are two ongoing efforts on using KFS’s

flexible design to quickly prototype and eval-
uate opportunities for alternative policies and
data representation:

• Co-location of meta-data and data: a pro-
totype of directory structure for embed-
ding file attributes in directory entries
where we extend the ideas proposed in [8]
by doing meta-data and block allocation
on a per-directory basis;

• Local vs global RecordMap structure: al-
though KFS’s design tried to avoid the use
of global data structures, its initial proto-
type implementation has a single object
(one instance of the RecordMap class) re-
sponsible for mapping elements onto type
and disk location. As our experimenta-
tion progressed, it became clear that this
data structure was hindering scalability
and flexibility, and imposing performance
overhead due to lack of locality between
the RecordMap entry for a file and its
data. Our current design explores asso-
ciating different RecordMap objects with
different parts of the name space.

More information about KFS can be found at
[18, 7].

94 • Towards a Highly Adaptable Filesystem Framework for Linux

X1

X1

X2

X2

X3

X3

Y1

Y2

Y3

Y4

Z1 Z2 Z3

Z2 Z3

File X File Y File Z

LSO LSO LSO

PSOreplicated PSOstriped
PSOcompr

PSOreplicated

Disk 1

Disk 2 Z1

Figure 2: KFS objects and block allocation for files X (replicated; blocks X1, X2, X3), Y (striped;
blocks Y1, Y2, Y3, Y4), and Z (compressed and replicated; blocks Z1, Z2, Z3).

4 Learnings from KFS towards an
adaptable filesystem framework
for Linux

What possibilities does the experience with
KFS suggest towards addressing some of the
concerns discussed in section 2.3? Intuitively,
it appears that the ideas originating from HFS,
and developed further in KFS, of a bottom-
up building-block-based, fine-grained approach
to flexibility for experimenting with special-
ized behaviour and data organization on a per-
element basis, could elegantly complement the
current VFS approach of abstracting higher lev-
els of commonality that allows an abundance
of filesystems. While KFS was developed as
a separate filesystem, we do not believe that
adding yet another filesystem to Linux is the
right answer. Instead developing simple meth-
ods of applying KFS-like flexibility to existing
filesystems incrementally, while possibly non-
trivial, may be a promising approach to pursue.

4.1 Switching formats

While many of the file systems mentioned in
Section 2 (ext2/3, reiserfs, JFS, XFS, OCFS2)
are intended to be general-purpose file systems,
each appears to have its own sweet-spot usage
scenarios or access patterns that sets it apart
from the rest. Various comparison charts [1, 17,
19] exist that highlight the strengths and weak-
nesses of these alternatives to enable adminis-
trators to make the right choice for their sys-
tems when they format their disks at the time
of first installation. However, predicting the
nature of workloads ahead of time, especially
when mixed access patterns may apply to dif-
ferent files in the same filesystem at different
times, is difficult. Unlike configuration options
or run-time tunables, switching a choice of on-
disk format on a system is highly disruptive and
resoure consuming. With an adaptable frame-
work that can alter representations on a per-
element basis in response to significant changes
in access patterns, living with a less than opti-
mal solution as a result of being locked into a

2006 Linux Symposium, Volume One • 95

given on-disk filesystem representation would
no longer be necessary.

We have described earlier (section 3) that in
KFS it is possible to create new formats and
work with them, with other formats being si-
multaneously active as well. This is possi-
ble due to (1) the association between a Log-
ical Storage Object (LSO) and its associated
Physical Storage Object (PSO) is not fixed,
and (2) the implementation of local rather than
global control structures for different types of
resource allocation. We plan to experiment
with abstracting this mechanism so that it can
be used by existing filesystems, for example
for upgrading to new file representations like
64-bit and extents support in ext3 including the
new multi-block allocator implementation from
Alex Tomas [2]. We would like to compare
the results with the current approach in ext3
for achieving the format switch, which relies
on per-inode flags and alternate inode operation
vectors.

4.2 Evaluation of alternate layouts and
policies

The ability to switch formats and layout poli-
cies enables KFS to provide a platform for de-
termining optimal layout and allocation poli-
cies for a filesystem through ongoing experi-
mentation and comparative evaluation. Typi-
cally, layout decisions are very closely linked
to the particular context in which the file system
is intended to be used, e.g. considering under-
lying media, nature of application workloads,
data access patterns, available space, filesys-
tem aging/fragmentation, etc. With the mech-
anisms described in the previous sub-section in
place, we intend to demonstrate performance
advantages over the long run from being able
to choose and switch from alternative repre-
sentations, for example from a very small file
oriented representation with data embedded

within the inode, to direct, indirect block map-
ping, to extents maps based on file size, distri-
bution and access patterns.

4.3 Assessment of overheads imposed by
flexibility

It is said that any problem in computer science
can be solved by adding an extra level of in-
direction. The only problem is that indirec-
tions do not come for free, especially if it in-
volves extra disk seeks to perform an opera-
tion. It is for this reason that ext2/3, for ex-
ample, attempts to allocate indirect blocks con-
tiguously with the data blocks they map to, and
why support for extended attributes storage in
large inodes has been demonstrated to deliver
significant performance gains for Samba work-
loads [3] compared to storage of attributes in a
separate block. This issue has been a primary
design consideration for KFS. The original
HFS/KFS effort has been specifically concep-
tualized with a view towards enabling high per-
formance and scalability through fine-grained
flexibility, rather than with an intent of adding
layers of high level semantic features.

Initial experiments with KFS seem to indicate
that the benefits of flexibility outweigh over-
heads, given a well-designed meta-data caching
mechanism and right choice of building blocks
where indirections go straight to the most ap-
propriate on-disk objects when a file element
is first looked up. The ability to have entirely
different and variable-sized “inode” represen-
tations for different types of files amortizes the
cost across all subsequent operations on a file.
It remains to be verified whether this is proved
to be valid on a broad set of workloads and
whether the same argument would apply in the
context of adding flexibility to existing filesys-
tems without requiring invasive changes.

Would the reliance on C++ in KFS be concern
for application to existing Linux filesystems?

96 • Towards a Highly Adaptable Filesystem Framework for Linux

Inheritance has proven to be very useful dur-
ing the development of per-element specializa-
tion in KFS, as it simplified coding to a great
extent and enabled workload-specific optimiza-
tions. However, being able to move to C with
a minimalist scheme may be a desirable goal
when working with existing filesystems in the
linux kernel.

4.4 Ability to drop experimental layout
changes easily

As described in section 2.3, the problem of
being stuck with on-disk format changes once
made necessitates a stringent approach towards
adoption of layout improvements which may
result in years of lead time into actual deploy-
ment of state-of-the-art filesystem enhance-
ments.

In KFS, as we add new formats, we can still
work with old ones for compatibility, but the
old ones can be kept out of the mainstream im-
plementation. The code is activated when read-
ing old representations, and we can on the fly
“migrate” to the new format as we access it, al-
beit at a certain run-time overhead.

This does not however address the issue of han-
dling backward compatibility with older ker-
nels. Perhaps it would make sense to include
a compatibility information scheme at a per-
PSO level, similar to the ext2/3 filesystem’s su-
perblock level compatibility bitmaps. For ex-
ample, in the situation where we are able to ex-
tend a given PSO type to a new scheme in a
way that is backward compatible with the ear-
lier PSO type (e.g. as in case of the directory in-
dexing feature), we would like to indicate that
so that an older kernel does not reject it.

5 Future work

Section 4 has discussed ongoing work on KFS
that, in the short term, may result in useful
insights for achieving an adaptable filesystem
framework for Linux. In this section we dis-
cuss new work to be done that is essential to
realizing this adaptable framework.

5.1 Adaptability in the filesystem checker
and tools

With adaptable building blocks and support for
multiple alternate formats as part of a per ele-
ment specialization, it follows that file-system
checker changes would be required to be able
to recognize, load, and handle new PSOs as
well as perform some level of general consis-
tency checks based on the indication of location
and sizes common to all elements, and pars-
ing the record map(s). As with existing filesys-
tem checkers, backward compatibility remains
a tricky issue. The PSO compatibility scheme
discussed earlier could be used to flag situ-
ations where newer versions of tools are re-
quired. Likewise, other related utilities like
low-level backup utilities (e.g dump), migra-
tion tools, defragmenter, debugfs, etc would
need to be dynamically extendable to handle
new formats.

5.2 Address the problem of sharing granu-
lar building blocks across filesystems

KFS was not originally designed with the in-
tent of enabling building-block sharing across
existing file systems. However, given poten-
tial benefits in factoring core ext2/3 code, data-
consistency schemes and additional capabili-
ties (e.g. clustering), as well as extensions to
libfs beyond its current limited scope of ap-
plication, it is natural to ask whether KFS-
type constructs could be useful in this context.

2006 Linux Symposium, Volume One • 97

Could the same principles that allow per ele-
ment flexibility through building block compo-
sition be taken further to enable abstraction of
these building blocks in a way that not tightly
tied to the containing filesystem? Design issues
that may need to be explored in order to evalu-
ate the viability of this possibility include figur-
ing out how a combination of PSOs, e.g. alter-
nate layouts and alternate consistency, schemes
could be built efficiently in the context of an
existing filesystem in a manner that is reusable
in the context of another filesystem. The ef-
fort involved in trying to refactor existing code
into PSOs may not be small; a better approach
may be to start this with a few simple building
blocks and use the framework for new building
blocks created from here on.

5.3 Additional Issues

Another aspect that needs further exploration is
whether the inclusion of building blocks and as-
sociated specialization adds to overall testing
complexity for distributions, or if the frame-
work can be enhanced to enable a systematic
approach to be devised to simplify such verifi-
cation.

6 Conclusions

We presented KFS and discussed that the expe-
rience so far indicates that KFS can be a pow-
erful approach to support flexibility of services
in a file system down to a per-element granu-
larity. We also argued that the approach does
not come with unacceptable performance over-
heads, and that it allows for workload-specific
optimizations. We believe that the flexibility
in KFS makes it a good prototype environ-
ment for experimenting with new file system
resource management policies or file represen-
tations. As new emerging workloads appear,

KFS can be useful to the Linux community
by providing evaluation results for alternative
representations and by advancing the applica-
tion of different data layouts for different files
within the same filesystem, determined either
statically or dynamically in response to chang-
ing access patterns.

In this paper we propose a new exploration of
KFS: to investigate how its building-block ap-
proach could be abstracted from KFS’s imple-
mentation to allow code sharing among file sys-
tems, providing a library-like collection of al-
ternative implementations to be experimented
with across file systems. We do not have yet
evidence that this approach is feasible, but as
we improve the integration of KFS (originally
designed for the K42 operating system) with
Linux 2.6 we hope to have a better understand-
ing of KFS’s general applicability.

Acknowledgements

We would like to thank Dave Kleikamp for
contributing the section on JFS flexibility, and
Christoph Hellwig for his inputs on XFS.

Orran Krieger started KFS based on his expe-
rience with designing and implementing HFS.
He has been a steady source of guidance and
motivation for KFS developers, always avail-
able for in-depth design reviews that improved
KFS and made our work more fun. We thank
him for his insight and support.

We would like to thank Paul McKenney, Val
Henson, Mingming Cao, and Chris Mason for
their valuable review feedback on early drafts
of this paper, and H. Peter Anvin and Mel Gor-
man for helping us improve our proposal. This
paper might never have been written but for
insightful discussions with Stephen Tweedie,
Theodore T’so, and Andreas Dilger over the

98 • Towards a Highly Adaptable Filesystem Framework for Linux

course of the last year. We would like to thank
them and other ext3 filesystem developers for
their steady focus on continuously improving
the ext3 filesystem, devising interesting tech-
niques to address conflicting goals of depend-
ability vs state-of-the-art advancement. Finally
we would like to thank the linux-fsdevel com-
munity for numerous discussions over years
which motivated this paper.

This work was partially supported by DARPA
under contract NBCH30390004.

Availability

KFS is released as open source as part of
the K42 system, available from a public CVS
repository; for details refer to the K42 web
site: http://www.research.ibm.com/
K42/.

Legal Statement

Copyright c© 2006 IBM.

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM and OS/2 are trademarks or registered trade-
marks of International Business Machines Corpora-
tion in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds in
the United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM oper-
ates.

This document is provied “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.

References

[1] Ray Bryant, Ruth Forester, and John
Hawkes. Filesystem performance and
scalability in linux 2.4.17. In USENIX
Annual Technical Conference, 2002.

[2] M. Cao, T.Y. Tso, B. Pulavarty,
S. Bhattacharya, A. Dilger, and
A. Tomas. State of the art: Where we are
with the ext3 filesystem. In Proceedings
of the Ottawa Linux Symposium(OLS),
pages 69–96, 2005.

[3] Jonathan Corbet. Which filesystem for
samba4? http:

//lwn.net/Articles/112566/.

[4] Jonathan Corbet. Creating linux virtual
file systems. http:
//lwn.net/Articles/57369/,
November 2003.

[5] Jonathan Corbet. The OCFS2 filesystem.
http:

//lwn.net/Articles/137278/, May
2005.

[6] Alan Cox. Posting on linux-fsdevel.
http://marc.theaimsgroup.com/

?l=linux-fsdevel&m=

112558745427067&w=2, September
2005.

[7] Dilma da Silva, Livio Soares, and Orran
Krieger. KFS: Exploring flexilibity in file
system design. In Proc. of the Brazilian
Workshop in Operating Systems,
Salvador, Brazil, August 2004.

2006 Linux Symposium, Volume One • 99

[8] Greg Ganger and Frans Kaashoek.
Embedded inodes and explicit gruopings:
Exploiting disk bandwith for small files.
In Proceedings of the 1997 Usenix
Annual Technical Conference, pages
1–17, January 1997.

[9] Val Henson, Zach Brown, Theodore
Ts’o, and Arjan van de Ven. Reducing
fsck time for ext2 filesystems. In
Proceedings of the Ottawa Linux
Symposium(OLS), 2006.

[10] The K42 operating system, http:
//www.research.ibm.com/K42/.

[11] Kfs performance experiments.
http://k42.ozlabs.org/Wiki/

KfsExperiments, 2006.

[12] O. Krieger and M. Stumm. HFS: A
performance-oriented flexible filesystem
based on build-block compositions. ACM
Transactions on Computer Systems,
15(3):286–321, 1997.

[13] Orran Krieger. HFS: A Flexible File
System for Shared-Memory
Multiprocessors. PhD thesis, Department
of Electrical and Computer Engineering,
University of Toronto, 1994.

[14] Orran Krieger and Michael Stumm. HFS:
A flexible file system for large-scale
multiprocessors. In Proceedings of the
DAGS/PC Symposium (The Second
Annual Dartmouth Institute on Advanced
Graduate Studies in Parallel
Computation), 1993.

[15] Namesys. Reiser4. http:
//www.namesys.com/v4/v4.html,
August 2004.

[16] Daniel Phillips. A directory index for
ext2. In 5th Annual Linux Showcase and
Conference, pages 173–182, 2001.

[17] Justin Piszcz. Benchmarking File
Systems Part II.

[18] Livio Soares, Orran Krieger, and
Dilma Da Silva. Meta-data snapshotting:
A simple mechanism for file system
consistency. In SNAPI’03 (International
Workshop on Storage Network
Architecture and Parallel I/O), pages
41–52, 2003.

[19] John Troy Stepan. Linux File Systems
Comparative Performance. Linux
Gazette, January 2006.
http://linuxgazette.net/122/

TWDT.html.

[20] IBM JFS Core Team.

[21] SGI XFS Team. XFS: a
high-performance journaling filesystem.

[22] Stephen Tweedie and Theodore Y Ts’o.
Planned extensions to the linux ext2/3
filesystem. In USENIX Annual Technical
Conference, pages 235–244, 2002.

[23] Stephen C Tweedie. Re: Rfc: mke2fs
with dir_index, resize_inode by default,
March, 2006.

[24] Linux kernel sourcecode vfs
documentation. file Documentaion/
filesystems/vfs.txt.

100 • Towards a Highly Adaptable Filesystem Framework for Linux

Multiple Instances of the Global Linux Namespaces

Eric W. Biederman
Linux Networx

ebiederman@lnxi.com

Abstract

Currently Linux has the filesystem namespace
for mounts which is beginning to prove use-
ful. By adding additional namespaces for pro-
cess ids, SYS V IPC, the network stack, user
ids, and probably others we can, at a trivial
cost, extend the UNIX concept and make novel
uses of Linux possible. Multiple instances of a
namespace simply means that you can have two
things with the same name.

For servers the power of computers is growing,
and it has become possible for a single server
to easily fulfill the tasks of what previously re-
quired multiple servers. Hypervisor solutions
like Xen are nice but they impose a perfor-
mance penalty and they do not easily allow re-
sources to be shared between multiple servers.

For clusters application migration and preemp-
tion are interesting cases but almost impossibly
hard because you cannot restart the application
once you have moved it to a new machine, as
usually there are resource name conflicts.

For users certain desktop applications interface
with the outside world and are large and hard
to secure. It would be nice if those applications
could be run on their own little world to limit
what a security breach could compromise.

Several implementations of this basic idea have
been done succsessfully. Now the work is

to create a clean implementation that can be
merged into the Linux kernel. The discussion
has begun on the linux-kernel list and things are
slowly progressing.

1 Introduction

1.1 High Performance Computing

I have been working with high performance
clusters for several years and the situation is
painful. Each Linux box in the cluster is ref-
ered to as a node, and applications running or
queued to run on a cluster are jobs.

Jobs are run by a batch scheduler and, once
launched, each job runs to completion typically
consuming 99% of the resources on the nodes
it is running on.

In practice a job cannot be suspended,
swapped, or even moved to a different set of
nodes once it is launched. This is the oldest
and most primitive way of running a computer.
Given the long runs and high computation over-
head of HPC jobs it isn’t a bad fit for HPC en-
vironments, but it isn’t a really good fit either.

Linux has much more modern facilities. What
prevents us from just using them?

102 • Multiple Instances of the Global Linux Namespaces

HPC jobs currently can be suspended, but that
just takes them off the cpu. If you have suffi-
cient swap there is a chance the jobs can even
be pushed to swap but frequently these applica-
tion lock pages in memory so they can be en-
sured of low latency communication.

The key problem is simply having multiple ma-
chines and multiple kernels. In general, how
to take an application running under one Linux
kernel and move it completely to another kernel
is an unsolved problem.

The problem is unsolved not because it is fun-
damentally hard, but simply because it has
not be a problem in the UNIX environment.
Most applications don’t need multiple ma-
chines or even big machines to run on (espe-
cially with Moore’s law exponentially increas-
ing the power of small machines). For many of
the rest the large multiprocessor systems have
been large enough.

What has changed is the economic observation
that a cluster of small commodity machines is
much cheaper and equally as fast as a large su-
percomputer.

The other reason this problem has not been
solved (besides the fact that most people work-
ing on it are researchers) is that it is not im-
mediately obvious what a general solution is.
Nothing quite like it has been done before so
you can’t look into a text book or into the
archives of history and know a solution. Which
in the broad strokes of operating system theory
is a rarity.

The hard part of the problem also does not lie
in the obvious place people first look— how to
save all of the state of an application. Instead,
the problem is how do you restore a saved ap-
plication so it runs successfully on another ma-
chine.

The problem with restoring a saved applica-
tion is all of the global resources an application

uses. Process ids, SYS V IPC identifiers, file-
names, and the like. When you restore an appli-
cation on another machine there is no guarantee
that it can reuse the same global identifiers as
another process on that machine may be using
those identifiers.

There are two general approaches to solving
this problem. Modifying things so these global
machine identifiers are unique across all ma-
chines in a cluster, or modifying things so these
machine global identifiers can be repeated on
a single machine. Many attempts have been
made to scale global identifiers cluster-wide—
Mosix, OpenSSI, bproc, to name a few—and
all of them have had to work hard to scale. So
I choose to go with an implementation that will
easily scale to the largest of clusters, with no
communication needed to do so.

This has the added advantage that in a cluster
it doesn’t change the programming model pre-
sented to the user. Just some machines will
now appear as multiple machines. As the rise
of the internet has shown building applications
that utilize multiple machines is not foreign to
the rest of the computing world either.

To make this happen I need to solve the
challenging problem of how to refactor the
UNIX/Linux API so that we can have multi-
ple instances of the global Linux namespaces.
The Plan 9 inspired mount/filesystem name-
space has already proved how this can be done
and is slowly proving useful.

1.2 Jails

Outside the realm of high perfomance comput-
ing people have been restricting their server ap-
plication to chroot jails for years. The problems
with chroot jails have become well understood
and people have begun fixing them. First BSD
jails, and then Solaris containers are some of
the better known examples.

2006 Linux Symposium, Volume One • 103

Under Linux the open source community has
not been idle. There is the linux-jail project,
Vserver, Openvz, and related projects like
SELinux, UML, and Xen.

Jails are a powerful general purpose tool use-
ful for a great variety of things. In resource
utilization jails are cheap, dynamically load-
ing glibc is likely to consume more memory
than the additional kernel state needed to track
a jail. Jails allow applications to be run in sim-
ple stripped down environments, increasing se-
curity, and decreasing maintenance costs, while
leaving system administrators with the familiar
UNIX environment.

The only problem with the current general pur-
pose implementation of jails under Linux is
nothing has been merged into the mainline ker-
nel, and the code from the various projects is
not really mergable as it stands. The closest I
have seen is the code from the linux-jail project,
and that is simply because it is less general pur-
pose and implemented completely as a Linux
security module.

Allowing multiple instances of global names
which is needed to restore a migrated applica-
tion is a more constrained problem than that of
simply implementing a jail. But a jail that en-
sures you can have multiple instances of all of
the global names is a powerful general purpose
jail that you can run just about anything in. So
the two problems can share a common kernel
solution.

1.3 Future Directions

A cheap and always available jail mecha-
nism is also potentially quite useful outside
the realm of high performance computing
and server applications. A general purupose
checkpoint/restart mechanism can allow desk-
top users to preserve all of their running appli-

cations when they log out. Vulnerable or un-
trusted applications like a web browser or an irc
client could be contained so that if they are at-
tacked all that is gained is the ability to browse
the web and draw pictures in an X window.

There would finally be answer to the age old
question: How do I preserve my user space
while upgrading my kernel?

All this takes is an eye to designing the inter-
faces so they are general purpose and nestable.
It should be possible to have a jail inside a jail
inside a jail forever, or at least until there don’t
exist the resources to support it.

2 Namespaces

How much work is this? Looking at the ex-
isting patches it appears that 10,000 to 20,000
lines of code will ultimately need to be touched.
The core of Linux is about 130,000 lines of
code, so we will need to touch between 7% and
15% of the core kernel code. Which clearly
indicates that one giant patch to do everything
even if it was perfect would be rejected simply
because it is too large to be reviewed.

In Linux there are multiple classes of global
identifiers (i.e. process id, SYS V IPC keys,
user ids). Each class of identifier can be thought
of living in its own namespace.

This gives us a natural decomposition to the
problem, allowing each namespace to be mod-
ified separately so we can support multiple in-
stances of that namespace. Unfortunately this
also increases the difficulty of the problem, as
we need to modify the kernel’s reporting and
configuration interfaces to support multiple in-
stances of a namespace instead of having them
tightly coupled.

104 • Multiple Instances of the Global Linux Namespaces

The plan then is simple. Maintain backwards
compatibility. Concentrate on one namespace
at a time. Focus on implementing the abil-
ity to have multiple objects of a given type,
with the same name. Configure a namespace
from the inside using the existing interfaces.
Think of these things ultimately not as servers
or virtual machines but as processes with pe-
culiar attributes. As far as possible implement
the namespaces so that an application can be
given the capability bit for that allows full con-
trol over a namespace and still not be able to
escape. Think in terms of a recursive imple-
mentation so we always keep in mind what it
takes to recurse indefinitely.

What the system call interface will be to cre-
ate a new instance of a namespace is still up
for debate. The current contenders are a new
CLONE_ flag or individual system calls. I per-
sonally think a flag to clone and unshare is
all that is needed but if arguments are actually
needed a new system call makes sense.

Currently I have identified ten separate names-
paces in the kernel. The filesystem mount
namespace, uts namespace, the SYS V IPC
namespace, network namespace, the pid name-
space, the uid namespace, the security name-
space, the security keys namespace, the device
namespace, and the time namespace.

2.1 The Filesystem Mount Namespace

Multiple instances of the filesystem mount
namespace are already implemented in the sta-
ble Linux kernels so there are few real issues
with implementing it. There are still outstand-
ing question on how to make this namespace
usable and useful to unpriviledged processes, as
well as some ongoing work to allow the filesys-
tem mount namespace to allow bind mounts to
have bind flags. For example, so the the bind
mount can be restricted read only when other
mounts of the filesystem are still read/write.

int uname(struct utsname *buf);
struct utsname {

char sysname[];
char nodename[];
char release[];
char version[];
char machine[];
char domainname[];

};

Figure 1: uname

CAP_SYS_ADMIN is currently required to
modify the mount namespace, although there
has been some discussion on how to relax the
restrictions for bind mounts.

2.2 The UTS Namespace

The UTS namespace characterizes and identi-
fies the system that applications are running on.
It is characterizeed by the uname system call.
uname returns six strings describing the cur-
rent system. See Figure 1.

The returned utsname structure has only two
members that vary at runtime nodename and
domainname. nodename is the classic host-
name of a system. domainname is the NIS
domainname. CAP_SYS_ADMIN is required
to change these values, and when the system
boots they start out as "(none)".

The pieces of the kernel that report and mod-
ify the utsname structure are not connected
to any of the big kernel subsystems, build even
when CONFIG_NET is disabled, and use CAP_
SYS_ADMIN instead of one of the more spe-
cific capabilities. This clearly shows that the
code has no affiliation with one of the larger
namespaces.

Allowing for multiple instances of the UTS
namespace is a simple matter of allocating a

2006 Linux Symposium, Volume One • 105

new copy of struct utsname in the kernel
for each different instance of this namespace,
and modifying the system calls that modify
this value to lookup the appropriate instance of
struct utsname by looking at current.

2.3 The IPC Namespace

The SYS V interprocess communication name-
space controls access to a flavor of shared mem-
ory, semaphores, message queues introduced in
SYS V UNIX. Each object has associated with
it a key and an id, and all objects are glob-
ally visible and exist until they are explicitly
destroyed.

The id values are unique for every object of
that type and assigned by the system when the
object is created.

The key is assigned by the application usually
at compile time and is unique unless it is speci-
fied as IPC_PRIVATE. In which case the key
is simply ignored.

The ipc namespace is currently limited by the
following universally readable and uid 0 setable
sysctl values:

• kernel.shmmax The maximum shared
memory segment size.

• kernel.shmall The maximum com-
bined size of all shared memory segments.

• kernel.shmni The maximum number
of shared memory segments.

• kernel.msgmax The maximum mes-
sage size.

• kernel.msgmni The maximum num-
ber of message queues.

• kernel.msgmnb The maximum num-
ber of bytes in a message queue.

• kernel.sem An array of 4 control inte-
gers

– sc_semmsl The maximum number
of semaphores in a semaphore set.

– sc_semmns The maximum number
of semaphores in the system.

– sc_semopm The maximum number
of semaphore operations in a single
system call.

– sc_semmni The maximum number
of semaphore sets in the system.

Operations in the ipc namespace are limited by
the following capabilities:

• CAP_IPC_OWNER Allows overriding the
standard ipc ownership checks, for the fol-
lowing operations: shm_attach, shm_
stat, shm_get, msgrcv, msgsnd,
msg_stat, msg_get, semtimedop,
sem_getall, sem_setall, sem_
stat, sem_getval, sem_getpid,
sem_getncnt, sem_getzcnt, sem_
setval, sem_get.

For filesystems namei.c uses CAP_

DAC_OVERRIDE, and CAP_DAC_READ_

SEARCH to provide the same level of con-
trol.

• CAP_IPC_LOCK Required to control
locking of shared memory segments in
memory.

• CAP_SYS_RESOURCE Allows setting
the maximum number of bytes in a mes-
sage queue to exceed kernel.msgmnb

• CAP_SYS_ADMIN Allows changing the
ownership and removing any ipc object.

Allowing for multiple instances of the ipc
namespace is a straightforward process of du-
plicating the tables used for lookup by key and

106 • Multiple Instances of the Global Linux Namespaces

id, and modifying the code to use current
to select the appropriate table. In addition
the sysctls need to be modified to look at
current and act on the corresponding copy
of the namespace.

The ugly side of working with this namespace
is the capability situation. CAP_IPC_OWNER

trivially becomes restricted to the current ipc
namespace. CAP_IPC_LOCK still remains dan-
gerous. CAP_DAC_OVERRIDE and CAP_DAC_

READ_SEARCH might be ok, it really depends
on the state of the filesystem mount name-
space. CAP_SYS_RESOURCE and CAP_SYS_

ADMIN are still unsafe to give to untrusted ap-
plications.

2.4 The Network Namespace

By volume the code implementing the net-
work stack is the largest of the subsystems that
needs its own namespace. Once you look at
the network subsystem from the proper slant it
is straightforward to allow user space to have
what appears to be multiple instances of the
network stack, and thus you have a network
namespace.

The core abstractions used by the network stack
are processes, sockets, network devices, and
packets. The rest of the network stack is de-
fined in terms of these.

In adding the network namespace I add a few
simple rules.

• A network device belongs to exactly one
network namespace.

• A socket belongs to exactly one network
namespace.

A packet comes into the network stack from the
outside world through a network device. We

can the look at that device to find the network
namespace and the rules to process that packet
by.

We generate a packet and feed it to the ker-
nel through a socket. The kernel looks at the
socket, finds the network namespace, and from
there the rules to process the packet by.

What this means is that most of the network
stack global variables need to be moved into
the network namespace data structure. Hope-
fully we can write this so the extra level of in-
direction will not reduce the performance of the
network stack.

Looking up the network stack global variables
through the network namespace is not quite
enough. Each instance of the network name-
space needs its own copy of the loopback de-
vice, an interface needs to be added to move
network devices between network namespaces,
and a two headed tunnel device (a cousin of the
loopback device) needs to be added so we can
send packets between different network names-
paces.

With these in place it is safe to give processes
a separate network namespace: CAP_NET_
BIND_SERVICE, CAP_NET_BROADCAST,
CAP_NET_ADMIN, and CAP_NET_RAW. All
of the functionality will work and working
through the existing network devices there
won’t be an ability to escape the network name-
space. Care should be given to giving an un-
trusted process access to real network devices,
though, as hardware or software bugs in the im-
plementation of that network device could be
reduce the security.

The future direction of the network stack is to-
wards Van Jackobson network channels, where
more of the work is pushed towards process
context, and happening in sockets. That work
appears to be a win for network namespaces

2006 Linux Symposium, Volume One • 107

in two ways. More work happening in pro-
cess context and in well defined sockets means
it is easier to lookup the network namespace,
and thus cheaper. Having a lightweight packet
classifier in the network drivers should allow a
single network device to appear to user space
as multiple network devices each with a dif-
ferent hardware address. Then based upon the
destination hardware address the packet can
be placed in one of several different network
namespaces. Today to get the same semantics
I need to configure the primary network device
as a router, or configure ethernet bridging be-
tween the real network and the network inter-
face that sends packets to the secondary net-
work namespace.

2.5 The Process Id Namespace

The venerable process id is usually limited to
16bits so that the bitmap allocator is efficient
and so that people can read and remember the
ids. The identifiers are allocated by the kernel,
and identifiers that are no longer in use are pe-
riodically reused for new processes. A single
identifier value can refer to a process, a thread
group, a process group and to a session, but ev-
ery use starts life as a process identifier.

The only capability associated with process ids
is CAP_KILL which allows sending signals to
any process even if the normal security checks
would not allow it.

Process identifiers are used to identify the cur-
rent process, to identify the process that died,
to specify a process or set of processes to send
a signal to, to specify a process or set of pro-
cesses to modify, to specify a process to de-
bug, and in system monitoring tools to spec-
ify which process the information pertains to.
Or in other words process identifiers are deeply
entrenched in the user/kernel interface and are
used for just about everything.

In a lot of ways implementing a process id
namespace is straightforward as it is clear how
everything should look from the inside. There
should be a group of all of the processes in
the namespace that kill -1 sends signals to.
Either a new pid hash table needs to be allo-
cated or the key in the pid hash table needs
to be modified to include the pid namespace.
A new pid allocation bitmap needs to be al-
located. /proc/sys/pid_max needs to be
modified to refer to the current pid allocation
bitmap. When the pid namespace exits all of
the processes in the pid namespace need to be
killed. Kernel threads need to be modified to
never start up in anything except the default pid
namespace. A process that has pid 1 must exist
that will not receive any signals except for the
ones it installs a signal handler for.

How a pid namespace should look from the out-
side is a much more delicate question. How
should processes in a non default pid name-
space be displayed in /proc? Should any of
the process in a pid namespace show up in any
other pid namespace? How much of the ex-
isting infrastructure that takes pids should con-
tinue to work?

This is one of the few areas where the discus-
sion on the kernel list has come to a complete
standstill, as an inexpensive technical solution
to everyones requirements was not visible at the
time of the conversation.

A big piece of what makes the process id name-
space different is that processes are organized
into a hierarchical tree. Maintaining the par-
ent/child relationship between the process that
initiates the pid namespace and the first process
in the new pid namespace requires first process
in the new pid namespace have two pids. A
pid in the namespace of the parent and pid 1
in its own namespace. This results in names-
paces that are hierarchical unlike most names-
paces that are completely disjoint.

108 • Multiple Instances of the Global Linux Namespaces

Having one process with two pids looks like a
serious problem. It gets worse if we want that
process to show up in other pid namespaces.

After looking deeply at the underlying mecha-
nisms in the kernel I have started moving things
away from pid_t to pointers to struct pid.
The immediate gain is that the kernel becomes
protected from pid wraparound issues.

Once all of the references that matter are
struct pid pointers inside the kernel a dif-
ferent implementation becomes possible. We
can hang multiple <pid namespace, pid_t>
tuples off struct pid allowing us to have a
different name for the same pid in several pid
namespaces.

With processes in subordinate pid namespaces
at least potentially showing up when we need
them we can preserve the existing UNIX api
for all functions that take pids and not need to
reinvent pid namespace specific solutions.

The question yet to be answered in my mind
is do we always map a process’s struct pid
into all of its ancestor’s pid namespaces, or do
we provide a mechanism that performs those
mappings on demand?

2.6 The User and Group ID Namespace

In the kernel user ids are used for both account-
ing and for for performing security checks.
The per user accounting is connected to the
user_struct. Security checks are done
against uid, euid, suid, fsuid, gid,
egid, sgid, fsgid, processes capabilities,
and variables maintained by a Linux security
module. The kernel allows any of the uid/gid
values to rotate between slots, or, if a process
has CAP_SETUID, arbitrary values to be set
into the filesystem uids.

With a uid namespace the security checks for
equality of uids become checks to ensure the

entire tuple <uid namespace, uid> is equal.
Which means if two uids are in different names-
paces the check will always fail. So the only
permitted cases across uid namespaces will be
when everyone is allowed to perform the action
the process is trying to perform or when the
process has the appropriate capability to per-
form the action on any process.

An alternative in some cases to modifying all
of the checks to be against <namespace, uid>
tuples is to modify some of the checks to be
against user_struct pointers.

Since uid namespaces are not persistent, map-
ping of a uid namespace to filesystems requires
some new mechanisms. The primary mech-
anism is to associate with the each super_
block the uid namespace of the filesystem;
probably moving that information into each
struct inode in the kernel for speed and
flexibility.

To allow sharing of filesystem mounts between
different uid namespaces requires either using
acls to tag inodes with non-default filesystem
namespace information or using the key infras-
tructure to provide a mapping between different
uid namespaces.

Virtual filesystems require special care as fre-
quently they allow access to all kinds of spe-
cial kernel functionality without any capability
checks if the uid of a process equals 0. So vir-
tual filesystems like proc and sysfs must spec-
ify the default kernel uid namespace in their
superblock or it will be trivial to violate the
kernel security checks.

There is a question of whether the change in
rules and mechanisms should take place in the
core kernel code, making it uid namespace
aware, or in a Linux security module. A
key of that decision is the uid hash table and
user_struct. From my reading of the ker-
nel code it appears that current Linux security

2006 Linux Symposium, Volume One • 109

modules can only further restrict the default
kernel permissions checks and there is not a
hook that makes it possible to allocate a dif-
ferent user_struct depending on security
module policies.

Which means at least the allocation of user_
struct, and quite possibly making all of the
uid checks fail if the uid namespaces are not
equal, should happen in the core of the ker-
nel with security modules standing in the back-
ground providing really advanced facilities.

With a uid namespace it becomes safe to give
untrusted users CAP_SETUID without reduc-
ing security.

2.7 Security Modules and Namespaces

There are two basic approaches that can be pur-
sued to implement multiple instances of user
space. Objects in the kernel can be isolated by
policy and security checks with security mod-
ules, or they can be isolated by making visible
only the objects you are allowed to access by
using namespaces.

The Linux Jail module (http://sf.net/
projects/linuxjail) implemented by
"Serge E. Hallyn" <serue@us.ibm.com> is a
good example of what can be done with just
a security module and isolating a group of pro-
cesses with permission checks and policy rather
than simply making the inaccessible parts of
the system disappear.

Following that general principle Linux secu-
rity modules have two different roles they can
play when implementing multiple instances of
user space. They can make up for any unim-
plemented kernel namespace by isolating ob-
jects with additional permission checks, which
is good as a short term solution. Linux secu-
rity modules modified to be container aware

can also provide for enhanced security enforce-
ment mechanisms in containers. In essence this
second modification is the implementation of a
namespace for security mechanisms and policy.

2.8 The Security Keys Namespace

Not long ago someone added to the kernel what
is the frustration of anyone attempting to imple-
menting namespaces to allow for the migration
of user space. Another obscure and little known
global namespace.

In this case each key on a key ring is assigned
a global key_serial_t value. CAP_SYS_
ADMIN is used to guard ownership and permis-
sion changes.

I have yet to look in detail but at first glance
this looks like one of the easy cases, where we
can just simply implement another copy of the
lookup table. It appears the key_serial_
t values are just used for manipulation of the
security keys, from user space.

2.9 The Device Namespace

Not giving children in containers CAP_SYS_
MKNOD and not mounting sysfs is sufficient
to prevent them from accessing any device
nodes that have not been audited for use by
that container. Getting a new instance of the
uid/gid namespace is enough to remove access
from magic sysfs entries controlling devices al-
though there is some question on how to bring
them back.

For purposes of migration, unless all devices a
set of processes has access to are purely virtual,
pretending the devices haven’t changed is non-
sense. Instead it makes much more sense to ex-
plicitly acknowledge the devices have changed

110 • Multiple Instances of the Global Linux Namespaces

and send hotplug remove and add events to the
set of processes.

With the use of hotplug events the assumption
that the global major and minor numbers that a
device uses are constant is removed.

Equally as sensitive as CAP_SYS_MKNOD, and
probably more important if mounting sysfs is
allowed, is CAP_CHOWN. It allows changing
the owner of a file. Since it would be required
to change the sysfs owner before a sensitive file
could be accessed.

So in practice managing the device namespace
appears to be a user space problem with restric-
tions on CAP_SYS_MKNOD and CAP_CHOWN
being used to implement the filter policy of
which devices a process has access to.

2.10 The Time Namespace

The kernel provides access to several clocks
CLOCK_REALTIME, CLOCK_MONOTONIC,
CLOCK_PROCESS_CPUTIME_ID, and
CLOCK_THREAD_CPUTIME_ID being the
primaries.

CLOCK_REALTIME reports the current wall
clock time.

CLOCK_MONOTONIC is similar to CLOCK_
REALTIME except it cannot be set and thus
never backs up.

CLOCK_PROCESS_CPUTIME_ID reports
how much aggregate cpu time the threads in a
process have consumed.

CLOCK_THREAD_CPUTIME_ID reports how
much cpu time an individual thread has con-
sumed.

If process migration is not a concern none
of these clocks except possibly CLOCK_

REALTIME is interesting. In the context of
process migration all of these clocks become
interesting.

The thread and process clocks simply need an
offset field so the amount of time spent on the
previous machine can be added in. So that we
can prevent the clocks from going backwards.

The monotonic timer needs an offset field so
that we can guarantee that it never goes back-
wards in the presence of process migration.

The realtime clock matters the least but hav-
ing an additional offset field for clock adds ad-
ditional flexibility to the system and comes at
practically no cost.

All of the clocks except for CLOCK_
MONOTONIC support setting the clock
with clock_settime so the existing control
interfaces are sufficient. For the monotonic
clock things are different, clock_settime
is not allowed to set the clock, ensuring that
the time will never run backwards, and there is
a huge amount of sense in that logic.

The only reasonable course I can see is setting
the monotonic clock when the time namespace
is created. Which probably means we will need
a syscall (and not a clone flag) to create the
clone flag and we should provide it with min-
imum acceptable value of the monotonic clock.

3 Modifications of Kernel Inter-
faces

One of the biggest challenges with implement-
ing multiple namespaces is how do we modify
the existing kernel interfaces in a way that re-
tains backwards compatibility for existing ap-
plications while still allowing the reality of the
new situation to be seen and worked with.

2006 Linux Symposium, Volume One • 111

Modifying existing system calls is proba-
bly the easiest case. Instead of reference
global variables we reference variables through
current.

Modifying /proc is trickier. Ideally we would
introduce a new subdirectory for each class of
namespace, and in that folder list each instance
of that namespace, adding symbolic links from
the existing names where appropriate. Unfortu-
nately it is not possible to obtain a list of names-
paces and the extra maintenance cost does not
yet seem to just the extra complexity and cost of
a linked list. So for proc what we are likely to
see is the information for each namespace listed
in /proc/pid with a symbolic link from the
existing location into the new location under
/proc/self/.

Modifying sysctl is fairly straightforward
but a little tricky to implement. The problem
is that sysctl assumes it is always dealing
with global variables. As we put those vari-
ables into namespaces we can no longer store
the pointer into a global variable. So we need
to modify the implementation of sysctl to
call a function which takes a task_struct
argument to find where the variable is located.
Once that is done we can move /proc/sys
into /proc/pid/sys.

Modifying sysfs doesn’t come up for most
of the namespaces but it is a serious issue for
the network namespace. I haven’t a clue what
the final outcome will be but assuming we want
global visibility for monitor applications some-
thing like /proc/pid and /proc/self
needs to be added so we can list multiple in-
stances and add symbolic links from their old
location in sysfs.

The netlink interface is the most difficult
kernel interface to work with. Because control
and query packets are queued and not neces-
sarily processed by the application that sends

the query, getting the context information nec-
essary to lookup up the appropriate global vari-
ables is a challenge. It can even be difficult to
figure out which port namespace to reply to. As
long as the only users of netlink are part of the
networking stack I have an implementation that
solves the problems. However, as netlink has
been suggested for other things, I can’t count
on just the network stack processing packets.

Resource counters are one of the more chal-
lenging interfaces to specify. Deciding if an
interface should be per namespace or global is
a challenge, and answering the question how
does this work when we have recursive in-
stances of a namespace. All of these con-
cerns are exemplified when there are mul-
tiple untrusted users on the system. For
starters we should be able to punt and im-
plement something simple and require CAP_
SYS_RESOURCE if there are any per name-
space resource limits. Which should leave
us with a simple and correct implementation.
Then the additional concerns can be addressed
from there.

112 • Multiple Instances of the Global Linux Namespaces

Fully Automated Testing of the Linux Kernel

Martin Bligh
Google Inc.

mbligh@mbligh.org

Andy P. Whitcroft
IBM Corp.

andyw@uk.ibm.com

Abstract

Some changes in the 2.6 development process
have made fully automated testing vital to the
ongoing stability of Linux R©. The pace of de-
velopment is constantly increasing, with a rate
of change that dwarfs most projects. The lack
of a separate 2.7 development kernel means that
we are feeding change more quickly and di-
rectly into the main stable tree. Moreover, the
breadth of hardware types that people are run-
ning Linux on is staggering. Therefore it is vi-
tal that we catch at least a subset of introduced
bugs earlier on in the development cycle, and
keep up the quality of the 2.6 kernel tree.

Given a fully automated test system, we can
run a broad spectrum of tests with high fre-
quency, and find problems soon after they are
introduced; this means that the issue is still
fresh in the developers mind, and the offending
patch is much more easily removed (not buried
under thousands of dependant changes). This
paper will present an overview of the current
early testing publication system used on the
http://test.kernel.org website. We
then use our experiences with that system to de-
fine requirements for a second generation fully
automated testing system.

Such a system will allow us to compile hun-
dreds of different configuration files on ev-
ery release, cross-compiling for multiple dif-
ferent architectures. We can also identify per-

formance regressions and trends, adding sta-
tistical analysis. A broad spectrum of tests
are necessary—boot testing, regression, func-
tion, performance, and stress testing; from disk
intensive to compute intensive to network in-
tensive loads. A fully automated test harness
also empowers other other techniques that are
impractical when testing manually, in order
to make debugging and problem identification
easier. These include automated binary chop
search amongst thousands of patches to weed
out dysfunctional changes.

In order to run all of these tests, and collate the
results from multiple contributors, we need an
open-source client test harness to enable shar-
ing of tests. We also need a consistent output
format in order to allow the results to be col-
lated, analysed and fed back to the community
effectively, and we need the ability to “pass”
the reproduction of issues from test harness to
the developer. This paper will describe the re-
quirements for such a test client, and the new
open-source test harness, Autotest, that we be-
lieve will address these requirements.

1 Introduction

It is critical for any project to maintain a high
level of software quality, and consistent inter-
faces to other software that it uses or uses it.

114 • Fully Automated Testing of the Linux Kernel

There are several methods for increasing qual-
ity, but none of these works in isolation, we
need a combination of:

• skilled developers carefully developing
high quality code,

• static code analysis,

• regular and rigorous code review,

• functional tests for new features,

• regression testing,

• performance testing, and

• stress testing.

Whilst testing will never catch all bugs, it will
improve the overall quality of the finished prod-
uct. Improved code quality results in a better
experience not only for users, but also for de-
velopers, allowing them to focus on their own
code. Even simple compile errors hinder devel-
opers.

In this paper we will look at the problem of au-
tomated testing, the current state of it, and our
views for its future. Then we will take a case
study of the test.kernel.org automated test sys-
tem. We will examine a key test component,
the client harness, in more detail, and describe
the Autotest test harness project. Finally we
will conclude with our vision of the future and
a summary.

2 Automated Testing

It is obvious that testing is critical, what is per-
haps not so obvious is the utility of regular test-
ing at all stages of development. It is important
to catch bugs as soon as possible after they are
created as:

• it prevents replication of the bad code into
other code bases,

• fewer users are exposed to the bug,

• the code is still fresh in the authors mind,

• the change is less likely to interact with
subsequent changes, and

• the code is easy to remove should that be
required.

In a perfect world all contributions would be
widely tested before being applied; however, as
most developers do not have access to a large
range of hardware this is impractical. More rea-
sonably we want to ensure that any code change
is tested before being introduced into the main-
line tree, and fixed or removed before most peo-
ple will ever see it. In the case of Linux, An-
drew Morton’s -mm tree (the de facto develop-
ment tree) and other subsystem specific trees
are good testing grounds for this purpose.

Test early, test often!

The open source development model and Linux
in particular introduces some particular chal-
lenges. Open-source projects generally suffer
from the lack of a mandate to test submissions
and the fact that there is no easy funding model
for regular testing. Linux is particularly hard
hit as it has a constantly high rate of change,
compounded with the staggering diversity of
the hardware on which it runs. It is completely
infeasible to do this kind of testing without ex-
tensive automation.

There is hope; machine-power is significantly
cheaper than man-power in the general case.
Given a large quantity of testers with diverse
hardware it should be possible to cover a use-
ful subset of the possible combinations. Linux
as a project has plenty of people and hardware;
what is needed is a framework to coordinate
this effort.

2006 Linux Symposium, Volume One • 115

Test tree

Patches Patches Patches Patches

Test tree Test tree

Distro Distro Distro Distro

Mainline

Mainline
Prerelease

Users Users Users Users

Figure 1: Linux Kernel Change Flow

2.1 The Testing Problem

As we can see from the diagram in figure 1
Linux’s development model forms an hour-
glass starting highly distributed, with contri-
butions being concentrated in maintainer trees
before merging into the development releases
(the -mm tree) and then into mainline itself.
It is vital to catch problems here in the neck
of the hourglass, before they spread out to the
distros—even once a contribution hits mainline
it is has not yet reached the general user popu-
lation, most of whom are running distro kernels
which often lag mainline by many months.

In the Linux development model, each actual
change is usually small and attribution for each
change is known making it easy to track the au-
thor once a problem is identified. It is clear that
the earlier in the process we can identify there
is a problem, the less the impact the change will
have, and the more targeted we can be in report-
ing and fixing the problem.

Whilst contributing untested code is discour-
aged we cannot expect lone developers to be
able to do much more than basic functional test-
ing, they are unlikely to have access to a wide

range of systems. As a result, there is an op-
portunity for others to run a variety of tests on
incoming changes before they are widely dis-
tributed. Where problems are identified and
flagged, the community has been effective at
getting the change rejected or corrected.

By making it easier to test code, we can en-
courage developers to run the tests before ever
submitting the patch; currently such early test-
ing is often not extensive or rigorous, where it
is performed at all. Much developer effort is
being wasted on bugs that are found later in the
cycle when it is significantly less efficient to fix
them.

2.2 The State of the Union

It is clear that a significant amount of testing
resource is being applied by a variety of par-
ties, however most of the current testing effort
goes on after the code has forked from main-
line. The distribution vendors test the code that
they integrate into their releases, hardware ven-
dors are testing alpha or beta releases of those
distros with their hardware. Independent Soft-
ware Vendors (ISVs) are often even later in the
cycle, first testing beta or even after distro re-
lease. Whilst integration testing is always valu-
able, this is far too late to be doing primary test-
ing, and makes it extremely difficult and ineffi-
cient to fix problems that are found. Moreover,
neither the tests that are run, nor the results of
this testing are easily shared and communicated
to the wider community.

There is currently a large delay between a
mainline kernel releasing and that kernel being
accepted and released by the distros, embed-
ded product companies and other derivatives
of Linux. If we can improve the code qual-
ity of the mainline tree by putting more effort
into testing mainline earlier, it seems reason-
able to assume that those “customers” of Linux

116 • Fully Automated Testing of the Linux Kernel

would update from the mainline tree more of-
ten. This will result in less time being wasted
porting changes backwards and forwards be-
tween releases, and a more efficient and tightly
integrated Linux community.

2.3 What Should we be Doing?

Linux’s constant evolutionary approach to soft-
ware development fits well with a wide-
ranging, high-frequency regression testing
regime. The “release early, release often” de-
velopment philosophy provides us with a con-
stant stream of test candidates; for example the
-git snapshots which are produced twice daily,
and Andrew Morton’s collecting of the spe-
cialised maintainer trees into a bleeding-edge
-mm development tree.

In an ideal world we would be regression test-
ing at least daily snapshots of all development
trees, the -mm tree and mainline on all possible
combinations of hardware; feeding the results
back to the owners of the trees and the authors
of the changes. This would enable problems
to be identified as early as possible in the con-
centration process and get the offending change
updated or rejected. The test.kernel.org testing
project provides a preview of what is possible,
providing some limited testing of the mainline
and development trees, and is discussed more
fully later.

Just running the tests is not sufficient, all this
does is produce large swaths of data for humans
to wade through; we need to analyse the results
to engender meaning, and isolate any problems
identified.

Regression tests are relatively easy to analyse,
they generate a clean pass or fail; however, even
these can fail intermittently. Performance tests
are harder to analyse, a result of 10 has no par-
ticular meaning without a baseline to compare

it against. Moreover, performance tests are not
100% consistent, so taking a single sample is
not sufficient, we need to capture a number of
runs and do simple statistical analysis on the
results in order to determine if any differences
are statistically significant or not. It is also crit-
ically important to try to distinguish failures
of the machine or harness from failures of the
code under test.

3 Case Study: test.kernel.org

We have tried to take the first steps towards
the automated testing goals we have outlined
above with the testing system that generates
the test.kernel.org website. Whilst it is still far
from what we would like to achieve, it is a good
example of what can be produced utilising time
on an existing in house system sharing and test-
ing harness and a shared results repository.

New kernel releases are picked up automati-
cally within a few minutes of release, and a
predefined set of tests are run across them by a
proprietary IBM R© system called ABAT, which
includes a client harness called autobench. The
results of these tests are then collated, and
pushed to the TKO server, where they are anal-
ysed and the results published on the TKO web-
site.

Whilst all of the test code is not currently open,
the results of the testing are, which provides a
valuable service to the community, indicating
(at least at a gross level) a feel for the viability
of that release across a range of existing ma-
chines, and the identification of some specific
problems. Feedback is in the order of hours
from release to results publication.

2006 Linux Symposium, Volume One • 117

Client Harness

New Release

Mirror / Trigger

Server Job Queues

Results Collation

Results Analysis

Results Publication

Manual Job

Patch

Observe
Problem

Figure 2: test.kernel.org Architecture

3.1 How it Works

The TKO system is architected as show in fig-
ure 2. Its is made up of a number of distinct
parts, each described below:

The mirror / trigger engine: test execution is
keyed from kernel releases; by any -mm tree re-
lease (2.6.16-rc1-mm1), git release (2.6.17-rc1-
git10), release candidate (2.6.17-rc1), stable re-
lease (2.6.16) or stable patch release (2.6.16.1).
A simple rsync local mirror is leveraged to ob-
tain these images as soon as they are avail-
able. At the completion of the mirroring pro-
cess any newly downloaded image is identified
and those which represent new kernels trigger
testing of that image.

Server Job Queues: for each new kernel, a
predefined set of test jobs are created in the
server job queues. These are interspersed with
other user jobs, and are run when time is avail-
able on the test machines. IBM’s ABAT server
software currently fulfils this function, but a

simple queueing system could serve for the
needs of this project.

Client Harness: when the test system is avail-
able, the control file for that test is passed to the
client harness. This is responsible for setting
up the machine with appropriate kernel ver-
sion, running the tests, and pushing the results
to a local repository. Currently this function is
served by autobench. It is here that our efforts
are currently focused with the Autotest client
replacement project which we will discuss in
detail in section 4.4.

Results Collation: results from relevant jobs
are gathered asynchronously as the tests com-
plete and they are pushed out to test.kernel.org.
A reasonably sized subset of the result data is
pushed, mostly this involves stripping the ker-
nel binaries and system information dumps.

Results Analysis: once uploaded the results
analysis engine runs over all existing jobs and
extracts the relevant status; this is then sum-
marised on a per release basis to produce both
overall red, amber and green status for each re-
lease/machine combination. Performance data
is also analysed, in order to produce historical
performance graphs for a selection of bench-
marks.

Results Publication: results are made avail-
able automatically on the TKO web site. How-
ever, this is currently a “polled” model; no au-
tomatic action is taken in the face of either test
failures or if performance regressions are de-
tected, it relies on developers to monitor the
site. These failures should be actively pushed
back to the community via an appropriate pub-
lication mechanism (such as email, with links
back to more detailed data).

Observed problems: When a problem (func-
tional or performance) is observed by a de-
veloper monitoring the analysed and published
results, this is manually communicated back

118 • Fully Automated Testing of the Linux Kernel

to the development community (normally via
email). This often results in additional patches
to test, which can be manually injected into the
job queues via a simple script, but currently
only by an IBM engineer. These then automat-
ically flow through with the regular releases,
right through to publication on the matrix and
performance graphs allowing comparison with
those releases.

3.2 TKO in Action

The regular compile and boot testing frequently
shakes out bugs as the patch that carried them
enters the -mm tree. By testing multiple ar-
chitectures, physical configurations, and kernel
configurations we often catch untested combi-
nations and are able to report them to the patch
author. Most often these are compile failures,
or boot failures, but several performance re-
gressions have also been identified.

As a direct example, recently the performance
of highly parallel workloads dropped off sig-
nificantly on some types of systems, specifi-
cally with the -mm tree. This was clearly in-
dicated by a drop off in the kernbench perfor-
mance figures. In the graph in figure 3 we can
see the sudden increase in elapsed time to a new
plateau with 2.6.14-rc2-mm1. Note the vertical
error bars for each data point—doing multiple
test runs inside the same job allows us to calcu-
late error margins, and clearly display them.

Once the problem was identified some further
analysis narrowed the bug to a small number of
scheduler patches which were then also tested;
these appear as the blue line (“other” releases)
in the graph. Once the regression was identified
the patch owner was then contacted, several it-
erations of updated fixes were then produced
and tested before a corrected patch was applied.
This can be seen in the figures for 2.6.16-rc1-
mm4.

The key thing to note here is that the regression
never made it to the mainline kernel let alone
into a released distro kernel; user exposure was
prevented. Early testing ensured that the devel-
oper was still available and retained context on
the change.

3.3 Summary

The current system is providing regular and
useful testing feedback on new releases and
providing ongoing trend analysis against his-
torical releases. It is providing the results of
this testing in a public framework available
to all developers with a reasonable turn round
time from release. It is also helping develop-
ers by testing on rarer hardware combinations
to which they have no access and cannot test.

However, the system is not without its prob-
lems. The underlying tests are run on a in-
house testing framework (ABAT) which is cur-
rently not in the public domain; this prevents
easy transport of these tests to other testers. As
a result there is only one contributor to the re-
sult set at this time, IBM. Whilst the whole
stack needs to be made open, we explain in the
next section why we have chosen to start first
with the client test harness.

The tests themselves are very limited, covering
a subset of the kernel. They are run on a small
number of machines, each with a few, fixed
configurations. There are more tests which
should be run but lack of developer input and
lack of hardware resources on which to test pre-
vent significant expansion.

The results analysis also does not communi-
cate data back as effectively as it could to
the community—problems (especially perfor-
mance regressions) are not as clearly isolated as
they could be, and notification is not as prompt
and clear as it could be. More data “fold-
ing” needs to be done as we analyse across a

2006 Linux Symposium, Volume One • 119

 98

 100

 102

 104

 106

 108

 110

 112

 114

2.
6.

16
-r

c3
2.

6.
16

-r
c2

-m
m

1
2.

6.
16

-r
c2

2.
6.

16
-r

c1
-m

m
5+

p2
21

69
2.

6.
16

-r
c1

-m
m

5
2.

6.
16

-r
c1

-m
m

4+
p2

17
04

2.
6.

16
-r

c1
-m

m
4

2.
6.

16
-r

c1
-m

m
3+

p2
14

67
2.

6.
16

-r
c1

-m
m

2+
p2

13
19

2.
6.

16
-r

c1
-m

m
2+

p2
11

63
2.

6.
16

-r
c1

-m
m

1+
p2

09
48

2.
6.

16
-r

c1
2.

6.
15

.6
2.

6.
15

.4
2.

6.
15

.3
2.

6.
15

.2
2.

6.
15

.1
2.

6.
15

-m
m

4+
p2

09
33

2.
6.

15
-m

m
4

2.
6.

15
-m

m
3+

p2
09

35
2.

6.
15

-m
m

3+
p2

04
40

2.
6.

15
-m

m
3+

p2
06

92
2.

6.
15

-m
m

3+
p2

05
45

2.
6.

15
-m

m
3

2.
6.

15
-m

m
1+

p1
98

87
2.

6.
15

2.
6.

15
-r

c7
2.

6.
15

-r
c6

2.
6.

15
-r

c5
-m

m
3+

p1
90

87
2.

6.
15

-r
c5

-m
m

1
2.

6.
15

-r
c5

2.
6.

15
-r

c4
2.

6.
15

-r
c3

-m
m

1
2.

6.
15

-r
c3

2.
6.

15
-r

c2
-m

m
1

2.
6.

15
-r

c2
2.

6.
15

-r
c1

-m
m

2
2.

6.
15

-r
c1

-m
m

1
2.

6.
15

-r
c1

2.
6.

14
.1

2.
6.

14
-m

m
1

2.
6.

14
2.

6.
14

-r
c5

-m
m

1
2.

6.
14

-r
c5

2.
6.

14
-r

c4
-m

m
1

2.
6.

14
-r

c4
2.

6.
14

-r
c2

-m
m

2
2.

6.
14

-r
c2

-m
m

1
2.

6.
14

-r
c2

2.
6.

14
-r

c1
-m

m
1

2.
6.

14
-r

c1
2.

6.
13

-m
m

3
2.

6.
13

-m
m

1
2.

6.
13

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Kernel

mainline -mm other

Figure 3: Kernbench Scheduler Regression

multi-dimensional space of kernel version, ker-
nel configuration, machine type, toolchain, and
tests.

4 Client Harnesses

As we have seen, any system which will pro-
vide the required level of testing needs to form
a highly distributed system, and be able to run
across a large test system base. This will ne-
cessitate a highly flexible client test harness; a
key component of such a system. We have used
our experiences with the IBM autobench client,
and the TKO analysis system to define require-
ments for such a client. This section will dis-
cuss client harnesses in general and lead on to
a discussion of the Autotest project’s new test
harness.

We chose to attack the problem of the client
harness first as it seems to be the most pressing

issue. With this solved, we can share not only
results, but the tests themselves more easily,
and empower a wide range of individuals and
corporations to run tests easily, and share the
results. By defining a consistent results format,
we can enable automated collation and analysis
of huge amounts of data.

4.1 Requirements / Design Goals

A viable client harness must be operable stand-
alone or under an external scheduler infrastruc-
ture. Corporations already have significant re-
sources invested in bespoke testing harnesses
which they are not going to be willing to waste;
the client needs to be able to plug into those,
and timeshare resources with them. On the
other hand, some testers and developers will
have a single machine and want something sim-
ple they can install and use. This bimodal flex-
ibility is particularly relevant where we want to

120 • Fully Automated Testing of the Linux Kernel

be able to pass a failing test back to a patch au-
thor, and have them reproduce the problem.

The client harness must be modular, with a
clean internal infrastructure with simple, well
defined APIs. It is critical that there is clear
separation between tests, and between tests and
the core, such that adding a new test cannot
break existing tests.

The client must be simple to use for newcom-
ers, and yet provide a powerful syntax for com-
plex testing if necessary. Tests across multiple
machines, rebooting, loops, and parallelism all
need to be supported.

We want distributed scalable maintainership,
the core being maintained by a core team and
the tests by the contributors. It must be able to
reuse the effort that has gone into developing
existing tests, by providing a simple way to en-
capsulate them. Whilst open tests are obviously
superior, we also need to allow the running of
proprietary tests which cannot be contributed to
the central repository.

There must be a low knowledge barrier to entry
for development, in order to encourage a wide
variety of new developers to start contributing.
In particular, we desire it to be easy to write
new tests and profilers, abstracting the com-
plexity into the core as much as possible.

We require a high level of maintainability. We
want a consistent language throughout, one
which is powerful and yet easy to understand
when returning to the code later, not only by
the author, but also by other developers.

The client must be robust, and produce consis-
tent results. Error handling is critical—tests
that do not produce reliable results are use-
less. Developers will never add sufficient error
checking into scripts, we must have a system
which fails on any error unless you take affir-
mative action. Where possible it should isolate

hardware or harness failures from failures of
the code under test; if something goes wrong in
initialisation or during a test we need to know
and reject that test result.

Finally, we want a consistent results
architecture—it is no use to run thousands
of tests if we cannot understand or parse the
results. On such a scale such analysis must
be fully automatable. Any results structure
needs to be consistent across tests and across
machines, even if the tests are being run by a
wide diversity of testers.

4.2 What Tests are Needed?

As we mentioned previously, the current pub-
lished automated testing is very limited in its
scope. We need very broad testing coverage if
we are going to catch a high proportion of prob-
lems before they reach the user population, and
need those tests to be freely sharable to max-
imise test coverage.

Most of the current testing is performed in or-
der to verify that the machine and OS stack is
fit for a particular workload. The real workload
is often difficult to set up, may require propri-
etary software, and is overly complex and does
not give sufficiently consistent reproducible re-
sults, so use is made of a simplified simula-
tion of that workload encapsulated within a test.
This has the advantage of allowing these simu-
lated workloads to be shared. We need tests in
all of the areas below:

Build tests simply check that the kernel will
build. Given the massive diversity of differ-
ent architectures to build for, different con-
figuration options to build for, and different
toolchains to build with, this is an extensive
problem. We need to check for warnings, as
well as errors.

2006 Linux Symposium, Volume One • 121

Static verification tests run static analysis
across the code with tools like sparse, lint, and
the Stanford checker, in the hope of finding
bugs in the code without having to actually ex-
ecute it.

Inbuilt debugging options (e.g. CONFIG_

DEBUG_PAGEALLOC, CONFIG_DEBUG_SLAB)
and fault insertion routines (e.g. fail every
100th memory allocation, fake a disk error oc-
casionally) offer the opportunity to allow the
kernel to test itself. These need to be a sepa-
rated set of test runs from the normal functional
and performance tests, though they may reuse
the same tests.

Functional or unit tests are designed to exer-
cise one specific piece of functionality. They
are used to test that piece in isolation to ensure
it meets some specification for its expected op-
eration. Examples of this kind of test include
LTP and Crashme.

Performance tests verify the relative perfor-
mance of a particular workload on a specific
system. They are used to produce comparisons
between tests to either identify performance
changes, or confirm none is present. Examples
of these include: CPU performance with Kern-
bench and AIM7/reaim; disk performance with
bonnie, tbench and iobench; and network per-
formance with netperf.

Stress tests are used to identify system be-
haviour when pushed to the very limits of its
capabilities. For example a kernel compile exe-
cuted completely in parallel creates a compile
process for each file. Examples of this kind
of test include kernbench (configured appro-
priately), and deliberately running under heavy
memory pressure such as running with a small
physical memory.

Profiling and debugging is another key area.
If we can identify a performance regression, or

some types of functional regression, it is im-
portant for us to be able to gather data about
what the system was doing at the time in order
to diagnose it. Profilers range from statistical
tools like readprofile and lockmeter to monitor-
ing tools like vmstat and sar. Debug tools might
range from dumping out small pieces of infor-
mation to full blown crashdumps.

4.3 Existing Client Harnesses

There are a number of pre-existing test har-
nesses in use by testers in the community. Each
has its features and problems, we touch on a
few of them below.

IBM autobench is a fairly fully featured client
harness, it is completely written in a combi-
nation of shell and perl. It has support for
tests containing kernel builds and system boots.
However, error handling is very complex and
must be explicitly added in all cases, but does
encapsulate the success or failure state of the
test. The use of multiple different languages
may have been very efficient for the original
author, but greatly increases the maintenance
overheads. Whilst it does support running mul-
tiple tests in parallel, loops within the job con-
trol file are not supported nor is any complex
“programming.”

OSDL STP The Open Systems Development
Lab (OSDL) has the Scalable Test Platform
(STP). This is a fully integrated testing envi-
ronment with both a server harness and client
wrapper. The client wrapper here is very simple
consisting of a number of shell support func-
tions. Support for reboot is minimal and kernel
installation is not part of the client. There is no
inbuilt handling of the meaning of results. Er-
ror checking is down to the test writer; as this
is shell it needs to be explicit else no checking
is performed. It can operate in isolation and
results are emailable, reboot is currently being
added.

122 • Fully Automated Testing of the Linux Kernel

LTP1 The Linux Test Project is a functional /
regression test suite. It contains approximately
2900 small regression tests which are applied
to the system running LTP. There is no support
for building kernels or booting them, perfor-
mance testing or profiling. Whilst it contains
a lot of useful tests, it is not a general heavy
weight testing client.

A number of other testing environments cur-
rently exist, most appear to suffer from the
same basic issues, they evolved from the sim-
plest possible interface (a script) into a test
suite; they were not designed to meet the level
of requirements we have identified and speci-
fied.

All of those we have reviewed seem to have a
number of key failings. Firstly, most lack most
lack bottom up error handling. Where sup-
port exists it must be handled explicitly, testers
never will think of everything. Secondly, most
lack consistent machine parsable results. There
is often no consistent way to tell if a test passes,
let alone get any details from it. Lastly, due to
their evolved nature they are not easy to under-
stand nor to maintain. Fortunately it should be
reasonably easy to wrap tests such as LTP, or to
port tests from STP and autobench.

4.4 Autotest a Powerful Open Client

The Autotest open client is an attempt to ad-
dress the issues we have identified. The aim is
to produce a client which is open source, im-
plicitly handles errors, produces consistent re-
sults, is easily installable, simple to maintain
and runs either standalone or within any server
harness.

Autotest is an all new client harness implemen-
tation. It is completely written in Python; cho-
sen for a number of reasons, it has a simple,

1http://ltp.sourceforge.net/

clean and consistent syntax, it is object oriented
from inception, and it has very powerful error
and exception handling. Whist no language is
perfect, it meets the key design goals well, and
it is open source and widely supported.

As we have already indicated, there are a num-
ber of existing client harnesses; some are even
open-source and therefore a possible basis for a
new client. Starting from scratch is a bold step,
but we believe that the benefits from a designed
approach outweigh the effort required initially
to get to a workable position. Moreover, much
of the existing collection of tests can easily be
imported or wrapped.

Another key goal is the portability of the tests
and the results; we want to be able to run tests
anywhere and to contribute those test results
back. The use of a common programming lan-
guage, one with a strict syntax and semantics
should make the harness and its contained tests
very portable. Good design of the harness and
results specifications should help to maintain
portable results.

4.5 The autotest Test Harness

Autotest utilises an executable control file to
represent and drives the users job. This con-
trol file is an executable fragment of Python
and may contain any valid Python constructs,
allowing the simple representation of loops and
conditionals. Surrounding this control file is
the Autotest harness, which is a set of support
functions and classes to simplify execution of
tests and allow control over the job.

The key component is the job object which rep-
resents the executing job, provides access to the
test environment, and provides the framework
to the job. It is responsible for the creation of
the results directory, for ensuring the job out-
put is recorded, and for any interactions with

2006 Linux Symposium, Volume One • 123

any server harness. Below is a trivial example
of a control file:

job.runtest(’test1’, ’kernbench’, 2, 5)

One key benefit of the use of a real program-
ming language is the ability to use the full range
of its control structures in the example below
we use an iterator:

for i in range(0, 5):
job.runtest(’test%d’ % i, ’kernbench’,

2, 5)

Obviously as we are interested in testing Linux,
support for building, installing and booting ker-
nels is key. When using this feature, we need a
little added complexity to cope with the inter-
ruption to control flow caused by the system
reboot. This is handled using a phase step-
per which maintains flow across execution in-
terruptions, below is an example of such a job,
combining booting with iteration:

def step_init():
step_test(1)

def step_test(iteration):
if (iteration < 5):

job.next_step([step_test,
iteration + 1])

print "boot: %d" % iteration

kernel = job.distro_kernel()
kernel.boot()

Tests are represented by the test object; each
test added to Autotest will be a subclass of this.
This allows all tests to share behaviour, such as
creating a consistent location and layout for the
results, and recording the result of the test in a
computer readable form. In figure 4 is the class
definition for the kernbench benchmark. As we
can see it is a subclass of test, and as such ben-
efits from its management of the results direc-
tory hierarchy.

4.6 Summary

We feel that Autotest is much more power-
ful and robust design than the other client har-
nesses available, and will produce more consis-
tent results. Adding tests and profilers is sim-
ple, with a low barrier to entry, and they are
easy to understand and maintain.

Much of the power and flexibility of Autotest
stems from the decision to have a user-defined
control file, and for that file to be written in a
powerful scripting language. Whilst this was
more difficult to implement, the interface the
user sees is still simple. If the user wishes to
repeat tests, run tests in parallel for stress, or
even write a bisection search for a problem in-
side the control file, that is easy to do.

The Autotest client can be used either as stan-
dalone, or easily linked into any scheduling
backend, from a simple queueing system to a
huge corporate scheduling and allocation en-
gine. This allows us to leverage the resources of
larger players, and yet easily allow individual
developers to reproduce and debug problems
that were found in the lab of a large corpora-
tion.

Each test is a self-contained modular pack-
age. Users are strongly encouraged to create
open-source tests (or wrap existing tests) and
contribute those to the main test repository on
test.kernel.org.2 However, private tests
and repositories are also allowed, for maximum
flexibility. The modularity of the tests means
that different maintainers can own and main-
tain each test, separate from the core harness.
We feel this is critical to the flexibility and scal-
ability of the project.

We currently plan to support the Autotest client
across the range of architectures and across the

2See the autotest wiki http://test.kernel.
org/autotest.

124 • Fully Automated Testing of the Linux Kernel

import test
from autotest_utils import *

class kernbench(test):

def setup(self,
iterations = 1,
threads = 2 * count_cpus(),
kernelver = ’/usr/local/src/linux-2.6.14.tar.bz2’,
config = os.environ[’AUTODIRBIN’] + "/tests/kernbench/config"):

print "kernbench -j %d -i %d -c %s -k %s" % (threads, iterations, config, kernelver)

self.iterations = iterations
self.threads = threads
self.kernelver = kernelver
self.config = config

top_dir = job.tmpdir+’/kernbench’
kernel = job.kernel(top_dir, kernelver)
kernel.config([config])

def execute(self):
testkernel.build_timed(threads) # warmup run
for i in range(1, iterations+1):

testkernel.build_timed(threads, ’../log/time.%d’ % i)

os.chdir(top_dir + ’/log’)
system("grep elapsed time.* > time")

Figure 4: Example test: kernbench

main distros. There is no plans to support other
operating systems, as it would add unnecessary
complexity to the project. The Autotest project
is released under the GNU Public License.

5 Future

We need a broader spectrum of tests added to
the Autotest project. Whilst the initial goal
is to replace autobench for the published data
on test.kernel.org, this is only a first
step—there are a much wider range of tests that
could and should be run. There is a wide body
of tests already available that could be wrapped
and corralled under the Autotest client.

We need to encourage multiple different en-
tities to contribute and share testing data for
maximum effect. This has been stalled wait-

ing on the Autotest project, which is now near-
ing release, so that we can have a consistent
data format to share and analyse. There will
be problems to tackle with quality and consis-
tency of data that comes from a wide range of
sources.

Better analysis of the test results is needed.
Whilst the simple red/yellow/green grid on
test.kernel.org and simple gnuplot
graphs are surprisingly effective for so little ef-
fort, much more could be done. As we run more
tests, it will become increasingly important to
summarise and fold the data in different ways
in order to make it digestible and useful.

Testing cannot be an island unto itself—not
only must we identify problems, we must com-
municate those problems effectively and effi-
ciently back to the development community,
provide them with more information upon re-
quest, and be able to help test attempted fixes.

2006 Linux Symposium, Volume One • 125

We must also track issues identified to closure.

There is great potential to automate beyond just
identifying a problem. An intelligent automa-
tion system should be able to further narrow
down the problem to an individual patch (by
bisection search, for example, which is O(log2)
number of patches). It could drill down into a
problem by running more detailed sets of per-
formance tests, or repeating a failed test several
times to see if a failure was intermittent or con-
sistent. Tests could be selected automatically
based on the area of code the patch touches,
correlated with known code coverage data for
particular tests.

6 Summary

We are both kernel developers, who started
the both test.kernel.org and Autotest
projects out of a frustration with the cur-
rent tools available for testing, and for fully
automated testing in particular. We are
now seeing a wider range of individuals
and corporations showing interest in both the
test.kernel.org and Autotest projects,
and have high hopes for their future.

In short we need:

• more automated testing, run at frequent in-
tervals,

• those results need to be published consis-
tently and cohesively,

• to analyse the results carefully,

• better tests, and to share them, and

• a powerful, open source, test harness that
is easy to add tests to.

There are several important areas where inter-
ested people can help contribute to the project:

• run a diversity of tests across a broad range
of hardware,

• contribute those results back to
test.kernel.org,

• write new tests and profilers, contribute
those back, and

• for the kernel developers ... fix the bugs!!!

An intelligent system can not only improve
code quality, but also free developers to do
more creative work.

Acknowledgements

We would like to thank OSU for the donation
of the server and disk space which supports the
test.kernel.org site.

We would like to thank Mel Gorman for his in-
put to and review of drafts of this paper.

Legal Statement

This work represents the view of the authors and
does not necessarily represent the views of either
Google or IBM.

Linux is a trademark of Linus Torvalds in the United
States, other countries, or both.

Other company, product, and service names may be
the trademarks or service marks of others.

126 • Fully Automated Testing of the Linux Kernel

Linux Laptop Battery Life
Measurement Tools, Techniques, and Results

Len Brown Konstantin A. Karasyov

Vladimir P. Lebedev Alexey Y. Starikovskiy

Intel Open Source Technology Center

{len.brown,konstantin.a.karasyov}@intel.com

{vladimir.lebedev,alexey.y.starikovskiy}@intel.com

Randy P. Stanley
Intel Mobile Platforms Group
randy.p.stanley@intel.com

Abstract

Battery life is a valuable metric for improving
Linux laptop power management.

Battery life measurements require repeatable
workloads. While BAPCo R© MobileMark R©

2005 is widely used in the industry, it runs only
on Windows R© XP. Intel’s Open Source Tech-
nology Center has developed a battery life mea-
surement tool-kit for making reliable battery
life measurements on Linux R© with no special
lab equipment necessary.

This paper describes this Linux battery life
measurement tool-kit, and some of the tech-
niques for measuring Linux laptop power con-
sumption and battery life.

This paper also includes example measurement
results showing how selected system configura-
tions differ.

1 Introduction

First we examine common industry practice for
measuring and reporting laptop battery life.

Next we examine the methods available on
ACPI-enabled Linux systems to measure the
battery capacity and battery life.

Then we describe the implementation of a bat-
tery life measurement toolkit for Linux.

Finally, we present example measurement re-
sults applying this toolkit to high-volume hard-
ware, and suggest some areas for further work.

1.1 State of the Industry

Laptop vendors routinely quote MobileMark R©

battery measurement results when introducing
new systems. The authors believe that this

128 • Linux Laptop Battery Life

is not only the most widely employed indus-
try measurement, but that MobileMark also re-
flects best known industry practice. So we
will focus this section on MobileMark and ig-
nore what we consider lesser measurement pro-
grams.

1.2 Evolution of MobileMark R©

In 1995, BAPCo R©, the Business Applications
Performance Corporation, introduced a battery-
life (BL) workload to support application based
power evaluation. The first incarnation, SYS-
mark BL, was a Windows R© 3.1 based workload
which utilized office applications to implement
a repeatable workload to produce a “battery run
down” time. Contrary to performance bench-
marks which executed a stream of commands,
this workload included delays which were in-
tended to represents real user interaction, much
like a player piano represent real tempos. Be-
cause the system is required to deplete its own
battery, a master system and physical interface
was required as well as the slave system under
test. In late 1996 the workload was re-written
to support Windows95 adapted to 32-bit appli-
cations.

When Windows R© 98 introduced ACPI support,
BAPCo overhauled the workload to shed the
cumbersome and expensive hardware interface.
SYSmark98 BL became the first software only
BL workload. (No small feat as the system
was now required to resurrect itself and report
BL without adding additional overhead.) Addi-
tionally a more advanced user delay model was
introduced and an attempt was made to under-
stand the power performance trade-off within
mobile systems by citing the number of loops
completed during the life of the battery. Al-
though well intended, this qualification pro-
vided only gross level insight into the power
performance balance of mobile systems.

In 2002, BAPCo released MobileMark 2002
[MM02] which modernized the workload and
adopted a response based performance quali-
fier which provided considerably more insight
into the power performance balance attained by
modern power management schemes. Addi-
tionally they attempted to better define a more
level playing field by providing a more rigor-
ous set of system setting requirements and rec-
ommendations, and strongly recommending a
light meter to calibrate the LCD panel bright-
ness setting to a common value. Additionally,
they introduced a “Reader” module to comple-
ment the Office productivity module. Reader
provided a time metric for an optimal BL usage
model to define a realistic upper bound while
executing a real and practical use.

In 2005 BAPCo’s MobileMark 2005 [MM05]
added to the MobileMark 2002 BL “suite” by
introducing new DVD and Wireless browsing
modules as well as making slight changes to in-
crease robustness and hold the work/time con-
stant for all machines. Today these modules
help us to better understand the system balance
of power and performance. Multiple results
also form contour of solutions reflective of the
respective user and usage models.

1.3 Learning from MobileMark R© 2005

While MobileMark is not available for Linux,
it illustrates some of the best industry practices
for real use power analysis that Linux measure-
ments should also employ.

1.3.1 Multiple Workloads

Mobile systems are subject to different user1

and usage models,2 each with its own battery
1Different users type, think and operate the system

differently.
2Usage models refers to application choices and con-

tent.

2006 Linux Symposium, Volume One • 129

life considerations. To independently measure
different usage models, MobileMark 2005 pro-
vides 4 workloads:

1. Office productivity 2002SE

This workload is the second edition of
MobileMark 2002 Office productivity.
Various office productivity tools are used
to open and modify office documents.

Think time is injected between various op-
erations to reflect that real users need to
look at the screen and react before issuing
additional input.

The response time of selected operations is
recorded (not including delays) to be able
to qualify the battery life results and dif-
ferentiate the performance level available
while attaining that battery life.

2. Reader 2002SE

This workload is a second edition of Mo-
bileMark 2002 Reader. Here, a web
browser reads a book from local files,
opening a new page every 2 minutes. This
workload is almost completely idle time,
and can be considered an upper bound,
which no “realistic” activity can possibly
exceed.

3. DVD Playback 2005

InterVideo R© WinDVD R© plays a reference
DVD movie repeatedly until the battery
dies. WinDVD monitors that the standard
frame rate, so that the harness can abort
the test if the work level is not sustained.
In practice, modern machines have am-
ple capacity to play DVDs, and frames are
rarely dropped.

4. Wireless browsing 2005

Here the system under test loads a web
page every 15 seconds until the battery
dies. The web pages are an average of

150 KB. This workload is not specific to
wireless networks, however, and in theory
could be run over wired connections.

1.3.2 Condition the Battery

In line with manufacturer’s recommendations,
BAPCo documentation recommends condition-
ing the battery before measurement. This en-
tails simply running the battery from full charge
until full discharge at least once.

For popular laptop batteries today, condition-
ing tends to minimize memory effects, extend
the battery life, and increase the consistency of
measurements.

MobileMark recommends conditioning the bat-
tery before taking measurements.

1.3.3 Run the Battery until fully Dis-
charged

Although conditioning tends to improve the ac-
curacy of the internal battery capacity instru-
mentation, this information is not universally
accurate or reliable before or after condition-
ing.

MobileMark does not trust the battery in-
strumentation, and disables the battery low-
capacity warnings. It measures battery life by
running on battery power until the battery is
fully discharged and the system crashes.

1.3.4 Qualify Battery Life with Perfor-
mance

In addition to the battery life (in minutes) Mo-
bileMark Office productivity results always re-
port response time.

130 • Linux Laptop Battery Life

This makes it easy to tell the difference between
a battery life result for a low performance sys-
tem and a similar result for a high performance
system that employs superior power manage-
ment.

There is no performance component reported
for the other workloads, however, as the user
experience for those workloads is relatively in-
sensitive to performance.

1.3.5 Constant Work/Time

The MobileMark Office productivity workload
was calibrated to a minimal machine that com-
pleted one workload iteration in about 90 min-
utes. If a faster machine completes the work-
load iteration in less time, the system idles until
the next activity cycle starts at 90-minutes.

2 Measurement Methods

Here we take a closer look at the methods avail-
able to observe and measure battery life in a
Linux context.

2.1 Using an AC Watt Meter

Consumer-grade Watt Meters with a resolu-
tion of 0.1Watt and 1-second sampling rate are
available for about 100 U.S. Dollars.3 While
intended to tell you the cost of operating your
old refrigerator, they can just as easily tell you
the A/C draw for a computer.

It is important to avoid the load of battery
charging from this scenario by measuring. This
can be done by measuring only when the bat-
tery is fully charged, or for laptops that allow

3Watt’s Up Pro: https://www.doubleed.com

it, running on A/C with the battery physically
removed.

You’ll be able to see the difference between
such steady-state operations as LCD on vs. off,
LCD brightness, C-states and P-states. How-
ever, it will be very difficult to observe transient
behavior with the low sampling rate.

Unfortunately, the A/C power will include the
loss in the AC-to-DC power supply “brick.”
While an “External Power Adapter” sporting an
Energy Star logo4 rated at 20 Watts or greater
will be more than 75% efficient, others will not
meet that criteria and that can significantly dis-
tort your measurement results.

So while this method is useful for some types of
comparisons, it isn’t ideal for predicting battery
life. This is because most laptops behave differ-
ently when running on DC battery vs. running
on AC. For example, it is extremely common
for laptops to enable deep C-states only on DC
power and to disable them on AC power.

2.2 Using a DC Watt Meter on the DC con-
verter

It is possible to modify the power adapter by
inserting a precise high-wattage low-ohm resis-
tor in series on the DC rail and measuring the
voltage drop over this resistor to calculate the
current, and thus Watts.

This measurement is on the DC side of the con-
verter, and thus avoids the inaccuracy from AC-
DC conversion above. But this method suffers
the same basic flaw as the AC meter method
above, the laptop is running in AC mode, and
that is simply different from DC mode.

4http://www.energystar.gov

2006 Linux Symposium, Volume One • 131

2.3 Replacing the Battery with a DC power
supply

The next most interesting method to measure
battery consumption on a laptop is to pull apart
the battery and connect it to a lab-bench DC
power supply.

This addresses the issue of the laptop running
in DC mode. However, few reading this paper
will have the means to set up this supply, or the
willingness to destroy their laptop battery.

However, for those with access this type of test
setup, including a high-speed data logger; DC
consumption rates can be had in real-time, with
never a wait for battery charging.

Further, it is possible that system designers
may choose to make the system run differ-
ently depending on battery capacity. For exam-
ple, high-power P-states may be disabled when
on low battery power—but these enhancements
would be disabled when running on a DC
power supply that emulates a fully charged bat-
tery.

2.4 Using a DC Watt Meter on an instru-
mented battery

Finally, it is possible to instrument the output
of the battery itself. Like the DC power supply
method above, this avoids the issues with the
AC wattmeter and the instrumented power con-
verter method in that the system is really run-
ning on DC. Further, this allows the system to
adapt as the battery drains, just as it would in
real use. But again, most people who want to
measure power have neither a data logger, nor
a soldering iron available.

2.5 Using Built-in Battery Instrumentation

Almost all laptops come with built in battery in-
strumentation where the OS read capacity, cal-
culate drain and charge rates, and receive ca-
pacity alarms.

On Linux, /proc/acpi/battery/*/
info and state will tell you about your
battery and its current state, including drain
rate.

Sometimes the battery drain data will give a
good idea of average power consumption, but
often times this data is mis-leading.

One way to find out if your drain rate is accu-
rate is to plot the battery capacity from fully
charged until depleted. If the system is running
a constant workload, such as idle, then the in-
strumentation should report full capacity equal
to the design capacity of the battery at the start,
and it should report 0 capacity just as the lights
go out—and it should report a straight line in
between. In practice, only new properly condi-
tioned batteries do this. Old batteries and bat-
teries that have not been conditioned tend to
supply very poor capacity data.

Figure 1 shows a system with an old (4.4AH ∗
10.4V) = 47.520 Wh battery. After fully charg-
ing the battery, the instrumentation at the start
of the 1st run indicates that the battery ca-
pacity of under 27.000 Wh. If the battery
threshold warning was enabled for that run,
the system would have shut down well before
5,000 seconds—even though the battery actu-
ally lasted past 7,000 seconds.

The 1st run was effectively conditioning the
battery. The 2nd run reported a fully charged
capacity of nearly 33.000 Wh. The actual bat-
tery life was only slightly longer than the ini-
tial conditioning run, but in this case the re-
ported capacity was closer to the truth. The

132 • Linux Laptop Battery Life

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 1000 2000 3000 4000 5000 6000 7000 8000

ca
p

time

t30/results.office0/stat.log cap
t30/results.office1/stat.log cap
t30/results.office2/stat.log cap
t30/results.office3/stat.log cap

Figure 1: System A under-reports capacity until conditioned

3rd run started above 38.000 Wh and was lin-
ear from there until the battery died after 7,000
seconds. The 4th run showed only marginally
more truthful results. Note that a 10% battery
warning at 4,752 would actually be useful to a
real user after the battery has been conditioned.

Note also that the slope of all 4 lines is the
same. In this case, the rate of discharge shown
by the instrumentation appears accurate, even
for the initial run.

The battery life may not be longer than the
slope suggests, it may be shorter. Figure2
shows system B suddenly losing power near the
end of its conditioning run. However, the 2nd
(and subsequent) runs were quite well behaved.

Figure 3 shows system C with a drop-off that
is sure to fool the user’s low battery trip points.
In this case the initial reported capacity does
not change, staying at about 6800 of 71.000 Wh
(95%). However, the first run drops off a cliff
at about 11,000 seconds. The second and third

runs drop at about 13,500. But subsequent runs
all drop at about 12,000 seconds. So condition-
ing the battery didn’t make this one behave any
better.

Finally, Figure 4 shows system D reporting ini-
tial capacity equal to 100% of its 47.950 Wh
design capacity. But upon use, this capacity
drops almost immediately to about 37.500 Wh.
Even after being conditioned 5 times, the bat-
tery followed the same pattern. So either the
initial capacity was correct and the drain rate is
wrong, or initial capacity is incorrect and the
drain rate is correct. Note that this behavior
went away when a new battery was used. A
new battery reported 100% initial capacity, and
0% final capacity, connected by a straight line.

In summary, the only reliable battery life mea-
surement is a wall clock measurement from full
charge until the battery is depleted. Depleted
here means ignoring any capacity warnings and
running until the lights go out.

2006 Linux Symposium, Volume One • 133

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ca
p

time

i5150/results.office0/stat.log cap
i5150/results.office1/stat.log cap

Figure 2: System B over-reports capacity until conditioned

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2000 4000 6000 8000 10000 12000 14000 16000

ca
p

time

satellite/results.office0/stat.log cap
satellite/results.office1/stat.log cap
satellite/results.office2/stat.log cap
satellite/results.office3/stat.log cap
satellite/results.office4/stat.log cap
satellite/results.office5/stat.log cap

Figure 3: System C over-reports final capacity, conditioning does not help

134 • Linux Laptop Battery Life

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ca
p

time

d600/results.office0/stat.log cap
d600/results.office4/stat.log cap

Figure 4: System D over-reports initial capacity, conditioning does not help

3 Linux Battery Life Toolkit

The Linux Battery Life Toolkit (bltk) consists
of a test framework and six example workloads.
There are common test techniques that should
be followed to assure repeatable results no mat-
ter what the workload.

3.1 Toolkit Framework

The toolkit framework is responsible for
launching the workload, collecting statistics
during the run, and summarizing the results af-
ter a test completes.

The framework can launch any arbitrary work-
load, but currently has knowledge of 6 example
workloads: Idle, Reader, Office, DVD Player,
SW Developer, and 3D-Gamer.

3.2 Idle Workload

The idle workload simply executes the frame-
work without invoking any programs. Statis-
tics are collected the same way as for the other
workloads.

3.3 Web Reader Workload

The web reader workload opens an HTML-
formatted version of War and Peace by Leo
Tolstoy5 in Firefox R© and then sends “next
page” keyboard events to browser every two
minutes, simulating interaction with the human
reader.

5We followed the lead of BAPCo’s MobileMark here
on selection of reading material.

2006 Linux Symposium, Volume One • 135

3.4 Open Office Workload

Open Office rev 1.1.4 was chosen for this
toolkit because it is stable and freely available.
It is intended to be automatically installed by
the toolkit to avoid results corruption due to lo-
cal settings and version differences.

3.4.1 Open Office Activities

Currently 3 applications from OpenOffice suite
are used for the Office workload, oowriter,
oocalc and oodraw. The set of common
operations is applied to these applications to
simulate activities, typical for office application
users.

Using oowriter, the following operations
are performed:

• text typing

• text pattern replacement

• file saving

Using oocalc, the following operations are
performed:

• creating spreadsheet;

• editing cells values;

• assigning math expression to the cell;

• expanding math expression over a set of
cells;

• assigning set of cells to the math expres-
sion;

• file saving;

Using oodraw, the following operations are
performed:

• duplicating image;

• moving image over the document;

• typing text over the image;

• inserting spreadsheet;

• file saving.

3.4.2 Open Office User Input

User input consists of actions and delays. Ac-
tions are represented by the key strokes sent
to the application window though the X server.
This approach makes the application perform
the same routines as it does during interaction
with the real user.6 Delays are inserted between
actions to represent a real user.

The Office workload scenario is not hard-
coded, but is scripted using the capabilities
shown in Appendix A.

3.4.3 Open Office Performance Scores

A single iteration of the office workload sce-
nario completes in 720 seconds. When a faster
machine completes the workload in less than
720 seconds, it is idle until the next iteration
starts.

720seconds = Workload_time+ Idle

Workload time consists of Active_time—the
time it takes for the system to start applica-
tions and respond to user commands—plus the
delays that the workload inserts to model user
type-time and think-time.

6The physical input device, such as keyboard and
mouse are not used here.

136 • Linux Laptop Battery Life

Workload_time = Active_time+Delay_time

So the performance metric for each workload
scenario iteration is Active_time, which is cal-
culated by measuring Workload_time and sim-
ply and subtracting the known Delay_time.

The reported performance score is the average
Active_time over all loop iterations, normal-
ized to a reference Active_time so that bigger
numbers represent better performance:

Per f ormance_score =
100∗Active_re f erence/Average_Active_measured

3.5 DVD Movie Playback Workload

mplayer is invoked to play a DVD movie un-
til the battery dies. Note that mplayer does
not report frame rate to the toolkit framework.
For battery life comparisons, equal work/time
must be maintained, so that it is assumed, but
not verified in these tools that modern systems
can play DVD movies at equal frame rates.

3.6 Software Developer Workload

The software developer workload mimics a
Linux ACPI kernel developer: it invokes vi to
insert a comment string into one of the Linux
ACPI header files and then invokes make -j
N on a Linux kernel source tree, where N is cho-
sen to be three times the number of processors
in a system. This cycle is extended out to 12
minutes with idle time to more closely model
constant work/time on different systems.

The Active_time for the developer workload is
the time required for the make command to
complete, and it is normalized into a perfor-
mance score the same was as for the Office
workload.

Per f ormance_score = 100∗
Active_re f erence/Average_Active_measured.

3.7 3D Gamer Workload

A 3D gamer workload puts an entirely differ-
ent workload on a laptop, one that is gener-
ally more power-hungry than all the workloads
above.

However, we found that 3D video support is not
universally deployed or enabled in Linux, nor
are there a lot of selections of games that are
simultaneously freely available, run on a broad
range of platforms, and include a demo-mode
that outputs performance.

glxgears satisfies the criteria for being
freely available, universally supported, and
it reports performance; however, that perfor-
mance is not likely to closely correlate to what
a real 3D game would see. So we are not satis-
fied that we have a satisfactory 3D-Gamer met-
ric yet.

In the case of a 3D game workload, a reason-
able performance metric to qualify battery life
would be based on frames/second.

3D_Per f ormance_Score =
FPS_measured/FPS_re f erence

4 Example Measurement Results

This section includes example battery life mea-
surements to show what a typical user can do
on their system without the aid of any special
instrumentation.

Unless otherwise specified, the Dell Inspiron
TM

6400 shown in Table 1 was used as the example
system.

Note that this system is a somewhat arbitrary
reference. It has a larger and brighter screen

2006 Linux Symposium, Volume One • 137

System Dell Inspiron 6400
Battery 53 Wh

Processor Intel Core Duo T2500, 2GHz
2MB cache, 667MHz bus

LCD 15.4" WXGA, min bright
Memory 1GB DDR2, 2DIMM, 533MHz

Distribution Novell SuSE 10.1 BETA
GUI KDE

Linux 2.6.16 or later
HZ 250

cpufreq ondemand governor
Battery Alerts ignored
Screen Saver disabled

DPMS disabled
Wired net disabled
Wireless disabled

Table 1: Nominal System Under Test

than many available on the market. It arrived
with a 53 Wh 6-cell battery, but is also avail-
able with an 85 Wh 9-cell battery, which would
increase the absolute battery life results by over
50%. But the comparisons here are generally
of this system to itself, so these system-specific
parameters are equal on both sides.

4.1 Idle Workload

4.1.1 Idle: Linux vs. Windows

Comparing Linux7 with Windows8 on the same
hardware tells us how Linux measures up to
high-volume expectations.

This baseline comparison is done with pure-
idle workload. While trivial, this “workload” is
also crucial, because a difference in idle power
consumption will have an effect on virtually all
other workloads.

7Linux-2.6.16+ as delivered with Novell SuSE 10.1
BETA

8Windows R© XP SP2

 0

 60

 120

 180

 240

 300

WindowsLinux

Figure 5: Idle: Linux vs. Windows

Here the i6400 lasts 288 minutes on Windows,
but only 238 minutes on Linux, a 50 minute
deficit. One can view this as a percentage, eg.
Linux has 238/288 = 83% of the idle battery
life as compared to Windows.

One can also estimate the average power us-
ing the fixed 53 Wh battery capacity. (53Wh ∗
60min/Hr)/288min = 11.0W for Windows.
(53Wh ∗ 60min/Hr)/238min = 13.4W for
Linux. So here Linux is at a 2.4W deficit com-
pared to Windows in idle.

4.1.2 Idle: The real cost of the LCD

While the i6400 has a larger than average dis-
play, the importance of LCD power can not be
over-stated—even for systems with smaller dis-
plays.

The traditional screen saver that draws pretty
pictures on an idle screen is exactly the op-
posite of what you want for long battery life.
The reason isn’t because the display takes more
power, the reason is because it takes the proces-

138 • Linux Laptop Battery Life

 0

 60

 120

 180

 240

 300

offbrightdim

Figure 6: Idle: Effect of LCD

sor out of the deepest available C-state when
there is nothing “useful” to do.

The CPU can be removed from that equation
by switching to a screen saver that does not run
any programs. Many select the “blank” screen
saver on the assumption that it saves power—
but it does not. A Black LCD actually saves
no power vs. a white LCD. This is because the
black LCD has the backlight on just as bright as
the white LCD, but it is actually using fraction-
ally more energy to block that light with every
pixel.

So the way to save LCD power is to dim the
back-light so it is no brighter than necessary to
read the screen; and or turn it off completely
when you are not reading at the screen. Note
that an LCD that is off should appear black in
a darkened room. If it is glowing, then the pix-
els are simply fighting to obscure a backlight
that is still on. A screen saver that runs no pro-
grams and has DPMS (Display Power Manage-
ment Signaling) enabled to turn off the display
is hugely important to battery life.

On the example system, the 238-minute “dim”

 0

 60

 120

 180

 240

 300

USBNo USB

Figure 7: Idle: Effect of USB

idle time drops to 171 for maximum LCD
brightness, and increases to 280 minutes for
LCD off. Expressed as Watts, dim is 13.4W,
bright is 18.6W, and off is 11.4W. So this par-
ticular LCD consumes between 2.0 and 7.2W.
Your mileage will vary.

Note that because of its large demands system
power, analysis of the power consumption of
the other system components is generally most
practical when the LCD is off.

4.1.3 Idle: The real cost of USB

The i6400 has no integrated USB devices. So
if you execute lsusb, you’ll see nothing until
you plug in an external device.

If an (unused) USB 1.0 mouse is connected to
the system, battery life drops 12 minutes to 226
from 238. This corresponds to (14.1−13.4) =
0.7W .

2006 Linux Symposium, Volume One • 139

 0

 60

 120

 180

 240

 300

1000250100

Figure 8: Idle: Effect of HZ

4.1.4 Idle: Selecting HZ

In Linux-2.4, the periodic system timer tick
ran at 100 HZ. Linux-2.6 started life running
at 1000 HZ. Linux-2.6.13 added CONFIG_HZ,
with selections of 100, 1000, and a compromise
default of 250 HZ.

Figure 8 shows that the selection of HZ has a
very small effect on the i6400, though others
have reported larger differences on other sys-
tems. Note that since this difference was small,
this comparison was made in single-user mode.

4.1.5 Idle: init1 vs. init5

The Linux vs. Windows measurement above
was in multi-user GUI mode—though the net-
work was disabled. One question often asked if
the GUI (KDE, in this example) and other stan-
dard daemons have a significant effect on Linux
battery life.

In this example, the answer is yes, but not
much. Multi-user battery life is 238 min-

 0

 60

 120

 180

 240

 300

init5init1

Figure 9: Idle: init1 vs. init5

utes, and Single-user battery life is 10 min-
utes longer at 248—only a 4% difference. Ex-
pressed as Watts, 13.4−12.8 = 0.6W to run in
multi-user GUI mode.

However, init5 battery consumption may de-
pend greatly on how the administrator config-
ures the system.

4.1.6 Idle: 7200 vs. 5400 RPM Disk Drives

The i6400 arrived with a 5400 RPM 40GB
Fujitsu MHT2040BH SATA drive. Upgrad-
ing that drive to a 7200 RPM 60GB Hitachi
HTS721060G9SA00 SATA drive reduced single-
user9 idle battery life by 16 minutes, to 232
from 248 (6%). This corresponds to an av-
erage power difference of 0.89W. The speci-
fications for the drives show the Hitachi con-
suming about 0.1W more in idle and standby,
and the same for read/write. So it is not im-

9init1 idle is used as the baseline here because the dif-
ference being measured is small, and to minimize the risk
that the two different drives are configured differently.

140 • Linux Laptop Battery Life

mediately clear why Linux loses an additional
0.79W here.

4.1.7 Idle: Single Core vs. Idle Dual Core

Disabling one of the cores by booting with
maxcpus=1 has no measurable effect on idle
battery life. This is because the BIOS leaves the
cores in the deepest available C-state. When
Linux neglects to start the second core, it be-
haves almost exactly as if Linux had started that
core and entered the deepest available C-state
on it.

Note that taking a processor off-line at run-time
in Linux does not currently put that proces-
sor into the deepest available C-state. There is
a bug10 where offline processors instead enter
C1. So taking a processor offline at run-time
can actually result in worse battery life than if
you leave it alone and let Linux go idle auto-
matically.

4.1.8 The case against Processor Throt-
tling (T-States)

Processor Throttling States (T-states) are
available to the administrator under /proc/
acpi/processor/*/throttling to
modulate the clock supplied to the processors.

Most systems support 8 throttling states to
decrease the processor frequency in steps of
12.5%. Throttling the processor frequency is
independent of P-state frequency changes, so
the two are combined. For the example, Table 2
shows the potential effect of throttling when the
example system is in P0 or P3.

10http://bugzilla.kernel.org/show_
bug.cgi?id=5471

State P0 MHz P3 MHz
T0 2000 1000
T1 1750 875
T2 1500 750
T3 1250 625
T4 1000 500
T5 750 375
T6 500 250
T7 250 125

Table 2: Throttling States for the Intel R© Core
TM

Duo T2500

Throttling has an effect on processor frequency
only when the system is in the C0 state execut-
ing instructions. In the idle loop, Linux is in
the Cx state (x: x != 0) where no instructions
are executed and throttling has no effect, as the
clock is already stopped.

Indeed, T-states have been shown to have a net
negative impact on battery life on some sys-
tems, as they can interfere with the mechanisms
to efficiently enter deep C-states.

On the example system, throttling the idle sys-
tem down to the T7, the slowest speed, had a net
negative impact on idle battery life of 4 min-
utes.

Throttling is used by Linux for passive cooling
mode and for thermal emergencies. It is not
intended for the administrator to use throttling
to maximize performance/power or extend bat-
tery life. That is what cpufreq processor perfor-
mance states are for. So the next time you are
exploring the configuration menus of the pow-
ersavd GUI, do NOT check the box that enables
processor clock throttling. It is a bug that the
administrator is given the opportunity to make
that mistake.

2006 Linux Symposium, Volume One • 141

 0

 60

 120

 180

 240

 300

WindowsLinux

Figure 10: DVD: Linux vs. Windows

4.2 Reader Workload equals Init 5 Idle

Adding the Reader workload to init5 idle re-
sults in exactly the same battery life—238 min-
utes. The bar chart is left as an exercise for the
reader.

4.3 DVD Movie Workload

4.3.1 DVD Movie on Linux vs. Windows

The DVD movie playback workload is also
attractive for comparing Linux and Windows.
This constant work/time workload leaves little
room for disagreement about what the operat-
ing environment is supplying to the user. DVD
movie playback is also a realistic workload,
people really do sit down and watch DVDs on
battery power.

However, different DVD player software is
used in each operating environment. The Win-
dows solution uses WinDVD R©, and the Linux
measurement uses mplayer.

Here the i6400 plays a DVD on Linux for 184
minutes (3h4m). The i6400 plays the same
DVD on Windows for 218 minutes (3h38m).
This 34 minute deficit puts Linux at about 84%
of Windows. In terms of Watts, Linux is at a
(17.3−14.6) = 2.7W deficit compared to Win-
dows on DVD movie playback.

4.3.2 DVD Movie Single vs. Dual Core

DVD playback was measured with 1 CPU
available vs. 2 CPUS, and there was zero im-
pact on battery life.

4.3.3 DVD Movie: Throttling is not helpful

DVD playback was measured at T4 (50% throt-
tling) and there was a net negative impact of
9 minutes on battery life. Again, throttling
should be reserved for thermal management,
and is almost never an appropriate tool where
efficient performance/power is the goal.

4.4 Office Workload Battery Life and Per-
formance

The Office workload battery life and perfor-
mance are shown in Figure 11 and Figure 12,
respectively. The example system lasted 232
minutes with maxcpus=1 and a 5400 RPM
drive, achieving a performance rating of 94
(UP5K in Figures 11 and 12). Enabling the sec-
ond core cost 6 minutes (–3%) of battery life,
but increased performance by 89% to to 178,
(MP5K in Figures 11 and 12).

Upgrading the 5400 RPM disk drive to the 7200
RPM model had an 18 minute (8%) impact on
the UP battery life, and an 12 minute (5%) im-
pact on MP battery life. But the 7200 RPM
drive had negligible performance benefit on this

142 • Linux Laptop Battery Life

 0

 60

 120

 180

 240

 300

MP7KUP7KMP5KUP5K

Figure 11: Office Battery Life

 0

 50

 100

 150

 200

 250

 300

MP7KUP7KMP5KUP5K

Figure 12: Office Performance

 0

 60

 120

 180

 240

 300

MP7KUP7KMP5KUP5K

Figure 13: Developer Battery Life

workload. (UP7K and MP7K in Figures 11 and
12).

Note that the size of memory compared to the
working set of the Office workload impact how
much the disk is accessed. Were memory to be
smaller or the workload modified to access the
disk more, the faster drive would undoubtedly
have a measurable benefit.

In summary, the second core has a significant
performance benefit, with minimal battery cost
on this workload. However, upgrading from a
5400RPM to 72000 RPM drive does not show
a significant performance benefit on this work-
load as it is currently implemented.

4.5 Developer Workload Battery Life and
Performance

The Developer workload battery life and per-
formance are shown in Figure 13 and Figure 14,
respectively.

Here the maxcpus=1 5400 RPM baseline
scores 220 minutes with performance of 96.

2006 Linux Symposium, Volume One • 143

 0

 50

 100

 150

 200

 250

 300

MP7KUP7KMP5KUP5K

Figure 14: Developer Performance

Enabling the second core had a net positive
impact on battery life of 2 minutes, and in-
creased performance to 172 (+79%). Starting
from the same baseline, upgrading to the 7200
RPM drive from the 5400 RPM drive dropped
battery life 26 minutes to 194 from 220 (–12%),
but increased performance to 175 (+82%). Si-
multaneously enabling the second core and up-
grading the drive reduced battery life 34 min-
utes to 186 from 220 (15%), but increased per-
formance to 287 (+198%).

Clearly developers using this class of machine
should always have both cores enabled and
should be using 7200 RPM drives.

5 Future Work

5.1 Enhancing the Tools

The current version of the tools, 1.0.4, could
use some improvements.

• Concurrent Office applications. The cur-
rent scripts start an application, use it, and
then close it. Real users tend to have mul-
tiple applications open at once. It is un-
clear if this will have any significant effect
on battery life, but it would be better eye
candy.

• Add sanity checking that the system is
properly configured before starting a mea-
surement.

5.2 More Comparisons to make

The example measurements in this paper sug-
gest even more measurements.

• Effect of run-time device power states.

• Comparison of default policies of different
Linux distributors.

• Benefits of the laptop patch?

• USB 2.0 memory stick cost

• Gbit LAN linked vs unplugged

• WLAN seeking

• WLAN associated

• Bluetooth

• KDE vs. Gnome GUI

• LCD: brightness vs power consumption is
there an optimal brightness/power setting?

• Power consumption while suspended to
RAM vs. power consumption to reboot.
What is break-even for length of time sus-
pended vs halt, off, boot?

• Suspend to Disk and wakeup vs. staying
idle

• Suspend to RAM and wakeup vs staying
idle

144 • Linux Laptop Battery Life

6 Conclusion

The authors hope that the tools and techniques
shown here will help the Linux community
effectively analyze system power, understand
laptop battery life, and improve Linux power
management.

Appendix A: Scripting Commands

Keystrokes, keystroke conditions (like <Alt>,
<Ctrl>, <Shift>, etc.) and delays are scripted
in a scenario file along with other actions
(run command, wait command, select
window, send signal, etc.). The scenario
file is passed to the workload script execution
program, strings are parsed and appropriate ac-
tions are executed.

The scenario script is linear, no procedure
defining is (currently) supported. Each string
consists of 5 white space separated fields and
begins with command name followed by 4 ar-
guments (State, Count, Delay, String). For each
particular command arguments could have dif-
ferent meanings or be meaningless, though all 4
arguments should present. The following com-
mands are implemented:

Commands to generate user input

DELAY 0 0 Delay 0
Suspends execution for ’Delay’ msecs;

PRESSKEY State Count Delay String

Send Count State + String key-
strokes with Delay msec intervals
between them to the window in focus,
i.e. command PRESSKEY S 2 500 Down

would generate two <Shift> + <Down>

keystrokes with 1/2 second intervals. The
state values are:

S for Shift,

A for Alt,

C for Ctrl.

Some keys should be presented as their re-
spective names: Up, Down, Left, Right,
Return, Tab, ESC.

RELEASEKEY 0 0 0 String
Similar to PRESSKEY command, except
the Release event being sent. It could be
useful since some menu buttons react on
key release, i.e. the pair of PRESSKEY 0

0 <Delay> Return and RELEASEKEY

0 0 <Delay> Return should be used
in this case.

TYPETEXT State 0 Delay String
Types text from String with Delay msecs
interval between keystrokes. If State is F
then the text from String file is typed in-
stead of String itself.

ENDSCEN 0 0 0 0
End of scenario. No strings beyond this
one will be executed.

Commands to operate applications

RUNCMD 0 0 0 String
Execute command String, exits on com-
pletion.

WAITSTARTCMD 0 Count Delay String

Checks Count times with Delay msecs in-
tervals if String command is started (total
wait time is Count * Delay msecs).

WAITFINISHCMD 0 Count Delay String

Checks Count times with Delay msecs in-
tervals if String command is finished (total
wait time is Count * Delay msecs).

2006 Linux Symposium, Volume One • 145

Commands to interact with X windows

SETWINDOWID State 0 0 String
Makes window with X window ID located
in ’String’ object active. If State is F, then
String is treated as a file; if E or 0, as an
environment variable;

SETWINDOW 0 0 0 String
Waits for window with String title to ap-
pear and makes it active.

FOCUSIN 0 0 0 0
Sets focus to current active window.

FOCUSOUT 0 0 0 0
Gets focus out of current active window.

ENDWINDOW 0 0 0 String
Waits for window with String title to dis-
appear.

SYNCWINDOW 0 0 0 0
Tries to synchronize current active win-
dow.

To reach one particular window, SETWINDOW
and FOCUSIN commands should be per-
formed.

Commands to generate statistics

SENDWORKMSG 0 0 0 String
Generate ‘WORK’ statistics string in log
file with the String comment.

SENDIDLEMSG 0 0 0 String
Generate ‘IDLE’ statistics string in log file
with the String comment.

Note that the harness generates statistics reg-
ularly, so the above commands are intended to
generate strings to mark the beginning and end-
ing of the set of operations (e.g. ‘hot-spot’), for
which special measurements are required.

Debugging Commands

TRACEON 0 0 0 0
Enable debug prints;

TRACEOFF 0 0 0 0
Disable debug prints;

References

[ACPI] Hewlett-Packard, Intel, Microsoft,
Phoenix, Toshiba Advanced
Configuration & Power Specification,
Revision 3.0a, December 30, 2005.
http://www.acpi.info.

[Linux/ACPI] Linux/ACPI Project Home
page,
http://acpi.sourceforge.net.

[MM02] MobileMark R© 2002, Business
Applications Performance Corporation,
http://bapco.com, June 4, 2002,
Revision 1.0.

[MM05] MobileMark R© 2005, Business
Applications Performance Corporation,
http://bapco.com, May 26, 2005,
Revision 1.0.

BAPCo is a U.S. Registered Trademark of the Busi-
ness Applications Performance Corporation. Mo-
bilMark is a U.S. Registered Trademark of the Busi-
ness Applications Performance Corporation. Linux
is a registered trademark of Linus Torvalds. All
other trademarks mentioned herein are the property
of their respective owners.

146 • Linux Laptop Battery Life

The Frysk Execution Analysis Architecture

Andrew Cagney
Red Hat Canada Limited
cagney@redhat.com

Abstract

The goal of the Frysk project is to create
an intelligent, distributed, always-on system-
monitoring and debugging tool. Frysk will
allow GNU/Linux developers and system ad-
ministrators: to monitor running processes
and threads (including creation and destruction
events); to monitor the use of locking prim-
itives; to expose deadlocks, to gather data.
Users debug any given process by either choos-
ing it from a list or by accepting Frysk’s offer to
open a source code or other window on a pro-
cess that is in the process of crashing or that
has been misbehaving in certain user-definable
ways.

1 Introduction

This paper will first present a typical Frysk use-
case. The use-case will then be used to illus-
trate how Frysk differs from a more traditional
debugger, and how those differences benefit the
user. This paper will then go on to provide a
more detailed overview of Frysk’s internal ar-
chitecture and show how that architecture facil-
itates Frysk’s objectives. Finally, Frysk’s future
development will be reviewed, drawing atten-
tion areas of the Linux Kernel that can be en-
hanced to better facilitate advanced debugging
tools.

2 Example — K. the Compiler En-
gineer

K., a compiler engineer, spends a lot of time
running a large, complex test-suite involving
lots of processes and scripts, constantly mon-
itoring each run for compiler crashes. When a
crash occurs, K. must first attempt to reproduce
the problem in isolation, then reproduce it un-
der a command-line debugging tool, and then
finally attempt to diagnose the problem.

Using Frysk, K. creates a monitored terminal:

Terminal

From within that terminal, K. can directly run
the test framework:

$ make −j5 check

$ ls
Makefile

148 • The Frysk Execution Analysis Architecture

When a crash occurs, K. is alerted by the blink-
ing Frysk icon in the toolbar. K. can then click
on the Frysk icon and bring up the source win-
dow displaying the crashing program at the lo-
cation at which the crash occurred:

3 Frysk Compared To Traditional
Debugger Technology

In the 1980s, at the time when debuggers such
as GDB, SDB, and DBX were first developed,
UNIX application complexity was typically
limited to single-threaded, monolithic applica-
tions running on a single machine and written
in C. Since that period, applications have grown
both in complexity and sophistication utiliz-
ing: multiple threads and multiple processes;
shared libraries; shared-memory; a distributed
structure, typically as a client-server architec-
ture; and implemented using C++, Java, C#,
and scripting languages.

Unfortunately, the debugger tools developed at
that time have failed to keep pace of these ad-
vances. Frysk, in contrast, has the goal of sup-
porting these features from the outset.

3.1 Frysk Supports Multiple Threads, Pro-
cesses, and Hosts

Given that even a simple application, such as
firefox, involves both multiple processes and
threads, Frysk was designed from the outset

to follow Threads, Processes, and Hosts. That
way the user, such as K., is provided with a sin-
gle consistent tool that monitors the entire ap-
plication.

3.2 Frysk is Non-stop

Historically, since an application had only a
single thread, and since any sign of a prob-
lem (e.g., a signal) was assumed to herald dis-
aster, the emphasis on debugging tools was to
stop an application at the earliest sign of trou-
ble. With modern languages, and their man-
aged run-times, neither of those these assump-
tions apply. For instance, where previously a
SIGSEGV was indicative of a fatal crash, it is
now a normal part of an application’s execution
being used by the system’s managed run-time
as part of memory management.

With Frysk, the assumption is that the user re-
quires the debugging tool to be as unobtrusive
as possible, permitting the application to run
freely. Only when the user explicitly requests
control over one or more threads, or when a fa-
tal situation such as that K. encountered is de-
tected, will Frysk halt a thread or process.

3.3 Frysk is Event Driven

Unlike simpler command-line debugging tools,
which are largely restricted to exclusively mon-
itoring just the user’s input or just the running
application, Frysk is event-driven and able to
co-ordinate both user and application events si-
multaneously. When implementing a graphical
interface, this becomes especially important as
the user expects Frysk to always be responsive.

2006 Linux Symposium, Volume One • 149

3.4 Frysk has Transparent Attach and De-
tach

With a traditional debugging tool, a debugging
session for an existing process takes the form:

• attach to process

• examine values, continue, or stop

• detach from process

That is, the user is firstly very much aware of
the state of the process (attached or detached),
and secondly, is restricted to just manipulating
attached processes. With Frysk, the user can
initiate an operation at any time, the need to at-
tach being handled transparently.

For instance, when a user requests a stack back-
trace from a running process, Frysk automati-
cally attaches to, and then stops, the process.

3.5 Frysk is Graphical, Visual

While a command-line based tool is useful for
examining a simple single-threaded program,
it is not so effective when examining an ap-
plication that involves tens if not hundreds of
threads. In contrast, Frysk strongly emphasizes
its graphical interface providing visual mech-
anisms for examining an application. For in-
stance, to examine the history of processes and
events, Frysk provides an event line:

3.6 Frysk Handles Optimized and In-line
Code

Rather than limiting debugging to applications
that are written in C and compiled unoptimized,
Frysk is focused on supporting application that
have been compiled with optimized and in-
lined code. Frysk exploits its graphical inter-
face by permitting the user to examine the in-
lined code in-place. For instance, an in-lined
function b() with a further in-line call to f()
can be displayed as:

3.7 Frysk Loads Debug Information On-
demand

Given that a modern application often has gi-
gabytes of debug information, the traditional
approach of reading all debug information into
memory is not practical. Instead Frysk, using
libelf and libdw, reads the debug informa-
tion on demand, and hence ensures that Frysk’s
size is minimized.

3.8 Frysk Itself is Multi-Threaded and Ob-
ject Oriented

It is often suggested that a debugging tool is
best suited at debugging itself. This view be-
ing based on the assumption that since devel-
opers spend most of their time using their own

150 • The Frysk Execution Analysis Architecture

tools for debugging their own tools, they will be
strongly motivated to at least make debugging
their tool easy. Consequently, a single-threaded
procedural debugging tool written in C would
be best suited for debugging C, while devel-
opers working on a multi-threaded, object-
oriented, event-driven debugging tool are going
to have a stronger motivation to make the tool
work with that class of application.

3.9 Frysk is Programmable

In addition to a graphical interface, the Frysk
architecture facilitates the rapid development
of useful standalone command-line utilities im-
plemented using Frysk’s core. For instance
the command line utility ftrace, similar to
strace, was implemented by adding a system
call observer that prints call information to the
threads being traced, and the program fstack
was implemented by adding a stop observer to
all threads of a process so that as each thread
stopped its stack back-trace could be printed.

4 The Frysk Architecture

4.1 Overview

At a high level, Frysk’s architecture can be
viewed as a collection of clients that interact
with Frysk’s core. The core provides clients
with alternate models or views of the system.

gui

public
interfaces

eclipse

utilities cli

lang model

proc model

kernel

FRYSK’s
core

...

Frysk’s core then uses the target system’s ker-
nel interfaces to maintain the internal models of
the running system.

4.2 The Core, A Layered Architecture

Aspects of a Linux system can be viewed, or
modeled, at different levels of abstraction. For
instance:

• a process model: as a set of processes,
each containing threads and each thread
having registers and memory

• a language model: a process executing a
high-level program, written in C++, hav-
ing a stack, variables, and code

Conceptually, the models form sequence of lay-
ers, and each layer is implemented using the
one below:

2006 Linux Symposium, Volume One • 151

Kernel

Process
Model

Language
Model

host, process,
thread

stack, variable,
source code

For instance, the language model, which ab-
stracts a stack, would construct that stack’s
frames using register information obtained
from the process model.

The core then makes each of those models
available to client applications.

4.2.1 Frysk’s Process Model

Frysk’s process model implements a process-
level view of the Linux system. The model con-
sists of host, process, and task (or thread) ob-
jects corresponding to the Linux system equiv-
alents:

Host

Proc

ProcProc Proc

Proc

Frysk then makes this model available to the
user as part of the process window:

When a user requests that Frysk monitor for a
process model event, such as a process exiting,
that request is implemented by adding an ob-
server (or monitor) to the objects to which the
request applies. When the corresponding event
occurs, the observers are notified.

4.2.2 Frysk’s Language Model

Corresponding to the run-time state of a high-
level program, Frysk provides a run-time lan-
guage model. This model provides an abstrac-
tion of a running-program’s stack (consisting of
frames), variables and objects.

foo

bar

calls

baz

inlines

The model is then made available to the user
through the source window’s stack and source
code browsers:

152 • The Frysk Execution Analysis Architecture

5 Future Direction

Going forward, Frysk’s development is ex-
pected to be increasingly focused on large
complex and distributed applications. Conse-
quently Frysk is expected to continue pushing
its available technology.

Internally, Frysk has already identified limita-
tions of the current Linux Kernel debugging in-
terfaces (ptrace and proc). For instance:
that only the thread that did the attach be per-
mitted to manipulate the debug target, or that
waiting on kernel events still requires the jug-
gling of SIGCHLD and waitpid. Addressing
these issues will be critical to ensuring Frysk’s
scalability.

At the user level, Frysk will continue its ex-
ploration of interfaces that allow the user to
analyze and debug increasingly large and dis-
tributed applications. For instance, Frysk’s in-
terface needs to be extended so that it is capa-
ble of visualizing and managing distributed ap-
plications involving hundreds or thousands of
nodes.

6 Conclusion

Through the choice of a modern programming
language, and the application of modern soft-
ware design techniques, Frysk is well advanced
in its goal of creating an intelligent, distributed,
always-on monitoring and debugging tool.

7 Acknowledgments

Thanks goes to Michael Behm, Stan Cox,
Adam Jocksch, Rick Moseley, Chris Moller,
Phil Muldoon, Sami Wagiaalla, Elena Zannoni,
and Wu Zhou, who provided feedback, code,
and screenshots.

Evaluating Linux Kernel Crash Dumping Mechanisms

Fernando Luis Vázquez Cao
NTT Data Intellilink

fernando@intellilink.co.jp

Abstract

There have been several kernel crash dump cap-
turing solutions available for Linux for some
time now and one of them, kdump, has even
made it into the mainline kernel.

But the mere fact of having such a feature does
not necessary imply that we can obtain a dump
reliably under any conditions. The LKDTT
(Linux Kernel Dump Test Tool) project was
created to evaluate crash dumping mechanisms
in terms of success rate, accuracy and com-
pleteness.

A major goal of LKDTT is maximizing the
coverage of the tests. For this purpose, LKDTT
forces the system to crash by artificially recre-
ating crash scenarios (panic, hang, exception,
stack overflow, hang, etc.), taking into ac-
count the hardware conditions (such as ongoing
DMA or interrupt state) and the load of the sys-
tem. The latter being key for the significance
and reproducibility of the tests.

Using LKDTT the author could constate the su-
perior reliability of the kexec-based approach
to crash dumping, although several deficiencies
in kdump were revealed too. Since the final
goal is having the best crash dumping mech-
anism possible, this paper also addresses how
the aforementioned problems were identified
and solved. Finally, possible applications of
kdump beyond crash dumping will be intro-
duced.

1 Introduction

Mainstream Linux lacked a kernel crash dump-
ing mechanism for a long time despite the
fact that there were several solutions (such as
Diskdump [1], Netdump [2], and LKCD [3])
available out of tree . Concerns about their in-
trusiveness and reliability prevented them from
making it into the vanilla kernel.

Eventually, a handful of crash dumping so-
lutions based on kexec [4, 5] appeared:
Kdump [6, 7], Mini Kernel Dump [8], and
Tough Dump [9]. On paper, the kexec-based
approach seemed very reliable and the impact
in the kernel code was certainly small. Thus,
kdump was eventually proposed as Linux ker-
nel’s crash dumping mechanism and subse-
quently accepted.

However, having a crash dumping mechanism
does not necessarily imply that we can get a
dump under any crash scenario. It is necessary
to do proper testing, so that the success rate and
accuracy of the dumps can be estimated and the
different solutions compared fairly. Besides,
having a standardised test suite would also help
establishing a quality standard and, collaterally,
detecting regressions would be much easier.

Unless otherwise indicated, henceforth all the
explanations will refer to i386 and x86_64 ar-
chitectures, and Linux 2.6.16 kernel.

154 • Evaluating Linux Kernel Crash Dumping Mechanisms

1.1 Shortcomings of current testing meth-
ods

Typically to test crash dumping mechanisms a
kernel module is created that artificially causes
the system to die. Common methods to bring
the system down from this module consist of
directly invoking panic, making a null pointer
dereference and other similar techniques.

Sometimes, to ease testing a user space tool is
provided that sends commands to the kernel-
space part of the testing tool (via the /proc
file system or a new device file), so that things
like the crash type to be generated can be con-
figured at run-time.

Beyond the crash type, there are no provisions
to further define the crash scenario to be recre-
ated. In other words, parameters like the load
of the machine and the state of the hardware
are undefined at the time of testing.

Judging from the results obtained with this ap-
proach to testing all crash dumping solutions
seem to be very close in terms of reliability,
regardless of whether they are kexec-based or
not, which seems to contradict theory. The rea-
son is that the coverage of the tests is too lim-
ited as a consequence of leaving important fac-
tors out of the picture. Just to give some exam-
ples, the hardware conditions (such as ongoing
DMA or interrupt state), the system load, and
the execution context are not taken into consid-
eration. This greatly diminishes the relevance
of the results.

1.2 LKDTT motivation

The critical role crash dumping solutions play
in enterprise systems calls for proper testing,
so that we can have an estimate of their suc-
cess rate under realistic crash scenarios. This is
something the current testing methods cannot

achieve and, as an attempt to fill this gap, the
LKDTT project [10] was created.

Using LKDTT many deficiencies in kdump,
LKCD, mkdump and other similar projects
were found. Over the time, some regressions
were observed too. This type of information
is of great importance to both Linux distribu-
tions and end-users, and making sure it does
not pass unnoticed is one of the commitments
of this project.

To create meaningful tests it is necessary to un-
derstand the basics of the different crash dump-
ing mechanisms. A brief introduction follows
in the next section.

2 Crash dump

A variety of crash dumping solutions have
been developed for Linux and other UNIX R©-
like operating systems over the time. Even
though implementations and design principles
may differ greatly, all crash dumping mecha-
nisms share a multistage nature:

1. Crash detection.

2. Minimal machine shutdown.

3. Crash dump capture.

2.1 Crash detection

For the crash dump capturing process to start
a trigger is needed. And this trigger is, most
interestingly, a system crash.

The problem is that this peculiar trigger some-
times passes unnoticed or, in the words, the ker-
nel is unable to detect that itself has crashed.

2006 Linux Symposium, Volume One • 155

The culprits of system crashes are software er-
rors and hardware errors. Often a hardware er-
ror leads to a software errors, and vice versa,
so it is not always easy to identify the original
problem. For example, behind a panic in the
VFS code a damaged memory module might
be lurking.

There is one principle that applies to both soft-
ware and hardware errors: if the intention is
to capture a dump, as soon as an error is de-
tected control of the system should be handed
to the crash dumping functionality. Deferring
the crash dumping process by delegating in-
vocation of the dump mechanism to functions
such as panic is potentially fatal, because the
crashing kernel might well lose control of the
system completely before getting there (due to
a stack overflow for example).

As one might expect, the detection stage of the
crash dumping process does not show marked
implementation specific differences. As a con-
sequence, a single implementation could be
easily shared by the different crash dumping so-
lutions.

2.1.1 Software errors

A list of the most common crash scenarios the
kernel has to deal with is provided below:

• Oops: Occurs when a programming mis-
take or an unexpected event causes a situa-
tion that the kernel deems grave. Since the
kernel is the supervisor of the entire sys-
tem it cannot simply kill itself as it would
do with a user-space application that goes
nuts. Instead, the kernel issues and oops
(which results in a stack trace and error
message to the console) and strives to get
out of the situation. But often, after the
oops, the system is left in an inconsistent

state the kernel cannot recover from and,
to avoid further damage, the system panics
(see panic below). For example, a driver
might have been in the middle of talking
to hardware or holding a lock at the time
of the crash and it would not be safe to re-
sume execution. Hence, a panic is issued
instead.

• Panic: Panics are issued by the kernel
upon detecting a critical error from which
it cannot recover. After printing and error
message the system is halted.

• Faults: Faults are triggered by instructions
that cannot or should not be executed by
the CPU. Even though some of them are
perfectly valid, and in fact play an essen-
tial role in important parts of the kernel
(for example, pages faults in virtual mem-
ory management); there are certain faults
caused by programming errors, such as
divide-error, invalid TSS, or double fault
(see below), which the kernel cannot re-
cover from.

• Double and triple faults: A double fault
indicates that the processor detected a sec-
ond exception while calling the handler for
a previous exception. This might seem a
rare event but it is possible. For exam-
ple, if the invocation of an exception han-
dler causes a stack overflow a page fault
is likely to happen, which, in turn, would
cause a double fault. In i386 architectures,
if the CPU faults again during the incep-
tion of the double fault, then it triple faults,
entering a shutdown cycle that is followed
by a system RESET.

• Hangs: Bugs that cause the kernel to loop
in kernel mode, without giving other tasks
the chance to run. Hangs can be classified
in two big groups:

– Soft lockups: These are transitory
lockups that delay execution and

156 • Evaluating Linux Kernel Crash Dumping Mechanisms

scheduling of other tasks. Soft lock-
ups can be detected using a software
watchdog.

– Hard lockups: These are lockups that
leave the system completely unre-
sponsive. They occur, for example,
when a CPU disables interrupts and
gets stuck trying to get spinlock that
is not freed due to a locking error.
In such a state timer interrupts are
not served, so scheduler-based soft-
ware watchdogs cannot be used for
detection. The same happens to key-
board interrupts, and that is why the
Sys Rq key cannot be used to trig-
ger the crash dump. The solution
here is using the NMI handler.

• Stack overflows: In Linux the size of the
stacks is limited (at the time of writing
i386’s default size is 8KB) and, for this
reason, the kernel has to make a sensitive
use of the stack to avoid bloating. It is
a common mistake by novice kernel pro-
grammers to declare large automatic vari-
ables or to use deeply nested recursive al-
gorithms; both of these practises tend to
cause stack overflows. Stacks are also
jeopardised by other factors that are not so
evident. For example, in i386 interrupts
and exceptions use the stack of the current
task, which puts extra pressure on it. Con-
sequently, interruption nesting should also
be taken into account when programming
interrupt handlers.

2.1.2 Hardware errors

Not only software has errors, sometimes ma-
chines fail too. Some hardware errors are re-
coverable, but when a fatal error occurs the sys-
tem should come to a halt as fast as possible
to avoid further damage. It is not even clear

whether trying to capture a crash dump in the
event of a serious hardware error is a sensi-
tive thing to do. When the underlying hard-
ware cannot be trusted one would rather bring
the system down to avoid greater havoc.

The Linux kernel can make use of some er-
ror detection facilities of computer hardware.
Currently the kernel is furnished with several
infrastructures which deal with hardware er-
rors, although the tendency seems to be to con-
verge around EDAC (Error Detection and Cor-
rection) [11]. Common hardware errors the
Linux kernel knows about include:

• Machine checks: Machine checks occur in
response to CPU-internal malfunctions or
as a consequence of hardware resets. Their
occurrence is unpredictable and can leave
memory and/or registers in a partially up-
dated state. In particular, the state of the
registers at the time of the event is com-
pletely undefined.

• System RAM errors: In systems equipped
with ECC memory the memory chip has
extra circuitry that can detect errors in the
ingoing and outgoing data flows.

• PCI bus transfer errors: The data travel-
ling to/from a PCI device may experience
corruption whilst on the PCI bus. Even
though a majority of PCI bridges and pe-
ripherals support such error detection most
system do not check for them. It is worth
noting that despite the fact that some of
this errors might trigger an NMI it is not
possible figure out what caused it, because
there is no more information.

2.2 Minimal machine shutdown

When the kernel finds itself in a critical situa-
tion it cannot recover from, it should hand con-

2006 Linux Symposium, Volume One • 157

trol of the machine to the crash dumping func-
tionality. In contrast to the previous stage (de-
tection), the things that need to be done at this
point are quite implementation dependent. That
said, all the crash dumping solutions, regardless
of their design principles, follow the basic exe-
cution flow indicated below:

1. Right after entering the dump route the
crashing CPU disables interrupts and
saves its context in a memory area spe-
cially reserved for that purpose.

2. In SMP environments, the crashing CPU
sends NMI IPIs to other CPUs to halt
them.

3. In SMP environments, each IPI receiving
processor disables interrupts and saves its
context in a special-purpose area. After
this, the processor busy loops until the
dump process ends.
Note: Some kexec-based crash dump cap-
turing mechanisms relocate to boot CPU
after a crash, so this step becomes differ-
ent in those cases (see Section 7.4 for de-
tails).

4. The crashing CPU waits a certain amount
of time for IPIs to be processed by the
other CPUs, if any, and resumes execution.

5. Device shutdown/reinitialization, if done
at all, is kept to a minimum, for it is not
safe after a crash.

6. Jump into the crash dump capturing code.

2.3 Crash dump capture

Once the minimal machine shutdown is com-
pleted the system jumps into the crash dump
capturing code, which takes control of the sys-
tem to do the dirty work of capturing the dump
and saving the dump image in a safe place.

Before continuing, it is probably worth defining
what is understood by kernel crash dump. A
kernel crash dump is an image of the resources
in use by the kernel at the time of the crash, and
whose analysis is an essential element to clarify
what went wrong. This usually comprises an
image of the memory available to the crashed
kernel and the register states of all the proces-
sors in the system. Essentially, any information
deemed useful to figure out the source of the
problem is susceptible of being included in the
dump image.

This final and decisive stage is probably the one
that varies more between implementations. At-
tending to the design principles two big groups
can be identified though:

• In-kernel solutions: LKCD, Diskdump,
Netdump.

• kexec-based solutions: Kdump, MK-
Dump, Tough Dump.

2.3.1 In-kernel solutions

The main characteristic of the in-kernel ap-
proach is, as the name suggests, that the crash
dumping code uses the resources of the crash-
ing kernel. Hence, these mechanisms, among
other things, make use of the drivers and the
memory of the crashing kernel to capture the
crash dump. As might be expected this ap-
proach has many reliability issues (see Sec-
tion 5.1 for an explanation and Table 2 for test
results).

2.3.2 kexec-based solutions

The core design principle behind the kexec-
based approach is that the dump is captured
from an independent kernel (the crash dump

158 • Evaluating Linux Kernel Crash Dumping Mechanisms

kernel or second kernel) that is soft-booted af-
ter the crash. Here onwards, for discussion pur-
poses, crashing kernel is referred to as first ker-
nel and the kernel which captures the dump as
either capture kernel or second kernel.

As a general rule, the crash dumping mecha-
nism should avoid fiddling with the resources
(such as memory and CPU registers) of the
crashing kernel. And, when this is inevitable,
the state of these resources should be saved be-
fore they are used. This means that if the cap-
ture kernel wants to use a memory region the
first kernel was using, it should first save the
original contents so that this information is not
missing in the dump image. These considera-
tions along with the fact that we are soft boot-
ing into a new kernel determines the possible
implementations of the capture kernel:

• Booting the capture kernel from the stan-
dard memory location
The capture kernel is loaded in a reserved
memory region and in the event of a crash
it is copied to the memory area from where
it will boot. Since this kernel is linked
against the architecture’s default start ad-
dress, it needs to reside in the same place
in memory as the crashing kernel. There-
fore, the memory area necessary to accom-
modate the capture kernel is preserved by
copying it to a backup region just before
doing the copy. This was the approach
taken by Tough Dump.

• Booting the second kernel from a reserved
memory region
After a crash the system is unstable and the
data structures and functions of the crash-
ing kernel are not reliable. For this rea-
son there is no attempt to perform any kind
of device shutdown and, as a consequence,
any ongoing DMAs at the time of the crash
are not stopped. If the approach discussed
before is used the capture kernel is prone

to be stomped by DMA transactions initi-
ated in the first kernel. As long as IOMMU
entries are not reassigned, this problem
can be solved by booting the second ker-
nel directly from the reserved memory re-
gion it was loaded into. To be able to boot
from the reserved memory region the ker-
nel has to be relocated there. The reloca-
tion can be accomplished at compile time
(with the linker) or at run-time (see dis-
cussion in Section 7.2.1). Kdump and mk-
dump take the first and second approach,
respectively.

For the reliability reasons mentioned above the
second approach is considered the right solu-
tion.

3 LKDTT

3.1 Outline

LKDTT is a test suite that forces the kernel
to crash by artificially recreating realistic crash
scenarios. LKDTT accomplishes this by taking
into account both the state of the hardware (for
example, execution context and DMA state)
and the load conditions of the system for the
tests.

LKDTT has kernel-space and user-space com-
ponents. It consists of a kernel patch that im-
plements the core functionality, a small utility
to control the testing process (ttutils), and
a set of auxiliary tools that help recreating the
necessary conditions for the tests.

Usually tests proceed as follows:

• If it was not built into the kernel, load the
DTT (Dump Test Tool) module (see Sec-
tion 3.2.2).

2006 Linux Symposium, Volume One • 159

• Indicate the point in the kernel where the
crash is to be generated using ttutils
(see Section 3.3). This point is called
Crash Point (CP).

• Reproduce the necessary conditions for
the test using the auxiliary tools (see Sec-
tion 3.4).

• Configure the CP using ttutils. The
most important configuration item is the
crash type.

• If the CP is located in a piece of code
rarely executed by the kernel, it may be-
come necessary to use some of the aux-
iliary tools again to direct the kernel to-
wards the CP.

A typical LKDTT session is depicted in Ta-
ble 1.

3.2 Implementation

LKDTT is pretty simple and specialized
on testing kernel crash dumping solutions.
LKDTT’s implementation is sketched in Fig-
ure 1, which will be used throughout this sec-
tion for explanation purposes.

The sequence of events that lead to an artificial
crash is summarized below:

• Kernel execution flow reaches a crash
point or CP (see 3.2.1). In the picture the
CP is called HD_CP and is located in the
hard disk device driver.

• If the CP is enabled the kernel jumps into
the DTT module. Otherwise execution re-
sumes from the instruction immediately
after the CP.

crash0

>=1

DTT

HD driver

Tasklet

HD_CP

HD_CP_CNT--

Figure 1: Crash points implementation

• The DTT module checks the counter as-
sociated with the CP. This counter (HD_
CP_CNT in the example) keeps track of
the number of times the CP in question has
been crossed.

• This counter is a reverse counter in reality,
and when it reaches 0 the DTT (Dump Test
Tool) module induces the system crash as-
sociated with the CP. If the counter is still
greater than zero execution returns from
the module and continues from the instruc-
tion right after the CP.

Both the initial value of the counter and the
crash type to be generated are run-time con-
figurable from user space using ttutils
(see 3.3). Crash points, however, are inserted
in the kernel source code as explained in the
following section.

160 • Evaluating Linux Kernel Crash Dumping Mechanisms

modprobe dtt
./ttutils ls
id crash type crash point name count location
1 none INT_HARDWARE_ENTRY 0 kern
3 none FS_DEVRW 0 kern
4 panic MEM_SWAPOUT 7 kern
5 none TASKLET 0 kern
./ttutils add -p IDE_CORE_CP -n 50
./ttutils ls
id crash type crash point name count location
1 none INT_HARDWARE_ENTRY 0 kern
3 none FS_DEVRW 0 kern
4 panic MEM_SWAPOUT 7 kern
5 none TASKLET 0 kern
50 none IDE_CORE_CP 0 dyn
./helper/memdrain
./ttutils set -p IDE_CORE_CP -t panic -c 10

Table 1: LKDTT usage example

3.2.1 Crash Points

Each of the crash scenarios covered by the test
suite is generated at a Crash Point (CP), which
is a mere hook in the kernel. There are two
different approaches to inserting hooks at arbi-
trary points in the kernel: patching the kernel
source and dynamic probing. At first glance,
the latter may seem the clear choice, because
it is more flexible and it would not be neces-
sary to recompile the kernel to insert a new CP.
Besides, there is already an implementation of
dynamic probing in the kernel (Kprobes [12]),
with which the need of a kernel recompilation
disappears completely.

Despite all these advantages dynamic probing
was discarded because it changes the execution
mode of the processor (a breakpoint interrupt
is used) in a way that can modify the result of
a test. Using /dev/mem to crash the kernel
is another option, but in this case there is no
obvious way of carrying out the tests in a con-
trolled manner. These are the main motives be-
hind LKDTT’s election of the kernel patch ap-

proach. Specifically, the current CP implemen-
tation is based on IBM’s Kernel Hooks.

In any case, a recent extension to Kprobes
called Djprobe [13] that uses the breakpoint
trap just once to insert a jump instruction at
the desired probe point and uses this thereafter
looks promising (the jump instruction does not
alter the CPU’s execution mode and, conse-
quently, should not alter the test results).

As pointed out before, each CP has two at-
tributes: number of times the CP is crossed be-
fore causing the system crash and the crash type
to be generated.

At the time of writing, 5 crash types are sup-
ported:

• Oops: generates a kernel oops.

• Panic: generates a kernel panic.

• Exception: dereferences a null pointer.

• Hang: simulates a locking error by busy
looping.

2006 Linux Symposium, Volume One • 161

• Overflow: bloats the stack.

As mentioned before, crash points are inserted
in the kernel source code. This is done using
the macro CPOINT provided by LKDTT’s ker-
nel patch (see 3.5). An example can be seen in
code listing 1.

3.2.2 DTT module

The core of LKDTT is the DTT (Dump Test
Tool) kernel module. Its main duties are: man-
aging the state of the CPs, interfacing with
the user-space half of LKDTT (i.e. ttutils)
through the /proc file system, and generat-
ing the crashes configured by the user using the
aforementioned interface.

Figure 2 shows the pseudo state diagram of a
CP (the square boxes identify states). From
LKDTT’s point of view, CPs come to existence
when they are registered. This is done auto-
matically in the case of CPs compiled into the
kernel image. CPs residing in kernel modules,
on the other hand, have to be registered either
by calling a CP registration function from the
module’s init method, or from user space using
a special ttutils’ option (see add in ttutils,
Section 3.3, for a brief explanation and Table 1
for a usage example). The later mechanism is
aimed at reducing the intrusiveness of LKDTT.

Once a CP has been successfully registered
the user can proceed to configure it using
ttutils (see set in ttutils, Section 3.3, and
Table 1 for an example). When the CP is en-
abled, every time the CP is crossed the DTT
module decreases the counter associated with it
by one and, when it reaches 0, LKDTT simu-
lates the corresponding failure.

If it is an unrecoverable failure, the crash dump-
ing mechanism should assume control of the

CP enabled

Countdown

CP registered

.

fatal?

0?

CP disabled

CP deleted

Yes

Yes

No

No

Dump capturecrash

CP configuration

CP reached

CP deletion

CP configuration

Init

CP registration

CP deactivation

Crash generation

Figure 2: State diagram of crash points

system and capture a crash dump. However, if
the kernel manages to recover from this even-
tuality the CP is marked as disabled, and re-
mains in this state until it is configured again
or deleted. There is a caveat here though: in-
kernel CPs cannot be deleted.

LKDTT can be enabled either as a kernel mod-
ule or compiled into the kernel. In the modular
case it has to be modprobed:

modprobe dtt [rec_num={>0}]

rec_num sets the recursion level for the stack
overflow test (default is 10). The stack growth
is approximately rec_num*1KB.

3.3 ttutils

ttutils is the user-space bit of LKDTT. It
is a simple C program that interfaces with the

162 • Evaluating Linux Kernel Crash Dumping Mechanisms

DTT module through /proc/dtt/ctrl and
/proc/dtt/cpoints. The first file is used
to send commands to the DTT module, com-
monly to modify the state of a CP. The second
file, on the other hand, can be used to retrieve
the state of crash points. It should be fairly easy
to integrate the command in scripts to automate
the testing process.

The ttutils command has the following format:

ttutils command [options]

The possible commands being:

• help: Display usage information.

• ver(sion): Display version number of
LKDTT.

• list|ls: Show registered crash points.

• set: Configure a Crash Point (CP). set
can take two different options:
-p cpoint_name: CP’s name.
-t cpoint_type: CP’s crash type.
Currently the available crash types are:
none (do nothing), panic, bug (oops), ex-
ception (generates an invalid exception),
loop (simulates a hang), and overflow.
-c pass_num: Number of times the
crash point has to be crossed before the
failure associated with its type is induced.
The default value for pass_num is 10.

• reset: Disable a CP. Besides, the asso-
ciated counter that keeps track of the num-
ber of times the crash point has been tra-
versed is also reset. The options available
are:
-p cpoint_name: CP’s name.
-f: Reset not only the CP’s counter but
also revert its type to none.

• add: Register a CP from a kernel mod-
ule so that it can be actually used. This
is aimed at modules that do not register
the CPs inserted in their own code. Please
note that registering does not imply acti-
vation. Activation is accomplished using
set. add has two options:
-p cpoint_name: CP’s name.
-n id: ID to be associated with the CP.

• rmv: Remove a CP registered using add.
rmv has one single option:
-p cpoint_name: CP’s name.

3.4 Auxiliary tools

One of the main problems that arises when test-
ing crash dumping solutions is that artfully in-
serting crash points in the kernel does not al-
ways suffice to recreate certain crash scenar-
ios. Some execution paths are rarely trodden
and the kernel has to be lured to take the right
wrong way.

Besides, the tester may want the system to be
in a particular state (ongoing DMA or certain
memory and CPU usage levels, for example).

This is when the set of auxiliary tools included
in LKDTT comes into play to reproduce the de-
sired additional conditions.

A trivial example is memdrain (see Table 1
for a usage example), a small tool included in
the LKDTT bundle. memdrain is a simple C
program that reserves huge amounts of mem-
ory so that swapping is initiated. By doing so
the kernel is forced to traverse the CPs inserted
in the paging code, so that we can see how
the crash dumping functionality behaves when
a crash occurs in the middle of paging anony-
mous memory.

2006 Linux Symposium, Volume One • 163

3.5 Installation

First, the kernel patch has to be applied:

cd <PATH_TO_KERNEL_X.Y.Z>

zcat <PATH_TO_PATCH>/dtt-full-X.

Y.Z.patch.gz | patch -p1

Once the patch has been applied we can pro-
ceed to configure the kernel as usual, but mak-
ing sure that we select the options indicated be-
low:

make menuconfig
Kernel hacking --->
Kernel debugging [*]
Kernel Hook support [*] or [M]
Crash points [*] or [M]

The final steps consist of compiling the kernel
and rebooting the system:

make
make modules_install
make install
shutdown -r now

The user space tools (ttutils and the auxil-
iary tools) can be installed as follows:

tar xzf dtt_tools.tar.gz
cd dtt_tools
make

4 Test results

The results of some tests carried out with
LKDTT against LKCD and two different ver-
sions of the vanilla kernel with kdump enabled
can be seen in Table 2.

For each crash point all the crash types sup-
ported by LKDTT were tried: oops, panic, ex-
ception, hang, and overflow. The meaning of
the crash points used during the tests is ex-
plained in Section 3.2.1.

The specifications of the test machine are as
follows:

• CPU type: Intel Pentium 4 Xeon Hyper-
threading.

• Number of CPUs: 2.

• Memory: 1GB.

• Disk controller: ICH5 Serial ATA.

The kernel was compiled with the options be-
low turned on (when available): CONFIG_

PREEMPT, CONFIG_PREEMPT_BKL, CONFIG_
DETECT_SOFTLOCKUP, CONFIG_4KSTACKS,
CONFIG_SMP. And the kernel command line
for the kdump tests was:

root=/dev/sda1 ro crashkernel=32M@

16M nmi_watchdog=1 console=ttyS0,

38400 console=tty0

The test results in Table 2 are indicated using
the convention below:

• O: Success.

• O(nrbt): The system recovered from
the induced failure. However, a subse-
quent reboot attempt failed, leaving the
machine hanged.

• O(nrbt, nmiw): The dump image
was captured successfully but the system
hanged when trying to reboot. The NMI
watchdog detected this hang and, after
determining that the crash dump had al-
ready been taken, tried to reboot the sys-
tem again.

164 • Evaluating Linux Kernel Crash Dumping Mechanisms

Crash point Crash type LKCD 6.1.0 kdump 2.6.13-rc7 kdump 2.6.16
INT_HARDWARE_ENTRY panic X 0 0

oops X (nmiw, nrbt) X (nmiw) 0
exception X (nmiw, nrbt) X (nmiw) 0

hang X 0 0
overflow X X X

INT_HW_IRQ_EN panic X 0 0
oops X 0 X(2c)

exception X 0 0
hang X X X

overflow X X X
INT_TASKLET_ENTRY panic 0(nrbt, nmiw) 0 0

oops 0(nrbt, nmiw) 0 0
exception 0(nrbt, nmiw) 0 0

hang X X (SysRq) X(det,SysRq)
overflow X X X

TASKLET panic 0(nrbt, nmiw) 0 0
oops 0(nrbt, nmiw) 0 0

exception 0(nrbt, nmiw) 0 0
hang 0(nrbt, nmiw) 0 0

overflow X X X
FS_DEVRW panic 0(nrbt, nmiw) 0 X(2c)

oops 0(nrbt, nmiw) 0 X (log,SysRq)
exception 0(nrbt, nmiw) 0 X (log,SysRq)

hang X X (SysRq) X (SysRq)
overflow X X X

MEM_SWAPOUT panic 0(nrbt, nmiw) 0 0
oops 0(nrbt, nmiw) 0 0 (nrbt)

exception 0(nrbt, nmiw) 0 0 (nrbt)
hang X X X (unk,SysRq,2c)

overflow X X X
TIMERADD panic 0(nrbt, nmiw) 0 0

oops 0(nrbt, nmiw) 0 0
exception 0(nrbt, nmiw) 0 0

hang X 0 0
overflow X X X

SCSI_DISPATCH_CMD panic X 0 0
oops X 0 0

exception X 0 0
hang X X (SysRq) X (det,SysRq)

overflow X X X

Table 2: LKDTT results

2006 Linux Symposium, Volume One • 165

• X: Failed to capture dump.

• X(2c): After the crash control of the
system was handed to the capture kernel,
but it crashed due to a device initialization
problem.

• X(SysRq): The crash not detected by the
kernel, but the dump process was success-
fully started using the Sys Rq key.
Note: Often, when plugged after the crash
the keyboard does not work and the Sys
Rq is not effective as a trigger for the
dump.

• X(SysRq, 2c): Like the previous case,
but the capture kernel crashed trying to ini-
tialize a device.

• X(det, SysRq): The hang was de-
tected by the soft lockup watchdog
(CONFIG_DETECT_SOFTLOCKUP). Since
this watchdog only notifies about the
lockup without taking any active measures
the dump process had to be started using
the Sys Rq key.
Note: Even though the dump was success-
fully captured the result was marked with
an X because it required user intervention.
The action to take upon lockup should be
configurable.

• X(log, SysRq): The system became
increasingly unstable, eventually becom-
ing impossible to login into the system
anymore (the prompt did not return af-
ter introducing login name and password).
After the system locked up like this, the
dump process had to be initiated using the
Sys Rq key, because neither the NMI
watchdog nor the soft lockup watchdog
could detect any anomaly.

• X(nmiw): The error was detected but the
crashing kernel failed to hand control of

the system to the crash dumping mecha-
nism and hanged. This hang was subse-
quently detected by the NMI watchdog,
who succeed in invoking the crash dump-
ing functionality. Finally, the dump was
successfully captured.
Note: The result was marked with an X be-
cause the NMI watchdog sometimes fails
to start the crash dumping process.

• X(nmiw, nrbt): Like the previous
case, but after capturing the dump the sys-
tem hanged trying to reboot.

• X(unk,SysRq,2c): The auxiliary tool
used for the test (see Section 3.4) became
unkillable. After triggering the dump pro-
cess using the Sys Rq key, the capture
kernel crashed attempting to reinitialize a
device.

4.1 Crash points

Even though testers are free to add new CPs,
LKDTT is furnished with a set of essential CPs,
that is, crash scenarios considered basic and
that should always be tested. The list follows:

IRQ handling with IRQs disabled (INT_
HARDWARE_ENTRY) This CP is crossed when-
ever an interrupt that is to be handled with IRQs
disabled occurs (see code listing 1).

IRQ handling with IRQs enabled (INT_
HW_IRQ_EN) This is the equivalent to the pre-
vious CP with interrupts enabled (see code list-
ing 2).

Tasklet with IRQs disabled (TASKLET) If
this CP is active crashes during the service of
Linux tasklets with interrupts disabled can be
recreated.

166 • Evaluating Linux Kernel Crash Dumping Mechanisms

fastcall unsigned int __do_IRQ(
unsigned int irq, struct
pt_regs *regs)

{
.....

CPOINT(INT_HARDWARE_ENTRY);
for (;;) {

irqreturn_t action_ret;

spin_unlock(&desc->lock);

action_ret = handle_IRQ_event(
irq, regs, action);

.....
}

Listing 1: INT_HARDWARE_ENTRY crash
point (kernel/irq/handle.c)

Tasklet with IRQs enabled (INT_
TASKLET_ENTRY) Using this CP it is possible
to cause a crash when the kernel is in the
middle of processing a tasklet with interrupts
enabled.

Block I/O (FS_DEVRW) This CP is used to
bring down the system while the file system
is performing low-level access to block devices
(see code listing 3).

Swap-out (MEM_SWAPOUT) This CP is lo-
cated in the code that tries to allocate space for
anonymous process memory.

Timer processing (TIMERADD) This is a CP
situated in the code that starts and re-starts high
resolution timers.

SCSI command (SCSI_DISPATCH_CMD)
This CP is situated in the SCSI command
dispatching code.

fastcall int handle_IRQ_event(
.....

if (!(action->flags &
SA_INTERRUPT)) {

local_irq_enable();
CPOINT(INT_HW_IRQ_EN);

}

do {
ret = action->handler(irq,

action->dev_id, regs);
if (ret == IRQ_HANDLED)

status |= action->flags;
.....

}

Listing 2: INT_HW_IRQ_EN crash point
(kernel/irq/handle.c)

IDE command (IDE_CORE_CP) This CP is
situated in the code that handles I/O operations
on IDE block devices.

5 Interpretation of the results and
possible improvements

5.1 In-kernel crash dumping mechanisms
(LKCD)

The primary cause of the bad results obtained
by LKCD, and in-kernel crash dumping mech-
anism in general, is the flawed assumption that
the kernel can be trusted and will in fact be op-
erating in a normal fashion. This creates two
major problems.

First, there is a problem with resources, notably
with resources locking up, because it is not pos-
sible to know the locking status at the time of
the crash. LKCD uses drivers and services of
the crashing kernel to capture the dump. As a

2006 Linux Symposium, Volume One • 167

void ll_rw_block(int rw, int nr,
struct buffer_head *bhs[])

{
.....

get_bh(bh);
submit_bh(rw, bh);
continue;

}
}
unlock_buffer(bh);
CPOINT(FS_DEVRW);

}
}

Listing 3: FS_DEVRW crash point
(fs/buffer.c)

consequence, if the operation that has caused
the crash was locking resources necessary to
capture the dump, the dump operation will end
up deadlocking. For example, the driver for the
dump device may try to obtain a lock that was
held before the crash occurred and, as it will
never be released, the dump operation will hang
up. Similarly, on SMP systems as operations
being run on other CPUs are forced to stop in
the event of a crash, there is the possibility that
resources needed during the dumping process
may be locked, because they were in use by any
of the other CPUs and were not released before
they halted. This may put the dump operation
into a lockup too. Even if this doesn’t result in a
lock-up, insufficient system resources may also
cause the dump operation to fail.

The source of the second problem is the reli-
ability of the control tables, kernel text, and
drivers. A kernel crash means that some kind
of inconsistency has occurred within the ker-
nel and that there is a strong possibility a con-
trol structure has been damaged. As in-kernel
crash dump mechanisms employ functions of
the crashed system for outputting the dump,
there is the very real possibility that the dam-
aged control structures will be referenced. Be-

sides, page tables and CPU registers such as
the stack pointer may be corrupted too, which
can potentially lead to faults during the crash
dumping process. In these circumstances, even
if a crash dump is finally obtained, the result-
ing dump image is likely to be invalid, so that it
cannot be properly analyzed.

For in-kernel crash dumping mechanisms there
is no obvious solution to the memory corrup-
tion problems. However, the locking issues
can be alleviated by using polling mode (as op-
posed to interrupt mode) to communicate with
the dump devices.

Setting up a controllable dump route within the
kernel is very difficult, and this is increasingly
true as the size and complexity of the kernel
augments. This is what sparked the apparition
of methods capable of capturing a dump inde-
pendent from the existing kernel.

5.2 Kdump

Even though kdump proved to be much more
reliable than in-kernel crash dumping mecha-
nisms there are still issues in the three stages
that constitute the dump process (see Sec-
tion 2):

• Crash detection: hang detection, stack
overflows, faults in the dump route.

• Minimal machine shutdown: stack over-
flows, faults in the dump route.

• Crash dump capture: device reinitializa-
tion, APIC reinitialization.

5.2.1 Stack overflows

In the event of a stack overflow critical data
that usually resides at the bottom of the stack

168 • Evaluating Linux Kernel Crash Dumping Mechanisms

is likely to be stomped and, consequently, its
use should be avoided.

In particular, in the i386 and IA64 architec-
tures the macro smp_processor_id() ul-
timately makes use of the cpu member of
struct thread_info, which resides at the
bottom of the stack. x86_64, on the other hand,
is not affected by this problem because it bene-
fits from the use of the PDA infrastructure.

Kdump makes heavy use of smp_
processor_id() in the reboot path to
the second kernel, which can lead to unpre-
dictable behaviour. This issue is particularly
serious in SMP systems because not only the
crashing CPU but also the rest of CPUs are
highly dependent on likely-to-be-corrupted
stacks. The reason it that during the minimal
machine shutdown stage (see Section 2.2 for
details) NMIs are used to stop the CPUs, but
the NMI handler was designed on the premise
that stacks can be trusted. This obviously does
not hold good in the event of a crash overflow.

The NMI handler (see code listing 4) uses
the stack indirectly through nmi_enter(),
smp_processor_id(), default_do_nmi,
nmi_exit(), and also through the crash-
time NMI callback function (crash_nmi_
callback()).

Even though the NMI callback function can be
easily made stack overflow-safe the same does
not apply to the rest of the code.

To circumvent some of these problems at the
very least the following measures should be
adopted:

• Create a stack overflow-safe replacement
for smp_processor_id, which could be
called safe_smp_processor_id (there
is already an implementation for x86_64).

fastcall void do_nmi(struct
pt_regs * regs, long error_code
)

{
int cpu;

nmi_enter();
cpu = smp_processor_id();
++nmi_count(cpu);

if (!rcu_dereference(
nmi_callback)(regs, cpu))

default_do_nmi(regs);

nmi_exit();
}

Listing 4: do_nmi (i386)

• Substitute smp_processor_id with
safe_smp_processor_id, which is
stack overflow-safe, in the reboot path to
the second kernel.

• Add a new NMI low-level handling rou-
tine (crash_nmi) in arch/*/kernel/
entry.S that invokes a stack overflow
safe NMI handler (do_crash_nmi) in-
stead of do_nmi.

• In the event of a system crash replace the
default NMI trap vector so that the new
crash_nmi is used.

If we want to be paranoid (and being paranoid
is what crash dumping is all about after all), all
the CPUs in the system should switch to new
stacks as soon as a crash is detected. This in-
troduces the following requirements:

• Per-CPU crash stacks: Reserve one stack
per CPU for use in the event of a system
crash. A CPU that has entered the dump
route should switch to its respective per-
CPU stack as soon as possible because the

2006 Linux Symposium, Volume One • 169

cause of the crash might have a stack over-
flow, and continuing to use the stack in
such circumstances can lead to the gener-
ation of invalid faults (such as double fault
or invalid TSS). If this happens the system
is bound to either hang or reboot sponta-
neously. In SMP systems, the rest of the
CPUs should follow suit, switching stacks
at the NMI gate (crash_nmi).

• Private stacks for NMIs: The NMI watch-
dog can be used to detect hard lockups and
invoke kdump. However, this dump route
consumes a considerable amount of stack
space, which could cause a stack overflow,
or contribute to further bloating the stack
if it has already overflowed. As a conse-
quence of this, the processor could end up
faulting inside the NMI handler which is
something that should be avoided at any
cost. Using private NMI stacks would
minimize these risks.

To limit the havoc caused by bloated stacks, the
fact that a stack is about to overflow should be
detected before it spills out into whatever is ad-
jacent to it. This can be achieved in two differ-
ent ways:

• Stack inspection: Check the amount of
free space in the stack every time a
given event, such as an interrupt, oc-
curs. This could be easily implemented
using the kernel’s stack overflow de-
bugging infrastructure (CONFIG_DEBUG_
STACKOVERFLOW).

• Stack guarding: The second approach is
adding an unmapped page at the bottom
of the stack so that stack overflows are de-
tected at the very moment they occur. If a
small impact in performance is considered
acceptable this is the best solution.

5.2.2 Faults in the dump route

Critical parts of the kernel such as fault han-
dlers should not make assumptions about the
state of the stack. An example where proper
checking is neglected can be observed in the
code listing 5. The mm member of the
struct tsk is dereferenced without making
any checks on the validity of current. If
current happens to be invalid, the seemingly
inoffensive dereference can lead to recursive
page faults, or, if things go really bad, to a triple
fault and subsequent system reboot.

fastcall void __kprobes
do_page_fault(struct pt_regs *
regs, unsigned long error_code)

{
struct task_struct *tsk;
struct mm_struct *mm;

tsk = current;
.....
[no checks are made on

tsk]
mm = tsk->mm;
.....

}

Listing 5: do_page_fault (i386)

Finally, to avoid risks, control should be handed
to kdump as soon as a crash is detected. The
invocation of the dump mechanism should not
be deferred to panic or BUG, because many
things can go bad before we get there. For
example, it is not guaranteed that the possible
code paths never use any of the things that make
assumptions about the current stack.

5.2.3 Hang detection

The current kernel has the necessary infrastruc-
ture to detect hard lockups and soft lockups, but
they both have some issues:

170 • Evaluating Linux Kernel Crash Dumping Mechanisms

• Hard lockups: This type of lockups are de-
tected using the NMI watchdog, which pe-
riodically checks whether tasks are being
scheduled (i.e. the scheduler is alive). The
Achilles’ heel of this detection method is
that it is strongly vulnerable to stack over-
flows (see Section 5.2.1 for details). Be-
sides, there is one inevitable flaw: hangs
in the NMI handler cannot be detected.

• Soft lockups: There is a soft lockup detec-
tion mechanism implemented in the kernel
that, when enabled (CONFIG_DETECT_
SOFTLOCKUP=y), starts per-CPU watch-
dog threads which try to run once per sec-
ond. A callback function in the timer inter-
rupt handler checks the elapsed time since
the watchdog thread was last scheduled,
and if it exceeds 10 seconds it is consid-
ered a soft lockup.
Currently, the soft lockup detection mech-
anism limits itself to just printing the cur-
rent stack trace and a simple error mes-
sage. But, the possibility of triggering the
crash dumping process instead should be
available.

Using LKDTT a case in which the existing
mechanisms are not effective was discovered:
hang with interrupts enabled (see IRQ handling
with IRQs enabled in Section 4.1). In such
scenario timer interrupts continue to be deliv-
ered and processed normally so both the NMI
watchdog and the soft lockup detector end up
judging that the system is running normally.

5.2.4 Device reinitialization

There are cases in which after the crash the cap-
ture kernel itself crashes attempting to initialize
a hardware device.

In the event of a crash kdump does not do any
kind of device shutdown and, what is more, the

firmware stages of the standard boot process
are also skipped. This may leave the devices
in a state the second kernel cannot get them
out of. The underlying problem is that the soft
boot case is not handled by most drivers, which
assume that only traditional boot methods are
used (after all, many of the drivers were written
before kexec even existed) and that all devices
are in a reset state.

Sometimes even after a regular hardware reboot
the devices are not reset properly. The culprit in
such cases is a BIOS not doing its job properly.

To solve this issues the device driver model
should be improved so that it contemplates the
soft boot case, and kdump in particular. In
some occasions it might be impossible to reini-
tialize a certain device without knowing its pre-
vious state. So it seems clear that, at least in
some cases, some type information about the
state of devices should be passed to the sec-
ond kernel. This brings the power management
subsystem to mind, and in fact studying how it
works could be a good starting point to solve
the device reinitialization problem.

In the meantime, to minimize risks each ma-
chine could have a dump device (a HD or NIC)
set aside for crash dumping, so that the crash
kernel would use that device and have no other
devices configured.

5.2.5 APICs reinitialization

Kdump defers much of the job of actually sav-
ing the dump image to user-space. This means
that kdump relies on the scheduler and, conse-
quently, the timer interrupt to be able to capture
a dump.

This dependency on the timer represents a
problem, specially in i386 and x86_64 SMP
systems. Currently, on these architectures, dur-
ing the initialization of the kernel the legacy

2006 Linux Symposium, Volume One • 171

i8259 must exist and be setup correctly, even if
it will not be used past this stage. This implies
that, in APIC systems, before booting into the
second kernel the interrupt mode must return to
legacy. However, doing this is not as easy as
it might seem because the location of the i8259
varies between chipsets and the ACPI MADT
(Multiple APIC Description Table) does not
provide this information. The return to legacy
mode can accomplished in two different ways:

• Save/restore BIOS APIC states: All the
APIC states are saved early in the boot
process of the first kernel before the ker-
nel attempts to initialize them, so that the
APIC configuration as performed by the
BIOS can be obtained. In the event of a
crash, before booting into the capture ker-
nel the BIOS APIC settings are restored
back. Treating the APICs as black boxes
like this has the benefit that the origi-
nal states of the APICs can be restored
even in systems with a broken BIOS. Be-
sides, this method is theoretically immune
to changes in the default configuration of
APICs in new systems.
There is one issue with this method
though. It makes sure that the BIOS-
designated boot CPU will always see timer
interrupts in legacy mode, but this does
not hold good if the second kernel boots
on some other CPU as is possible with
kdump. Therefore, for this method to
work CPU relocation is necessary. It
should also be noted that under certain
rather unlikely circumstances relocation
might fail (see Section 7.4 for details).

• Partial save/restore: Only the informa-
tion that cannot be obtained any other way
(i.e. i8259’s location) is saved off at boot
time. Upon a crash, taking into account
this piece of information the APICs are re-
configured in such a way that all interrupts

get redirected to the CPU in which the sec-
ond kernel is going to be booted, which in
kdump’s case is the CPU where the crash
occurred. This is the approach adopted by
kdump.

6 LKDTT status and TODOS

Even though using LKDTT it is possible to
test rather thoroughly the first two stages of the
crash dumping process, that is crash detection
and minimal machine crash shutdown (see Sec-
tion 2), the capture kernel is not being suffi-
ciently tested yet. The author is currently work-
ing on the following test cases:

• Pending IRQs: Leave the system with
pending interrupts before booting into the
capture kernel, so that the robustness of
device drivers against interrupts coming at
an unexpected time can be tested.

• Device reinitialization: For each device
test whether it is correctly initialized after
a soft boot.

Another area that is under development at the
moment is test automation. However, due to the
special nature of the functionality being tested
there is a big roadblock for automation: the sys-
tem does not always recover gracefully from
crashes so that tests can resume. That is, in
some occasions the crash dumping mechanism
that is being tested will fail, or the system will
hang while trying to reboot after capturing the
dump. In such cases human intervention will
always be needed.

7 Other kdump issues

The kernel community has been expecting that
the various groups which are interested in crash

172 • Evaluating Linux Kernel Crash Dumping Mechanisms

dumping would converge around kdump once it
was merged. And the same was expected from
end-users and distributors. However, so far, this
has not been the case and work has continued
on other strategies.

The causes of this situation are diverse and, to a
great extent, unrelated to reliability aspects. In-
stead, the main issues have to do with availabil-
ity, applicability and usability. In some cases it
is just a matter of time before they get naturally
solved, but, in others, improvements need to be
done to kdump.

7.1 Availability and applicability

Most of the people use distribution-provided
kernels that are not shipped with kdump yet.
Certainly, distributions will eventually catch up
with the mainstream kernel and this problem
will disappear.

But, in the mean time, there are users who
would like to have a reliable crash dumping
mechanism for their systems. This is especially
the case of enterprise users, but they usually
have the problem that updating or patching the
kernel is not an option, because that would im-
ply the loss of official support for their enter-
prise software (this includes DBMSs such as
Oracle or DB2 and the kernel itself). It is an
extreme case but some enterprise systems can-
not even afford the luxury of a system reboot.

This situation along with the discontent with
the crash dumping solutions provided by dis-
tributors sparked the apparition of other kexec-
based projects (such as mkdump and Tough
Dump), which were targeting not only main-
stream adoption but also existing Linux distri-
butions. This is why these solutions sometimes
come in two flavors: a kernel patch for vanilla
kernels and a fully modularized version for dis-
tribution kernels.

7.2 Usability

There are some limitations in kdump that have
an strong impact in its usability, which affects
both end-users and distributors as discussed be-
low.

7.2.1 Hard-coding of reserved area’s start
address

To use kdump it is necessary to reserve a mem-
ory region big enough to accommodate the
dump kernel. The start address and size of this
region is indicated at boot time with the com-
mand line parameter crashkernel=Y@X, Y
denoting how much memory to reserve, and X
indicating at what physical address the reserved
memory region starts. The value of X has to be
used when configuring the capture kernel, so
that it is linked to run from that start address.
This means a displacement of the reserved area
may render the dump kernel unusable. Besides
it is not guaranteed that the memory region in-
dicated at the command line is available to the
kernel. For example, it could happen that the
memory region does not exist, or that it over-
laps system tables, such as ACPI’s. All these
issues make distribution of pre-compiled cap-
ture kernels cumbersome.

This undesirable dependency between the sec-
ond and first kernel can be broken using a run-
time relocatable kernel. The reason is that, by
definition, a run-time relocatable kernel can run
from any dedicated memory area the first kernel
might reserve for it. To achieve run-time relo-
cation a relocation table has to be added to the
kernel binary, so that the actual relocation can
be performed by either a loader (such as kexec)
or even by the kernel itself. The first calls
for making the kernel an ELF shared object.
The second can be accomplished by resolving
all the symbols in arch/*/kernel/head.S

(this is what mkdump does).

2006 Linux Symposium, Volume One • 173

7.2.2 Memory requirements

Leaving the task of writing out the crash dump
to user space introduces great flexibility at the
cost of increasing the size of the memory area
that has to be reserved for the capture kernel.
But for systems with memory restrictions (such
as embedded devices) a really small kernel with
just the necessary drivers and no user space
may be more appropriate. This connects with
the following point.

7.3 Kernel-space based crash dumping

After a crash the dump capture kernel might not
be able to restore interrupts to a usable state, be
it because the system has a broken BIOS, or be
it because the interrupt controller is buggy. In
such circumstances, processors may end up not
receiving timer interrupts. Besides, the possi-
bility of a timer failure should not be discarded
either.

In any case, being deprived of timer inter-
rupts is an insurmountable problem for user-
space based crash dumping mechanisms such
as kdump, because they depend on a working
scheduler and hence the timer.

To tackle this problem a kernel-space driven
crash dumping mechanism could be used, and
even cohabit with the current user-space cen-
tered implementation. Which one to employ
could be made configurable, or else, the kernel-
space solution could be used as a fallback
mechanism in case of failure to bring up user-
space.

7.4 SMP dump capture kernel

In some architectures, such as i386 and x86_64,
it is not possible to boot a SMP kernel from a

CPU that is not the BIOS-designated boot CPU.
Consequently, to do SMP in the capture kernel
it is necessary to relocate to the boot CPU be-
forehand. Kexec achieves CPU relocation us-
ing scheduler facilities, but kdump cannot use
the same approach because after a crash the
scheduler cannot be trusted.

As a consequence, to make kdump SMP-
capable a different solution is needed. In
fact, there is a very simple method to relo-
cate to the boot CPU that takes advantage of
inter-processor NMIs. As discussed in Sec-
tion 2.2 (Minimal machine shutdown), this type
of NMIs are issued by the crashing CPU in
SMP systems to stop the other CPUs before
booting into the capture kernel. But this be-
havior can be modified so that relocation to the
boot CPU is performed too. Obviously, if the
crashing CPU is the boot CPU nothing needs to
be done. Otherwise, upon receiving NMI the
boot CPU should assume the task of capturing
the kernel, so that the NMI-issuing CPU (i.e.
the crashing the CPU) is relieved from that bur-
den a can halt instead. This is the CPU reloca-
tion mechanism used by mkdump.

Even though being able to do SMP would boost
the performance of the capture kernel, it was
suggested that in some extreme cases of crash
the boot CPU might not even respond to NMIs
and, therefore, relocation to the boot CPU will
not be possible. However, after digging through
the manuals the author could only find (and
reproduce using LKDTT) one such scenario,
which occurs when the two conditions below
are met:

• The boot CPU is already attending a dif-
ferent NMI (from the NMI watchdog for
example) at the time the inter-processor
NMI arrives.

• The boot CPU hangs inside the handler of
this previous NMI, so it does not return.

174 • Evaluating Linux Kernel Crash Dumping Mechanisms

The explanation is that during the time a CPU
is servicing an NMI other NMIs are blocked, so
a lockup in the NMI handler guarantees a sys-
tem hang if relocation is attempted as described
before. The possibility of such a hang seems
remote and easy to evaluate. But it could also
be seen as a trade-off between performance and
reliability.

8 Conclusion

Existing testing methods for kernel crash dump
capturing mechanisms are not adequate be-
cause they do not take into account the state of
the hardware and the load conditions of the sys-
tem. This makes it impossible to recreate many
common crash scenarios, depriving test results
of much of their validity. Solving these issues
and providing controllable testing environment
were the major motivations behind the creation
of the LKDTT (Linux Kernel Dump Test Tool)
testing project.

Even though LKDTT showed that kdump is
more reliable than traditional in-kernel crash
dumping solutions, the test results revealed
some deficiencies in kdump too. Among these,
minor hang detection deficiencies, great vulner-
ability to stack overflows, and problems reini-
tializing devices in the capture kernel stand out.
Solutions to some of these problems have been
sketched in this paper and are currently under
development.

Since the foundation of the testing project the
author could observe that new kernel releases
(including release candidates) are sometimes
accompanied by regressions. Regressions con-
stitute a serious problem for both end-users and
distributors, that requires regular testing and
standardised test cases to be tackled properly.
LKDTT aims at filling this gap.

Finally, several hurdles that are hampering the
adoption of kdump were identified, the need
for a run-time relocatable kernel probably be-
ing the most important of them.

All in all, it can be said that as far as kernel
crash dumping is concerned Linux is heading
in the right direction. Kdump is already very
robust and most of the remaining issues are al-
ready being dealt with. In fact, it is just a matter
of time before kdump becomes mature enough
to focus on new fields of application.

9 Future lines of work

All the different crash dumping solutions do
just that after a system crash: capture a crash
dump. But there is more to a crashed system
kexec than crash dumping. For example, in
high availability environments it may be desir-
able to notify the backup system after a crash,
so that the failover process can be initiated ear-
lier.

In the future, kdump could also benefit from the
current PID virtualization efforts, which will
provide the foundation for process migration in
Linux. The process migration concept could be
extended to the crash case, in such a way that
after doing some sanity-checking, tasks that
have not been damaged can be migrated and re-
sume execution in a different system.

Acknowledgements

I would like to express my gratitude to Itsuro
Oda for his original contribution to LKDTT and
valuable comments, as well as to all those who
have laid the foundation for a reliable kernel
crash dumping mechanism in Linux.

2006 Linux Symposium, Volume One • 175

References

[1] Diskdump patches. http:
//www.redhat.com/support/
wpapers/redhat/netdump/.

[2] Michael K. Johnson. Red Hat, Inc.’s
network console and crash dump facility,
2002. http:
//www.redhat.com/support/
wpapers/redhat/netdump/.

[3] Linux kernel crash dump (LKCD) home
page, 2005. http:
//lkcd.sourceforge.net/.

[4] Hariprasad Nellitheertha. Reboot linux
faster using kexec, 2004.
http://www-128.ibm.com/
developerworks/linux/
library/l-kexec.html.

[5] Kexec-tools code.
http://www.xmission.com/
~ebiederm/files/kexec/.

[6] Vivek Goyal, Eric W. Biederman, and
Hariprasad Nellitheertha. A kexec based
dumping mechanism. In Ottawa Linux
Symposium (OLS 2005), July 2005.

[7] Kdump home page. http://lse.
sourceforge.net/kdump/.

[8] Itsuro Oda. Mini Kernel Dump
(MKDump) home page, 2006. http:
//mkdump.sourceforge.net/.

[9] Linux tough dump (TD) home page
(japanese site), 2006.
http://www.hitachi.co.jp/
Prod/comp/linux/products/
solution.html.

[10] Fernando Luis Vázquez Cao. Linux
kernel dump test tool (LKDTT) home
page, 2006. http:
//lkdtt.sourceforge.net/.

[11] EDAC wiki.
http://buttersideup.com/
edacwiki/FrontPage.

[12] Prasanna Panchamukhi. Kernel
debugging with kprobes, 2004.
http://www-128.ibm.com/
developerworks/linux/
library/l-kprobes.html.

[13] Djprobe documentation and patches.
http://lkst.sourceforge.
net/djprobe.html.

176 • Evaluating Linux Kernel Crash Dumping Mechanisms

Exploring High Bandwidth Filesystems on Large
Systems

Dave Chinner and Jeremy Higdon
Silicon Graphics, Inc.

dgc@sgi.com jeremy@sgi.com

Abstract

In this paper we present the results of an investi-
gation conducted by SGI into streaming filesys-
tem throughput on the Altix platform with a
high bandwidth disk subsystem.

We start by describing some of the background
that led to this project and our goals for the
project. Next, we describe the benchmark
methodology and hardware used in the project.
We follow this up with a set of baseline results
and observations using XFS on a patched 2.6.5
kernel from a major distribution.

We then present the results obtained from XFS,
JFS, Reiser3, Ext2, and Ext3 on a recent 2.6
kernel. We discuss the common issues that we
found to adversely affect throughput and repro-
ducibility and suggest methods to avoid these
problems in the future.

Finally, we discuss improvements and optimi-
sations that we have made and present the fi-
nal results we achieved using XFS. From these
results we reflect on the original goals of the
project, what we have learnt from the project
and what the future might hold.

1 Background and Goals

In the past, there have been many compar-
isons of the different filesystems suppported
by Linux. Most of these comparisons focus
on activities typically performed by a kernel
developer or use well known benchmark pro-
grams. Typically these tests are run on an aver-
age desktop machine with a single disk or, more
rarely, a system with two or four CPUs with a
RAID configuration of a few disks.

However, this really doesn’t tell us anything
about the maximum capabilities of the filesys-
tems; these machine configurations don’t push
the boundaries of the filesystems and hence
these observations have little relevance to those
who are trying to use Linux in large configura-
tions that require substantial amounts of I/O.

Over the past two years, we have seen a dra-
matic increase in the bandwidth customers re-
quire new machines to support. On older, mod-
ified 2.4.21 kernels, we could not achieve much
more than 300 MiB/s on parallel buffered write
loads. Now, on patched 2.6.5 kernels, cus-
tomers are seeing higher than 1 GiB/s under the
same loads. And, of course, there are customers
who simply want all the I/O bandwidth we can
provide.

The trend is unmistakable. A coarse correla-
tion is that required I/O bandwidth matches the

178 • Exploring High Bandwidth Filesystems on Large Systems

amount of memory in a large machine. Mem-
ory capacity is increasing faster than physi-
cal disk transfer rates are increasing, and this
means that systems are being attached to larger
numbers of disks in the hope that this provides
higher throughput to populate and drain mem-
ory faster. Unfortunately, what we currently
lack is any data on whether Linux can make
use of the increased bandwidth that larger disk
farms provide.

Some of the questions we need to answer in-
clude:

• How close to physical hardware limits can
we push a filesystem?

• How stable is Linux under these loads?
• How does the Linux VM stand up to this

sort of load?
• Do the Device Mapper (DM) and/or Mul-

tiple Device (MD) drivers limit perfor-
mance or configurations?

• Are there NUMA issues we need to ad-
dress?

• Do we have file fragmentation problems
under these loads?

• How easily reproducible are the results we
achieved and can we expect customers to
be able to achieve them?

• What other bottlenecks limit the perfor-
mance of a system?

To answer these questions, as they are impor-
tant to SGI’s customers, we put together a mod-
estly sized machine to explore the limits of
high-bandwidth I/O on Linux.

2 Test Hardware and Methodology

2.1 Hardware

The test machine was an Altix A3700 contain-
ing 24 Itanium2 CPUs running at 1.5 GHz in

12 nodes in a single cache-coherent NUMA do-
main. Each node is configured with 2 GiB of
RAM for a system total of 24 GiB. Each node
has 6.4 GB/s peak full duplex external intercon-
nect bandwidth provided by SGI’s NUMALink
interconnect. A total of 12 I/O nodes, each with
three 133 MHz PCI-X slots on two busses, were
connected to the NUMALink fabric supplying
6.4 GB/s peak full duplex bandwidth per I/O
node. The CPU and I/O nodes were connected
via crossbar routers in a symmetric topology.

The I/O nodes were populated with a mix of
U320 SCSI and Fibre Channel HBAs (64 SCSI
controllers in total) and distributed 256 disks
amongst the controllers in JBOD configura-
tion. This provided an infrastructure that al-
lowed each disk run at close to its maximum
read or write bandwidth independently of any
other disk in the machine.

The result is a machine with a disk subsystem
theoretically capable of just over 11.5 GiB/s
of throughput evenly distributed throughout the
NUMALink fabric. Hence the hardware should
be able to sustain maximum disk rates if the
software is able to drive it that fast.

2.2 Methodology

The main focus of our investigation was on
XFS performance. In particular, parallel se-
quential I/O patterns were of most interest as
these are the most common patterns we see
our customers using on their large machines.
We also assessed how XFS compares with
other mainstream filesystems on Linux on these
workloads.

The main metrics we used to compare per-
formance were aggregate disk throughput and
CPU usage. We used multiple programs and in-
dependent test harnesses to validate the results
against each other so we had confidence in the

2006 Linux Symposium, Volume One • 179

results of individual test runs that weren’t repli-
cated.

To be able to easily compare different con-
figurations and kernels, we present normalised
I/O efficiency results along with the aggregate
throughput achieved. This gives an indication
of the amount of CPU time being expended for
each unit of throughput achieved. The unit of
efficiency reported is CPU/MiB/s, or the per-
centage of a CPU consumed per mebibyte per
second throughput. The lower the calculated
number, the better the efficiency of the I/O ex-
ecuted.

The tests were run with file sizes large enough
to make run times long enough to ensure that
measurement was accurate to at least 1%. This,
combined with running the tests in a consistent
(scripted) manner, enabled us to draw conclu-
sions about the reproducibility of the results ob-
tained.

For most of the tests run, we used SGI’s Per-
formance Co-Pilot infrastructure [PCP] to cap-
ture high resolution archives of the system’s be-
haviour during tests. This included disk utili-
sation and throughput, filesystem and volume
manager behaviour, memory usage, CPU us-
age, and much more. We were able to analyse
these archives after the fact which gave us great
insight into system wide behaviour during the
testing.

To find the best throughput under different con-
ditions, we varied many parameters during test-
ing. These included:

• different volume configurations
• the effect of I/O size on throughput and

CPU usage
• buffered I/O and direct I/O
• different allocation methods for writes
• block device readahead
• filesystem block size

• pdflush tunables
• NUMA allocation methods

We tested several different kernels so we could
chart improvements or regressions over time
that our customers would see as they upgraded.
Hence we tested XFS on SLES9 SP2, SLES9
SP3, and 2.6.15-rc5.

We also ran a subset of the above tests on other
Linux filesystems including Ext2, Ext3, Reis-
erFS v3, and JFS. We kept as many configu-
ration parameters as possible constant across
these tests. Where supported, we used mkfs
and mount parameters that were supposed to
optimise data transfer rates and large filesystem
performance.

The volume size for Ext2, Ext3, and Reis-
erFS V3 was halved to approximately 4.2 TiB
because they don’t support sizes of greater
than 8 TiB. We took the outer portion of each
disk for this smaller volume, hence maintain-
ing the same stripe configuration. Compared
to the larger volume used by XFS and JFS,
the smaller volume has lower average seek
times and higher minimum transfer rates and
hence should be able to maintain higher aver-
age throughputs than the larger volume as the
filesystems fill up during testing.

The comparison tests were scripted to:

1. Run mkfs with relevant large filesystem
optimisations.

2. Make a read file set with dd by writing out
the files to be read back with increasing
levels of parallelism.

3. Perform buffered read tests using one file
per thread across a range of I/O sizes and
thread count measuring throughput, CPU
usage, average process run time, and other
metrics required for analysis.

180 • Exploring High Bandwidth Filesystems on Large Systems

The filesystem was unmounted and re-
mounted between each test to ensure that
all tests started without any cached filesys-
tem data and memory approximately 99%
empty.

4. Repeat Step 3 using buffered write tests,
including truncating the file to be written
in the overall test runtime.

Parallel writes were used to lay down the files
for reading back to demonstrate the level of
file fragmentation the filesystem suffered. The
greater the fragmentation, the more seeking the
disks will do and the lower the subsequent read
rate achieved will be. Hence the read rate di-
rectly reflects on the fragmentation resistance
of the filesystem. This is also a best case re-
sult because the tests are being run on an empty
filesystem.

Finally, after we fixed several of the worst prob-
lems we uncovered, we re-ran various tests to
determine the effect of the changes on the sys-
tem.

2.3 Volume Layout and Constraints

Achieving maximum throughput from a single
filesystem required a volume layout that en-
abled us to keep every disk busy at the same
time. In other words, we needed to distribute
the I/O as evenly as possible.

Building a wide stripe was the easiest way to
achieve even distribution since we were mostly
interested in sequential I/O performance. This
exposed a configuration limitation of DM;
dmsetup was limited to a line length of 1024
characters which meant we could only build a
stripe approximately 90 disks wide.

Hence we ended up using a two level volume
configuration where we had an MD stripe of

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 4 8 16 32

Th
ro

ug
hp

ut
 (M

iB
/s

)

Thread Count

XFS-4k-Read
XFS-16k-Read

XFS-4k-Write
XFS-16k-Write

Figure 1: Baseline XFS Throughput

4 DM volumes each with 64 disks. We used
an MD stripe of DM volumes because it was
unclear whether DM and dmsetup supported
multi-level volume configurations.

Using SGI’s XVM volume manager, we were
able to construct both a flat 256-disk stripe and
a 4x64-disk multi-level stripe. Hence we were
able to confirm that there was no measurable
performance or disk utilisation difference be-
tween the two configurations.

Therefore we ran all the tests on the multi-level,
MD-DM stripe volume layout. The only pa-
rameter that was varied in the layout was the
stripe unit (and therefore stripe width) and most
of the testing was done with stripe units of
512 KiB or 1 MiB.

3 Baseline XFS Results

Baseline XFS performance numbers were ob-
tained from SuSE Linux Enterprise Server 9
Service Pack 2 (SLES9 SP2). We ran tests on
XFS filesystem with both 4 KiB and 16 KiB
block sizes. Performance varied little with I/O
size, so the results presented used 128 KiB,
which is in the middle of the test range.

2006 Linux Symposium, Volume One • 181

Looking at read throughput, we can see from
Figure 1 that there was very little difference
between the different XFS filesystem configu-
rations. In some cases the 16 KiB block size
filesystem was faster, in other cases the 4 KiB
block size filesystem was faster. Overall, they
both averaged out at around 3.5 GiB/s across all
block sizes.

In contrast, the 16 KiB block-size filesystem is
substantially faster than the 4 KiB filesystem
when writing. The 4 KiB filesystem appeared
to be I/O bound as it was issuing much smaller
I/Os than the 16KiB filesystem and the disks
were seeking significantly more.

From the CPU efficiency graph in Figure 2,
we can see that there is no difference in CPU
time expended by the filesystem for different
block sizes on read. This was expected from
the throughput results.

Both the read and write tests show that CPU
usage is scaling linearly with throughput; in-
creasing the number of threads doing I/O does
not decrease the efficiency of the filesystem. In
other words, we are limited by either the rate
at which we can issue I/Os or by something
else outside the filesystem. Also, the write ef-
ficiency is substantially worse than for reads, it
would seem that there is room for substantial
improvement here.

4 Filesystem Comparison Results

The first thing to note about the results is that
some of the filesystems were tested to higher
numbers of threads and larger block sizes. The
reasons for this were that some configurations
were not stable enough to complete the whole
test matrix and we had to truncate some of
the longer test runs that would have prevented
us from completing a full test cycle in our

 0

 0.5

 1

 1.5

 2

 1 2 4 8 16 32

Ef
fic

ie
nc

y
(%

CP
U/

M
iB

/s
)

Thread Count

Smaller is Better

XFS-4k-Read
XFS-16k-Read

XFS-4k-Write
XFS-16k-Write

Figure 2: Baseline XFS Efficiency

available time window. Consequently some of
the results presented represent best-case perfor-
mance rather than a mean of repeated test runs.

The kernel used for all these tests was 2.6.15-
rc5.

4.1 Buffered Read Results

The maximum read rates achieved by each
filesystem can be seen in Figure 3. The read
rate changed very little with varying I/O block
size, we saw the same maximum throughput us-
ing 4 KiB I/Os as using 1 MiB I/Os. The only
real difference was the amount of CPU con-
sumed.

It is worth noting that XFS read throughput is
substantially higher on 2.6.15-rc5 compared to
the baseline results on SLES9 SP2. A discus-
sion of this improvement canbe found in Sec-
tion 6.2.

The performance of Ext2 and Ext3 is also quite
different despite their common heritage. How-
ever, the results presented for Ext2 and Ext3
(as well as JFS) are the best of several test ex-
ecutions due to the extreme variability of the
filesystem performance under these tests. The
reasons for this variability are discussed in Sec-
tion 5.2.

182 • Exploring High Bandwidth Filesystems on Large Systems

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 4 8 16 32

Th
ro

ug
hp

ut
 (M

iB
/s

)

Thread Count

XFS-4k
XFS-16k

JFS
Ext2
Ext3

Reiser3

Figure 3: Buffered Read Throughput Compari-
son

It is clear that XFS and Ext3 give substantially
better throughput, and this is reflected in the ef-
ficiency plots in Figure 4, where these are the
most efficient filesystems. Both ReiserFS and
JFS show substantial decreases in efficiency as
thread count increases. This behaviour is dis-
cussed in Section 5.1.

4.2 Buffered Write Results

Figure 5 shows some very clear trends in
buffered write throughput. Firstly, XFS is sub-
stantially slower than the SLES9 SP2 baseline
results. Secondly, throughput is peaking at four
to eight concurrent writers for all filesystems
except for Ext2. XFS, using a 16 KiB filesys-
tem block size, was still faster than Ext2 until
high thread counts were reached.

The poor write throughput of Ext3 and JFS is
worth noting. JFS was unable to exceed an av-
erage of 80 MiB/s write speed in all but two of
the many test points executed, and Ext3 did not
score above 250 MiB/s and decreased to less
than 100MiB/s at sixteen or more threads. We
used the data=writeback mode for Ext3 as
it was consistently 10% faster than the data=

ordered mode.

 0.1

 1

 10

 1 2 4 8 16 32

Ef
fic

ie
nc

y
(%

CP
U/

M
iB

/s
)

Thread Count

Smaller is Better

XFS-4k
XFS-16k

JFS
Ext2
Ext3

Reiser3

Figure 4: Buffered Read Efficiency Compari-
son

The ReiserFS results are truncated due to prob-
lems running at higher thread counts. Writes
would terminate without error unexpectedly,
and sometimes the machine would hang. Due
to time constraints this was not investigated fur-
ther, but it is suspected that buffer initialisation
problems which manifested on machines with
both XFS and ReiserFS filesystems were the
cause. The fixes did not reach the upstream ker-
nel until well after testing had been completed
[Scott][Mason].

JFS demonstrated low write throughput. We
discovered that this was partially due to truncat-
ing a multi-gigabyte file taking several minutes
to execute. However, the truncate time made up
only half the elapsed time of each test. Hence,
even if we disregarded the truncate time, JFS
would still have had the lowest sustained write
rate of all the filesystems.

Looking at the efficiency graph in Figure 6,
we can see that only JFS and Ext2 had rela-
tively flat profiles as the number of threads in-
creased. However, the profile for JFS is rel-
atively meaningless due to the low through-
put. All the other filesystems show decreas-
ing efficiency (increasing CPU time per MiB
transferred to disk every second) at the same
load points that they also showed decreasing

2006 Linux Symposium, Volume One • 183

 0

 500

 1000

 1500

 2000

 2500

 1 2 4 8 16 32

Th
ro

ug
hp

ut
 (M

iB
/s

)

Thread Count

XFS-4k
XFS-16k

JFS
Ext2
Ext3

Reiser3

Figure 5: Buffered Write Throughput Compar-
ison

throughput. This is discussed further in Sec-
tion 5.1.

4.3 Direct I/O Results

Only XFS and Ext3 were compared for direct
I/O due to time constraints. The tests were run
over different block sizes and thread counts,
and involved first writing a file per thread, then
overwriting the file, and finally reading the file
back again. A 512 KiB stripe unit was used for
these tests.

Table 1 documents the maximum sustained
throughput we achieved with these tests. Ext3
was fastest with only a single thread, but writes
still fell a long way behind XFS. As the num-
ber of threads increased, Ext3 got slower and
slower as it fragmented the files it was writing.
At 18 threads, Ext3 direct I/O performance was

Threads FS Read Write Overwrite
1 XFS 5.5 4.0 7.5
1 Ext3 4.2 0.6 2.5

18 XFS 10.0 7.7 7.7
18 Ext3 0.58 0.06 0.12

Table 1: Sequential Direct I/O Throughput
(GiB/s)

 1

 10

 1 2 4 8 16 32

Ef
fic

ie
nc

y
(%

CP
U/

M
iB

/s
)

Thread Count

Smaller is Better

XFS-4k
XFS-16k

JFS
Ext2
Ext3

Reiser3

Figure 6: Buffered Write Efficiency Compari-
son

between 10 and 20 times lower than for a single
thread.

In contrast, from one to 18 threads, XFS dou-
bled its read and write throughput, and over-
write increased marginally from its already
high single thread result. It is worth noting that
the XFS numbers peaked substantially higher
than the sustained throughput—reads peaked at
above 10.7 GiB/s, while writes and overwrites
peaked at over 8.9 GiB/s.

5 Issues Affecting Throughput

5.1 Spinlocks in Hot Paths

One thing that is clear from the buffered I/O
results is that global spinlocks in hot paths of
a filesystem do not scale. Every journalled
filesystem except JFS was limited by spinlock
contention during parallel writes. In the case
of JFS, it appeared to be some kind of sleeping
contention that limited performance, and so the
impact of contention on CPU usage was not im-
mediately measurable. Both ReiserFS and JFS
displayed symptoms of contention in their read
paths as well.

184 • Exploring High Bandwidth Filesystems on Large Systems

From analysis of the contention on the XFS
buffered write path, we found that the con-
tended lock was not actually being held for very
long. The fundamental problem is the number
of calls being made. For every page we write
on a 4 KiB filesystem, we are allocating four
filesystem blocks. We do this in four separate
calls to ->prepare_write(). Hence at the
peak throughput of approximately 700 MiB/s,
we are making roughly 180,000 calls per sec-
ond that execute the critical section.

That gives us less than 5.6 microseconds to ob-
tain the spinlock and execute our critical sec-
tion to avoid contention. The code that XFS
executes inside this critical section involves
a function call, a memory read, two likely
branches, a subtraction and a memory write.
That is not a lot of code, but with enough CPUs
trying to execute it in parallel it quickly be-
comes a bottleneck.

Of all the journalling filesystems, XFS appears
to have the smallest global critical section in its
write path. Filesystems that do allocation in the
write path (instead of delaying it until later like
XFS does) can’t help but have larger critical
sections here, and this shows in the throughput
being achieved.

Looking to the future, we need to move away
from allocating or mapping a block at a time in
the generic write path to reduce the load on crit-
ical sections in the filesystems. While work is
being done to reduce the number of block map-
ping calls on the read path, we need to do the
same work for the write path. In the meantime,
we have solved XFS’s problem in a different
way (see Section 6.1.2).

5.2 File Fragmentation and Reproducibil-
ity

From observation, the main obstacle in ob-
taining reproducible results across multiple test

runs on each filesystem was file fragmentation.
XFS was the only filesystem that almost com-
pletely avoided fragmentation of its working
files. ReiserFS also seemed to be somewhat re-
sistant to fragmentation but the results are not
conclusive due to the problems ReiserFS had
writing files in parallel.

Ext2, Ext3 and JFS did not resist fragmenta-
tion at all well. From truncated test results,
we know that the variation was extreme. A
comparison of the best case results versus the
worst case results for ext2 can be seen in Ta-
ble 2. Both Ext3 and JFS demonstrated very
similar performance variation due to the differ-
ent amounts of fragmentation of the files being
read in each test run. While we present the best
numbers we achieved for these filesystems, you
should keep in mind that these are not consis-
tently reproducible under real world conditions.

At the other end of the scale, the XFS results
were consistently reproducible to within ±3%.
This is due to the fact that we rarely saw frag-
mentation on the XFS filesystems and the disk
allocation for each file was almost identical on
every test run. Even when we did see fragmen-
tation, the contiguous chunks of file data were
never smaller than several gigabytes in size.

A further measure of fragmentation we used
was the number of physical disk I/Os required
to provide the measured throughput. In the case
of XFS, we were observing stripe unit sized
I/Os being sent to each disk (512 KiB) while
sustaining roughly 13,000 disk I/Os per second
to achieve 6.3 GiB/s.

In contrast, Ext2 and Ext3 were issuing ap-
proximately 60–70,000 disk I/Os per second to
achieve 1.7 GiB/s and 4.5 GiB/s respectively.
That equates to average I/O sizes of approxi-
mately 24 KiB and 56 KiB and each disk ex-
ecuting more than 250 I/Os per second each.
The disks were seek bound rather than band-
width bound. Sustained read throughput of less

2006 Linux Symposium, Volume One • 185

Threads Best Run Worst Run
1 522.2 348.5
2 780.2 74.8
4 1130.3 105.0
8 1542.1 176.8

Table 2: Example of Ext2 Read Throughput
Variability (MiB/s)

than 300 MiB/s at 60–70,000 disk I/Os per sec-
ond with an average size of 4 KiB was not un-
common to see. This indicates worst case (sin-
gle block) fragmentation in the filesystem. The
same behaviour was seen with JFS as well.

The source of the fragmentation on Ext2 and
Ext3 would appear to be interleaved disk allo-
cation when multiple files are written in parallel
from multiple CPUs. This also occurred when
running parallel direct I/O writes on Ext3 (see
Table 1) so it would appear to be a general issue
with the way Ext3 handles parallel allocation
streams.

XFS solves this problem by decoupling disk
block allocation from disk space accounting
and then using well known algorithmic tech-
niques to avoid lock contention to achieve write
scaling.

The message being conveyed here is that most
Linux filesystems do not resist fragmentation
under parallel write loads. With parallelism hit-
ting the mainstream now via multicore CPUs,
we need to recognise that filesystems may not
be as resistant to fragmentation under normal
usage patterns as they were once recognised to
be. This used to be a problem that only super-
computer vendors had to worry about. . .

5.3 kswapd and pdflush

While running single threaded tests, it was clear
that there was something running in the back-
ground that was using more CPU time than the

PID State % CPU Name
23589 R 97 dd

345 R 88 kswapd7
344 R 83 kswapd6

23556 R 81 dd
348 R 80 kswapd10
346 R 79 kswapd8
347 R 77 kswapd9
339 R 76 kswapd1
349 R 74 kswapd11
343 R 72 kswapd5

23517 R 71 dd
23573 R 64 dd

338 R 64 kswapd0
23552 R 64 dd
23502 R 63 dd

340 S 63 kswapd2
23570 R 61 dd
23592 R 60 dd

341 R 57 kswapd3

Table 3: kswapd CPU usage during buffered
writes

writer process and pdflush combined. A sin-
gle threaded read from disk consuming a single
CPU was consuming 10–15% of a CPU on each
node running memory reclaim via kswapd. For
a single threaded write, this was closer to 30%
of a CPU per node. On our twelve node ma-
chine, this meant that we were using between
1.5 and 3.5 CPUs to reclaim memory being al-
located by a single CPU.

On buffered write tests, pdflush also appeared
to be struggling to write out the dirty data.
With a single write thread, pdflush would con-
sume very little CPU; maybe 10% of a sin-
gle CPU every five seconds. As the number
of threads increased, however, pdflush quickly
became overwhelmed. At four threads writing
at approximately 1.5 GiB/s, pdflush ran perma-
nently consuming an entire CPU.

At eight or more write threads, pdflush con-
sumed CPU time only sporadically; instead the
kswapd CPU usage jumped from 30% of a CPU

186 • Exploring High Bandwidth Filesystems on Large Systems

Threads Average I/O Size
1 1000 KiB
2 450 KiB
4 400 KiB
8 250 KiB

16 200 KiB
32 220 KiB

Table 4: I/O size during buffered writes

to 70–80% of a CPU per node. This can be seen
in Table 3.

Monitoring of the disk level I/O patterns in-
dicated that writeback was occuring from the
LRU lists rather than in file offset order from
pdflush. This could also be seen in the I/O sizes
that were being issued to disk as seen in Table 4
as the thread count increased.

This is clearly not scalable writeback and mem-
ory reclaim behaviour; we need reclaim to con-
sume less CPU time and for all writeback to oc-
cur in file offset order to maximise throughput.
For XFS, this will also minimise fragmentation
during block allocation. See Section 6.2.2 for
details on how we improved this behaviour.

6 Improvements and Optimisations

6.1 XFS Modifications

6.1.1 Buffered Write I/O Path

In 2.6.15, a new buffered write I/O path imple-
mentation was introduced. This was written by
Christoph Hellwig and Nathan Scott[Hellwig].
The main change this introduced was XFS clus-
tering pages directly into a bio instead of by
buffer heads and submit_bh() calls. Using
buffer heads limited the size of an I/O to the
number of buffer heads a bio could hold. In

other words, the larger the block size of the
filesystem, the larger the I/Os that could be
formed in the write cluster path. This is the pri-
mary reason for the difference in throughput we
see for the XFS filesystems with different block
sizes.

By adding complete pages to a bio rather than
buffer heads, we were able to make XFS write
clustering independent of the filesystem block
size. This means that any XFS filesystem can
issue I/Os only limited in size by the number of
pages that can be held by the bio vector.

Unfortunately, due to the locking issue de-
scribed earlier in Section 5.1, XFS with the
modified write path was actually slower on our
test machine than without it. Clearly, the spin-
lock problem needed to be solved before we
would see any benefit from the new I/O path.

6.1.2 Per-CPU Superblock Counters

Kernel profiles taken during parallel buffered
write tests indicated contention within XFS on
the in-core superblock lock. This lock pro-
tects the current in-core (in-memory) state of
the filesystem.

In the case of delayed allocation, XFS uses the
in-core superblock to track both disk space that
is actually allocated on disk as well as the space
that has not yet been allocated but is dirty in
memory. That means during a write(2) sys-
tem call we allocate the space needed for the
data being written but we don’t allocate disk
blocks. Hence the “allocation” is very fast
whilst maintaining an accurate representation
of how much space there is remaining in the
filesystem.

This makes contention on this structure a diffi-
cult problem to solve. We need global accuracy,
but we now need to avoid global contention.

2006 Linux Symposium, Volume One • 187

The in-core superblock is a write-mostly struc-
ture, so we can’t use atomic operations or RCU
to scale it. The only commonly used method
remaining is to make the counters per-CPU, but
we still need to have some method of being ac-
curate when necessary that performs in an ac-
ceptable manner.

Hence for the free space counter we decided to
trade off performance for accuracy when we are
close to ENOSPC. The algorithm that was im-
plemented is essentially a distributed counter
that gets slower and more accurate as the ag-
gregated total of the counter approaches zero.

When an individual per-CPU counter reaches
zero, we execute a balance operation. This op-
eration locks out all the per-CPU counters be-
fore aggregating and redistributing the aggre-
gated value evenly over all the counters before
re-enabling the counters again. This requires
a per-CPU atomic exclusion mechanism. The
balance operation must lock every CPU fast
path out and so can be an expensive operation
on a large machine.

However, on that same large machine, the fast
path cost of the per-CPU counters is orders of
magnitude lower than a global spinlock. Hence
we are amortising the cost of an expensive
rebalance very quickly compared to using a
global spinlock on every operation. Also, when
the filesystem has lots of free space we rarely
see a rebalance operation as the distributed
counters can sink hundreds of gigabytes of al-
location on a single CPU before running dry.

If a counter rebalance results in a very small
amount being distributed to each CPU, the
counter is considered to be near zero and we fall
back to a slow, global, single threaded counter
for the aggregated total. That is, we prefer ac-
curacy over blazing speed. It should also be
noted that using a global lock in this case tends
to be more efficient than constant rebalancing
on large machines.

The results (see Figure 7 and Figure 8) speak
for themselves and the code is to be released
with 2.6.17[Chinner].

6.2 VM and NUMA Issues

6.2.1 SN2 Specific TLB Purging

When first running tests on 2.6.15-rc5, it was
noticed that XFS buffered read speeds were
much higher than we saw on SLES9 SP2,
SLES9 SP3 and 2.6.14. On these kernels we
were only achieving a maximum of 4 GiB/s.
Using 2.6.15-rc5 we achieved 6.4 GiB/s, and
monitoring showed all the disks at greater than
90% utilisation so we were now getting near to
being disk bound.

Further study revealed that the memory reclaim
rate limited XFS buffered read throughput. In
this particular case, the global TLB flushing
speed was found to make a large difference to
the reclaim speed.

We found this when we reverted a platform-
specific optimisation that was included in
2.6.15-rc1 to speed up TLB flushing[Roe]. Re-
verting this optimisation reduced buffered read
throughput by approximately 30% on the same
filesystem and files. Simply put, this improve-
ment was an unexpected but welcome side ef-
fect of an optimisation made for different rea-
sons.

6.2.2 Node Local Memory Reclaim

In a stroke of good fortune, Christoph Lameter
completed a set of modifications to the mem-
ory reclaim subsystem[Lameter] while we were
running tests. The modifications were included
in Linux 2.6.16, and they modified the reclaim
behaviour to reclaim clean pages on a given

188 • Exploring High Bandwidth Filesystems on Large Systems

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 4 8 16 32

Th
ro

ug
hp

ut
 (M

iB
/s

)

Thread Count

Base-XFS-4k
Base-XFS-16k

Opt-XFS-4k
Opt-XFS-16k

Figure 7: Improved XFS Buffered Write
Throughput

node before trying to allocate from a remote
node.

The first major difference in behaviour was that
kswapd never ran during either buffered read or
write tests. Buffered reads were now quite ob-
viously I/O bound with approximately half the
disks showing 100% utilisation. Using a dif-
ferent volume layout with a 1 MiB stripe unit,
sustained buffered read throughput increased to
over 7.6 GiB/s.

The second most obvious thing was that pdflush
was now able to flush more than 5 GiB/s of data
whilst consuming less than half a CPU. Without
the node local reclaim, it was only able to push
approximately 500 MiB/s when it consumed an
equivalent amount of CPU time. Writeback, es-
pecially at low thread counts, became far more
efficient.

6.2.3 Memory Interleaving

While doing initial bandwidth characterisations
using direct I/O, we found that it was nec-
essary to ensure that buffer memory was al-
located evenly from every node in the ma-
chine. This was achieved using the numactl

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 4 8 16 32

Ef
fic

ie
nc

y
(%

CP
U/

M
iB

/s
)

Thread Count

Smaller is Better

Base-XFS-4k
Base-XFS-16k

Opt-XFS-4k
Opt-XFS-16k

Figure 8: Improved XFS Buffered Write Effi-
ciency

-i all command prefix to the test commands
being run.

Without memory interleaving, direct I/O (read
or write) struggled to achieve much more than
6 GiB/s due to the allocation patterns limit-
ing the buffers to only a few nodes in the ma-
chine. Hence we were limited by the per-node
NUMALink bandwidth. Interleaving the buffer
memory across all the nodes solved this prob-
lem.

With buffered I/O, however, we saw very dif-
ferent behaviours. In initial testing we saw lit-
tle difference in throughput because the page
cache ended up spread across all nodes of the
machine due to memory reclaim behaviour.

However, when testing the node local memory
reclaim patches we found that interleaving did
make a big difference to performance as the lo-
cal reclaim reduced the number of nodes that
the page cache ended up spread over. Inter-
estingly, the improvement in memory reclaim
speed that the local reclaim gave us meant that
there was no performance degradation despite
not spreading the pages all over the machine.
Once we spread the pages using the numactl
command we saw the substantial performance
increases.

2006 Linux Symposium, Volume One • 189

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 4 8 16 32

Th
ro

ug
hp

ut
 (M

iB
/s

)

Thread Count

Base-XFS-4k
Base-XFS-16k

Opt-XFS-4k
Opt-XFS-16k

Figure 9: Improved XFS Buffered Read
Throughput

6.2.4 Results

We’ve compared the baseline buffered I/O re-
sults from Section 3 with the best results we
achieved with our optimised kernel.

From Figure 7 it is clear that we achieved a
substantial gain in write throughput. The out-
standing result is the improvement of 4 KiB
block size filesystems and is a direct result of
the I/O path rewrite. The improved write clus-
tering resulted in consistently larger I/Os being
sent to disk, and this has translated into im-
proved throughput. Local memory reclaim has
also prevented I/O sizes from decreasing as the
number of threads writing increases which has
also contributed to higher throughputs as well.

On top of improved throughput, Figure 8 in-
dicates that the buffered write efficiency has
improved by factor of between three and four.
It can been seen that the efficiency decreases
somewhat as throughput and thread count goes
up, so there is still room for improvement here.

Buffered read throughput has roughly doubled
as shown in Figure 9. This improvement can be
almost entirely attributed to the VM improve-
ments as the XFS read path is almost identical
in the baseline and optimised kernels.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32

Ef
fic

ie
nc

y
(%

CP
U/

M
iB

/s
)

Thread Count

Smaller is Better

Base-XFS-4k
Base-XFS-16k

Opt-XFS-4k
Opt-XFS-16k

Figure 10: Improved XFS Buffered Read Effi-
ciency

Once again, the improvement in throughput
corresponds directly to an improvement in ef-
ficiency. Figure 10 indicates that we saw
much greater improvements in efficiency at low
thread counts than at high thread counts. The
source of this decrease in efficiency is unknown
and more investigation is required to under-
stand it.

One potential reason for the decrease in effi-
ciency of the buffered read test as throughput
increases is that the NUMALink interfaces may
be getting close to saturation. With the tests
being run, the typical memory access patterns
are a DMA write from the HBA to memory,
which due to the interleaved nature of the page
cache is distributed across the NUMALink fab-
ric. The data is then read by a CPU, which gath-
ers the data spread across every node, and is
then written back out into a user buffer which
is spread across every node.

With both bulk data and control logic mem-
ory references included, each node node in the
system is receiving at least 2 GiB/s and trans-
mitting more than 1.2 GiB/s. With per-node
receive throughput this high, remote memory
read and write latencies can increase compared
to an idle interconnect. Hence the increase in
CPU usage may simply be an artifact of sus-

190 • Exploring High Bandwidth Filesystems on Large Systems

tained high NUMALink utilisation.

7 Futures

The investigation that we undertook has pro-
vided us with enough information about the be-
haviour of these large systems for us to pre-
dict issues that SGI customers will see over the
next year or two. It has also demonstrated that
there are issues that mainstream Linux users are
likely to start to see over this same timeframe.
With technologies like SAS, PCI express, mul-
ticore CPUs and NUMA moving into the main-
stream, issues that used to affect only high end
machines are rapidly moving down to the aver-
age user. We need to make sure that our filesys-
tems behave well on the average machine of the
day.

At the high end, while we are on top of filesys-
tem scaling issues with XFS, we are starting
to see interactions between high bandwidth I/O
and independent cpuset constrained jobs on
large machines. These interactions are com-
plex and are hinting that for effective deploy-
ment on large machines at high I/O bandwidths
the filesystem needs to be NUMA and I/O path
topology aware so that filesystem placement
and I/O bandwidth locality to the running job
can be maximised. That is, we need to be able
to control placement in the filesystem to min-
imise the NUMALink bandwidth that a job’s
I/O uses.

This means that filesystems are likely to need
allocation hints provided to them to enable this
sort of functionality. We already have policy in-
formation controlling how a job uses CPU and
memory in large machines, so extending this
concept to how the filesystem does allocation
is not as far-fetched as it seems.

Improving performance in filesystems is all
about minimising disk seeking, and this comes

down to the way the filesystem allocates its disk
space. We have new issues at the high end
to deal with, while the issues that have been
solved at the high end are now becoming is-
sues for mainstream. As the intrinsic paral-
lelism of the average computer increases, algo-
rithms need to be able to resist fragmentation
when allocations occur simultaneously so that
filesystem performance can grow with machine
capability.

8 Conclusion

The investigation we undertook has provided us
with valuable information on the behaviour of
Linux in high bandwidth I/O loads. We iden-
tified several areas which limited our perfor-
mance and scalability and fixed the worst dur-
ing the investigation.

We improved the efficiency of buffered I/O
under these loads and significantly increased
the throughput we could achieve from XFS.
We discovered interesting NUMA scalability
issues and either fixed them or developed ef-
fective strategies to negate the issues.

We proved that we could achieve close to the
physical throughput limits of the disk subsys-
tem with direct I/O. From analysis, we found
that even buffered I/O was approaching physi-
cal NUMALink bandwidth limits. We proved
that Linux and XFS in combination could do
this whilst maintaining reproducible and stable
operation.

We also uncovered a set of generic filesystem
issues that affected every filesystem we tested.
We solved these problems on XFS, and pro-
vided recommendations on why we think they
also need to be solved.

Finally, we proved that XFS is the best choice
for our customers; both on the machines they
use and for the common workloads they run.

2006 Linux Symposium, Volume One • 191

In conclusion, our investigation fulfilled all the
goals we set at the beginning of the task. We
gained insight into future issues we are likely
to see, and we raised a new set of questions that
need further research. Now all we need is a
bigger machine and more disks.

References

[PCP] Silicon Graphics Inc., Performance
Co-Pilot,
http://oss.sgi.com/projects/pcp/

[Scott] Nathan Scott, Make
alloc_page_buffers() initialise
buffer_heads using init_buffer(). Git
commit key:
01ffe339e3a0ba5ecbeb2b3b5abac7b3ef90f374

[Mason] Chris Mason, [PATCH] reiserfs:
zero b_private when allocating buffer
heads. Git commit key:
fc5cd582e9c934ddaf6f310179488932cd154794

[Roe] Dean Roe, [IA64] - Avoid slow TLB
purges on SGI Altix systems. Git commit
key:
c1902aae322952f8726469a6657df7b9d5c794fe

[Lameter] Christoph Lameter, [PATCH] Zone
reclaim: Reclaim logic. Git commit key:
9eeff2395e3cfd05c9b2e6074ff943a34b0c5c21

[Hellwig] Christoph Hellwig and Nathan
Scott, [XFS] Initial pass at going
directly-to-bio on the buffered IO path.
Git commit key:
f6d6d4fcd180f8e47bf6b13fc6cce1e6c156d0ea

[Chinner] Dave Chinner, [XFS] On machines
with more than 8 cpus, when running
parallel I/O. Git commit key:
8d280b98cfe3c0b69c37d355218975c1c0279bb0

192 • Exploring High Bandwidth Filesystems on Large Systems

The Effects of Filesystem Fragmentation

Giel de Nijs
Philips Research

giel.de.nijs@philips.com

Ard Biesheuvel
Philips Research

ard.biesheuvel@philips.com

Ad Denissen
Philips Research

ad.denissen@philips.com

Niek Lambert
Philips Research

niek.lambert@philips.com

Abstract

To measure the actual effects of the fragmen-
tation level of a filesystem, we simulate heavy
usage over a longer period of time on a con-
stantly nearly full filesystem. We compare var-
ious Linux filesystems with respect to the level
of fragmentation, and the effects thereof on the
data throughput. Our simulated load is com-
parable to prolonged use of a Personal Video
Recorder (PVR) application.

1 Introduction

For the correct reading and writing of files
stored on a block device (i.e., hard drive, optical
disc, etc.) the actual location of the file on the
platters of the disk is of little importance; the
job of the filesystem is to transparently present
files to higher layers in the operating system.
For efficient reading and writing, however, the
actual location does matter. As blocks of a file
typically need to be presented in sequence, they
are mostly also read in sequence. If the blocks
of a file are scattered all over a hard drive, the
head of the drive needs to seek to subsequent
blocks very often, instead of just reading those

blocks in one go. This takes time and energy,
and so the effective transfer speed of the hard
drive is lower and the energy spent per bit read
is higher. Obviously, one wants to avoid this.

In the early days of the PC, the filesystem of
choice for many was Microsoft’s FAT [1], later
followed by FAT32. The allocation strategy, the
strategy that determines which blocks of a file
go where on the disk, was very simple: write
every block of the file to the first free block
found. On an empty hard drive, the blocks will
be contiguous on the disk and reading will not
involve many seeks. As the filesystem ages and
files are created and deleted, the free blocks
will be scattered over the drive, as will newly
created files. The files on the hard drive be-
come fragmented and this affects the overall
drive performance. To solve this, a process
called defragmentation can re-order blocks on
the drive to ensure the blocks of each file and
of the remaining free space will be contiguous
on the disk. This is a time consuming activity,
during which the system is heavily loaded.

More sophisticated filesystems like Linux’s
ext2 [2] incorporate smarter allocation strate-
gies, which eliminate the need for defragmenta-
tion for everyday use. Specific usage scenarios
might exist where these, and other, filesystems

194 • The Effects of Filesystem Fragmentation

perform significantly worse or better than aver-
age. We have explored such a scenario and de-
rive a theoretical background that can predict,
up to a point, the stabilisation of the fragmen-
tation level of a filesystem.

In this paper we study the level of fragmen-
tation of various filesystems throughout their
lifetime, dealing with a specific usage scenario.
This scenario is described in section 2 and al-
lows us to derive formulae for the theoretical
fragmentation level in section 3. We elaborate
on our simulation set-up in section 4, followed
by our results in section 5. We end with some
thoughts on future work in section 6 and con-
clude in section 7.

2 The scenario

Off-the-shelf computers are used more and
more for storing, retrieving and processing very
large video files as they assume the role of
a more advanced and digital version of the
classic VCR. These so-called Personal Video
Recorders (PVR) are handling all the television
needs of the home by recording broadcasts and
playing them back at a time convenient for the
user, either on the device itself or by streaming
the video over a home network to a separate
rendering device. Add multiple tuners and an
ever increasing offer of broadcast programs to
the mix and you have an application that de-
mands an I/O subsystem that is able to han-
dle the simultaneous reading and writing of a
number of fairly high bandwidth streams. Both
home-built systems as well as Consumer Elec-
tronics (CE) grade products with this function-
ality exist, running software like MythTV [3]
or Microsoft Windows Media Center [4] on top
of a standard operating system.

As these systems are meant to be always run-
ning, power consumption of the various com-
ponents becomes an issue. The costs of the

components is of course an important factor as
well, especially for CE devices. Furthermore,
the performance of the system should not de-
teriorate over time to such a level that it be-
comes unusable, as a PVR should be low main-
tenance and should just work. Clearly, over-
dimensioning the system to overcome perfor-
mance issues is not the preferred solution. A
better way would be to design the subsystems
in such a way that they are able to deliver the re-
quired performance efficiently and predictably.
As stated above, the hard-disk drive (HDD) will
be one of the most stressed components, so it is
interesting to see if current solutions are fulfill-
ing our demands.

2.1 Usage pattern

The task of a PVR is mainly to automatically
record broadcast television programs, based on
a personal preference, manual instruction or
a recommendation system. As most popular
shows are broadcast around the same time of
day and PVRs are often equipped with more
than one tuner, it is not uncommon that more
than one program is being recorded simultane-
ously. As digital broadcast quality results in
video streams of about 4 to 8 megabit/s, the size
of a typical recording is in the range of 500 MB
to 5 GB.

As the hard drive of a PVR fills up, older
recordings are deleted to make room for newer
ones. The decision which recording to delete
is based on age and popularity, e.g., the news
of last week can safely be deleted, but a user
might want to keep a good movie for a longer
period of time.

The result of this is that the system might be
writing two 8 megabit/s streams to a nearly full
filesystem, sometimes even while playing back
one or more streams. For 5 to 10 recordings per
day, totalling 3 to 5 hours of content, this results

2006 Linux Symposium, Volume One • 195

in about 10 GB of video data written to the disk.
Will the filesystem hold up if this is done daily
for two years? Will the average amount of frag-
mentation keep increasing or will it stabilise at
some point? Will the effective data rate when
reading the recorded files from a fresh filesys-
tem differ from the data rate when reading from
one that has been used extensively? We hope to
answer these questions with our experiments.

Although the described scenario is fairly spe-
cific, it is one that is expected to be increas-
ingly important. The usage and size of media
files are both steadily increasing and general
Personal Computer (PC) hardware is finding its
way into CE devices, for which cost and sta-
bility are main issues. The characterised usage
pattern is a general filesystem stress test for sit-
uations involving large media files.

As an interesting side-note, our scenario de-
scribes a pattern that had hardly ever been en-
countered before. Normal usage of a computer
system slowly fills the hard drive while read-
ing, writing and deleting. If the hard drive is
full, it is often replaced by a bigger one or used
for read-only storage. Our PVR scenario, how-
ever, describes a full filesystem that remains in
use for reading and writing large files over a
prolonged period of time.

2.2 Performance vs. power

A filesystem would ideally be able to perform
equally well during the lifetime of the system it
is part of, without significant performance loss
due to fragmentation of the files. This is not
only useful for shorter processing times of non-
real-time tasks (e.g., the detection of commer-
cial blocks in a recorded television broadcast),
but it also influences the power consumption of
the system [5].

If a real-time task with a predefined streaming
I/O behaviour is running, such as the recording

of a television program, power can be saved if
the average bit rate of the stream is lower than
the maximum throughput of the hard drive. If a
memory buffer is assigned for low power pur-
poses, it can be filled as fast as possible by read-
ing the stream from the hard drive and power-
ing down the drive while serving the applica-
tion from the memory buffer. This also holds
for writing: the application can write into the
memory buffer, which can be flushed to disk
when it is full, allowing us to power off the
drive between bursts. The higher the effective
read or write data rate is, the more effective this
approach will be. If the fragmentation of the
filesystem is such that it influences the effec-
tive data rate, it directly influences the power
consumption. A system that provides buffering
capabilities for streaming I/O while providing
latency guarantees is ABISS [6].

3 The theory

To derive a theory dealing with the fragmenta-
tion level of a filesystem, we first need some
background information on filesystem alloca-
tion. This allocation can (and will) lead to frag-
mentation, as we will describe below. We deter-
mine what level of fragmentation is acceptable
and as a result we can derive the fragmentation
equilibrium formulae of section 3.3.

3.1 Block allocation in filesystems

Each filesystem has some sort of rationale that
governs which of the available blocks it will use
next when more space needs to be allocated.
This rationale is what we call the allocation
strategy of a filesystem. Some allocation strate-
gies are more sophisticated than others. Also,
the allocation strategy of a particular filesys-
tem can differ between implementations with-
out sacrificing interoperability, provided that

196 • The Effects of Filesystem Fragmentation

every implementation meets the specifications
of how the data structures are represented on
disk.

3.1.1 The FAT filesystem

The File Allocation Table File System (FATFS)
[1] is a filesystem developed by Microsoft in
the late seventies for its MS-DOS operating
system. It is still in wide use today, mainly for
USB flash drives, portable music players and
digital cameras. While recent versions of Win-
dows still support FATFS, it is no longer the
default filesystem on this platform.

A FATFS volume consists of a boot sector,
two file allocation tables (FATs), a root direc-
tory and a collection of files and subdirectories
spread out across the disk. Each entry of the
FAT maps to a cluster in the data space of the
disk, and contains the index number of the next
cluster of the file (or subdirectory) it belongs to.
An index of zero in the FAT means the corre-
sponding cluster on the disk is free, other magic
numbers exist that denote that a cluster is the
last cluster of a file or that the cluster is dam-
aged or reserved. The second FAT is a backup
copy of the first one, in case the first one gets
corrupted.

An instance of FATFS is characterised by three
parameters: the number of disk sectors in a
cluster (2i for 0 ≤ i ≤ 7), the number of clus-
ters on the volume and the number of bits used
for each FAT entry (12, 16 or 32 bits), which at
least equals the base-2 logarithm of the number
of clusters.

The allocation strategy employed by FATFS is
fairly straight-forward. It scans the FAT lin-
early, and uses the first free cluster found. Each
scan starts from the position in the FAT where
the previous scan ended, which results in all
of the disk being used eventually, even if the

filesystem is never full. However, this strat-
egy turns out to be too naive for our purpose:
if several files are allocated concurrently, the
files end up interleaved on the disk, resulting in
high fragmentation levels even on a near-empty
filesystem.

3.1.2 The LIMEFS filesystem

The Large-file metadata-In-Memory Extent-
based File System (LIMEFS) was developed as
a research venture within Philips Research. [7]

LIMEFS is extent-based, which means it keeps
track of used and free blocks in the filesys-
tem by maintaining lists of (index, count) pairs.
Each pair is called an extent, and describes a set
of count contiguous blocks starting at position
index on the disk.

The allocation strategy LIMEFS uses is slightly
more sophisticated than the strategy FAT in-
corporates, and turns out to be very effective
in avoiding fragmentation when dealing with
large files. When space needs to be allocated,
LIMEFS first tries to allocate blocks in the free
extent after the last written block of the current
file. If there is no such extent, the list of free ex-
tents is scanned and an extent is chosen that is
not preceded by an extent that contains the last
block of another file that is currently open for
writing. If it finds such an extent, it will start
allocating blocks from the beginning of the ex-
tent. If it cannot find such an extent, it will pick
an extent that is preceded by a file that is open
for writing. In this case however, it will split the
free extent in half and will only allocate from
the second half. When the selected extent runs
out of free blocks, another extent is selected us-
ing the approach just described, with the added
notion that extents close to the original one are
preferred over more distant ones.

2006 Linux Symposium, Volume One • 197

3.2 How to count fragments

A hard drive reading data sequentially is able to
transfer, on average, the amount of data present
on one track in the time it takes the platter to ro-
tate once. Reading more data than one track in-
volves moving the head to the next track, which
is time lost for reading. The layout of the data
on the tracks is corrected for the track-to-track
seek time of the hard drive, i.e., the data is laid
out in such a way that the first block on the next
track is just passing underneath the head the
moment it has moved from the previous track
and is ready for reading. This way no additional
time is left waiting for the right block. This is
known as track skew, shown in figure 1. Hence,
the effective transfer rate for sequential reading
is the amount of data present on one track, di-
vided by the rotation time increased with the
track skew.

tr
a
c
k
 s

k
e
w

rotation time

k

k−2

k−1

k
+

1

k
+
2

Figure 1: In the time it takes the head of the
hard drive to move to the next track, the drive
continues to rotate. The lay-out of blocks com-
pensates for this. After reading block k, the
head moves to the next track and arrives just
in time to continue reading from block k + 1
onwards. This is called track skew.

When a request is issued for a block that is
not on the current track, the head has to seek
to the correct track. Subsequently, after the
seek the drive has to wait until the correct block
passes underneath the head, which takes on av-
erage half the rotation time of the disk. The
time such a seek takes is time not spent read-
ing, thus seeking lowers the data throughput
of the drive. Seeks occur for example when
blocks of a single non-contiguous file are read
in sequence, i.e., when moving from fragment
to fragment. Some non-sequential blocks do
not induce seeks however, and should not be
counted as fragments.

Two consecutive blocks in a file that are not
contiguously placed on the disk only lead to a
seek if the seek time is lower than the time it
would take to bridge the gap between the two
blocks by just waiting for the block to turn up
beneath the head (maybe after a track-to-track
seek).

If ts is the average time to do a full seek, and tr
is the rotation time of the disk, we can derive
Ts, the access time resulting from a seek:

Ts = ts +
1
2

tr (1)

The access time resulting from waiting, Tw, can
be expressed in terms of track size st , gap size
sg and track skew tts:

Tw =
sg

st
(tr + tts) (2)

So the maximum gap size Sg that does not in-
duce a seek is the largest gap size sg for which
Tw ≤ Ts still holds, and therefore

Sg = st

ts
tr

+ 1
2

1+ tts
tr

(3)

198 • The Effects of Filesystem Fragmentation

The relevance of the maximum gap size Sg is
that it allows us to determine how many rota-
tions and how many seeks it takes to read a par-
ticular file, given the layout of its blocks on the
disk.

3.3 Fragmentation equilibrium

A small amount of fragmentation is not bad per
se, if it is small enough to not significantly re-
duce the transfer speed of a hard drive. For
instance, the ext3 filesystem [8] by default in-
serts one metadata block on every 1024 data
blocks. Although, strictly speaking, this leads
to non-sequential data and thus fragmentation,
this kind of fragmentation does not impact the
data rate significantly. If anything, it increases
performance because the relevant metadata is
always nearby.

A more important factor is the predictability
and the stabilisation of the fragmentation level.
Dimensioning the I/O subsystem for a certain
application is only possible if the effective data
transfer rate of the hard drive is known a pri-
ori, i.e., predictable. As one should dimension a
system for the worst case, it is also helpful if the
fragmentation level has an upper bound, i.e., it
reaches a maximum at some point in time after
which it does not deteriorate any further. With
the help of some simple mathematics, we can
estimate the theoretical prerequisites for such
stabilisation.

3.3.1 Neighbouring blocks

Suppose we have a disk with a size of N allo-
cation blocks and from these blocks, we make
a random selection of M blocks. The first se-
lected block will of course never be a neigh-
bour of any previously selected blocks. The
probability that the second block is a neighbour

of the first is 2
N−1 , because 2 of the remaining

N−1 blocks are adjacent to the first block. The
probability of the third block being a neigh-
bour of one of the previous two is then 4

N−2 , or,
more general, the probability of a block i being
a neighbour of one of the previously selected
blocks is:

P(i) =
2i

N− i
(1≤ i� N) (4)

The average number of neighbouring blocks
when randomly selecting M blocks, the ex-
pected value, can be determined by the summa-
tion of the probability of a selected block being
a neighbour of a previously selected block over
all blocks, although with two errors: we are not
correcting for blocks at the beginning or end of
the disk with only one neighbour and we are
conveniently forgetting that two previously se-
lected blocks could already be neighbours. As
long as N � 1 and M � N this will not influ-
ence the outcome very much and simplifies the
formulae. Furthermore, if M � N we can ap-
proximate (4) by:

P(i)≈ 2i
N

(5)

The expected value of the number of neigh-
bouring blocks is then, according to (5):

E =
M−1

∑
i=1

2i
N− i

≈
M−1

∑
i=1

2i
N

(6)

=
(M−1)M

N

2006 Linux Symposium, Volume One • 199

3.3.2 Neighbouring fragments

The above holds for randomly allocated blocks,
which is something not many filesystems do.
The blocks in the above argumentation how-
ever can also be seen as fragments of both files
as well as free space. This only changes the
meaning of N and M and does not change the
argumentation. If we now look at a moderately
fragmented drive, the location of the fragments
will be more or less random and our estimation
of the expected value of the number of neigh-
bouring fragments will be closer to the truth.

Furthermore, to have a stable amount of frag-
ments, an equilibrium should exist between the
number of new fragments created during allo-
cation and the number of fragments eliminated
during deletion (by deleting data next to a free
fragment and thus ’glueing’ two fragments).

Let us interpret N as the total number of frag-
ments on a drive, both occupied as well as free
and M as the number of free fragments. Also,
assume that we are dealing with a drive that is
already in use for some time and is almost full,
according to our PVR scenario as described in
section 2.1.

The fore mentioned equilibrium can be ob-
tained with the simple allocation strategy of
LIMEFS (described in section 3.1.2) used in
our PVR scenario, by eliminating one fragment
when deleting a file, as on average one frag-
ment is created during the allocation of a file
(as shown in figure 2). We assume that, as the
files are on average of the same size, for each
file created a file is deleted; when writing a file
of L fragments (increasing the fragment count
with one), a file of L fragments is deleted. This
should eliminate one fragment to create a bal-
ance in the amount of fragments.

By deleting a file of L fragments on a drive with
N total fragments, we increase the number of

blocks already occupied

new data

new fragment

Figure 2: Empty fragments are filled (and thus
not creating more fragmentation), until the end
of the file. As an empty fragment is now di-
vided into a fragment of the new file and a
smaller empty fragment, one new fragment is
created.

free fragments from (M−L) to M. The num-
ber of neighbouring fragments n before delet-
ing and nd after deleting the file amongst the
free fragments is, according to (6):

n =
(M−L−1)(M−L)

N
(7)

nd =
(M−1)M

N
(8)

Combining (7) and (8) gets us the increase of
neighbouring free fragments and thus the de-
crease of free fragments f (two neighbouring
free fragments are one fragment):

f = nd−n

=
(M−1)M

N
− (M−L−1)(M−L)

N

=
(2M−L−1)L

N
(9)

3.3.3 Balancing fragmentation

Now we define two practical, understandable
parameters m for the fraction of the disk that is

200 • The Effects of Filesystem Fragmentation

free and s for the fraction of the disk occupied
by a file:

m =
M
N

(10)

s =
L
N

(11)

This is mathematically not correct, as we de-
fined N, M and L as distributions of an amount
of fragments, but in the experiments of section
4 we will see that it works well enough for us,
together with the numerous assumptions we al-
ready made.

To fulfil the demand that the number of elim-
inated fragments f when deleting a file of L
fragments should equal the number of created
fragments by allocating space for a file of an
average equal size, f = 1 in (9). We combine
this statement with (10) and (11):

L =
1+ s

2m− s
(12)

This can be simplified even more by assuming
s� 1, which is true if L�N. This is a realistic
assumption, as the size of a file is most often a
lot smaller the the size of the disk. We get:

L =
1

2m− s
(13)

A remarkable result of this equation is that the
average number of fragments in each of our
files does not depend in the allocation unit size.
Of course, the above only holds if files consist
of more than one fragment, and a fragment con-
sists of a fairly large number of allocation units.
This fits our PVR scenario, but the deduced for-
mulae do not apply to general workloads.

Another interesting result of (13) is the in-
sight that a disk without free space besides the

amount needed to write the next file will result
in a situation where M = L and thus m = s. The
average number of fragments in a file becomes
L = 1

s , meaning the number of fragments in a
file equals the number of files on the disk.

4 The simulation

To test the validity of our theory described in
section 3 on the one hand and to be able to as-
sess if fragmentation is an issue for PVR sys-
tems on the other hand, we have conducted a
number of simulations. First, we have done
in-memory experiments with the simple alloca-
tion strategy of LIMEFS [7]. Next, we have
tried simulating a real PVR system working
on a filesystem as closely as possible with our
program pvrsim. This was combined with
our hddfrgchk to analyse the output of the
simulation. Finally, we have done throughput
and actual seek measurements by observing the
block I/O layer of the Linux kernel with Jens
Axboe’s blktrace [9].

All experiments were performed on a Linux
2.6.15.3 kernel, only modified with the
blktrace patches. The PVR simulations on
actual filesystems were running on fairly recent
Pentium IV machines with a 250 GB Western
Digital hard drive. The actual speed of the ma-
chine and hard drive should not influence the
results of the fragmentation experiments, and
the performance measurements were only com-
pared with those conducted on the same ma-
chine.

4.1 LIMEFS

We isolated the simple allocation strategy of
LIMEFS described in section 3.1.2 from the
rest of the filesystem and implemented it in a

2006 Linux Symposium, Volume One • 201

simulation in user space. This way, the cre-
ation and deletion of files was performed by
only modifying the in-memory meta data of the
filesystem, and we were quickly able to inves-
tigate if our theory has practical value. The re-
sults of this experiment can be found in section
5.2.

4.2 pvrsim

As we clearly do not want to use a PVR for
two years to see what the effects are of do-
ing so, we have written a simulation program
called pvrsim. This multi-threaded applica-
tion writes and deletes files, similar in size to
recorded broadcasts, as fast as possible. It
is able to do so with a number of concurrent
threads defined at runtime, to simulate the si-
multaneous recording of multiple streams.

The size of the generated file is uniformly dis-
tributed in the range from 500 MB to 5 GB.
Besides that, every file is assigned a Gaussian
distributed popularity score, ranging roughly
from 10 to 100. This score is used to deter-
mine which file should be deleted to free up
disk space for a new file.

When writing new files, pvrsim always keeps
a minimum amount of free disk space to pre-
vent excessive fragmentation. This dependency
between fragmentation and free disk space was
shown in (13) in section 3.3.3. If writing a
new file would exceed this limit, older files
are deleted until enough space has been freed.
The file with the lowest weighed popularity is
deleted first. The weighed popularity is deter-
mined by dividing the popularity by the loga-
rithm of the age, where the age is expressed as
the number of files created after the file at hand.

Blocks of 32 KB filled with zeroes are written
to each file until it reaches the previously deter-
mined size. Next, the location of each block of

the file is looked up and the extents of the file
are determined. The extents are written to a log
file for further processing by hddfrgchk.

4.3 hddfrgchk

Our main simulation tool pvrsim outputs the
extents of each created file, which need fur-
ther processing to be able to analyse the re-
sults properly. This processing is done by
hddfrgchk, which provides two separate
functions, described below.

4.3.1 Fragmentation measures

hddfrgchk is able to calculate a number of
variables from the extent lists. First, it deter-
mines the number of fragments of which the
file at hand consists. As explained in section
3.2, this number is often higher than the actual
seeks the hard drive has to do when reading the
file. We therefore calculate the theoretical num-
ber of seeks, based on the characteristics of a
typical hard drive, with (3) from section 3.2.
The exact parameters in this calculation were
determined from a typical hard drive by mea-
surements, as described in [10].

Furthermore, we have defined a measure for
the relative effective data transfer speed. The
minimum number of rotations the drive has to
make to transfer all data of a file if all its blocks
were contiguous can be calculated by dividing
the number of blocks of the file by the average
number of blocks on a track. The actual num-
ber of rotations the drive theoretically has to
make to transfer the data can also be calculated.
This is done by adding the blocks in the gaps
that were not counted as fragments in our ear-
lier calculations to the total amount of blocks
in the file. Furthermore, the number of rota-
tions that took place in the time the hard drive

202 • The Effects of Filesystem Fragmentation

was seeking (the number of theoretical seeks as
calculated earlier is used for this) is also added
to the estimation of the number of rotations the
drive has to make to transfer the file. Dividing
the minimum number of rotations by the esti-
mation of the actual number of rotations gives
us the relative transfer speed.

4.3.2 Filesystem lay-out

Besides these variables, hddfrgchk also gen-
erates a graphical representation of the simula-
tion over time. The filesystem is depicted by
an image, each pixel representing a number of
blocks. With each file written by the simula-
tor, the blocks belonging to that file are given a
separate colour. When the file is deleted, this is
also updated in the image of the filesystem.

A new picture of the state of the filesystem is
generated for every file, and the separate pic-
tures are combined into an animation. The ani-
mation gives a visualisation of the locations of
the files on the drive, and gives an insight on
how the filesystem evolves.

4.4 Performance measurements

To verify the theoretical calculations of
hddfrgchk, we also have done some mea-
surements. We have looked at the requests is-
sued to the block I/O device (the hard drive
in this case) by the block I/O layer. The
blktrace [9] patch by Jens Axboe provides
useful instrumentation for this purpose in the
kernel.

4.4.1 blktrace

The kernel-side mechanism collects request
queue operations. The user space utility

blktrace extracts those event traces via the
Relay filesystem (RelayFS) [11]. The event
traces are stored in a raw data format, to en-
sure fast processing. The blkparse utility
produces formatted output of these traces after-
wards, and generates statistics.

The events that are collected originate either
from the file system or are SCSI commands.
The filesystem block layer requests consist of
the read or write actions of the filesystem.
These actions are queued and inserted in the in-
ternal I/O scheduler queue. The requests might
be merged with other items in the queue, at the
discretion of the I/O scheduler. Subsequently,
they are issued to the block device driver, which
finally signals when a specific request is com-
pleted.

4.4.2 Deriving the number of seeks

All requests also include the Logical Block Ad-
dress (LBA) of the starting sector of the re-
quest, as well as the size (in sectors) of the re-
quest. As we are interested in the exact actions
the hard drive performs, we only look at the re-
quests that are reported to be completed by the
block device driver, along with their location
and size. With this information, we can count
the number of seeks the hard drive has made: if
the starting location of a request is equal to the
ending location of the previous request, no seek
will take place. This does not yet account for
the fact that small gaps might not induce seeks,
but do lower the transfer rate.

4.4.3 Determining the data transfer rate

The effective data transfer rate can be derived
by the information provided by blktrace,
but can also be calculated just by the wall clock
time needed to read a file, divided by the file

2006 Linux Symposium, Volume One • 203

size. Comparing transfer rates of various files
should be done with caution: the physical lo-
cation on the drive significantly influences this.
To have a fair comparison, the average transfer
rate over the whole drive should be compared
at various stages in the simulation.

5 The results

We have conducted a number of variations of
the simulations described in section 4. The
variables under consideration were the filesys-
tem on which the simulations were taking
place, the size of the filesystem, the minimum
amount of free space on the filesystem, the
length of the simulation (i.e., the number of
files created) and the number of concurrent files
being written.

5.1 Simulation parameters

With exploratory simulations we discovered
that the size of the filesystem is not of signif-
icant influence on the outcome of the experi-
ments, as long as the filesystem is sufficiently
large compared to both the block size and the
average file size. As typical PVR systems typi-
cally offer storage space ranging from 100 GB
to 300 GB, we decided on a filesystem size of
138 GB. Due to circumstances, however, some
of the experiments were conducted on a filesys-
tem of 100 GB.

The minimum amount of space that is always
kept free is in the simulations with pvrsim
fixed at 5% of the capacity of the drive. Ac-
cording to the preliminary in-memory LIMEFS
experiments this is a reasonable value. The re-
sults of these experiments are elaborated in sec-
tion 5.2.

The size of the created files is chosen randomly
between 500 MB and 5 GB, uniformly dis-
tributed. As explained in section 2.1, these are
typical file sizes for a PVR recording MPEG2
streams in Standard Definition (SD) resolution.

The length of the experiments, expressed in
number of files created, was initially set at
10,000. The results from these runs showed
that after about 2,500 files the behaviour sta-
bilised. Therefore, the length of the simulations
was set at 2,500 files.

We have done simulations with up to four si-
multaneous threads, so several files were writ-
ten to the disk concurrently. This was done to
observe the behaviour when recording multiple
simultaneous broadcasts.

The filesystems we have covered in the exper-
iments described in this paper are FAT (both
Linux and Microsoft Windows), ext3 [2] [8],
ReiserFS [12], LIMEFS and NTFS [13] (Mi-
crosoft Windows). We plan to cover more
filesystems.

5.2 LIMEFS in-memory simulation

The results of the simulation of LIMEFS as de-
scribed in section 4.1 are shown in figure 3. We
have run our in-memory simulation on an imag-
inary 250 GB hard drive, with the minimum
amount of free space as a variable parameter.

As can be seen, in the runs with 5%, 10%
and 20% free space the fragmentation stabilises
quickly. In longer runs we observed that the
0%, 1% and 2% options also stabilise, but the
final fragmentation count is much higher and
the stabilisation takes longer. The sweet spot
appears to be 5% minimum free space, as this
gives a good balance between fragmentation
and hard drive space usage.

A nice result from this experiment is that the
observed fragmentation counts fit our formula.

204 • The Effects of Filesystem Fragmentation

We have taken a filesystem of 250 GB and an
average file size of 2750 MB. For the 5% free
space run, this makes the fraction of free space
m = 0.05 (see section 3.3.3). The fraction of
the disk occupied by a file is s = L

N = 2.75
250 =

0.01. So, the number of fragments in a file on
average, according to the formula, is:

L =
1

2m− s
=

1
2 ·0.05−0.01

≈ 11

From the plot in figure 3, we can see the calcu-
lation matches the outcome of the simulation.
The same holds for the other values for the min-
imum amount of free space.

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000 10000

F
ra

gm
en

t c
ou

nt

Files written

Moving average of fragment count

 0% free
 1% free
 2% free
 5% free
10% free
20% free

Figure 3: The average fragment count during a
simulation run of 10,000 files, with a variable
percentage of space that was kept free.

5.3 Fragmentation simulation

While the name pvrsim might suggest other-
wise, we must stress that all results obtained
by pvrsim were obtained by writing real files
to real filesystems. The filesystems were run-
ning on their native platforms (i.e., FAT and
NTFS on Windows XP SP2, the others on
Linux 2.6.15). For an interesting comparison
however, we have also tested how the Linux

version of FAT performs in a number of situ-
ations.

These experiments resulted in the plots in figure
4, where the number of seeks according to our
theory (see section 3.2) and the relative speed
are shown for single- and multi-threaded situa-
tions.

5.3.1 Single-threaded performance

All single-threaded simulations show similar
results on all filesystems: the effective read
speed is not severely impacted by writing many
large files in succession. Some filesystems han-
dle the fragmentation more gracefully than oth-
ers, but the effects on system performance are
negligible in all cases, as can be seen in the
top two plots of figure 4. Although ext3 seems
to have quite some fragmentation, the relative
speed does not suffer: 98% of the raw data
throughput is a hardly noticeable slowdown.

5.3.2 Multi-threaded performance

The multi-threaded simulations show that a file
allocation strategy that tries to cluster files that
are created concurrently performs considerably
better compared to one that does not. The per-
formance of NTFS deteriorates very quickly
(after having written only a couple of files) to a
relative speed of around 0.6, while the relative
speed of ReiserFS and ext3 do not drop below
0.8. Linux FAT is doing slightly worse, while
LIMEFS is not impacted at all.

5.3.3 LIMEFS

According to our results, the area of PVR ap-
plications is one where LIMEFS really shines.
LIMEFS never produces more than around ten

2006 Linux Symposium, Volume One • 205

fragments, even with four threads. We do ad-
mit that LIMEFS is the only filesystem used in
this experiment that was designed specifically
for the purpose of storing PVR recordings, and
that it might perform horribly or even not at all
in other areas. However, the results are encour-
aging, and will hopefully serve as an inspiration
for other filesystems.

5.3.4 FAT and NTFS

One interesting result of running the simulation
on FAT and NTFS on Windows is that Windows
appears to allocate 1 megabyte chunks regard-
less of the block size (extents are typically 16
clusters of 64k, or 32 clusters of 32k). As our
simulation does not produce files smaller than 1
megabyte, we have no way of determining the
effect of small files on the fragmentation levels
of the filesystems. However, the chunked allo-
cation seems to alleviate the negative effects of
the otherwise quite naive allocation strategies
of FAT and NTFS.

5.4 Seeks and throughput

We have measured the the number of the aver-
age data rate of files on a newly created filesys-
tem and compared that with the data rate of files
after pvrsim simulated a PVR workload, to
confirm that our relative speed calculations are
representative for the actual situation. Further-
more, we have analysed the activity in the block
I/O layer with blktrace to see if the num-
ber of seeks derived from the placement of the
blocks on the drive can be used to estimate the
real activity.

The raw data throughput of the drive on which
we have executed our single-threaded ext3 run
was 60,590 KB/s. After writing 10,000 files
with pvrsim, the data throughput while read-
ing those files was on average 58,409 KB/s.

This results in a relative speed of 0.96, which
is close to the 0.95 we have estimated with our
calculations. The figures of the two-threaded
ext3 run on a different machine (52,520 KB/s
raw data throughput, 40,270 KB/s while read-
ing the final files present and thus a relative
speed of 0.77, the same as calculated) confirm
this.

With the use of blktrace we counted 10,267
seeks when reading the final files present on the
disk after the single-threaded ext3 run. This is
an average of 366 fragments per file. If we take
into account that small fragments do not cause
the drive to seek, as explained in section 3.2,
the number of seeks caused by fragments after
a gap of more than 676KB was, again according
to the blktrace observations, 5692 or an av-
erage of 203 seeks per file. This is for all prac-
tical purposes close enough to the 198 seeks we
derive from the location of the fragments on the
disk.

6 Future work

The experiments and results presented in this
paper are a starting point to improve the frag-
mentation robustness of filesystem for PVR-
like scenarios. To obtain a good overview of
the current state-of-the-art, we are planning to
run our simulations on other filesystems, e.g.,
on XFS [14]. We intend to cover more com-
binations of the parameters of our simulations
as well, e.g., different distributions for file size
and popularity, different filesystem sizes, and
different filesystem options.

Following this route, experimental measure-
ments of different workloads and scenarios
might provide interesting insights as well. We
feel our tools could easily be modified to incor-
porate other synthetic workloads, and therefore
be of great help for further experiments.

206 • The Effects of Filesystem Fragmentation

A more practical matter is improving the allo-
cation strategy of the FAT filesystem. Making
the allocation extent-based and multi-stream
aware like LIMEFS will greatly improve the
fragmentation behaviour, while the resulting
filesystem will remain backwards compatible.
On one hand, this proves our LIMEFS strate-
gies in real-life applications, while on the other
hand this will be useful for incorporation in
mobile digital television devices, which might
also act as a mass storage device and should
therefore use a compatible filesystem. Unfortu-
nately, the usefulness of FAT in a PVR context
remains limited due to its file size limit of 4 gi-
gabytes.

7 Conclusion

The formulae derived in 3 give an indication of
the average fragmentation level for simple allo-
cation strategies and large files. Although we
made quite some assumptions and took some
shortcuts in the mathematical justification, the
results of the LIMEFS in-memory experiments
of section 5.2 support the theory. Another use-
ful outcome of the formulae is that, at least with
large files, the fragmentation level stabilises,
which seems to be true as well for filesystems
with more sophisticated allocation strategies.

When dealing only with large files, a simple al-
location strategy seems very efficient in terms
of fragmentation prevention. Especially if only
one stream is written, even FAT performs very
well. Writing multiple streams simultaneously
requires some precautions, but a strategy as im-
plemented in LIMEFS suffices and outperforms
all more complicated strategies with respect to
the fragmentation level.

The ext3 and ReiserFS filesystems have a rela-
tively high fragmentation in our scenario. How-
ever, the fragmentation stabilises and the im-

pact is therefore predictable, and is no real is-
sue with large files. A file of 2 GB consisting
of 500 fragments will result in 4.5 seconds of
seeking (with an average seek time of 9 ms).
This is not significant for a movie of two hours,
if the seeks are not clustered.

The relative speeds measured with ReiserFS
and ext3 are not as good as the ones of
LIMEFS, but still acceptable: 80% of the per-
formance after prolonged use. NTFS however
perform horribly when using multiple simul-
taneous streams. The Linux version of FAT
is doing surprisingly well with two concurrent
streams, much better than the Microsoft Win-
dows implementation. We have still to investi-
gate why this is.

An interesting observation is the fact that ext3
keeps about 2% of unused free space at the
end of the drive, independent of the "reserved
space" options (used to prevent the filesystem
from being filled up by a normal user). If this
free space is kept clustered at the end instead
of being used throughout the simulation, this is
inefficient in terms of fragmentation, as our for-
mulae tell us.

In general, a PVR-like device is able to pro-
vide sustainable I/O performance over time if a
filesystem like ext3 or ReiserFS is used. This
does not assert anything about scenarios where
file sizes are in the order of magnitude of the
size of an allocation unit. However, the ratio
between rotation time and seek time in modern
hard drives is such that seeks are not something
to avoid at all costs anymore. For optimal usage
of the hard drive under a load of a number of
concurrent streams, an allocation strategy that
is aware of such a scenario is needed.

References

[1] Microsoft Corporation. Microsoft
Extensible Firmware Initiative FAT32

2006 Linux Symposium, Volume One • 207

File System Specification. Whitepaper,
December 2000.
http://www.microsoft.com/
whdc/system/platform/
firmware/fatgendown.mspx?

[2] Card, Rémy; Ts’o, Theodore; Tweedie,
Stephen. Design and Implementation of
the Second Extended Filesystem.
Proceedings of the First Dutch
International Symposium on Linux,
1994.
http://web.mit.edu/tytso/
www/linux/ext2intro.html

[3] MythTV. http://www.mythtv.org

[4] Microsoft Windows XP Media Center.
http://www.microsoft.com/
windowsxp/mediacenter/
default.mspx

[5] Mesut, Özcan; Brink, Benno van den;
Blijlevens, Jennifer; Bos, Eric; Nijs, Giel
de. Hard Disk Drive Power Management
for Multi-stream Applications.
Proceedings of the International
Workshop on Software Support for
Portable Storage, March 2005.

[6] Nijs, Giel de; Almesberger, Werner;
Brink, Benno van den. Active Block I/O
Scheduling System (ABISS). Proceedings
of the Linux Symposium, vol. 1, pp.
109–126, Ottawa, July 2005.
http://www.linuxsymposium.
org/2005/linuxsymposium_
procv1.pdf

[7] Springer, Rink. Time is of the Essence:
Implementation of the LimeFS Realtime
Linux Filesystem. Graduation Report,
Fontys University of Applied Sciences,
Eindhoven, 2005.

[8] Johnson, Michael K. Red Hat’s New
Journaling File System: ext3.

Whitepaper, 2001. http:
//www.redhat.com/support/
wpapers/redhat/ext3/

[9] Axboe, Jens; Brunelle, Alan D. blktrace
User Guide. http://www.kernel.
org/pub/linux/kernel/
people/axboe/blktrace/

[10] Mesut, Özcan; Lambert, Niek. HDD
Characterization for A/V Streaming
Applications. IEEE Transactions on
Consumer Electronics, Vol. 48, No. 3,
802–807, August 2002.

[11] Dagenais, Michel; Moore, Richard;
Wisniewski, Bob; Yaghmour, Karim;
Zanussi, Tom. RelayFS - A High-Speed
Data Relay Filesystem.
http://relayfs.sourceforge.
net/relayfs.txt

[12] Reiser, Hans. ReiserFS v.3 Whitepaper.
Whitepaper, 2003.

[13] Microsoft Corporation. Local File
Systems for Windows. WinHEC, May
2004. http://www.microsoft.
com/whdc/device/storage/
LocFileSys.mspx

[14] Hellwig, Chrisoph. XFS for Linux.
UKUUG, July 2003. http:
//oss.sgi.com/projects/xfs/
papers/ukuug2003.pdf

208 • The Effects of Filesystem Fragmentation

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500

S
ee

ks

Files written

Average seeks per file, 1 thread

Linux FAT
Windows FAT

ext3
ReiserFS

NTFS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

R
el

at
iv

e
sp

ee
d

Files written

Average relative speed per file, 1 thread

Linux FAT
Windows FAT

ext3
ReiserFS

NTFS

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500

S
ee

ks

Files written

Average seeks per file, 2 threads

Linux FAT
LIMEFS

ext3
ReiserFS

NTFS
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

R
el

at
iv

e
sp

ee
d

Files written

Average relative speed per file, 2 threads

Linux FAT
LIMEFS

ext3
ReiserFS

NTFS

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500

S
ee

ks

Files written

Average seeks per file, 4 threads

Windows FAT
LIMEFS

ext3
NTFS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

R
el

at
iv

e
sp

ee
d

Files written

Average relative speed per file, 4 threads

Windows FAT
LIMEFS

ext3
NTFS

Figure 4: Results of pvrsim run on various filesystems. From top to bottom the number of
concurrent threads was respectively one, two and four. The plots on the left side are the average
amount of fragments over time, corrected to exclude small fragments as described in section 3.2.
On the right side the relative speed (see section 4.3) is shown.

The LTTng tracer: A low impact performance and
behavior monitor for GNU/Linux

Mathieu Desnoyers
École Polytechnique de Montréal
mathieu.desnoyers@polymtl.ca

Michel R. Dagenais
École Polytechnique de Montréal
michel.dagenais@polymtl.ca

Abstract

Efficient tracing of system-wide execution,
allowing integrated analysis of both kernel
space and user space, is something difficult to
achieve. The following article will present you
a new tracer core, Linux Trace Toolkit Next
Generation (LTTng), that has taken over the
previous version known as LTT. It has the same
goals of low system disturbance and architec-
ture independance while being fully reentrant,
scalable, precise, extensible, modular and easy
to use. For instance, LTTng allows tracepoints
in NMI code, multiple simultaneous traces and
a flight recorder mode. LTTng reuses and en-
hances the existing LTT instrumentation and
RelayFS.

This paper will focus on the approaches taken
by LTTng to fulfill these goals. It will present
the modular architecture of the project. It
will then explain how NMI reentrancy requires
atomic operations for writing and RCU lists for
tracing behavior control. It will show how these
techniques are inherently scalable to multipro-
cessor systems. Then, time precision limita-
tions in the kernel will be discussed, followed
by an explanation of LTTng’s own monotonic
timestamps motives.

In addition, the template based code generator
for architecture agnostic trace format will be

presented. The approach taken to allow nested
types, variable fields and dynamic alignment of
data in the trace buffers will be revealed. It will
show the mechanisms deployed to facilitate use
and extension of this tool by adding custom in-
strumentation and analysis involving kernel, li-
braries and user space programs.

It will also introduce LTTng’s trace analyzer
and graphical viewer counterpart: Linux Trace
Toolkit Viewer (LTTV). The latter implements
extensible analysis of the trace information
through collaborating text and graphical plu-
gins.1 It can simultaneously display multi-
ple multi-GBytes traces of multi-processor sys-
tems.

1 Tracing goals

With the increasing complexity of newer com-
puter systems, the overall performance of appli-
cations often depends on a combination of sev-
eral factors including I/O subsystems, device
drivers, interrupts, lock contention among mul-
tiple CPUs, scheduling and memory manage-
ment. A low impact, high performance, trac-
ing system may therefore be the only tool ca-
pable of collecting the information produced
by instrumenting the whole system, while not

1Project website: http://ltt.polymtl.ca.

210 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

changing significantly the studied system be-
havior and performance.

Besides offering a flexible and easy to use in-
terface to users, an efficient tracer must satisfy
the requirements of the most demanding appli-
cation. For instance, the widely used printk
and printf statements are relatively easy to
use and are correct for simple applications, but
do not offer the needed performance for instru-
menting interrupts in high performance multi-
processor computer systems and cannot neces-
sarily be used in some code paths such as non
maskable interrupts (NMI) handlers.

An important aspect of tracing, particularly in
the real-time and high performance comput-
ing fields, is the precision of events times-
tamps. Real-time is often used in embedded
systems which are based on a number of dif-
ferent architectures (e.g. ARM, MIPS, PPC)
optimized for various applications. The chal-
lenge is therefore to obtain a tracer with precise
timestamps, across multiple architectures, run-
ning from several MHz to several GHz, some
being multi-processors.

The number of ad hoc tracing systems devised
for specific needs (several Linux device drivers
contain a small tracer), and the experience with
earlier versions of LTT, show the needs for a
flexible and extensible system. This is the case
both in terms of adding easily new instrumen-
tation points and in terms of adding plugins for
the analysis and display of the resulting trace
data.

2 Existing solutions

Several different approaches have been taken
by performance monitoring tools. They usually
adhere to one of the following two paradigms.
The first class of monitor, post-processing,

aims to minimize CPU usage during the exe-
cution of the monitored system by collecting
data for later off-line analysis. As the goal is to
have minimum impact on performance, static
instrumentation is habitually used in this ap-
proach. Static instrumentation consists in mod-
ifying the program source code to add logging
statements that will compile with the program.
Such systems include LTT [7], a Linux ker-
nel Tracer, K42 [5], a research operating sys-
tem from IBM, IrixView and Tornado which
are commercial proprietary products.

The second class of monitor aims at calculating
well defined information (e.g. I/O requests per
seconds, system calls per second per PID) on
the monitored CPU itself: it is what is generally
called a pre-processing approach. It is the case
of SystemTAP [3], Kerninst [4], Sun’s dtrace
[1] and IBM’s Performance and Environment
Monitoring (PEM) [6]. All except PEM use a
dynamic instrumentation approach. Dynamic
instrumentation is performed by changing as-
sembly instructions for breakpoints in the pro-
gram binary objects loaded in memory, like the
gdb debugger does. It is suitable to their goal
because it generally has a negligible footprint
compared to the pre-processing they do.

Since our goal is to support high performance
and real-time embedded systems, the dynamic
probe approach is too intrusive, as it implies
using a costly breakpoint interrupt. Further-
more, even if the pre-processing of information
can sometimes be faster than logging raw data,
it does not allow the same flexibility as post-
processing analysis. Indeed, almost every as-
pect of a system can be studied once is obtained
a trace of the complete flow of the system be-
havior. However, pre-processed data can be
logged into a tracer, as does PEM with K42, for
later combined analysis, and the two are there-
fore not incompatible.

2006 Linux Symposium, Volume One • 211

3 Previous Works

LTTng reuses research that has been previously
done in the operating system tracing field in or-
der to build new features and address currently
unsolved questions more thoroughly.

The previous Linux Trace Toolkit (LTT) [7]
project offers an operating system instrumen-
tation that has been quite stable through the 2.6
Linux kernels. It also has the advantage of be-
ing cross-platform, but with types limited to
fixed sizes (e.g. fixed 8, 16, 32, or 64-byte inte-
gers compared to host size byte, short, integer,
and long). It also suffers from the monolithic
implementation of both the LTT tracer and its
viewer which have proven to be difficult to ex-
tend. Another limitation is the use of the ker-
nel NTP corrected time for timestamps, which
is not monotonic. LTTng is based on LTT but
is a new generation, layered, easily extensible
with new event types and viewer plugins, with
a more precise time base and that will eventu-
ally support the combined analysis of several
computers in a cluster [2].

RelayFS [8] has been developed as a standard
high-speed data relay between the kernel and
user space. It has been integrated in the 2.6.14
Linux kernels. It offers hooks for kernel clients
to send information in large buffers and inter-
acts with a user space daemon through file op-
erations on a memory mapped file.

IBM, in the past years, has developed K42 [5],
an open source research kernel which aims at
full scalability. It has been designed from the
ground up with tracing being a necessity, not an
option. It offers a very elegant lockless tracing
mechanism based on the atomic compare-and-
exchange operation.

The Performance and Environment Monitor-
ing (PEM) [6] project shares a few similarities
with LTTng and LTTV since some work have

been done in collaboration with members of
their team. The XML file format for describ-
ing events came from these discussions, aiming
at standardizing event description and trace for-
mats.

4 The LTTng approach

The following subsections describe the five
main components of the LTTng architecture.
The first one explains the control of the differ-
ent entities in LTTng. It is followed by a de-
scription of the data flow in the different mod-
ules of the application. The automated static
instrumentation will thereafter be introduced.
Event type registration, the mecanism that links
the extensible instrumentation to the dynamic
collection of traces, will then be presented.

4.1 Control

There are three main parts in LTTng: a user
space command-line application, lttctl; a user
space daemon, lttd, that waits for trace data and
writes it to disk; and a kernel part that controls
kernel tracing. Figure 1 shows the control paths
in LTTng. lttctl is the command line application
used to control tracing. It starts a lttd and con-
trols kernel tracing behavior through a library-
module bridge which uses a netlink socket.

The core module of LTTng is ltt-core. This
module is responsible for a number of LTT
control events. It controls helper modules
ltt-heartbeat, ltt-facilities, and ltt-statedump.
Module ltt-heartbeat generates periodic events
in order to detect and account for cycle coun-
ters overflows, thus allowing a single monoton-
ically increasing time base even if shorter 32-
bit (instead of 64-bit) cycle counts are stored
in each event. Ltt-facilities lists the facilities

212 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

User space

lttd liblttctllttctl

Netlink socket

RelayFS

ltt-control

ltt-coreltt-statedump

ltt-heartbeat

ltt-base

Kernel

modules

Kernel

built-in

Kernel-User

Communication

ltt-facilities

Figure 1: LTTng control architecture

(collection of event types) currently loaded at
trace start time. Module ltt-statedump gener-
ates events to describe the kernel state at trace
start time (processes, files. . .). A builtin ker-
nel object, ltt-base, contains the symbols and
data structures required by builtin instrumenta-
tion. This includes principally the tracing con-
trol structures.

4.2 Data flow

Figure 2 shows the data flow in LTTng. All data
is written through ltt-base into RelayFS circu-
lar buffers. When subbuffers are full, they are
delivered to the lttd disk writer daemon.

Lttd is a standalone multithreaded daemon
which waits on RelayFS channels (files) for

trace files

User space

lttd

RelayFS

libltt-usertrace-fast

ltt-baseKernel

Built-in

Kernel-User

Communication

Figure 2: LTTng data flow

data by using the poll file operation. When it
is awakened, it locks the channels for reading
by using a relay buffer get ioctl. At that point,
it has exclusive access to the subbuffer it has re-
served and can safely write it to disk. It should
then issue a relay buffer put ioctl to release it so
it can be reused.

A side-path, libltt-usertrace-fast, running com-
pletely in user space, has been developed for
high throughput user space applications which
need high performance tracing. It is explained
in details in Section 4.5.4.

Both lttd and the libltt-usertrace-fast compan-
ion process currently support disk output, but
should eventually be extended to other media
like network communication.

4.3 Instrumentation

LTTng instrumentation, as presented in Fig-
ure 3, consists in an XML event description that

2006 Linux Symposium, Volume One • 213

XML event
description

trace files

User space
instrumentation

lttctl

Kernel
Instrumentation

genevent

copy

Figure 3: LTTng instrumentation

is used both for automatically generating trac-
ing headers and as data metainformation in the
trace files. These tracing headers implement the
functions that must be called at instrumentation
sites to log information in traces.

Most common types are supported in the XML
description: fixed size integers, host size inte-
gers (int, long, pointer, size_t), floating point
numbers, enumerations, and strings. All of
these can be either host or network byte or-
dered. It also supports nested arrays, se-
quences, structures, and unions.

The tracing functions, generated in the tracing
headers, serialize the C types given as argu-

User space
ltt-usertrace

ltt-statedump

ltt-heartbeat

ltt-facilities

ltt-syscall

Kernel
Instrumentation

Kernel

Built-in

Kernel or

Modules

Kernel-User

Communication

User space
Instrumentation

Figure 4: LTTng event type registration

ments into the LTT trace format. This format
supports both packed or aligned data types.

A record generated by a probe hit is called an
event. Event types are grouped in facilities.
A facility is a dynamically loadable object, ei-
ther a kernel module for kernel instrumentation
or a user space library for user space instru-
mentation. An object that calls instrumentation
should be linked with its associated facility ob-
ject.

214 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

4.4 Event type registration

Event type registration is centralized in the ltt-
facilities kernel object, as shown in Figure 4. It
controls the rights to register specific type of in-
formation in traces. For instance, it does not al-
low a user space process using the ltt-usertrace
API to register facilities with names conflicting
with kernel facilities.

The ltt-heartbeat built-in object and the ltt-
statedump also have their own instrumentation
to log events. Therefore, they also register
to ltt-facilities, just like standard kernel instru-
mentation.

Registered facility names, checksums and type
sizes are locally stored in ltt-facilities so they
can be dumped in a special low traffic chan-
nel at trace start. Dynamic registration of new
facilities, while tracing is active, is also sup-
ported.

Facilities contain information concerning the
type sizes in the compilation environment of
the associated instrumentation. For instance, a
facility for a 32-bit process would differ from
the same facility compiled with a 64-bit pro-
cess from its long and pointer sizes.

4.5 Tracing

There are many similarities between Figure 4
and Figure 5. Indeed, each traced information
must have its metainformation registered into
ltt-facilities. The difference is that Figure 4
shows how the metainformation is registered
while Figure 5 show the actual tracing. The
tracing path has the biggest impact on system
behavior because it is called for every event.

Each event recorded uses ltt-base, container
of the active traces, to get the pointers to

User space

ltt-usertrace (system call)

ltt-statedump

ltt-heartbeat

ltt-base

ltt-syscall

Kernel
Instrumentation

Kernel

Built-in

Kernel or

Modules

Kernel-User

Communication

ltt-facilities

User space
instrumentation

Figure 5: LTTng tracing

RelayFS buffers. One exception is the libltt-
usertrace-fast which will be explained at Sub-
section 4.5.4.

The algorithms used in these tracing sites
which make them reentrant, scalable, and pre-
cise will now be explained.

4.5.1 Reentrancy

This section presents the lockless reentrancy
mechanism used at LTTng instrumentation
sites. Its primary goal is to provide correct
tracing throughout the kernel, including non-

2006 Linux Symposium, Volume One • 215

Trace control
information

from "ltt-base"

Data structure passed
 as parameter

from the call site

instrumentation
 site

RelayFS buffers

Figure 6: LTTng instrumentation site

maskable interrupts (NMI) handlers which can-
not be disabled like normal interrupts. The sec-
ond goal is to have the minimum impact on per-
formance by both having a fast code and not
disrupting normal system behavior by taking
intrusive locks or disabling interrupts.

To describe the reentrancy mechanism used by
the LTTng instrumentation site (see Figure 6),
we define the call site, which is the original
code from the instrumented program where the
tracing function is called. We also define the
instrumentation site, which is the tracing func-
tion itself.

The instrumentation site found in the kernel and
user space instrumentation has very well de-
fined inputs and outputs. Its main input is the
call site parameters. The call site must insure
that the data given as parameter to the instru-
mentation site is properly protected with its as-
sociated locks. Very often, such data is already
locked by the call site, so there is often no need
to add supplementary locking.

The other input that the instrumentation site
takes is the global trace control information. It
is contained in a RCU list of active traces in the

ltt-base object. Note that the instrumentation
site uses the trace control information both as
an input and output: this is both how tracing
behavior is controlled and where variables that
control writing to RelayFS buffers are stored.

The main output of the instrumentation site is
a serialized memory write of both an event
header and the instrumentation site parameters
to the per-CPU RelayFS buffers. The location
in these buffers is protected from concurrent ac-
cess by using a lockless memory write scheme
inspired from the one found in K42 [5]:

First, the amount of memory space necessary
for the memory write is computed. When the
data size is known statically, this step is quite
fast. If, however, variable length data (string or
sequence) must be recorded, a first size calcu-
lation pass is performed. Alignment of the data
is taken care of in this step. To speed up data
alignment, the start address of the variable size
data is always aligned on the architecture size:
it makes it possible to do a compile time aligne-
ment computation for all fixed size types.

Then, a memory region in the buffers is
reserved atomically with a compare-and-
exchange loop. The algorithm retries the reser-
vation if a concurrent reserve occurs. The
timestamp for the event is taken inside the
compare-and-exchange loop so that it is monot-
ically incrementing with buffer offsets. This
is done to simplify data parsing in the post-
processing tool.

A reservation can fail on the following condi-
tions. In normal tracing mode, a buffer full
condition causes the reservation to fail. On
the other hand, in flight recorder mode, we
overwrite non-read buffers, so it will never
fail. When the reservation fails, the event lost
counter is incremented and the instrumentation
site will return without doing a commit.

The next step is to copy data from the instru-

216 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

mentation site arguments to the RelayFS re-
served memory region. This step must preserve
the same data alignment that has been calcu-
lated earlier.

Finally, a commit operation is done to release
the reserved memory segment. No information
is kept on a per memory region basis. We only
keep a count of the number of reserved and
committed bytes per subbuffer. A subbuffer
is considered to be in a consistent state (non-
corrupted and readable) when both counts are
equal.

Is is possible that a process die between the
slot reservation and commit because of a ker-
nel OOPS. In that case, the lttd daemon will
be incapable of reading the subbuffer affected
by this condition because of unequal reserve
and commit counts. This situation is resolved
when the reservation algorithm wraps to the
faulty subbuffer: if the reservation falls in a
new buffer that has unequal reserve and commit
counts, the reader (lttd) is pushed to the next
subbuffer, the subbuffers lost counter is incre-
mented, and the subbuffer is overwritten. To
insure that this condition will not be reached by
normal out of order commit of events (caused
by nested execution contexts), the buffer must
be big enough to contain data recorded by the
maximum number of out of order events, which
is limited by the longest sequence of events
logged from nestable contexts (softirq, inter-
rupts, and NMIs).

The subbuffer delivery is triggered by a flag
from the call site on subbuffer switch. It is peri-
odically checked by a timer routine to take the
appopriate actions. This ensures atomicity and
a correct lockless behavior when called from
NMI handlers.

Compared to printk, which calls the sched-
uler, disables interrupts, and takes spinlocks,
LTTng offers a more robust reentrancy that

makes it callable from the scheduler code and
from NMI handlers.

4.5.2 Scalability

Scalability of the tracing code for SMP ma-
chines is insured by use of per-CPU data and
by the lockless tracing mechanism. The in-
puts of the instrumentation site are scalable: the
data given as parameter is usually either on the
caller’s stack or already properly locked. The
global trace information is organized in a RCU
list which does not require any lock from the
reader side.

Per-CPU buffers eliminate the false sharing
of cachelines between multiple CPUs on the
memory write side. The fact that input-output
trace control structures are per-CPU also elim-
inates false sharing.

To identify more precisely the performance
cost of this algorithm, let’s compare two ap-
proaches: taking a per-CPU spinlock or us-
ing an atomic compare-and-exchange opera-
tion. The most frequent path implies either
taking and releasing a spinlock along with
disabling interrupts or doing a compare-and-
exchange, an atomic increment of the reserve
count, and an atomic increment of the commit
count.

On a 3GHz Pentium 4, a compare-and-
exchange without LOCK prefix costs 29 cycles.
With a LOCK prefix, it raises to 112 cycles. An
atomic increment costs respectively 7 and 93
cycles without and with a LOCK prefix. Using
a spinlock with interrupts disabled costs 214
cycles.

As LTTng uses per-CPU buffers, it does not
need to take a lock on memory to protect from
other CPU concurrent access when perform-
ing these operations. Only the non-locked ver-

2006 Linux Symposium, Volume One • 217

sions of compare-and-exchange and atomic in-
crement are then necessary. If we consider
only the time spent in atomic operations, using
compare-and-exchange and atomic increments
takes 43 cycles compared to 214 cycles for a
spinlock.

Therefore, using atomic operations is five times
faster than an equivalent spinlock on this archi-
tecture while having the additionnal benefit of
being reentrant for NMI code and not disturb-
ing the system behavior, as it does not disable
interrupts for the duration of the tracing code.

4.5.3 Time (im)precision in the Linux ker-
nel

Time precision in the Linux kernel is a research
subject on its own. However, looking at the
Linux kernel x86 timekeeping code is very en-
lightening on the nanosecond timestamps accu-
racy provided by the kernel. Effectively, it is
based on a CPU cycle to nanosecond scaling
factor computed at boot time based on the timer
interrupt. The code that generates and uses this
scaling factor takes for granted that the value
should only be precise enough to keep track
of scheduling periods. Therefore, the focus is
to provide a fast computation of the time with
shifting techniques more than providing a very
accurate timestamp. Furthermore, doing inte-
ger arithmetic necessarily implies a loss of pre-
cision.

It causes problems when a tool like LTTng
strongly depends on the monotonicity and pre-
cision of the time value associated with times-
tamps.

To overcome the inherent kernel time preci-
sion limitations, LTTng directly reads the CPU
timestamp counters. It uses the cpu_khz ker-
nel variable which contains the most precise
calibrated CPU frequency available. This value

will be used by the post-processing tool, LTTV,
to convert cycles to nanoseconds in a precise
manner with double precision numbers.

Due to the importance of the CPU times-
tamp counters in LTTng instrumentation, a
workaround has been developed to support ar-
chitectures that only have a 32-bit timestamp
counter available. It uses the ltt-heartbeat mod-
ule periodic timer to keep a full 64-bit times-
tamp counter on architectures where it is miss-
ing by detecting the 32-bit overflows in an
atomic fashion; both the previous and the cur-
rent TSC values are kept, swapped by a pointer
change upon overflow. The read-side must ad-
ditionnaly check for overflows.

It is important to restate that the time base
used by LTTng is based neither on the ker-
nel do_gettimeofday, which is NTP cor-
rected and thus non monotonic nor on the ker-
nel monotonic time, which suffers from integer
arithmetic imprecision. LTTng uses the CPU
timestamp counter and its most accurate cali-
bration.

4.5.4 User space tracing

User space tracing has been achieved in many
ways in the past. The original LTT [7] did use
write operations in a device to send events to
the kernel. It did not, however, give the same
performances as in kernel events, as it needs a
round-trip to the kernel and many copies of the
information.

K42 [5] solves this by sharing per-CPU mem-
ory buffers between the kernel and user space
processes. Although this is very performant, it
does not insure secure tracing, as a given pro-
cess can corrupt the traces that belong to other
processes or to the kernel. Moreover, sharing
memory regions between the kernel and user

218 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

space might be acceptable for a research ker-
nel, but for a production kernel, it implies a
weaker traceability of process-kernel commu-
nications and might bring limitations on archi-
tectures with mixed 32- and 64-bit processes.

LTTng provides user space tracing through two
different schemes to suit two distincts cate-
gories of instrumentation needs.

The first category is characterized by a very
low event throughput. It can be the case of an
event than happens rarely to show a specific er-
ror condition or periodically at an interval typ-
ically greater or equal to the scheduler period.
The “slow tracing path” is targeted at this cate-
gory.

The second category, which is addressed by the
“fast tracing path,” is much more demanding. It
is particularly I/O intensive and must be close
to the performance of a direct memory write.
This is the case when instrumenting manually
the critical path in a program or automatically
every function entry/exit by gcc.

Both mecanisms share the same facility regis-
tration interface with the kernel, which passes
through a system call, as shown in Figure 4.
Validation is done by limiting these user space
facilities to their own namespace so they cannot
imitate kernel events.

The slow path uses a costly system call at each
event call site. Its advantage is that it does
not require linking the instrumented program
against any library and does not have any thread
startup performance impact like the fast path
explained below. Every event logged through
the system call is copied in the kernel tracing
buffers. Before doing so, the system call ver-
ifies that the facility ID corresponds to a valid
user space facility.

The fast path, libltt-usertrace-fast (at Figure 2)
library consists in a per thread companion pro-
cess which writes the buffers directly to disk.

Communication between the thread and the li-
brary is done through the use of circular buffers
in an anonymous shared memory map. Writing
the buffers to disk is done by a separate com-
panion process to insure that buffered data is
never lost when the traced program terminates.
The other goal is to account the time spent writ-
ing to disk to a different process than the one
being traced. The file is written in the filesys-
tem, arbitrarily in /tmp/ltt-usertrace,
in files following this naming convention:
process-tid-pid-timestamp, which
makes it unique for the trace. When tracing
is over, the /tmp/ltt-usertrace must be
manually moved into the kernel trace. The trace
and usertrace do not have to coincide: although
it is better to have the usertrace time span in-
cluded in the kernel trace interval to benefit
from the scheduler information for the running
processes, it is not mandatory and partial infor-
mation will remain available.

Both the slow and the fast path reuse the lock-
less tracing algorithm found in the LTTng ker-
nel tracer. In the fast path, it ensures reentrancy
with signal handlers without the cost of dis-
abling signals at each instrumentation site.

5 Graphical viewer: LTTV

LTTng is independent of the viewer, the trace
format is well documented and a trace-reading
library is provided. Nonetheless, the associ-
ated viewer, LTTV, will be briefly introduced.
It implements optimised algorithms for random
access of several multi-GB traces, describing
the behavior of one or several uniprocessor or
multi-processor systems. Many plugin views
can be loaded dynamically into LTTV for the
display and analysis of the data. Developers
can thus easily extend the tool by creating their
own instrumentation with the flexible XML de-
scription and connect their own plugin to that

2006 Linux Symposium, Volume One • 219

information. It is layered in a modular archi-
tecture.

On top of the LGPL low-level trace files read-
ing library, LTTV recreates its own representa-
tion of the evolving kernel state through time
and keeps statistical information into a generic
hierarchical container. By combining the ker-
nel state, the statistics, and the trace events, the
viewers and analysis plugins can extend the in-
formation shown to the user. Plugins are kept
focused (analysis, text, or graphical display,
control. . .) to increase modularity and reuse.
The plugin loader supports dependency control.

LTTV also offers a rich and performant event
filter, which allows specifying, with a logical
expression, the events a user is interested to see.
It can be reused by the plugins to limit their
scope to a subset of the information.

For performance reasons, LTTV is written in C.
It uses the GTK graphical library and glib. It is
distributed under the GPLv2 license.

6 Results

This section presents the results of several mea-
surements. We first present the time overhead
on the system running microbenchmarks of the
instrumentation site. Then, taking these results
as a starting point, the interrupt and scheduler
impact will be discussed. Macrobenchmarks of
the system under different loads will then be
shown, detailing the time used for tracing.

The size of the instrumentation object code will
be discussed along with possible size optimisa-
tions. Finally, time precision calibration is per-
formed with a NMI timer.

6.1 Test environment

The test environment consists of a 3GHz,
uniprocessor Pentium 4, with hyperthreading
disabled, running LTTng 0.5.41. The results
are presented in cycles; the exact calibration of
the CPU clock is 3,000.607 MHz.

6.2 Microbenchmarks

Table 1 presents probe site microbenchmarks.
Kernel probe tests are done in a kernel mod-
ule with interrupts disabled. User space tests
are influenced by interrupts and the sched-
uler. Both consist in 20,000 hits of a probe
that writes 4 bytes plus the event header (20
bytes). Each hit is surrounded by two times-
tamp counter reads.

When compiling out the LTTng tracing, cali-
bration of the tests shows that the time spent in
the two TSC reads varies between 97 and 105
cycles, with an average of 100.0 cycles. We
therefore removed this time from the raw probe
time results.

As we can see, the best case for kernel tracing
is a little slower than the ltt-usertrace-fast li-
brary: this is due to supplementary operations
that must be done in the kernel (preemption dis-
abling for instance) that are not needed in user
space. The maximum and average values of
time spent in user space probes does not mean
much because they are sensitive to scheduling
and interrupts.

The key result in Table 1 is the average 288.5
cycles (96.15ns) spent in a probe.

LTTng probe sites do not increase latency be-
cause they do not disable interrupts. However,
the interrupt entry/exit instrumentation itself
does increase interrupt response time, which

220 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

Probe site Test Series
Time spent in probe (cycles)

min average max
Kernel Tracing dynamically disabled 0 0.000 338
Kernel Tracing active (1 trace) 278 288.500 6,997
User space ltt-usertrace-fast library 225 297.021 88,913
User space Tracing through system call 1,013 1,042.200 329,062

Table 1: LTTng microbenchmarks for a 4-byte event probe hit 20,000 times

therefore increases low priority interrupts la-
tency by twice the probe time, which is 577.0
cycles (192.29ns).

The scheduler response time is also affected
by LTTng instrumentation because it must dis-
able preemption around the RCU list used for
control. Furthermore, the scheduler instrumen-
tation itself adds a task switch delay equal
to the probe time, for a total scheduler de-
lay of twice the probe time: 577.0 cycles
(192.29ns). In addition, a small implementa-
tion detail (use of preempt_enable_no_
resched()), to insure scheduler instrumen-
tation reentrancy, has a downside: it can possi-
bly make the scheduler miss a timer interrupt.
This could be solved for real-time applications
by using the no resched flavour of preemption
enabling only in the scheduler, wakeup, and
NMI nested probe sites.

6.3 Macrobenchmarks

6.3.1 Kernel tracing

Table 2 details the time spent both in the
instrumentation site and in lttd for different
loads. Time spent in instrumentation is com-
puted from the average probe time (288.5 cy-
cles) multiplied by the number of probe hits.
Time spent in lttd is the CPU time of the lttd
process as given in the LTTV analysis. The
load is computed by subtracting the time spent

in system call mode in process 0 (idle process)
from the wall time.

It is quite understandable that the probes trig-
gered by the ping flood takes that much CPU
time, as it instruments a code path that is called
very often: the system call entry. The total
cpu time used by tracing on a busy system
(medium and high load scenarios) goes from
1.54 to 2.28%.

6.3.2 User space tracing

Table 3 compares the ltt-usertrace-fast user
space tracer with gprof on a specific task: the
instrumentation of each function entry and exit
of a gcc compilation execution. You will see
that the userspace tracing of LTTng is only a
constant factor of 2 slower than a gprof instru-
mented binary, which is not bad considering the
amount of additional data generated. The fac-
tor of 2 is for the ideal case where the daemon
writes to a /dev/null output. In practice,
the I/O device can further limit the throughput.
For instance, writing the trace to a SATA disk,
LTTng is 4.13 slower than gprof.

The next test consists in running an instru-
mented version of gcc, itself compiled with op-
tion -finstrument-functions, to com-
pile a 6.9KiB C file into a 15KiB object, with
level 2 optimisation.

As Table 3 shows, gprof instrumented gcc takes
1.73 times the normal execution time. The

2006 Linux Symposium, Volume One • 221

Load size Test Series
CPU time (%) Data rate Events/s

load probes lttd (MiB/s)
Small mozilla (browsing) 1.15 0.053 0.27 0.19 5,476
Medium find 15.38 1.150 0.39 2.28 120,282
High find + gcc 63.79 1.720 0.56 3.24 179,255
Very high find + gcc + ping flood 98.60 8.500 0.96 16.17 884,545

Table 2: LTTng macrobenchmarks for different loads

gcc instrumentation Time (s) Data rate
(MiB/s)

not instrumented 0.446
gprof 0.774
LTTng (null output) 1.553 153.25
LTTng (disk output) 3.197 74.44

Table 3: gcc function entry/exit tracing

fast userspace instrumentation of LTTng is 3.22
times slower than normal. Gprof only extracts
sampling of function time by using a periodical
timer and keeps per function counters. LTTng
extracts the complete function call trace of a
program, which generates an output of 238MiB
in 1.553 seconds (153.25 MiB/s). The execu-
tion time is I/O-bound, it slows down to 3.197s
when writing the trace on a SATA disk through
the operating system buffers (74.44 MiB/s).

6.4 Instrumentation objects size

Another important aspect of instrumentation is
the size of the binary instructions added to the
programs. This wastes precious L1 cache space
and grows the overall object code size, which
is more problematic in embedded systems. Ta-
ble 4 shows the size of stripped objects that
only contain intrumentation.

Independently of the amount of data to trace,
the object code size only varies in our tests

Instrumentation object code
size (bytes)

log 4-byte integer 2,288
log variable length string 2,384
log a structure of 2,432

int, string,
sequence of

8-byte integers

Table 4: Instrumentation object size

of a maximum of 3.3% from the average size.
Adding 2.37kB per event might be too much for
embedded applications, but a tradeoff can be
done between inlining of tracing sites (and ref-
erence locality) and doing function calls, which
would permit instrumentation code reuse.

A complete L1 cache hit profiling should be
done to fully see the cache impact of the in-
strumentation and help tweak the inlining level.
Such profiling is planned.

6.5 Time precision

Time precision measurement of a timestamp
counter based clock source can only be done
relatively to another clock source. The follow-
ing test traces the NMI watchdog timer, us-
ing it as a comparison clock source. It has
the advantage of not being disturbed by CPU
load as these interruptions cannot be deacti-
vated. It is, however, limited by the precision of

222 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

 3.994

 3.995

 3.996

 3.997

 3.998

 3.999

 4

 4.001

 4.002

 4.003

 4.004

 4.005

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

in
te

rv
al

 (
m

s)

event number

Traced NMI timer events interval

Figure 7: Traced NMI timer events interval

the timer crystal. The hardware used for these
tests is an Intel D915-GAG motherboard. Its
timer is driven by a TXC HC-49S crystal with a
±30 PPM precision. Table 5 and Figure 7 show
the intervals of the logged NMI timer events.
Their precision is discussed.

This table indicates a standard deviation of
52ns and a maximum deviation of 5,075ns from
the average. If we take the maximum deviation
as a worse case, we can assume than we have a
±5.075µs error between the programmable in-
terrupt timer (PIT) and the trace time base (de-
rived from the CPU TSC). Part of it is due to the
CPU cache misses, higher priority NMIs, ker-
nel minor page faults, and the PIT itself. A 52ns
standard deviation each 4ms means a 13µs er-
ror each second, for a 13 PPM frequency preci-
sion which is within the expected limits.

Statistic value (ns)
min 3,994,844
average 3,999,339
max 4,004,468
standard deviation 52
max deviation 5,075

Table 5: Traced NMI timer events interval

7 Conclusion

As demonstrated in the previous section,
LTTng is a low disturbance tracer that uses
about 2% of CPU time on a heavy workload.
It is entirely based on atomic operations to in-
sure reentrancy. This enables it to trace a wide
range of code sites, from user space programs
and libraries to kernel code, in every execution
context, including NMI handlers.

2006 Linux Symposium, Volume One • 223

Its time measurement precision gives a
13 PPM frequency error when reading the
programmable interrupt timer (PIT) in NMI
mode, which is coherent with the 30 PPM
crystal precision.

LTTng proves to be a performant and precise
tracer. It offers an architecture independent in-
strumentation code generator, from templates,
to reduce instrumentation effort. It provides ef-
ficient and convenient mechanisms for kernel
and user space tracing.

A plugin based analysis tool, LTTV, helps to
further reduce the effort for analysis and visual-
isation of complex operating system behavior.
Some work is actually being done in time syn-
chronisation between cluster nodes, to extend
LTTV to cluster wide analysis.

You are encouraged to use this tool and create
new instrumentations, either in user space or in
the kernel. LTTng and LTTV are distributed
under the GPLv2 license.2

References

[1] Bryan M. Cantrill, Michael W. Shapiro,
and Adam H. Leventhal. Dynamic
instrumentation of production systems. In
USENIX ’04, 2004.

[2] Michel Dagenais, Richard Moore, Robert
Wisniewski, Karim Yaghmour, and
Thomas Zanussi. Efficient and accurate
tracing of events in linux clusters. In
Proceedings of the Conference on High
Performance Computing Systems (HPCS),
2003.

[3] Vara Prasad, William Cohen, Frank Ch.
Eigler, Martin Hunt, Jim Keniston, and
Brad Chen. Locating system problems

2Project website: http://ltt.polymtl.ca

using dynamic instrumentation. In OLS
(Ottawa Linux Symposium) 2005, 2005.

[4] Ariel Tamches and Barton P. Miller.
Fine-grained dynamic instrumentation of
commodity operating system kernels. In
3rd Symposium on Operating Systems
Design and Implementation, February
1999.

[5] Robert W. Wisniewski and Bryan
Rosenburg. Efficient, unified, and scalable
performance monitoring for
multiprocessor operating systems. In
Supercomputing, 2003 ACM/IEEE
Conference, 2003.

[6] Robert W. Wisniewski, Peter F. Sweeney,
Kartik Sudeep, Matthias Hauswirth,
Evelyn Duesterwald, Calin Cascaval, and
Reza Azimi. Pem performance and
environment monitoring for whole-system
characterization and optimization. In
PAC2 (Conference on Power/Performance
interaction with Architecture, Circuits, and
Compilers), 2004.

[7] Karim Yaghmour and Michel R. Dagenais.
The linux trace toolkit. Linux Journal,
May 2000.

[8] Tom Zanussi, Karim Yaghmour Robert
Wisniewski, Richard Moore, and Michel
Dagenais. relayfs: An efficient unified
approach for transmitting data from kernel
to user space. In OLS (Ottawa Linux
Symposium) 2003, pages 519–531, 2003.

224 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

Linux as a Hypervisor
An Update

Jeff Dike
Intel Corp.

jeffrey.g.dike@intel.com

Abstract

Virtual machines are a relatively new workload
for Linux. As with other new types of applica-
tions, Linux support was somewhat lacking at
first and improved over time.

This paper describes the evolution of hypervi-
sor support within the Linux kernel, the spe-
cific capabilities which make a difference to
virtual machines, and how they have improved
over time. Some of these capabilities, such
as ptrace are very specific to virtualization.
Others, such as AIO and O_DIRECT support
help applications other than virtual machines.

We describe areas where improvements have
been made and are mature, where work is on-
going, and finally, where there are currently un-
solved problems.

1 Introduction

Through its history, the Linux kernel has had
increasing demands placed on it as it supported
new applications and new workloads. A rela-
tively new demand is to act as a hypervisor, as
virtualization has become increasingly popular.
In the past, there were many weaknesses in the

ability of Linux to be a hypervisor. Today, there
are noticeably fewer, but they still exist.

Not all virtualization technologies stress the ca-
pabilities of the kernel in new ways. There
are those, such as qemu, which are instruc-
tion emulators. These don’t stress the ker-
nel capabilities—rather they are CPU-intensive
and benefit from faster CPUs rather than more
capable kernels. Others employ a customized
hypervisor, which is often a modified Linux
kernel. This will likely be a fine hypervisor, but
that doesn’t benefit the Linux kernel because
the modifications aren’t pushed into mainline.

User-mode Linux (UML) is the only prominent
example of a virtualization technology which
uses the capabilities of a stock Linux kernel.
As such, UML has been the main impetus for
improving the ability of Linux to be a hyper-
visor. A number of new capabilities have re-
sulted in part from this, some of which have
been merged and some of which haven’t. Many
of these capabilities have utility beyond virtual-
ization, as they have also been pushed by peo-
ple who are interested in applications that are
unrelated to virtualization.

ptrace is the mechanism for virtualizing sys-
tem calls, and is the core of UML’s virtualiza-
tion of the kernel. As such, some changes to
ptrace have improved (and in one case, en-
abled) the ability to virtualize Linux.

226 • Linux as a Hypervisor

Changes to the I/O system have also improved
the ability of Linux to support guests. These
were driven by applications other than virtual-
ization, demonstrating that what’s good for vir-
tualization is often good for other workloads as
well.

From a virtualization point of view, AIO and
O_DIRECT allow a guest to do I/O as the
host kernel does—straight to the disk, with no
caching between its own cache and the device.
In contrast, MADV_REMOVE allows a guest to
do something which is very difficult for a phys-
ical machine, which is to implement hotplug
memory, by releasing pages from the middle of
a mapped file that’s backing the guest’s physi-
cal memory.

FUSE (Filesystems in Userspace), another re-
cent addition, is also interesting, this time from
a manageability standpoint. This allows a guest
to export its filesystem to the host, where a host
administrator can perform some guest manage-
ment tasks without needing to log in to the
guest.

There is a new effort to add a virtualization
infrastructure to the kernel. A number of
projects are contributing to this effort, includ-
ing OpenVZ, vserver, UML, and others who are
more interested in resource control than virtu-
alization. This holds the promise of allowing
guests to achieve near-native performance by
allowing guest process system calls to execute
on the host rather than be intercepted and virtu-
alized by ptrace.

Finally, there are a few problem areas which
are important to virtualization for which there
are no immediate solutions. It would be conve-
nient to be able to create and manage address
spaces separately from processes. This is part
of the UML SKAS host patch, but the mecha-
nism implemented there won’t be merged into
mainline. The current virtualization infrastruc-
ture effort notwithstanding, system call inter-

ception will be needed for some time to come.
So, system call interception will still be an area
of concern. Ingo Molnar implemented a mech-
anism called VCPU which effectively allows a
process to intercept its own system calls. This
hasn’t been looked at in any detail, so it’s too
early to see if this is a better way for virtual
machines to do system call interception.

2 The past

2.1 ptrace

When UML was first introduced, Linux was in-
capable of acting as a hypervisor1. ptrace
allows one process to intercept the system calls
of another both at system call entry and exit.
The tracing process can examine and modify
the registers of the traced child. For example,
strace simply examines the process registers
in order to print the system call, its arguments,
and return value. Other tools, UML included,
modify the registers in order to change the sys-
tem call arguments or return value. Initially,
on i386, it was impossible to change the actual
system call, as the system call number had al-
ready been saved before the tracing parent was
notified of the system call. UML needed this in
order to nullify system calls so that they would
execute in such way as to cause no effects on
the host. This was done by changing the sys-
tem call to getpid. A patch to fix this was
developed soon after UML’s first release, and it
was fairly quickly accepted by Linus.

While this was a problem on i386, architectures
differ on their handling of attempts to change
system call numbers. The other architectures
to which UML has been ported (x86_64, s390,
and ppc) all handled this correctly, and needed

1on i386, which was the only platform UML ran on
at the time

2006 Linux Symposium, Volume One • 227

no changes to their system call interception in
order to run UML.

Once ptrace was capable of supporting
UML, attention turned to its performance, as
virtualized system calls are many times slower
than non-virtualized ones. An intercepted sys-
tem call involves the system call itself, plus four
context switches—to the parent and back on
both system call entry and exit. UML, and any
other tool which nullifies and emulates system
calls, has no need to intercept the system call
exit. So, another ptrace patch, from Lau-
rent Vivier, added PTRACE_SYSEMU, which
causes only system call entry to notify the par-
ent. There is no notification on system call
exit. This reduces the context switching due to
system call interception by 50%, with a corre-
sponding performance improvement for bench-
marks that execute a system call in a tight
loop. There is also a noticeable performance
increase for workloads that are not system call-
intensive. For example, I have measured a ~3%
improvement on a kernel build.

2.2 AIO and O_DIRECT

While these ptrace enhancements were
driven solely by the needs of UML, most of the
other enhancements to the kernel which make
it more capable as a hypervisor were driven by
other applications. This is the case of the I/O
enhancements, AIO and O_DIRECT, which
had been desired by database vendors for quite
a while.

AIO (Asynchronous IO) is the ability to issue
an I/O request without having to wait for it to
finish. The familiar read and write inter-
faces are synchronous—the caller can use them
to make one I/O request and has to wait until
it finishes before it can make another request.
The wait can be long if the I/O requires disk ac-
cess, which hurts the performance of processes

which could have issued more requests or done
other work in the meantime

A virtual OS is one such process. The ker-
nel typically issues many disk I/O requests at
a time, for example, in order to perform reada-
head or to swap out unused memory. When
these requests are performed sequentially, as
with read and write, there is a large perfor-
mance loss compared to issuing them simulta-
neously. For a long time, UML handled this
problem by using a separate dedicated thread
for I/O. This allowed UML to do other work
while an I/O request was pending, but it didn’t
allow multiple outstanding I/O requests.

The AIO capabilities which were introduced in
the 2.6 kernel series do allow this. On a 2.6
host, UML will issue many requests at once,
making it act more like a native kernel.

A related capability is O_DIRECT I/O. This al-
lows uncached I/O—the data isn’t cached in the
kernel’s page cache. Unlike a cached write,
which is considered finished when the data is
stored in the page cache, an O_DIRECT write
isn’t completed until the data is on disk. Sim-
ilarly, an O_DIRECT read brings the data in
from disk, even if it is available in the page
cache. The value of this is that it allows pro-
cesses to control their own caching without the
kernel performing duplicate caching on its own.
For a virtual machine, which comes with its
own caching system, this allows it to behave
like a native kernel and avoid the memory con-
sumption caused by buffered I/O.

2.3 MADV_REMOVE

Unlike AIO and O_DIRECT, which allow a
virtual kernel to act like a native kernel, MADV_
REMOVE allows it implement hotplug memory,
which is very much more difficult for a physical

228 • Linux as a Hypervisor

machine. UML implements its physical mem-
ory by creating a file on the host of the appro-
priate size and mapping pages from it into its
own address space and those of its processes. I
have long wanted a way to be able to free dirty
pages from this file to the host as though they
were clean. This would allow a simple way
to manage the host’s memory by moving it be-
tween virtual machines.

Removing memory from a virtual machine is
done by allocating pages within it and freeing
those pages to the host. Conversely, adding
memory is done by freeing previously allocated
pages back to the virtual machine’s VM sys-
tem. However, if dirty pages can’t be freed on
the host, there is no benefit.

I implemented one mechanism for doing this
some time ago. It was a new driver, /dev/
anon, which was based on tmpfs. UML phys-
ical memory is formed by mapping this device,
which has the semantics that when a page is no
longer mapped, it is freed. With /dev/anon,
in order to pull memory from a UML instance,
it is allocated from the guest VM system and
the corresponding /dev/anon pages are un-
mapped. Those pages are freed on the host, and
another instance can have a similar amount of
memory plugged in.

This driver was never seriously considered for
submission to mainline because it was a fairly
dirty kludge to the tmpfs driver and because it
was never fully debugged. However, the need
for something equivalent remained.

Late in 2005, Badari Pulavarty from IBM pro-
posed an madvise extension to do something
equivalent. His motivation was that some IBM
database wanted better control over its mem-
ory consumption and needed to be able to poke
holes in a tmpfs file that it mapped. This is ex-
actly what UML needed, and Hugh Dickens,
who was aware of my desire for this, pointed

Badari in my direction. I implemented a mem-
ory hotplug driver for UML, and he used it in
order to test and debug his implementation.

MADV_REMOVE is now in mainline, and at this
writing, the UML memory hotplug driver is in
-mm and will be included in 2.6.17.

3 Present

3.1 FUSE

FUSE2 is an interesting new addition to the
kernel. It allows a filesystem to be imple-
mented by a userspace driver and mounted like
any in-kernel filesystem. It implements a de-
vice, /dev/fuse, which the userspace driver
opens and uses to communicate with the kernel
side of FUSE. It also implements a filesystem,
with methods that communicate with the driver.
FUSE has been used to implement things like
sshfs, which allows filesystem access to a re-
mote system over ssh, and ftpfs, which allows
an ftp server to be mounted and accessed as a
filesystem.

UML uses FUSE to export its filesystem to the
host. It does so by translating FUSE requests
from the host into calls into its own VFS. There
were some mismatches between the interface
provided by FUSE and the interface expected
by the UML kernel. The most serious was
the inability of the /dev/fuse device to sup-
port asynchronous operation—it didn’t support
O_ASYNC or O_NONBLOCK. The UML ker-
nel, like any OS kernel, is event-driven, and
works most naturally when requests and other
things that require attention generate interrupts.
It must also be possible to tell when a particu-
lar interrupt source is empty. For a file, this
means that when it is read, it returns -EAGAIN

2http://fuse.sourceforge.net/

2006 Linux Symposium, Volume One • 229

instead of blocking when there is no input avail-
able. /dev/fuse didn’t do either, so I im-
plemented both O_ASYNC and O_NONBLOCK
support and sent the patches to Miklos Szeredi,
the FUSE maintainer.

The benefit of exporting a UML filesystem to
the host using FUSE is that it allows a num-
ber of UML management tasks to be performed
on the host without needing to log in to the
UML instance. For example, it would allow
the host administrator to reset a forgotten root
password. In this case, root access to the UML
instance would be difficult, and would likely re-
quire shutting the instance down to single-user
mode.

By chrooting to the UML filesystem mount on
the host, the host admin can also examine the
state of the instance. Because of the chroot,
system tools such as ps and top will see the
UML /proc and /sys, and will display the
state of the UML instance. Obviously, this only
provides read access to this state. Attempting to
kill a runaway UML process from within this
chroot will only affect whatever host process
has that process ID.

3.2 Kernel virtualization infrastructure

There has been a recent movement to introduce
a fairly generic virtualization infrastructure into
the kernel. Several things seemed to have hap-
pened at about the same time in order to make
this happen. Two virtualization projects, Vir-
tuozzo and vserver, which had long maintained
their kernel changes outside the mainline ker-
nel tree, expressed an interest in getting their
work merged into mainline. There was also in-
terest in related areas, such as workload migra-
tion and resource management.

This effort is headed in the direction of intro-
ducing namespaces for all global kernel data.

The concept is the same as the current filesys-
tem namespaces—processes are in the global
namespace by default, but they can place them-
selves in a new namespace, at which point
changes that they make to the filesystem aren’t
visible to processes outside the new namespace.
The changes in question are changed mounts,
not changed files—when a process in a new
namespace changes a file, that’s visible outside
the namespace, but when it make a mount in
its namespace, that’s not visible outside. For
filesystems, the situation is more complicated
than that because there are rules for propagating
new mounts between namespaces. However,
for virtualization purposes, the simplest view
of namespaces works—that changes within the
namespace aren’t visible outside it.

When3 finished, it will be possible to create
new instantiations of all of the kernel subsys-
tems. At this point, virtualization approaches
like OpenVZ and vserver will map pretty di-
rectly onto this infrastructure.

UML will be able to put this to good use, but
in a different way. It will allow UML to have
its process system calls run directly on the host,
without needing to intercept and emulate them
itself. UML will create an virtualized instance
of a subsystem, and configure it as appropriate.
At that point, UML process system calls which
use that subsystem can run directly on the host
and will behave the same as if it had been exe-
cuted within UML.

For example, virtualizing time will be a mat-
ter of introducing a time namespace which
contains an offset from the host time. Any
process within this namespace will see a sys-
tem time that’s different from the host time
by the amount of this offset. The offset
is changed by settimeofday, which can
now be an unprivileged operation since its ef-
fects are invisible outside the time namespace.

3or if—some subsystems will be difficult to virtualize

230 • Linux as a Hypervisor

gettimeofday will take the host time and
add the namespace offset, if any.

With the time namespace working, UML
can take advantage of it by allowing
gettimeofday to run directly on the host
without being intercepted. settimeofday
will still need to be intercepted because it
will be a privileged operation within the UML
instance. In order to allow it to run on the host,
user and groups IDs will need to be virtualized
as well.

UML will be able to use the virtualized sub-
systems as they become available, and not have
to wait until the infrastructure is finished. To
do this, another ptrace extension will be
needed. It will be necessary to selectively in-
tercept system calls, so a system call mask will
be added. This mask will specify which sys-
tem calls should continue to be intercepted and
which should be allowed to execute on the host.

Since some system calls will sleep when they
are executed on the host, the UML kernel will
need to be notified. When a process sleeps in a
system call, UML will need to schedule another
process to run, just as it does when a system call
sleeps inside UML. Conversely, when the host
system call continues running, the UML will
need to be notified so that it can mark the pro-
cess as runnable within its own scheduler. So,
another ptrace extension, asking for notifica-
tion when a child voluntarily sleeps and when
it wakes up again, will be needed. As a side-
benefit, this will also provide notification to the
UML kernel when a process sleeps because it
needs a page of memory to be read in, either
because that page hadn’t been loaded yet or be-
cause it had been swapped out. This will allow
UML to schedule another process, letting it do
some work while the first process has its page
fault handled.

3.3 remap_file_pages

When page faults are virtualized, they are fixed
by calling either mmap or mprotect4 on the
host. In the case of mapping a new page, a new
vm_area_struct (VMA) will be created on
the host. Normally, a VMA describes a large
number of contiguous pages, such as the pro-
cess text or data regions, being mapped from a
file into a region of a process virtual memory.

However, when page faults are virtualized, as
with UML, each host VMA covers a single
page, and a large UML process can have thou-
sands of VMAs. This is a performance prob-
lem, which Ingo Molnar solved by allowing
pages to be rearranged within a VMA. This
is done by introducing a new system call,
remap_file_pages, which enables pages
to be mapped without creating a new VMA for
each one. Instead, a single large mapping of
the file is created, resulting in a single VMA on
the host, and remap_file_pages is used to
update the process page tables to change page
mappings underneath the VMA.

Paolo Giarrusso has taken this patch and is
making it more acceptable for merging into
mainline. This is a challenging process, as the
patch is intrusive into some sensitive areas of
the VM system. However, the results should
be worthwhile, as remap_file_pages pro-
duces noticeable performance improvements
for UML, and other mmap-intensive applica-
tions, such as some databases.

4 Future

So far, I’ve talked about virtualization enhance-
ments which either already exist or which show

4depending on whether the fault was caused by no
page being present or the page being mapped with insuf-
ficient access for the faulting operation

2006 Linux Symposium, Volume One • 231

some promise of existing in the near future.
There are a couple of areas where there are
problems with no attractive solutions or a so-
lution that needs a good deal of work in order
to be possibly mergeable.

4.1 AIO enhancements

4.1.1 Buffered AIO

Currently AIO is only possible in conjunction
with O_DIRECT. This is where the greatest
benefit from AIO is seen. However, there is de-
mand for AIO on buffered data, which is stored
in the kernel buffer cache. UML has several
filesystems which store data in the host filesys-
tem, and the ability for these filesystems to per-
form AIO would be welcome. There is a patch
to implement this, but it hasn’t been merged.

4.1.2 AIO on metadata

Virtual machines would prefer to sleep in the
host kernel only when they choose to, and for
operations which may sleep to be performed
asynchronously and deliver an event of some
sort when they complete. AIO accomplishes
this nicely for file data. However, operations
on file metadata, such as stat, can still sleep
while the metadata is read from disk. So, the
ability to perform stat asynchronously would
be a nice small addition to the AIO subsystem.

4.1.3 AIO mmap

When reading and writing buffered data, it is
possible to save memory by mapping the data
and modifying the data in memory rather than
using read and write. When mapping a file,
there is no copying of the data into the process

address space. Rather, the page of data in the
kernel’s page cache is mapped into the address
space.

Against the memory savings, there is the cost of
changing the process memory mappings, which
can be considerable—comparable to copying
a page of data. However, on systems where
memory is tight, the option of using mmap for
guest file I/O rather than read and write
would be welcome.

Currently, there is no support for doing mmap
asynchronously. It can be simulated (which
UML does) by calling mmap (which returns
after performing the map, but without reading
any data into the new page), and then doing an
AIO read into the page. When the read finishes,
the data is known to be in memory and the page
can be accessed with high confidence5 that the
access will not cause a page fault and sleep.

This works well, but real AIO mmap support
would have the advantage that the cost of the
mmap and TLB flush could be hidden. If the
AIO completes while another process is in con-
text, then the address space of the process re-
questing the I/O can be updated for free, as a
TLB flush would not be necessary.

4.2 Address spaces

UML has a real need for the ability of one pro-
cess to be able to change mappings within the
address space of another. In SKAS (Separate
Kernel Address Space) mode, where the UML
kernel is in a separate address space from its
processes, this is critical, as the UML kernel
needs to be able to fix page faults, COW pro-
cesses address spaces during fork, and empty
process address spaces during execve. In

5there is a small chance that the page could be
swapped out between the completion of the read and the
subsequent access to the data

232 • Linux as a Hypervisor

SKAS3 mode, with the host SKAS patch ap-
plied, this is done using a special device which
creates address spaces and returns file descrip-
tors that can be used to manipulate them. In
SKAS0 mode, which requires no host patches,
address space changes are performed by a bit
of kernel code which is mapped into the pro-
cess address space.

Neither of these solutions is satisfactory, nor
are any of the alternatives that I know about.

4.2.1 /proc/mm

/proc/mm is the special device used in
SKAS3 mode. When it is opened, it creates
a new empty address space and returns a file
descriptor referring to it. This address space
remains in existence for as long as the file de-
scriptor is open. On the last close, if it is not in
use by a process, the address space is freed.

Mappings within a /proc/mm address space
are changed by writing structures to the cor-
responding file descriptor. This structure is
a tagged union with an arm each for mmap,
munmap, and mprotect. In addition, there is
a ptrace extension, PTRACE_SWITCH_MM,
which causes the traced child to switch from
one address space to another.

From a practical point of view, this has been
a great success. It greatly improves UML per-
formance, is widely used, and has been stable
on i386 for a long time. However, from a con-
ceptual point of view, it is fatally flawed. The
practice of writing a structure to a file descrip-
tor in order to accomplish something is merely
an ioctl in disguise. If I had realized this at
the time, I would have made it an ioctl. How-
ever, the requirement for a new ioctl is usually
symptomatic of a design mistake. The use of
write (or ioctl) is an abuse of the inter-
face. It would have been better to implement
three new system calls.

4.2.2 New system calls

My proposal, and that of Eric Biederman, who
was also thinking about this problem, was to
add three new system calls that would be the
same as mmap, munmap, and mprotect, ex-
cept that they would take an extra argument, a
file descriptor, which would describe the ad-
dress space to be operated upon, as shown in
Figure 1

This new address space would be returned by
a fourth new system call which takes no argu-
ments and returns a file descriptor referring to
the address space:

int new_mm(void);

Linus didn’t like this idea, because he didn’t
want to introduce a bunch of new system calls
which are identical to existing ones, except for
a new argument. Instead he proposed a new
system call which would run any other system
call in the context of a different address space.

4.2.3 mm_indirect

This new system call is shown in Figure 2.

This would switch to the address space spec-
ified by the file descriptor and run the system
call described by the second and third argu-
ments.

Initially, I thought this was a fine idea, and I
implemented it, but now I have a number of ob-
jections to it.

• It is unstructured—there is no type-
checking on the system call arguments.
This is generally considered undesirable in
the system call interface as it makes it im-
possible for the compiler to detect many
errors.

2006 Linux Symposium, Volume One • 233

int fmmap(int address_space, void ∗start, size_t length,
int prot, int flags, int fd, off_t offset);

int fmunmap(int addresss_space, void ∗start, size_t length);
int fmprotect(int address_space, const void ∗addr, size_t len,

int prot);

Figure 1: Extended mmap, munmap, and mprotect

int mm_indirect(int fd, unsigned long syscall,
unsigned long ∗args);

Figure 2: mm_indirect

• It is too general—it makes sense to invoke
relatively few system calls under mm_
indirect. For UML, I care only about
mmap, mprotect, and munmap6. The
other system calls for which this might
make sense are those which take pointers
into the process address space as either ar-
guments or output values, but there is cur-
rently no demand for executing those in a
different address space.

• It has strange corner cases—the im-
plementation of mm_indirect has to
be careful with address space reference
counts. Several system calls change
this reference count and mm_indirect
would need to be aware of these. For
example, both exit and execve deref-
erence the current address space. mm_
indirect has to take a reference on the
new address space for the duration of the
system call in order to prevent it disap-
pearing. However, if the indirected sys-
tem call is exit, it will never return, and
that reference will never be dropped. This
can be fixed, but the presence of behav-
ior like this suggests that it is a bad idea.
Also, the kernel stack could be attacked by

6and modify_ldt on i386 and x86_64

nesting mm_indirect. The best way to
deal with these problems is probably just
to disallow running the problematic sys-
tem calls under mm_indirect.

• There are odd implementation problems—
for performance reasons, it is desirable
not to do an address space switch to the
new address space when it’s not neces-
sary, which it shouldn’t be when chang-
ing mappings. However, mmap can sleep,
and some systems (like SMP x86_64)
get very upset when a process sleeps
with current->mm != current->
active_mm.

For these reasons, I now think that mm_
indirect is really a bad idea.

These are all of the reasonable alternatives that
I am aware of, and there are objections to all
of them. So, with the exception of having these
ideas aired, we have really made no progress on
this front in the last few years.

4.3 VCPU

An idea which has independently come up sev-
eral times is to do virtualization by introduc-

234 • Linux as a Hypervisor

ing the idea of another context within a pro-
cess. Currently, processes run in what would
be called the privileged context. The idea is
to add an unprivileged context which is entered
using a new system call. The unprivileged con-
text can’t run system calls or receive signals. If
it tries to execute a system call or a signal is de-
livered to it, then the original privileged context
is resumed by the “enter unprivileged context”
system call returning. The privileged context
then decides how to handle the event before re-
suming the unprivileged context again.

In this scheme, the privileged context would be
the UML kernel, and the unprivileged context
would be a UML process. This idea has the
promise of greatly reducing the overhead of ad-
dress space switching and system call intercep-
tion.

In 2004, Ingo Molnar implemented this, but
didn’t tell anyone until KS 2005. I haven’t yet
taken a good look at the patch, and it may turn
out that it is unneeded given the virtualization
infrastructure that is in progress.

5 Conclusion

In the past few years, Linux has greatly im-
proved its ability to host virtual machines. The
ptrace enhancements have been specifically
aimed at virtualization. Other enhancements,
such as the I/O changes, have broader appli-
cation, and were pushed for reasons other than
virtualization.

This progress notwithstanding, there are ar-
eas where virtualization support could improve.
The kernel virtualization infrastructure project
holds the promise of greatly reducing the over-
head imposed on guests, but these are early
days and it remains to be seen how this will play
out.

If, for some reason, it goes nowhere, Ingo Mol-
nar’s VCPU patch is still a possibility.

There are still some unresolved problems, no-
tably manipulating remote address spaces. This
aside, all major problems with Linux hosting
virtual machines have at least proposed solu-
tions, if they haven’t yet been actually solved.

System Firmware Updates Utilizing Sofware
Repositories

OR: Two proprietary vendor firmware update packages walk into a dark alley,
six RPMS in a yum repository walk out. . .

Matt Domsch
Dell

Matt_Domsch@dell.com

Michael Brown
Dell

Michael_E_Brown@dell.com

Abstract

Traditionally, hardware vendors don’t make
it easy to update the firmware (motherboard
BIOSes, RAID controller firmware, systems
management firmware, etc.) that’s flashed into
their systems. Most provide DOS-based tools
to accomplish this, requiring a reboot into a
DOS environment. In addition, some vendors
release OS-specific, proprietary tools, in pro-
prietary formats, to accomplish this. Examples
include Dell Update Packages for BIOS and
firmware, HP Online System Firmware Update
Component for Linux, and IBM ServRAID
BIOS and Firmware updates for Linux. These
tools only work on select operating systems, are
large because they carry all necessary prerequi-
site components in each package, and cannot
easily be integrated into existing Linux change
management frameworks such as YUM repos-
itories, Debian repositories, Red Hat Network
service, or Novell/SuSE YaST Online Update
repositories.

We propose a new architecture that utilizes na-
tive Linux packaging formats (.rpm, .deb) and
native Linux change management frameworks
(yum, apt, etc.) for delivering and installing
system firmware. This architecture is OS dis-

tribution, hardware vendor, device, and change
management system agnostic.

The architecture is easy as PIE: splitting Pay-
load, Inventory, and Executable components
into separate packages, using package format
Requires/Provides language to handle depen-
dencies at a package installation level, and us-
ing matching Requires/Provides language to
handle runtime dependency resolution and in-
stallation ordering.

The framework then provides unifying appli-
cations such as inventory_firmware and
apply_updates that handle runtime order-
ing of inventory, execution, and conflict reso-
lution/notification for all of the plug-ins. These
are the commands a system administrator runs.
Once all of the separate payload, inventory,
and execution packages are in package man-
ager format, and are put into package manager
repositories, then standard tools can retreive,
install, and execute them:

yum install $(inventory_firmware -b)
apply_updates

We present a proof-of-concept source code im-
plementing the base of this system; web site

236 • System Firmware Updates Utilizing Sofware Repositories

and repository containing Dell desktop, note-
book, workstation, and server BIOS images;
open source tools for flashing Dell BIOSes; and
open source tools to build such a repository
yourself.

1 Overview

The purpose of this paper is to describe a
proposal and sample implementation to per-
form generic, vendor-neutral, firmware updates
using a system that integrates cleanly into
a normal Linux environment. Firmware in-
cludes things such as system BIOS; addon-card
firmware, e.g. RAID cards; system Baseboard
Management (BMC), hard drives, etc. The first
concept of the proposal is the definition of a ba-
sic update framework and a plugin API to in-
ventory and update the system. For this, we
define some basic utilities upon which to base
the update system. We also define a plug-
in architecture and API so that different ven-
dor tools can cleanly integrate into the system.
The second critical piece of the update sys-
tem is cleanly separating system inventory, ex-
ecution of updates, and payload, i.e. individ-
ual firmware images. After defining the basic
utilities to glue these functions together, we de-
fine how a package management system should
package each function. Last, we define the in-
teraction between the package manager and the
repository manager to create a defined inter-
face for searching a repository for applicable
updates. This paper will cover each of these
points. The proposal describes an implementa-
tion, called firmware-tools [1].

2 Infrastructure

This section will detail the basic compo-
nents used by the firmware update system,

and firmware-tools. The base infrastruc-
ture for this system consists of two com-
ponents: inventory and execution. These
are named inventory_firmware and
apply_updates, respectively. These are
currently command-line utilities, but it is an-
ticipated that, after the major architectural is-
sues are worked out and this has been more
widely peer-reviewed, there will be GUI wrap-
pers written.

The basic assumption is that, before you can
update firmware on a device, you need several
pieces of information.

• What is the existing firmware version?

• What are the available versions of
firmware that are on-disk?

• How do you do a version comparison?

• How do I get the correct packages installed
for the hardware I have? In other words,
solve the bootstrap issue.

It is important to note that all of these ques-
tions are independent of exactly how the files
and utilities get installed on the system. We
have deliberately split out the behavior of the
installed utilities from the specification of how
these utilities are installed. This allows us flex-
ibility in packaging the tools using the “best”
method for the system. Packaging will be dis-
cussed in a section below. The specification of
packaging and how it interacts with the repos-
itory layer is an important aspect of how the
initial set of utilities get bootstrapped onto the
system, as well as how payload upgrades are
handled over time.

2.1 Existing Firmware Version

The answer to the question, “What is the ex-
isting firmware version?” is provided by the

2006 Linux Symposium, Volume One • 237

inventory_firmware tool. The basic
inventory_firmware tool has no capabil-
ity to inventory anything; all inventory capabil-
ity is provided by plugins. Plugins consist of a
python module with a specific entry point, plus
a configuration fragment to tell inventory_
firmware about the plugin. Each plugin pro-
vides inventory capability for one device type.
The plugin API is covered in the API section
of this paper, below. It should be noted that, at
this point, the plugin API is still open for sug-
gestions and updates.

As an example, there is a dell-lsiflash
package that provides a plugin to inven-
tory firmware on LSI RAID adapters. The
dell-lsiflash plugin package drops a
configuration file fragment into the plugin
directory /etc/firmware/firmware.d/ in
order to activate the plugin. This configuration
file fragment looks like this:

[delllsi]
plugin that provides
inventory for LSI RAID cards.
inventory_plugin=delllsi

This causes the inventory_plugin to load
a python module named delllsi.py and use
the entry points defined there to perform inven-
tory on LSI RAID cards. The delllsi.py
module is free to do the inventory any way it
chooses. For example, there are vendor utili-
ties that can sometimes be re-purposed to pro-
vide quick and easy inventory. In this specific
case, we have written a small python extension
module in C which calls a specific ioctl()
in the LSI megaraid drivers to perform the in-
ventory and works across all LSI hardware sup-
ported by the megaraid driver family. Note that
while the framework is open source, the per-
device inventory applications may choose their
own licenses (of course, open source apps are
strongly preferred).

2.2 Available Firmware Images

The next critical part of infrastructure lies in
enumerating the payload files that are available
on-disk. The main firmware-tools configura-
tion file defines the top-level directory where
firmware payloads are stored. The default lo-
cation for firmware images is /usr/share/

firmware/. This can be changed such that,
for example, multiple systems network mount a
central repository of firmware images. In gen-
eral each type or class of firmware update will
create a subdirectory under the main top-level
directory, and each individual firmware pay-
load will have another subdirectory under that.

Each individual firmware payload consists of
two files: a binary data file of the firmware and
a package.ini metatdata file used by the
firmware-tools utilities. It specifies the mod-
ules to be used to apply the update and the ver-
sion of the update, among other things.

2.3 Version Comparison

Another interesting problem lies in doing ver-
sion comparison between different version
strings to try to figure out which is newer,
due to the multitude of version string formats
used by different firmware types. For exam-
ple, some firmware might have version strings
such as A01, A02, etc., while other firmware
has version strings such as 2.7.0-1234, 2.
8.1-1532, etc. Each different system may
have different precedence rules. For exam-
ple, current Dell BIOS releases have version
strings in sequence like A01, A02, etc. But
non-release, beta BIOS have version strings
like X01, X02, etc., and developer test BIOS
have version strings like P01, P02, etc. This
poses a problem because a naive string com-
parison would always rank beta “X-rev” BIOS
as higher version than production BIOS, which
is undesirable.

238 • System Firmware Updates Utilizing Sofware Repositories

The solution to this problem is to allow plugins
to define version comparison functions. These
functions take two strings as input and out-
put which one is newer. Each package.ini
configuration file contains the payload version,
plus the name of the plugin to use for version
comparison.

2.4 Initial Package Installation—
Bootstrap

The last interesting problem arises when you
consider how to decide which packages to
download from the package repository and in-
stall on the local machine. This is a critical
problem to solve in order to drive usability of
this solution. If the user has to know details
of the machine to manually decide which pack-
ages to download, then the system will not be
sucessful. Next to consider is that a centralized
solution does not fit in well with the distributed
nature of Linux, Linux development, and the
many vendors we hope to support with this so-
lution. We aim to provide a distributed solution
where the packages themselves carry the nec-
essary metadata such that a repository manager
metadata query can provide an accurate list of
which package is needed.

Normal package metadata relates to the soft-
ware in the package, including files, libraries,
virtual package names, etc. The firmware-tools
concept extends this by defining “applicability
metadata” and adding it to the payload pack-
ages. For example, we add
Provides: pci_firmware(...)
RPM tags to tell that the given RPM file is ap-
plicable to certain PCI cards. Details on pack-
aging are in the next section, including speci-
fications on package Provides that must be in
each package.

We then provide a special “bootstrap inven-
tory” mode for the inventory tool. In this mode,

inventory_firmware outputs a standard-
ized set of package Provides names, based
upon the current system hardware configura-
tion. By default, this list only includes pci_

firmware(...). Additional vendor-specific
addon packs can add other, vendor-specific
package names. For example, the Dell ad-
don pack, firmware-addon-dell, adds system_
bios(...) and bmc_firmware(...) stan-
dard packages to the list. We hope for wide
vendor adoption in this area, where different
vendors can provide addon packs for their stan-
dard systems. In this manner, the user need not
know anything about their hardware, other than
the manufacturer. They simply ask their reposi-
tory manager to install the addon pack for their
system. They then run bootstrap inventory to
get a list of all other required packages. This
list is fed to the OS repository manager, for
example, yum, up2date, apt, etc. The reposi-
tory manager will then search the repository for
packages with matching Provides names. This
package will normally be the firmware payload
package. Through the use of Requires, the pay-
load packages will then pull the execution and
inventory packages into the transaction.

3 plugin-api

The current firmware-tools provides only
infrastructure. All actual work is done by
writing plugins to do either inventory, boot-
strap, or execution tasks. We expect that as
new members join the firmware-tools project
this API will evolve. The current API is very
straightforward, consisting of a configuration
file, two mandatory function calls, and one
optional function call. It is implemented in
python, but we anticipate that in the future we
may add a C API, or something like a WBEM
API. The strength of the current implementa-
tion is its simplicity.

2006 Linux Symposium, Volume One • 239

3.1 Configuration

Plugins are expected to write a configu-
ration file fragment into /etc/firmware/

firmware.d/. This fragment should be
named modulename.conf. It is an INI-
format configuration file that is read with
the python ConfigParser module. Each con-
figuration fragment should have one section
named the same as the plugin, for exam-
ple, [delllsi]. At the moment, there
are only two configuration directives that can
be placed in this section. The first is,
bootstrap_inventory_plugin= and the
other is inventory_plugin=.

3.2 Bootstrap Inventory

When in bootstrap mode, inventory_

firmware searches the configuration for
bootstrap_inventory_plugin= di-
rectives. It then dynamically loads the
specified python module. It then calls the
BootstrapGenerator() function in that
module. This function takes no arguments and
is expected to be a python “generator” function
[2]. This function yields, one-by-one, instances
of the package.InstalledPackage class.

Figure 1 illustrates the Dell bootstrap generator
for the firmware-addon-dell package.

This module is responsible for generating a list
of all possible packages that could be applica-
ble to Dell systems. As you can see, it outputs
two standard packages, system_bios(...)
and bmc_firmware(...). It is also responsi-
ble for outputting a list of pci_firmware(..
.) packages with the system name appended.
In the future, as more packages are added to
the system, we anticipate that the bootstrap will
also output package names for things such as
external SCSI/SAS enclosures, system back-
planes, etc.

3.3 System Inventory

When in system inventory mode, inventory_
firmware searches the configuration for
inventory_plugin= directives. It then dy-
namically loads the specified python module.
It then calls the InventoryGenerator()

function in that module. This function
takes no arguments and is expected to be a
python “generator” function. This function
yields, one-by-one, instances of the package.
InstalledPackage class. The difference
here between this and bootstrap mode is
that, in system inventory mode, the inven-
tory function will populate version and
compareStrategy fields of the package.

InstalledPackage class.

Figure 2 illustrates the Dell inventory generator
for the firmware-addon-dell package.

The inventory generator in this instance outputs
only the BIOS inventory, with more detailed
version information. It is also responsible for
setting up the correct comparison function to
use for version comparison purposes.

3.4 On-Disk Payload Repository

The on-disk payload repository is the toplevel
directory where firmware payloads are stored.
There is currently not a separate tools to
generate an inventory of the repository, but,
there is python module code in repository.

py which will provide a list of available
packages in the on-disk repository. The
repository.Repository class handles the
on-disk repository. The constructor should
be given the top-level directory. Af-
ter construction, the iterPackages() or
iterLatestPackages() generator function
methods can be called to get a list of pack-
ages in the repository. These generator func-
tions output either all repository packages,

240 • System Firmware Updates Utilizing Sofware Repositories

standard entry point -- Bootstrap
def BootstrapGenerator():

standard function call to get Dell System ID
sysId = biosHdr.getSystemId()

output packages for Dell BIOS and BMC
for i in ["system_bios(ven_0x1028_dev_0x%04x)", "bmc_firmware(ven_0x1028_dev_0x%04x)"]:

p = package.InstalledPackage(
name = (i % sysId).lower()
)

yield p

output all normal PCI bootstrap packages with system-specific name appended.
module = __import__("bootstrap_pci", globals(), locals(), [])
for pkg in module.BootstrapGenerator():

pkg.name = "%s/%s" % (pkg.name, "system(ven_0x1028_dev_0x%04x)" % sysId)
yield pkg

Figure 1: Dell bootstrap generator code

standard entry point -- Inventory
def InventoryGenerator():

sysId = biosHdr.getSystemId()
biosVer = biosHdr.getSystemBiosVer()
p = package.InstalledPackage(

name = ("system_bios(ven_0x1028_dev_0x%04x)" % sysId).lower(),
version = biosVer,
compareStrategy = biosHdr.compareVersions,
)

yield p

Figure 2: Dell inventory generator code

2006 Linux Symposium, Volume One • 241

or only latest packages, respectively. They
read the package.ini file for each pack-
age and output an instance of package.

RepostitoryPackage. The package.ini

specifies the wrapper to use for each reposi-
tory package object. The wrapper will over-
ride the compareVersion() and install()
methods as appropriate.

3.5 Execution

Execution is handled by calling the
install() on a package object returned from
the repository inventory. The install()

method is set up by a type-specific wrapper, as
specified in the package.ini file. Figure 3
shows a typical wrapper class.

The wrapper constructor is passed a package
object. The wrapper will then set up meth-
ods in the package object for install and ver-
sion compare. Typical installation function
is a simple call to a vendor command line
tool. In this example, it uses the open-source
dell_rbu kernel driver and the open-source
libsmbios [3] dellBiosUpdate application
to perform the update.

4 Packaging

The goal of packaging is to make it as easy
as possible to integrate firmware update ap-
plications and payloads into existing OS de-
ployments. This means following a standards-
based packaging format. For Linux, this is the
Linux Standard Base-specified Red Hat Pack-
age Manager (RPM) format, though we don’t
preclude native Debian or Gentoo package for-
mats. The concepts are equally applicable;
implementation is left as an exercise for the
reader.

Base infrastructure components are in the
firmware-tools package, detailed previ-
ously. Individual updates for specific device
classes are split into two (or more) packages: an
Inventory and Execution package, and a Pay-
load package. The goal is to be able to provide
newer payloads (the data being written into the
flash memory parts) separate from providing
newer inventory and execution components. In
an ideal world, once you get the relatively sim-
ple inventory and execution components right,
they would rarely have to change. However,
one would expect the payloads to change regu-
larly to add features and fix bugs in the product
itself.

4.1 RPM Dependencies

Payload packages have a one-way (optionally
versioned) RPM dependency on the related In-
ventory and Execution package. This allows
tools to request the payload package, and the
related Inventory and Execution package is
downloaded as well. Should there be a com-
pelling reason to do so, the Inventory and Ex-
ecution components may be packaged sepa-
rately, though most often they’re done by the
same tool.

Payload packages further Provide various tags,
again to simplify automated download tools.

Lets look at the details, using BIOS package
for Dell PowerEdge 6850 as an example.
The actual BIOS firmware image is pack-
aged in an RPM called system_bios_

PE6850-a02-12.3.noarch.rpm. This
package has RPM version-release a02-12.3,
and is a noarch rpm because it does not con-
tain any CPU architecture-specific executable
content.

This package Provides:

242 • System Firmware Updates Utilizing Sofware Repositories

class BiosPackageWrapper(object):
def __init__(self, package):

package.installFunction = self.installFunction
package.compareStrategy = biosHdr.compareVersions
package.type = self

def installFunction(self, package):
ret = os.system("/sbin/modprobe dell_rbu")
if ret:

out = ("Could not load Dell RBU kernel driver (dell_rbu).\n"
" This kernel driver is included in Linux kernel 2.6.14 and later.\n"
" For earlier releases, you can download the dell_rbu dkms module.\n\n"
" Cannot continue, exiting...\n")

return (0, out)
status, output = commands.getstatusoutput("""dellBiosUpdate -u -f %s""" %

os.path.join(package.path, "bios.hdr"))
if status:

raise package.InstallError(output)
return 1

Figure 3: Example wrapper class

system_bios(ven_0x1028
_dev_0x0170) = a02-12.3
system_bios_PE6850 = a02-12.3

Let’s look at these one at a time.
system_bios(ven_0x1028
_dev_0x0170) = a02-12.3

This can be parsed as denoting a system BIOS,
from a vendor with PCI SIG Vendor ID num-
ber of 0x1028 (Dell). For each vendor, there
will be a vendor-specific system type number-
ing scheme which we care nothing about ex-
cept to consume. In this example, 0x0170 is
the software ID number of the PowerEdge 6850
server type. The BIOS version, again using a
vendor-specific versioning scheme, is A02. All
of the data in these fields can be determined
programatically, so is suitable for automated
tools.

Most systems and devices will have prettier,
marketing names. Whenever possible, we want
to use those, rather than the ID numbers, when
interacting with the sysadmin. So this pack-
age also provides the same version informa-
tion, only now using the marketing short name
PE6850.
system_bios_PE6850 = a02-12.3

Presumably the marketing short names, though
per-vendor, will not conflict in this flat names-
pace. The BIOS version, A02, is seen here
again, as well as a release field (12.3) which
can be used to indicate the version of the vari-
ous tools used to produce this payload package.
This version-release value matches that of the
RPM package.

The firmware-addon-dell package provides an
ID-to-shortname mapping config appropriate
for Dell-branded systems. It is anticipated that
other vendors will provide equivalent function-
ality for their packages. Users generating their
own content for systems not in the list can ac-
cept the auto-generated name or add their sys-
tem ID to the mapping config.

Epochs are used to account for version scheme
changes, such as Dell’s conversion from the
Axx format to the x.y.z format.

To account for various types of firmware that
may be present on the system, we have come
up with a list for RPM Provides tags seen in
Figure 4. We anticipate adding new entries to
this list as firmware updates for new types of
devices are added to the system.

The combination pci_firmware/system entries

2006 Linux Symposium, Volume One • 243

system_bios(ven_VEN_dev_ID)
pci_firmware(ven_VEN_dev_DEV)
pci_firmware(ven_VEN_dev_DEV_subven_SUBVEN_subdev_SUBDEV)
pci_firmware(ven_VEN_dev_DEV_subven_SUBVEN_subdev_SUBDEV)/system(ven_VEN_dev_ID)
bmc_firmware(ven_VEN_dev_ID)

system_bios_SHORTNAME
pci_firmware_SHORTNAME
pci_firmware_SHORTNAME/system_SHORTNAME
bmc_firmware_SHORTNAME

Figure 4: Package Manager Provides lines in payload packages

are to address strange cases where a given
payload is applicable to a given device in a
given system only, where the PCI ven/dev/
subven/subdev values aren’t enough to dis-
ambiguate this. It’s very rare, and should be
used with extreme caution, if at all.

These can be expanded to add additional
firmware types, such as SCSI backplanes, hot
plug power supply backplanes, disks, etc. as
the need arises. These names were chosen
to avoid conflicts with existing RPM packages
Provides.

4.2 Payload Package Contents

Continuing our BIOS example, the toplevel
firmware storage directory is /usr/share/

firmware. BIOS has its own subdirectory un-
der the toplevel, at /usr/share/firmware/
bios/, representing the top-level BIOS direc-
tory. The BIOS RPM payload packages in-
stall their files into subdirectories of the BIOS
toplevel directory. Figure 5 shows this layout.

This allows multiple versions of each payload
to be present on the file system, which may be
handy for downrev’ing. It also allows an entire
set of packages to be installed once on a file
server and shared out to client servers.

In this example, the actual data being writ-
ten to the flash is in the file bios.hdr. The
package.ini file contains metadata about

the payload described above and consumed by
the framework apps. The package.xml file
listed here was copied from the original ven-
dor package. It contains additional metadata,
and may be used by vendor-specific tools. The
firmware-addon-dell package uses the in-
formation in this file to only attempt installing
the payload onto the system type for which it
was made (e.g. to avoid trying to flash a desk-
top system with a server BIOS image).

4.3 Obtaining Payload Content

We’ve described the format of the packages, but
what if the existing update tools aren’t already
in the proper format? For example, as detailed
at the beginning of this paper, most vendors re-
lease their content in proprietary formats. The
solution is to write a tool that will take the ex-
isting proprietary formats and repackage them
into the firmware-tools format.

The fwupdate-tools package provides a
script, mkbiosrepo.sh, which can down-
load files from support.dell.com, extract
and unpack the relevant payloads from them,
and re-package them into packages as we’ve
described here. This allows a graceful transi-
tion from an existing packaging format to this
new format with little impact to existing busi-
ness processes. The script can be extended to
do likewise for other proprietary vendor pack-
age formats.

244 • System Firmware Updates Utilizing Sofware Repositories

rpm -qpl system_bios_PE6850-a02-12.3.noarch.rpm
/usr/share/firmware/bios
/usr/share/firmware/bios/system_bios_ven_0x1028_dev_0x0170_version_a02
/usr/share/firmware/bios/system_bios_ven_0x1028_dev_0x0170_version_a02/bios.hdr
/usr/share/firmware/bios/system_bios_ven_0x1028_dev_0x0170_version_a02/package.ini
/usr/share/firmware/bios/system_bios_ven_0x1028_dev_0x0170_version_a02/package.xml

Figure 5: Example Package Manager file layout

If this format proves to be popular, it is hoped
that vendors will start to release packages in na-
tive firmware-tools format. The authors of this
paper are already working internally to Dell to
push for this change, although there is currently
no ETA nor guarantee of official Dell support.
We are working on the open-source firmware-
tools project to prototype the solution and to get
peer review on this concept from other industry
experts in this area.

5 Repositories

We recognize that each OS distribution has its
own model for making packages avaialble in
an online repository. Red Hat Enterprise Linux
customers use Red Hat Network, or RHN Satel-
lite Server, to host packages. Fedora and Cen-
tOS use Yellow dog Updater, Modified (YUM)
repositories. SuSE uses Novell ZenWorks,
YaST Online Update (YOU) repositories, and
newer SuSE releases can use YUM reposito-
ries too. Debian uses FTP archives. Other third
party package managers have their own sys-
tems and tools. The list goes on and on. In
general, you can put RPMs or debs into any of
these, and they “just work.”

As an optimization, you can package RPMs in a
single directory, and provide the multiple forms
of metadata that each require in that same loca-
tion, letting one set of packages, and one repos-
itory, be easily used by all of the system types.
The mkbiosrepo.sh script manages meta-
data for both YUM and YOU tools. Creation of

channels in Red Hat Network Satellite Server
is, unfortunately, a manual process at present;
uploading content into channels is easily done
using RHN tools. Providing packages in other
repository formats is another exercise left to the
reader.

6 System Administrator Use

Up to this point, everything has focused on cre-
ating and publishing packages in a format for
system administration tools to consume. So
how does this all look from the sysadmin per-
spective?

6.1 Pulling from a Repository

First, you must configure your target systems
to be able to pull files from the online reposito-
ries. How you do that is update system spe-
cific, but it probably involves editing a con-
figuration file (/etc/yum.repos.d/, /usr/
sysconfig/rhn/sources, . . .) to point at
the repository, configure GPG keys, and the
like. Nothing here is specific to updating
firmware.

The first tool you need is one that will
match your system vendor, which pulls in
the framework packages, which provides the
inventory_firmware tool.

yum install firmware-addon-dell

2006 Linux Symposium, Volume One • 245

6.2 Bootstrapping from a Repository

Now it’s time to request from the repository
all the packages that might match your target
system. inventory_firmware, in bootstrap
mode, provides the list of packages that could
exist. Figure 6 shows an example.

We pass this value to yum or up2date, as such:

yum install $(inventory_firmware

-b)

or

up2date -i $(inventory_firmware

-b -u)

This causes each of the possible firmware Pay-
load packages, if they exist in any of the reposi-
tories we have configured to use, to be retreived
and installed into the local file system. Be-
cause the Payload packages have RPM depen-
dencies on their Inventory and Execution pack-
ages, those are downloaded and installed also.

Subsequent update runs, such as the nightly
yum or up2date run will then pick up any newer
packages, using the list of packages actually
on our target system. If packages for new de-
vice types are released into the repository (e.g.
someone adds disk firmware update capability),
then the sysadmin will have to run the above
commands again to download those new pack-
ages.

6.3 Applying Firmware Updates

apply_updates will perform the actual
flash part update using the inventory and exe-
cution tools and payloads for each respective
device type.

apply_updates

apply_updates can be configured to run
automatically at RPM package installation
time, though its more likely to be run as a
scheduled downtime activity.

7 Proof of Concept Payload Repos-
itory

Using the above tool set, we’ve created a proof-
of-concept payload repository [4], containing
the latest Dell system BIOS for over 200 sys-
tem types, and containing Dell PERC RAID
controller firmware for current generation con-
trollers. It provides YUM and YOU meta-
data in support of target systems running Fe-
dora Core 3, 4, and 5, Red Hat Enterprise
Linux 3 and 4 (and its clones like CentOS),
and Novell/SuSE Linux Enterprise Server 9 and
10. New device types and distributions will be
added in the future.

8 Future Directions

We believe that this model for automatically
downloading firmware can also be used for
other purposes. For example, we could tag
DKMS [5] driver RPMS with tags and have the
inventory system output pci_driver(...)

lines to be fed into yum or up2date. A proposal
has been sent to the dkms mailing list with
subsequent commentary and discussion. This
model could also be used for things like In-
tel ipw2x00 firmware, which typically is down-
loaded separately from the kernel and must
match the kernel driver version.

9 Conclusion

While most sysadmins only update their BIOS
and firmware when they have to, the process

246 • System Firmware Updates Utilizing Sofware Repositories

inventory_firmware -b
system_bios(ven_0x1028_dev_0x0170)
bmc_firmware(ven_0x1028_dev_0x0170)
pci_firmware(ven_0x8086_dev_0x3595)/system(ven_0x1028_dev_0x0170)
pci_firmware(ven_0x8086_dev_0x3596)/system(ven_0x1028_dev_0x0170)
pci_firmware(ven_0x8086_dev_0x3597)/system(ven_0x1028_dev_0x0170)
...

Figure 6: Running inventory_firmware -b

should be as easy as possible. By utilizing
OS tools already present, BIOS and firmware
change management becomes just as easy as
other software change management. We’ve de-
veloped this to be Linux distribution, hardware
manufacturer, system manufacturer, and update
mechanism agnostic, and have demonstrated its
capability with Dell BIOS and PERC Firmware
on a number of Linux distributions and ver-
sions. We encourage additional expansion of
the types of devices handled, types of OSs, and
types of update systems, and would welcome
patches that provide this functionality.

10 Glossary

Package: OS standard package (.rpm/.deb)

Package Manager: OS standard package man-
ager (rpm/dpkg)

Repository Manager: OS standard repository
solution (yum/apt)

References

[1] Firmware-tools Project
Home page: http://linux.dell.
com/firmware-tools/
Mailing list: http://lists.us.
dell.com/mailman/listinfo/
firmware-tools-devel

[2] Python Generator documentation
http://www.python.org/dev/
peps/pep-0255/

[3] Libsmbios Project
Home Page: http:
//linux.dell.com/libsmbios
Mailing list: http://lists.us.
dell.com/mailman/listinfo/
libsmbios-devel

[4] Proof of Concept Payload Repository
Home Page: http://fwupdate.com

[5] DKMS Project
Home Page:
http://linux.dell.com/dkms
Mailing list:
http://lists.us.dell.com/
mailman/listinfo/dkms-devel

The Need for Asynchronous, Zero-Copy Network I/O
Problems and Possible Solutions

Ulrich Drepper
Red Hat, Inc.

drepper@redhat.com

Abstract

The network interfaces provided by today’s
OSes severely limit the efficiency of network
programs. The kernel copies the data coming in
from network interface at least once internally
before making the data available in the user-
level buffer. This article explains the problems
and introduces some possible solutions. These
necessarily cover more than just the network in-
terfaces themselves, there is a bit more support
needed.

1 Introduction

Writing scalable network applications is today
more challenging than ever. The problem is
the antiquated (standardized) network API. The
Unix socket API is flexible and remains usable
but with ever higher network speeds, new tech-
nologies like interconnects, and the resulting
expected scalability we reach the limits. CPUs
and especially their interface to the memory
subsystem are not capable of dealing with the
high volume of data in the available short time-
frames.

What is needed is an asynchronous interface for
networking. The asynchronicity would primar-
ily be a means to avoid unnecessary copying

of data. It also would help to avoid conges-
tion since network buffers can earlier be freed
which in turn ensures that retransmits due to
full network buffers are minimized.

Existing interfaces like the POSIX AIO func-
tions fall short of providing the necessary func-
tionality. This is not only due to the fact that
pre-posting of buffers is only possible at a lim-
ited scale. A perhaps bigger problem is the
expensive event handling. The event handling
itself has requirements and challenges which
currently cannot be worked around (like wak-
ing up too many waiters).

In the remainder of the paper we will see the
different set of interfaces which are needed:

• event handling

• physical memory handling

• asynchronous network interfaces

The event handling must work with the existing
select()/poll() interfaces. It also should
be generic enough to be usable for other events
which currently do not map to file descriptors in
the moment (like message queues, futexes, etc).
This way we might finally have one unified in-
ner loop in the event handling of a program.

248 • The Need for Asynchronous, Zero-Copy Network I/O

Physical memory suddenly becomes important
because network devices address only physical
memory. But physical memory is invisible in
the Unix ABI and this is very much welcome.
If this is not the case the Copy-On-Write con-
cept used on CPUs with MMU-support would
not work. The implementation of functions like
fork() becomes harder. The proposal will
center around making physical memory regions
objects the kernel knows to handle.

Finally, using event and physical memory han-
dling, it is possible to define sane interfaces for
asynchronous network handling. In the follow-
ing sections we will see some ideas on how this
can happen.

It is not at all guaranteed that these interfaces
will stand the test of time or will even be imple-
mented. The intention of this paper is to get the
ball rolling because the problems are pressing
and we definitely need something along these
lines. Starting only from the bottom (i.e., from
the kernel implementation) has the danger of
ignoring the needs of programmers and might
miss the bigger picture (e.g., integration into a
bigger event handling scheme, for instance).

2 The Existing Implementation

Network stacks in Unix-like OSes have more
or less the same architecture today as they had
10–20 years ago. The interface the OS provides
for reading and writing from and to network in-
terfaces consists of the interfaces in Table 1.

These interfaces all work synchronously. The
interfaces for reading return only when data
is available or in error conditions. In non-
blocking mode they can return immediately if
no data is available, but this is no real asyn-
chronous handling. The data is not transferred
to userlevel in an asynchronous fashion.

receiving sending
read() write()

recv() send()

recvfrom() sendto()

recvmsg() sendmsg()

Table 1: Network APIs

receiving sending

read()1 write()1

aio_read() aio_write()

lio_listio()

Table 2: AIO APIs

Linux provides an asynchronous mode for ter-
minals, sockets, pipes, and FIFOs. If a file
descriptor has the O_ASYNC flag set calls to
read() and write() immediately return and
the kernel notifies the program about comple-
tion by sending a signal. This is a slightly
more complicated and more restrictive version
of the AIO interfaces than when using SIGEV_

SIGNAL (see below) and therefore suffers in ad-
dition to its own limitation of those of SIGEV_
SIGNAL.

For truly asynchronous operations on files the
POSIX AIO functions from Table 2 are avail-
able. With these interfaces it is possible to sub-
mit a number of input and output requests on
one or more file descriptors. Requests are filled
as the data becomes available. No particular
order is guaranteed but requests can have pri-
orities associated with them and the implemen-
tation is supposed to order the requests by pri-
ority. The interfaces also have a synchronous
mode which comes in handy from time to time.
Interesting here is the asynchronous mode. The
big problem to solve is that somehow the pro-
gram has to be able to find out when the submit-
ted requests are handled. There are three modes

1With the O_ASYNC flag set for the descriptor.

2006 Linux Symposium, Volume One • 249

defined by POSIX:

SIGEV_SIGNAL The completion is signaled
by sending a specified signal to the pro-
cess. Which thread receives the signal is
determined by the kernel by looking at the
signal masks. This makes it next to im-
possible to use this mechanism (and O_

ASYNC) in a library which might be linked
into arbitrary code.

SIGEV_THREAD The completion is signaled
by creating a thread which executes a
specified function. This is quite expensive
in spite of NPTL.

SIGEV_NONE No notification is sent. The pro-
gram can query the state of the request
using the aio_error() interface which
returns EINPROGRESS in case the request
has not yet been finished. This is also pos-
sible for the other two modes but it is cru-
cial for SIGEV_NONE.

The POSIX AIO interfaces are designed for file
operations. Descriptors for sockets might be
used with the Linux implementation but this
is not what the functions are designed for and
there might be problems.

All I/O interfaces have some problems in com-
mon: the caller provides the buffer into which
the received data is stored. This is a problem
in most situation for even the best theoretical
implementation. Network traffic arrives asyn-
chronously, mostly beyond the control of the
program. The incoming data has to be stored
somewhere or it gets lost.

To avoid copying the data more than once it
would therefore be necessary to have buffers
usable by the user available right the moment
when the data arrives. This means:

• for the read() and recv() interfaces it
would be necessary that the program is
making such a call just before when the
data arrives. If there is no such call out-
standing the kernel has to use its own
buffers or (for unreliable protocols) it can
discard the data.

• with aio_read() and the equivalent
lio_listio() operation it is possible to
pre-post a number of buffers. When the
number goes down more buffers can be
pre-posted. The main problem with these
interfaces is what happens next. Some-
how the program needs to be notified
about arrival of data. The three mech-
anisms described above are either based
on polling (SIGEV_NONE) or are far too
heavy-weight. Imagine sending 1000s
of signals a second corresponding to the
number of incoming packages. Creating
threads is even more expensive.

Another problem is that for unreliable protocols
it might be more important to always receive
the last arriving data. It might contain more
relevant information. In this case data which
arrived before should be sacrificed.

A second problem all implementations have in
common is that the caller can provide arbitrary
memory regions for input and output buffer to
the kernel. This is in general wanted. But if
the network hardware is supposed to transfer
directly into the memory regions specified it is
necessary for the program to use memory that
is special. The network hardware uses Direct
Memory Access (DMA) to write into RAM in-
stead of passing data through the CPU. This
happens at a level below the virtual address
space management, DMA only uses physical
addresses.

Besides possible limitations on where the RAM
for the buffers is located in the physical address

250 • The Need for Asynchronous, Zero-Copy Network I/O

space, the biggest problem is that the buffers
must remain in RAM until used. Ordinarily
userlevel programs do not see physical RAM;
the virtual address is an abstraction and the OS
might decide to remove memory pages from
RAM to make room for other processes. If this
would appear while an network I/O request is
pending the DMA access of the network hard-
ware would touch RAM which is now used for
something else.

This means while buffers are used for DMA
they must not be evicted from RAM. They must
be locked. This is possible with the mlock()

interface but this is a privileged operation. If
a process would be able to lock down arbi-
trary amounts of memory it would impact all
the other processes on the system which would
be starved of resources. Recent Linux kernels
allow unprivileged processes to lock down a
modest amount of memory (by default eight
pages or so) but this would not be enough for
heavily network oriented applications.

The POSIX AIO interfaces certainly show the
way for the interfaces which can solve the net-
working problems. But we have to solve sev-
eral problems:

• make DMA-ready memory available to
unprivileged applications;

• create an efficient event handling mecha-
nism which can handle high volumes of
events;

• create I/O interfaces which can use the
new memory and event handling. As a
bonus they should be usable for disk I/O
as well.

At this point it should be mentioned that a
working group of the OpenGroup, the Intercon-
nect Software Consortium, tried to tackle this
problem. The specification is available from

their website at http://www.opengroup.
org/icsc/. They arrived at the same set of
three problems and proposed solutions. Their
solutions are not implemented, though, and
they have some problems. Most importantly,
the event handling does not integrate with the
file-descriptor-based event handling.

3 Memory Handling

The main requirement on the memory handling
is to provide memory regions which are avail-
able at userlevel and which can be directly ac-
cessed by hardware other than the processor.
Network cards and disk controllers can trans-
fer data without the help of the CPU through
DMA. DMA addresses memory based on the
physical addresses. It does not matter how the
physical memory is currently used. If the vir-
tual memory system of the OS decides that a
page of RAM should be used for some other
purpose the devices would overwrite the new
user’s memory unless this is actively prevented.
There is no demand-paging as for the userlevel
code.

To be sure the DMA access will use the cor-
rect buffer, it is necessary to prevent swapping
the destination pages out. This is achieved by
using mlock(). Memory locking depletes the
amount of RAM the system can use to keep as
much of the combined virtual memory of all
processes in RAM. This can severely limit the
performance of the system or eventually pre-
vent it from making any progress. Memory
locking is therefore a privileged operation. This
is the first problem to be solved.

The situation is made worse by the fact that
locking can only be implemented on a per-
page-basis. Locking one small object on a page
ties down the entire page.

2006 Linux Symposium, Volume One • 251

One possibility would be avoid locking pages
in the program and have the kernel instead do
the work all by itself and on-demand. That
means if a network I/O request specifies a
buffer the kernel could automatically make sure
that the memory page(s) containing the buffer
is locked. This would be the most elegant so-
lution from the userlevel point-of-view. But
it would mean significant overhead: for every
operation the memory page status would have
to be checked and if necessary modified. Net-
work operations can be frequent and multiple
buffers can be located on the same page. If
this is known the checks performed by the ker-
nel would be unnecessary and if they are per-
formed the kernel must keep track how many
DMA buffers are located on the page. This so-
lution is likely to be unattractive.

It is possible to defer solving this problem,
fully or in part, to the user. In the least ac-
commodating solution, the kernel could simply
require the userlevel code to use mmap() and
mprotect() with a new flag to create DMA-
able memory regions. Inside these memory
regions the program can carve out individual
buffers, thereby mitigating the problem of lock-
ing down many pages which are only partially
used as buffers. This solution puts all the bur-
den on the userlevel runtime.

It also has a major disadvantage. Pages locked
using mlock() are locked until they are un-
locked or unmapped. But for the purpose
of DMA the pages need not be permanently
locked. The locking is really only needed while
I/O requests using DMA are being executed.
For the network I/O interfaces we are talking
about here the kernel always knows when such
a request is pending. Therefore it is theoreti-
cally possible for the kernel to lock the pages
on request. For this the pages would have to be
specially marked. While no request is pending
or if a network interface is used which does not
provide DMA access the virtual memory sub-

system of the OS can move the page around in
physical memory or even swap it out.

One relatively minor change to the kernel could
allow for such optimizations. If the mmap()

call could be passed a new flag MAP_DMA the
kernel would know what the buffer is used for.
It could keep track of the users of the page and
avoid locking it unless it is necessary. In an
initial implementation the flag could be treated
as an implicit mlock() call. If the flag is cor-
rectly implemented it would also be possible to
specify different limits on the amount of mem-
ory which can be locked and for DMA respec-
tively. This is no full solution to the problem of
requiring privileges to lock memory, though (an
application could simply have a read() call
pending all the time).

The MAP_DMA flag could also help dealing with
the effects of fork(). The POSIX specifica-
tion requires that no memory locking is inher-
ited by the child. File descriptors are inherited
on the other hand. If parts of the solution for
the new network interfaces uses file descriptors
(as it is proposed later) we would run into a
problem: the interface is usable but before the
first use it would be necessary to re-lock the
memory. With the MAP_DMA flag this could be
avoided. The memory would simply automati-
cally re-locked when it is used in the child for
the first time. To help in situations where the
memory is not used at all after fork(), for ex-
ample, if an exec call immediately follows, all
MAP_DMA memory is unlocked in the child.

Using this one flag alone could limit the perfor-
mance of the system, though. The kernel will
always have to make sure that the memory is
locked when an I/O request is pending. This
is overhead which could potentially be a limit-
ing factor. The programmer oftentimes has bet-
ter knowledge of the program semantics. She
would know which memory regions are used
for longer periods of time so that one explicit

252 • The Need for Asynchronous, Zero-Copy Network I/O

lock might be more appropriate than implicit
locking performed by the kernel.

A second problem is fragmentation. A pro-
gram is usually not one homogeneous body of
code. Many separate libraries are used which
all could perform network I/O. With the MAP_

DMA method proposed so far each of the li-
braries would have to allocate its own memory
region. This use of memory might be inefficient
because of the granularity of memory locking
and because not all parts of the program might
need the memory concurrently.

To solve the issue, the problem has to be tackled
at a higher level. We need to abstract the mem-
ory handling. Providing interfaces to allocate
and deallocate memory would give the imple-
mentation sufficient flexibility to solve these is-
sues and more. The allocation interfaces could
still be implemented using the MAP_DMA flag
and the allocation functions could “simply” be
userlevel interfaces and no system calls. One
possible set of interfaces could look like this:

int dma_alloc(dma_mem_t *handlep,
size_t size, unsigned int flags);

int dma_free(dma_mem_t handle,
size_t size);

The interfaces which require DMA-able mem-
ory would be passed a value of type dma_mem_
t. How this handle is implemented would
be implementation defined and could in fact
change over time. An initial, trivial implemen-
tation could even do without support for some-
thing like MAP_DMA and use explicit mlock()
calls.

epoll_wait() poll() select()

epoll_pwait() ppoll() pselect()

Table 3: Notification APIs

4 Event Handling

The existing event handling mechanisms of
POSIX AIO uses polling, signals, or the cre-
ation of threads. Polling is not a general solu-
tion. Signals are not only costly, they are also
unreliable. Only a limited, small number of
signals can be outstanding at any time. Once
the limit is reached a program has to fall back
on alternative mechanisms (like polling) until
the situation is rectified. Also, due to the limi-
tations imposed on code usable in signal han-
dlers, writing programs using signal notifica-
tion is awkward and error-prone. The creation
of threads is even more expensive and despite
the speed of NPTL has absolute no chance to
scale with high numbers of events.

What is needed is a completely new mecha-
nism for event notification. We cannot use the
same mechanisms as used for synchronous op-
erations on a descriptor for a socket or a file.
If data is available and can be sent, this does
not mean that an asynchronously posted request
has been fulfilled.

The structure of a program designed to run on
a Unix-y system requires that the event mech-
anism can be used with the same interfaces
used today for synchronous notification (see
Table 3). It would be possible to invent a com-
pletely new notification handling mechanism
and map the synchronous file descriptor oper-
ation to it. But why? The existing mechanism
work nicely, they scale well, and programmers
are familiar with them. It also means existing
code does not have to be completely rewritten.

Creating a separate channel (e.g., file descrip-
tor) for each asynchronous I/O request is not

2006 Linux Symposium, Volume One • 253

scalable. The number of I/O requests can be
high enough to forbid the use of the poll

and select interfaces. The epoll interfaces
would also be problematic because for each re-
quest the file descriptor would have to be reg-
istered and later unregistered. This overhead
is too big. Furthermore, is file descriptor has a
certain cost in the kernel and therefore the num-
ber is limited.

What is therefore needed is a kind of bus used
to carry the notifications for many requests.
A mechanism like netlink would be usable.
The netlink sockets receive broadcast traffic
for all the listeners and each process has to filter
out the data which it is interested in. Broadcast-
ing makes netlink sockets unattractive (at
best) for event handling. The possible volume
of notifications might be overwhelming. The
overhead for the unnecessary wake-ups could
be tremendous.

If filtering is accepted as not being a viable
implementation requirement we have as a re-
quirement for the solution that each process
can create multiple, independent event channel,
each capable of carrying arbitrarily many no-
tification events from multiple sources. If we
would not be able to create multiple indepen-
dent channels a program could not concurrently
and uncoordinatedly create such channels.

Each channel could be identified by a descrip-
tor. This would then allow the use of the no-
tification APIs in as many places as necessary
independently. At each site only the relevant
events are reported which allows the event han-
dling to be as efficient as possible.

An event is not just an impulse, it has to
transmit some information. The request which
caused the event has to be identified. It is usu-
ally2 regarded best to allow the programmer
add additional information. A single pointer

2See the sigevent structure.

is sufficient, it allows the programmer to re-
fer to additional data allocated somewhere else.
There is no need to allow adding an arbitrary
amount of data. The event data structure can
therefore be of fixed length. This simplifies the
event implementation and possibly allows it to
perform better. If the transmission of the event
structure would be implemented using socket
the SOCK_SEQPACKET type can be used. The
structure could look like this:

typedef struct event_data {
enum { event_type_aio,

event_type_msq,
event_type_sig } ev_type;

union {
aio_ctx_t *ev_aio;
mqd_t *ev_msq;
sigevent_t ev_sig;

} ev_un;
ssize_t ev_result;
int ev_errno;
void *ev_data;

} event_data_t;

This structure can be used to signal events
other than AIO completion. It could be a gen-
eral mechanism. For instance, there currently
is no mechanism to integrate POSIX message
queues into poll() loops. With an exten-
sion to the sigevent structure it could be pos-
sible to register the event channel using the
mq_notify() interface. The kernel can be ex-
tended to send events in all kinds of situations.

One possible implementation consists of intro-
ducing a new protocol family PF_EVENT. An
event channel could then be created with:

int efd = socket(PF_EVENT,
SOCK_SEQPACKET, 0);

254 • The Need for Asynchronous, Zero-Copy Network I/O

int ev_send(int s, const void *buf, size_t len, int flags, ev_t ec,
void *data);

int ev_sendto(int s, const void *buf, size_t len, int flags,
const struct sockaddr *to, socklen_t tolen, ev_t ec, void *data);

int ev_sendmsg(int s, const struct msghdr *msg, int flags, ev_t ec,
void *data);

int ev_recv(int s, void *buf, size_t len, int flags, ev_t ec,
void *data);

int ev_recvfrom(int s, void *buf, size_t len, int flags,
struct sockaddr *to, socklen_t tolen, ev_t ec, void *data);

int ev_recvmsg(int s, struct msghdr *msg, int flags, ev_t ec,
void *data);

Figure 1: Network Interfaces with Event Channel Parameters

The returned handle could be used in poll()

calls and be used as the handle for the event
channel. There are two potential problems
which need some thought:

• The kernel cannot allow the event queue
to take up arbitrary amounts of memory.
There has to be an upper limit on the num-
ber of events which can be queued at the
same time. When this happens a special
event should be generated. It might be
possible to use out-of-band notification for
this so that the error is recognized right
away.

• The number of events on a channel can po-
tentially be high. In this case the overhead
of all the read()/recv() calls could be
a limiting factor. It might be beneficial to
apply some of the techniques for the net-
work I/O discussed in the next section to
this problem as well. Then it might be
possible to poll for new events without the
system call overhead.

To enable optimizations like possible userlevel-
visible event buffers the actual interface for the
event handling should be something like this:

ec_t ec_create(unsigned flags);
int ec_destroy(ec_t ec);
int ec_to_fd(ec_t ec);
int ec_next_event(ec_t ec,
event_data_t *d);

The ec_to_fd() function returns a file de-
scriptor which can be used in poll() or
select() calls. An implementation might
choose to make this interface basically a no-op
by implementing the event channel descriptor
as a file descriptor. The ec_next_event()

function returns the next event. A call might
result in a normal read() or recv call but
it might also use a user-level-visible buffer to
avoid the system call overhead. The events sig-
naled by poll() etc can be limited to the ar-
rival of new data. I.e., the userlevel code is re-
sponsible for clearing the buffers before wait-
ing for the next event using poll(). The ker-
nel is involved in the delivery of new data and
therefore this type of event can be quite easily
be generated.

Handles of type ec_t can be passed to the
asynchronous interfaces. The kernel can then

2006 Linux Symposium, Volume One • 255

int aio_send(struct aiocb *aiocbp, int flags);
int aio_sendto(struct aiocb *aiocbp, int flags,
const struct sockaddr *to, socklen_t tolen);

int aio_sendmsg(struct aiocb *aiocbp, int flags);
int aio_recv(struct aiocb *aiocbp, int flags);
int aio_recvfrom(struct aiocb *aiocbp, int flags, struct sockaddr *to,
socklen_t tolen);

int aio_recvmsg(struct aiocb *aiocbp, int flags);

Figure 2: Network Interfaces matching POSIX AIO

create appropriate events on the channel. There
will be no fixed relationship between the file
descriptor or socket used in the asynchronous
operation and the event channel. This gives the
most flexibility to the programmer.

5 I/O Interfaces

There are several possible levels of innovation
and complexity which can go into the design of
the asynchronous I/O interfaces. It makes sense
to go through them in sequence of increasing
complexity. The more complicated interfaces
will likely take advantage of the same function-
ality the less complicated need, too. Mention-
ing the new interfaces here is not meant to im-
ply that all interfaces should be provided by the
implementation.

The simplest of the interfaces can extend the
network interfaces with asynchronous variants
which use the event handling introduced in the
previous section. One possibility is to extend
interfaces like recv() and send() to take ad-
ditional parameters to use event channels. The
result is seen in Figure 1.

Calls to these functions immediately return.
Valid requests are simply queued and the no-
tifications about the completion are sent via
the event channel ec. The data parameter

is the additional value passed back as part of
the event_data_t object read from the event
channel. The event notification would signal
the type of operation by setting ev_type ap-
propriately. Success and the amount of data
received or transmitted are stored in the ev_

errno and ev_result elements.

There are two objections to this approach. First,
the other frequently used interfaces for sockets
(read() and write()) are not handled. Al-
though their functionality is a strict subset of
recv() and send() respectively it might be a
deterrent. The second argument is more severe:
there is no justification to limit the event han-
dling to network transfer. The same functional-
ity would be “nice to have”TM for file, pipe, and
FIFO I/O. Extending the read() and write()
interfaces in the same way as the network I/O
interfaces makes no sense, though. We already
have interfaces which could be extended.

With a simple extension of the sigevent

structure we can reuse the POSIX AIO inter-
faces. All that would be left to do is to define
appropriate versions of the network I/O inter-
faces to match the existing POSIX AIO inter-
faces and change the aiocb structure slightly.
The new interfaces can be seen in Figure 2. The
aiocb structure needs to have one additional
element:

256 • The Need for Asynchronous, Zero-Copy Network I/O

struct aiocb {
...
struct msghdr *aio_msg;
...

};

It is used in the aio_sendmsg() and aio_

recvmsg() calls. The implementation can
chose to reuse the memory used for the aio_

buf element because it never gets used at the
same time as aio_msg. The other four inter-
faces use aio_buf and aio_nbytes to spec-
ify the source and destination buffer respec-
tively.

The <signal.h> header has to be extended to
define SIGEV_EC. If the sigev_notify el-
ement of the sigevent structure is set to this
value the completion is signal by an appropriate
event available on an event channel. The chan-
nel is identified by a new element which must
be added to the sigevent structure:

struct sigevent {
...
ec_t sigev_ec;
...

};

The additional pointer value which is passed
back to the application is also stored in the
sigevent structure. The application has to
store it in sigev_value.sival_ptr which
is in line with all the other uses of this part of
the sigevent structure.

Introducing these additional AIO interfaces and
the SIGEV_EC notification mechanism would
help to solve some problems.

• programs could get more efficient notifica-
tion of events (at least more efficient than
signals and thread creation), even for file
I/O;

• network operations which require the ex-
tended functionality of the recv and
send interfaces can be performed asyn-
chronously;

• by pre-posting buffers with aio_read()

or the aio_recv() and now the aio_

recv and aio_send interfaces network
I/O might be able to avoid intermediate
buffers.

Especially the first two points are good argu-
ments to implement these interfaces or at the
very least allow the existing POSIX AIO in in-
terfaces use the event channel notification. As
explained in section section 2 the memory han-
dling of the POSIX AIO functions makes di-
rect use by the network hardware cumbersome
and slower than necessary. Additionally the
system call overhead is high when many inter-
faces use the event channel notification. As ex-
plained network requests have to be submitted.
This can potentially be solved by extending the
lio_listio() interface to allow submit mul-
tiple requests at once. But this will not solve
the problem of the resulting event notification
storm. For this we need more radical changes.

6 Advanced I/O Interfaces

For the more advanced interfaces we need to in-
tegrate the DMA memory handling into the I/O
interfaces. We need to consider synchronous
and asynchronous interfaces. We could ignore
the synchronous interfaces and require the use
of lio_listio or an equivalent interface but
this is a bit cumbersome to use.

2006 Linux Symposium, Volume One • 257

int dma_assoc(int sock, dma_mem_t mem, size_t size, unsigned flags);
int dma_disassoc(int sock, dma_mem_t, size_t size);

Figure 3: Association of DMA-able memory to Sockets

int sio_reserve(dma_mem_t dma, void **memp off, size_t size);
int sio_release(dma_mem_t dma, void *mem, size_t size);

Figure 4: Network Buffer Memory Management

For network interfaces it is ideally the interface
which controls the memory into which incom-
ing data is written. Today this happens with
buffers allocated by and under full control of
the kernel. It is conceivable to allow applica-
tions to allocate buffers and assign them to a
given interface. This is where dma_alloc()

comes in. The latter possibility has some dis-
tinct advantages; mainly, it gives the program
the opportunity to influence the address space
layout. This can be necessary for some pro-
grams.3

It is usually not possible to associate each net-
work interface with a userlevel process. The
network interface is in most cases a shared re-
source. The usual Unix network interface rules
therefore need to be followed. A userlevel pro-
cess opens a socket, binds the socket to a port,
and it can send and receive data. For the incom-
ing data the header decides which port the re-
mote party wants to target. Based on the num-
ber, the socket is selected. Therefore the associ-
ation of the DMA-able buffer should be with a
socket. What is needed are interfaces as can be
seen in Figure 3. It probably should be possible
to associate more than one DMA-able memory
region with a socket. This way it is possible to
dynamically react to unexpected network traffic

3For instance, when address space is scarce or when
fixed addresses are needed.

volume by adding additional buffers.

Once the memory is associated with the socket
the application cannot use it anymore as it
pleases until dma_disassoc() is called. The
kernel has to be notified if the memory is writ-
ten to and the kernel needs to tell the applica-
tion when data is available to be read. Oth-
erwise the kernel might start using a DMA
memory region which the program is also us-
ing, thus overwriting the data. We therefore
need at least interfaces as shown in Figure 4.
The sio_reserve() interface allows to re-
serve (parts of) the DMA-able buffer for writ-
ing by the application. This will usually be
done in preparation of a subsequent send op-
eration. The dma parameter is the value re-
turned by a previous call to dma_alloc(). We
use a size parameter because this allows the
DMA-able buffer to be split into several smaller
pieces. As explained in section 3 it is more ef-
ficient to allocate larger blocks of DMA-able
memory instead of many smaller ones because
memory locking only works with page granu-
larity. The implementation is responsible for
not using the same part of the buffer more than
once at the same time. A pointer to the avail-
able memory is returned in the variable pointed
to by memp.

When reading from the network the situation
is reversed: the kernel will allocate the mem-

258 • The Need for Asynchronous, Zero-Copy Network I/O

int sio_send(int sock, const void *buf, size_t size, int flags);
int sio_sendto(int sock, const void *buf, size_t size, int flags,
const struct sockaddr *to, socklen_t tolen);

int sio_sendmsg(int sock, const void *buf, size_t size, int flags);
int sio_recv(int sock, void **buf, size_t size, int flags);
int sio_recvfrom(int sock, const void **buf, size_t size, int flags,
struct sockaddr *to, socklen_t tolen);

int sio_recvmsg(int sock, const void **buf, size_t size, int flags);

Figure 5: Advanced Synchronous Network Interfaces

ory region into which it stores the incoming
data. This happens using the kernel-equivalent
of the sio_reserve() interface. Then the
program is notified about the location and size
of the incoming data. Until the program is done
handling the data the buffer cannot be reused.
To signal that the data has been handled, the
sio_release() interface is used. It is also
possible to use the interface to abort the prepa-
ration of a write operation by undoing the ef-
fects of a previous sio_reserve() call.

The sio_reserve() and sio_release()

interfaces basically implement dynamic mem-
ory allocation and deallocation. It adds an un-
due burden on the implementation to require
a full-fledged malloc-like implementation. It
is therefore suggested to require a significant
minimum allocation size. If reservations are
also rounded according to the minimum size
this will in turn limit the number of reservations
which can be given out at any given time. It is
possible to use a simple bitmap allocator.

What remains to be designed are the actual net-
work interfaces. For the synchronous inter-
faces we need the equivalent of the send and
recv interfaces. The send interfaces can ba-
sically work like the existing Unix interfaces
with the one exception that the memory block
containing the data must be part of a DMA-able
memory region. The recv interfaces need to
have one crucial difference: the implementa-

tion must be able to decide the location of the
buffer containing the returned data. The result-
ing interfaces can be seen in Figure 5.

The programmer has to make sure the buffer
pointers passed to the sio_send functions
have been returned by a sio_reserve() call
or as part of the notification of a previous sio_
recv call. The implementation can potentially
detect invalid pointers.

When the sio_recv functions return, the
pointer pointed to by the second parameter con-
tains the address of the returned data. This ad-
dress is in the DMA-able memory area associ-
ated with the socket. After the data is handled
and the buffer is not used anymore the applica-
tion has to mark the region as unused by calling
sio_release(). Otherwise the kernel would
run out of memory to store the incoming data
in.

For the asynchronous interfaces one could
imagine simply adding a sigevent structure
parameter to the sio_recv and sio_send in-
terfaces. This is unfortunately not sufficient.
The program must be able to retrieve the er-
ror status and the actual number of bytes which
have been received or sent. There is no way
to transmit this information in the sigevent

structure. We could extend it but would du-
plicate functionality which is already available.
The asynchronous file I/O interfaces have the

2006 Linux Symposium, Volume One • 259

same problem and the solution is the AIO con-
trol block structure aiocb. It only makes sense
to extend the POSIX AIO interfaces. We al-
ready defined the additional interfaces needed
in Figure 2. What is missing is the tie-in with
the DMA handling.

For this the most simplistic approach is to ex-
tend aiocb structure by adding an element
aio_dma_buf of type dma_mem_t replacing
the aio_buf pointer for DMA-ready opera-
tions. To use aio_dma_buf instead of aio_
buf the caller passes the new AIO_DMA_BUF

flag to the aio_recv and aio_send inter-
faces. For the lio_listio() interface it is
possible to define new operations LIO_DMA_

READ and LIO_DMA_WRITE. This leaves the
existing aio_read() and aio_write() in-
terfaces. It would be possible to define alter-
native interfaces which take a flag parameter or
one could simply ignore the problem and tell
people to use lio_listio() instead.

The implementation of the AIO functions to
receive data when operating on DMA-able
buffers could do more than just pass the re-
quest to the kernel. The implementation can
keep track of the buffers involved and check for
available data in them before calling the ker-
nel. If data is available the call can be avoided
and the appropriate buffer can be made known
through an appropriate event. When writing the
data could be written into the DMA-able buffer
(if necessary). Depending on the implementa-
tion of the user-level/kernel interaction of the
DMA-able buffers it might or might not be nec-
essary to make a system call to notify the kernel
about the new pending data.

7 Related Interfaces

The event channel mechanism is general
enough to be used in other situations than just

I/O. They can help solving a long-standing
problem of the interfaces Unix systems pro-
vide. Programs, be it server or interactive pro-
grams, are often designed with a central loop
from which the various activities requested are
initiated. There can be one thread working the
inner loop or many. The requested actions can
be performed by the thread which received the
request or a new thread can be created which
performs the action. The threads in the program
are then either waiting in the main loop or busy
working on an action. If the action could poten-
tially be delayed significantly the thread would
add the wait event to the list the main loop han-
dles and then enters the main loop again. This
achieves maximum resource usage.

In reality this is not so easy. Not all events can
be waited on with the same mechanism. POSIX
does not provide mechanisms to use poll() to
wait for messages to arrive in message queues,
for mutexes to be unlocked, etc. This is where
the event channels can help. If we can asso-
ciate an event channel with these objects the
kernel could generate events whenever the state
changes.

For POSIX message queues there is fortunately
not much which needs to be done. The mq_

notify() interface takes a sigevent struc-
ture parameter. Once the implementation is ex-
tended to handle SIGEV_EC for I/O it should
work here, too. One question to be answered
is what to pass as the data parameter which can
be used to identify the request.

For POSIX semaphore we need a new inter-
face to initiate asynchronous waiting. Fig-
ure 6 shows the prototype for sem_await().
The first two parameters are the same as for
sem_wait(). The latter two parameters spec-
ify the event channel and the parameter to pass
back. When the event reports a successful op-
eration the semaphore has been posted. It is not
necessary to call sem_wait() again.

260 • The Need for Asynchronous, Zero-Copy Network I/O

int sem_await(sem_t semdes, const struct timespec *abstime,
ec_t ec, void *data);

int pthread_mutex_alock(pthread_mutex_t *mutex, ec_t ec, void *data);

Figure 6: Additional Event Channel Users

The actual implementation of this interface will
be more interesting. Semaphores and also mu-
texes are implemented using futexes. Only part
of the actual implementation is in the kernel.
The kernel does not know the actual protocol
used for the synchronization primitive, this is
left to the implementation. In case the event
channel notification is requested the kernel will
have to learn about the protocol.

Once the POSIX semaphore problem is solved
it is easy enough to add support for the POSIX
mutexes, read-write mutexes, barriers, etc. The
pthread_mutex_alock() interface is Fig-
ure 6 is a possible solution. The other syn-
chronization primitives can be similarly han-
dled. This extends also to the System V mes-
sage queues and semaphores. The difference
for the latter two is that the implementation is
already completely in the kernel and therefore
the implementation should be significantly sim-
pler.

8 Summary

The proposed interfaces for network I/O have
the potential of great performance improve-
ments. They avoid using the most limiting
resources in a modern computer: memory-to-
CPU cache and CPU cache-to-memory band-
width. By minimizing the number of copies
which have to be performed the CPUs have the
chance of keeping up with the faster increasing
network speeds.

Along the way we sketched out a event han-
dling implementation which is not only effi-
cient enough to keep up with the demands
of the network interfaces. It is also versatile
enough to finally allow implementing a uni-
fied inner loop of all event driven programs.
With poll or select interfaces being able
to receive event notifications for currently un-
observable objects like POSIX/SysV message
queues and futexes many programs have the op-
portunity to become much easier because spe-
cial handling for these cases can be removed.

Problem Solving With Systemtap

Frank Ch. Eigler
Red Hat

fche@redhat.com

Abstract

Systemtap is becoming a useful tool to help
solve low-level OS problems. Most features de-
scribed in the future tense at last year’s OLS
are now complete. We review the status and
recent developments of the system. In pass-
ing, we present solutions to some complex low-
level problems that bedevil kernel and applica-
tion developers.

Systemtap recently gained support for static
probing markers that are compiled into the ker-
nel, to complement the dynamic kprobes
system. It is a simple and fast mechanism, and
we invite kernel developers and other trace-like
tools to adopt it.

1 Project status

At OLS 2005, we presented[4] systemtap, the
open source tool being developed for trac-
ing/probing of a live unmodified linux sys-
tem. It accepts commands in a simple script-
ing language, and hooks them up to probes in-
serted at requested code locations within the
kernel. When the kernel trips across the probes,
routines in a compiled form of the script are
quickly run, then the kernel resumes. Over the
last year, with the combined efforts of a dozen
developers supported by four companies, much
of this theory has turned into practice.

1.1 Scripting language

The systemtap script is a small domain-specific
language resembling awk and C. It has only a
few data types (integers and strings, plus asso-
ciative arrays of these), full control structures
(blocks, conditionals, loops, functions). It is
light on punctuation (semicolons optional) and
on declarations (types are inferred and checked
automatically). Its core concept, the “probe,”
consists of a probe point (its trigger event) and
its handler (the associated statements).

Probe points name the kernel events at which
the statements should be executed. One may
name nearly any function, or a source file and
line number where the breakpoint is to be set
(just like in a symbolic debugger), or request
an asynchronous event like a periodic timer.
Systemtap defines a hierarchical probe point
namespace, a little like DNS.

Probe handlers have few constraints. They can
print data right away, to provide a sort of on-
the-fly printk. Or, they can save a times-
tamp in a variable and compare it with a later
probe hit, to derive timing profiles. Or, they
can follow kernel data structures, and speak up
if something is amiss.

The scripting language is implemented by a
translator that creates C code, which is in turn
compiled into a binary kernel module. Probe

262 • Problem Solving With Systemtap

points are mapped to virtual addresses by refer-
ence to the kernel’s DWARF debugging infor-
mation left over from its build. The same data
is used to resolve references to kernel “target-
side” variables. Their compiled nature allows
even elaborate probe scripts to run fast.

Safety is an essential element of the design.
All the language constructs are subjected to
translation- and run-time checks, which aim to
prevent accidental damage to the system. This
includes prevention of infinite loops, memory
use, and recursion, pointer faults, and several
others. Many checks may be inspected within
the translator-generated C code.

Some safety mechanisms are incomplete at
present. Systemtap contains a blacklist of ker-
nel areas that are deemed unsafe to probe, since
they might trigger infinite probing recursion,
locking reentrancy, or other nasty phenomena.
This blacklist is just getting started, so prob-
ing using broad wildcards is a recipe for pan-
ics. Similarly, we haven’t sufficiently ana-
lyzed the script-callable utility functions like
our gettimeofday wrapper to ensure that it
is safe to call from any probe handler. Work in
these directions is ongoing.

1.2 Recent developments

The most basic development since last summer
is that the system works, whereas last year we
relied on several mock-ups. You can download
it1, build it, and use it on your already installed
kernels today. It is not perfect nor complete,
but nor is it vapourware.

kprobes has received a heart transplant. The
most significant of these was truly concur-
rent probing on multiprocessor machines, made
possible by a switch to RCU data structures.

1http://sourceware.org/systemtap/

Implementation details are discussed in a sep-
arate paper [3] during this conference. In or-
der to exploit the parallelism enabled by this
improvement, systemtap supports variables to
track global statistics aggregates like averages
or counts using contention-free data structures.

For folks who like the exhilaration of full con-
trol, or have a distaste for the scripting lan-
guage, Systemtap supports bypassing the cush-
ion. In “guru mode,” systemtap allows inter-
mingling of literal C code with script, to go be-
yond the limitations of pure script code. One
can query or manipulate otherwise inaccessible
kernel state directly, but bears responsibility for
doing so safely.

Systemtap documentation is slowly growing, as
is our collection of sample scripts. There is a
fifteen-page language tutorial, and a few dozen
worked out examples on our web site. More
and more first-time users are popping up on the
mailing list, so we are adapting to supporting
new users, not just fellow project developers.

1.3 Usage scenarios

While it’s still early, systemtap has suggested
several uses. First is simple exploration and
profiling. A probe on “timer.profile” and col-
lecting stack backtrace samples gets one a
coarse profile. A probe at a troubled function,
with a similar a stack backtrace, tells one who
is the troublemaker. Probes on system call han-
dling functions (or more conveniently named
aliases defined in a library) give one an instant
system-wide strace, with as much filtering
and summarizing as one may wish. As a taste,
figure 1 demonstrates probing function nesting
within a compilation unit.

Daniel Berranger [1] arranged to run sys-
temtap throughout a Linux boot sequence
(/etc/init.d scripts) to profile the I/O

2006 Linux Symposium, Volume One • 263

and forking characteristics of the many startup
scripts and daemons. Some wasteful behavior
showed up right away in the reports. On a sim-
ilar topic, Dave Jones [2] is presenting a paper
at this conference.

Another problem may be familiar: an overac-
tive kswapd. In an old Red Hat Enterprise
Linux kernel, it was found that some inner
page-scanning loop ran several orders of mag-
nitude more iterations than anticipated, due to
some error in queue management code. Does
this kind of thing not happen regularly? Sys-
temtap was not available for diagnosing this
bug, but it would have been easy to probe loops
in the suspect functions, say by source file and
line number, to count and graph relative execu-
tion counts.

2 Static probing markers

Systemtap recently added support for static
probing markers or “markers” for short. This
is a way of letting developers designate points
in their functions as being candidates for
systemtap-style probing. The developer inserts
a macro call at the points of interest, giving the
marker a name and some optional parameters,
and grudgingly recompiles the kernel. (The
name can be any alphanumeric symbol, and
should be reasonably unique across the kernel
or module. Parameters may be string or nu-
meric expressions.)

In exchange for this effort, systemtap marker-
based probes are faster and more precise than
kprobes. The better precision comes from not
having to covet the compiler’s favours. Such
fickle favours include retaining clean bound-
aries in the instruction stream between inter-
esting statements, and precisely describing po-
sitions of variables in the stack frame. Since
markers don’t rely on debugging information,

neither favour is required, and the compiler can
channel its charms into unabated optimization.
The speed advantage comes from using direct
call instructions rather than int 3 breakpoints
to dispatch to the systemtap handlers. We will
see below just how big a difference this makes.

STAP_MARK (name);
STAP_MARK_NS (name,num,string);

Just putting a marker into the code does noth-
ing except waste a few cycles. A marker can be
“activated” by writing a systemtap probe asso-
ciated with the marker name. All markers with
the same name are identified, and are made to
call the probe handler routine. Like any other
systemtap probe, the handler can trace, collect,
filter, and aggregate data before returning.

probe kernel.mark("name") { }
probe module("drv").mark("name") { }

2.1 Implementation

As hinted above, the probe marker is a macro2

that consists of a conditional indirect function
call. Argument expressions are evaluated in the
conditional function call. Similarly to C++, an
explicit argument-type signature is appended to
the macro and the static variable name.

#define STAP_MARK(n) do { \
static void (*__mark_##n##_)(); \
if (unlikely (__mark_##n##_)) \

(void) (__mark_##n##_()); \
} while (0)

In x86 assembly language, this translates to a
load from a direct address, test, and a con-
ditional branch over a call sequence. The

2Systemtap includes a header file that defines a scores
of type/arity permutations.

264 • Problem Solving With Systemtap

load/zero-test is easily optimized by “hoisting”
it up (earlier), since it is operating on private
data. With GCC’s -freorder-blocks op-
timization flag, the instructions for the function
call sequence tend to be pushed well away from
(beyond) the hot path, and get jumped to us-
ing a conditional forward branch. That is ideal
from the perspective of hardware static branch
prediction.

A new static variable is created for each macro.
If the macro is instantiated within an inline
function, all inlined instances within a program
will share that same variable. Systemtap can
search for the variables in the symbol table by
matching names against the stylized naming
scheme. Further, systemtap deduces argument
types from the signature suffix, so it can write a
type-safe function to accept the parameters and
dispatch to a compiled probe handler.

During probe initialization, the static variable
containing the marker’s function pointer is sim-
ply overwritten to point at the handler, and it is
cleared again at shutdown.3

This design implies that only a single handler
can be associated with any single marker: other
systemtap sessions are locked out temporar-
ily. Should this become a problem for par-
ticularly popular markers, we can add support
for “multi-marker” macros that use some small
number of synonymous static variables instead
of one. This would trade utility for speed.

2.2 Performance

Several performance metrics are interesting:
code bloat, slowdown due to a dormant marker,
dispatch cost of an active marker. These quan-
tities may be compared to the classic kprobes

3These operations atomically synchronize using
cmpxchg.

alternative. On all these metrics, markers seem
to perform well.

For demonstration purposes, we inserted
marker macros in just two spots in a 2.6.16-
based kernel: the scheduler context-switch rou-
tine, just before switch_to (passing the
“from” and “to” task->pid numbers), and
the system call handler sys_getuid (pass-
ing current->uid). All tests were run on
a Fedora Core 5 machine with a 3 GHz Pen-
tium 4 HT.

Code bloat is the number of bytes of instruc-
tion code needed to support the marker, which
impacts the instruction cache. With kprobes,
there is no code inserted, so those numbers are
zero. We measured it for static markers by dis-
assembling otherwise identical kernel binaries,
compiled with and without markers.

function test call
getuid 10 19

context_switch 19 34

Slowdown due to a dormant marker is the time
penalty for having a potential but unused probe
point. This quantity is also zero for kprobes.
For our static markers, it is the time taken to
test whether the static variable is set, and it be-
ing clear, to bypass the probe function call. It
may incur a data cache miss (for loading the
static variable), but the actual test and properly
predicted branch can be nearly “free.”

Indeed, a microbenchmark that calls an marker-
instrumented getuid system call in a tight
loop a million times has minimum and aver-
age times that match one that calls an uninstru-
mented system call (getgid). A different mi-
crobenchmark that runs the same marker macro
but in user space, surrounded by rdtscll
calls, indicates a cost of a handful of cycles
each: 4–20.

2006 Linux Symposium, Volume One • 265

Since the slowdown due to a dormant marker
is so small, we plan to measure a heavily in-
strumented kernel macroscopically. However,
adding markers strategically into the kernel is
challenging, if they are to represent plausible
extra load.

Finally, let’s discuss the dispatch speed of an
active marker. This is important because it
relates inversely to the maximum number of
probes that can trigger per unit time. The over-
head for a reasonable frequency of probe hits
should not overwhelm the system. For our
static markers, the dispatch overhead consists
of the indirect function call. On the test plat-
form, this additional cost is just 50–60 cycles.

For kprobes, an active probe includes an elab-
orate process involving triggering a breakpoint
fault (int 3 on x86), entering the fault han-
dler, identifying which handler belongs to that
particular breakpoint address, calling the han-
dler, single-stepping the original instruction un-
der the breakpoint, and probably some other
steps we left out.

A realistic systemtap-based microbenchmark
measured the time required for one round
trip of the same functions used above: the
marker-instrumented sys_getuid and unin-
strumented sys_getgid. Each probe han-
dler is identical, and increments a script-level
global counter variable for each visit. The fol-
lowing matrix summarizes the typical number
of nanoseconds per system call (lower is better)
with the listed instrumentation active.

function marker kprobe both neither
getuid 820 2100 2250 620
getgid 2100 620

Note that the complete marker-based probes
run in 200 ns, and kprobes-based probes run in
1480 ns. Some arithmetic lets us work back-
ward, to estimate just the dispatching times and

exclude the systemtap probes. The cost of the
50–60 cycles of function call dispatch for the
markers (measured earlier) takes about 20 ns on
the test host. That implies that the systemtap
probe handler took about 180 ns. Since iden-
tical probe handlers were run for both kprobes
and markers, we can subtract that, leaving 1300
ns as the kprobes dispatch overhead.

While the above analysis only pretends to be
quantitative, it gives some evidence that mark-
ers have attractive performance: cheap to sit
around dormant, and fast when activated.

3 Next steps

3.1 User-space probes

Systemtap still lacks support for probing user-
space programs: we can go no higher than the
system call interface. A kprobes extension is
under development to allow the same sorts of
breakpoints to be inserted into shared libraries
and executables at runtime that it now manages
in the kernel. When this part is finished and ac-
cepted, systemtap will exploit it shortly. Probes
in user space would use a similar syntax to re-
fer to sources or symbols as already available
for kernel probe points.

Probing in user space may seem like a task for a
different sort of tool, perhaps a plain debugger
like gdb, or a fancier one like frysk4, or another
supervisor process based on ptrace. How-
ever, we believe that the handler routine of even
a user-space probe should run in kernel space,
because:

1. The microsecond level speed of a kprobes
“round trip” is still an order of magnitude
faster than the equivalent process state
query / manipulation using the ptrace API.

4http://sources.redhat.com/frysk

266 • Problem Solving With Systemtap

2. Some problems require correlation of ac-
tivities in the kernel with those in user-
space. Such correlations are naturally
expressed by a single script that shares
variables amongst kernel- and user-space
probes.

Once we pass that hurdle, joint application of
user-space kprobes and static probing markers
will make it possible for user-space programs
and libraries to contain probing markers too.
This would let libraries or programs designate
their own salient probe points, while enjoying a
low dormant probe cost. Language interpreters
like Perl and PHP can insert markers into their
evaluation loops to mark events like script func-
tion entries/exits and garbage collection. Com-
plex applications can instrument multithread-
ing events like synchronization and lock con-
tention.

3.2 Debugging aid

Systemtap is becoming stable enough that ker-
nel developers should feel comfortable with us-
ing it as a first-ditch debugging aid. When you
run into a problem where a little bit of tracing,
profiling, event counting might help, we are ea-
ger to help you write the necessary scripts.

3.3 Sysadmin aid

We would like to develop a suite of system-
tap scripts that supplant tools like netstat,
vmstat, strace. For inspiration, it may
be desirable to port the OpenSolaris DTrace-
Toolkit5, which is a suite of dtrace scripts to
provide an overview of the entire system’s ac-
tivity. Systemtap will make it possible to save

5http://www.opensolaris.org/os/
community/dtrace/dtracetoolkit/

and reuse compiled scripts, so that deployment
and execution of such a suite could be easier
and faster.

3.4 Grand unified tracing

There are many linux kernel tracing projects
around. Every few months, someone reinvents
LTT and auditing. While the author does not
understand all the reasons for which these tools
tend not to be integrated into the mainstream
kernel, perhaps one of them is performance.

To the extent that is true, we propose that
these groups consider using a shared pool of
static markers as the basic kernel-side instru-
mentation mechanism. If they prove to have
as low dormant cost and as high active perfor-
mance as initial experience suggests, perhaps
this could motivate the various tracing efforts
and kernel subsystem developers to finally join
forces. Let’s designate standard trace/probe
points once and for all. Tracing backends can
attach to these markers the same way system-
tap would. There would be no need for them to
maintain kernel patches any more. Let’s think
about it.

References

[1] Daniel Berranger.
http://people.redhat.com/

berrange/systemtap/bootprobe/,
January 2006.

[2] Dave Jones. Why Userspace Sucks. In
Proceedings of the 2006 Ottawa Linux
Symposium, July 2006.

[3] Ananth N. Mavinakayanahalli et al.
Probing the Guts of Kprobes. In
Proceedings of the 2006 Ottawa Linux
Symposium, July 2006.

2006 Linux Symposium, Volume One • 267

[4] Vara Prasad et al. Dynamic
Instrumentation of Production Systems. In
Proceedings of the 2005 Ottawa Linux
Symposium, volume 2, pages 49–64, July
2005.

268 • Problem Solving With Systemtap

cat socket-trace.stp
probe kernel.function("*@net/socket.c") {
printf ("%s -> %s\n", thread_indent(1), probefunc())

}
probe kernel.function("*@net/socket.c").return {
printf ("%s <- %s\n", thread_indent(-1), probefunc())

}

stap socket-trace.stp
0 hald(2632): -> sock_poll
28 hald(2632): <- sock_poll

[...]
0 ftp(7223): -> sys_socketcall

1159 ftp(7223): -> sys_socket
2173 ftp(7223): -> __sock_create
2286 ftp(7223): -> sock_alloc_inode
2737 ftp(7223): <- sock_alloc_inode
3349 ftp(7223): -> sock_alloc
3389 ftp(7223): <- sock_alloc
3417 ftp(7223): <- __sock_create
4117 ftp(7223): -> sock_create
4160 ftp(7223): <- sock_create
4301 ftp(7223): -> sock_map_fd
4644 ftp(7223): -> sock_map_file
4699 ftp(7223): <- sock_map_file
4715 ftp(7223): <- sock_map_fd
4732 ftp(7223): <- sys_socket
4775 ftp(7223): <- sys_socketcall

[...]

Figure 1: Tracing and timing functions in net/sockets.c.

Perfmon2: a flexible performance monitoring interface
for Linux

Stéphane Eranian
HP Labs

eranian@hpl.hp.com

Abstract

Monitoring program execution is becoming
more than ever key to achieving world-class
performance. A generic, flexible, and yet pow-
erful monitoring interface to access the perfor-
mance counters of modern processors has been
designed. This interface allows performance
tools to collect simple counts or profiles on a
per kernel thread or system-wide basis. It in-
troduces several innovations such as customiz-
able sampling buffer formats, time or overflow-
based multiplexing of event sets. The cur-
rent implementation for the 2.6 kernel supports
all the major processor architectures. Several
open-source and commercial tools based on in-
terface are available. We are currently working
on getting the interface accepted into the main-
line kernel. This paper presents an overview of
the interface.

1 Introduction

Performance monitoring is the action of col-
lecting information about the execution of a
program. The type of information collected de-
pends on the level at which it is collected. We
distinguish two levels:

• the program level: the program is instru-
mented by adding explicit calls to routines
that collect certain metrics. Instrumenta-
tion can be inserted by the programmer or
the compiler, e.g., the -pg option of GNU
cc. Tools such as HP Caliper [5] or Intel
PIN [17] can also instrument at runtime.
With those tools, it is possible to collect,
for instance, the number of times a func-
tion is called, the number of time a basic
block is entered, a call graph, or a memory
access trace.

• the hardware level: the program is not
modified. The information is collected by
the CPU hardware and stored in perfor-
mance counters. They can be exploited
by tools such as OProfile and VTUNE on
Linux. The counters measure the micro-
architectural behavior of the program, i.e.,
the number of elapsed cycles, how many
data cache stalls, how many TLB misses.

When analyzing the performance of a pro-
gram, a user must answer two simple ques-
tions: where is time spent and why is spent time
there? Program-level monitoring can, in many
situations and with some high overhead, answer
the first, but the second question is best solved
with hardware-level monitoring. For instance,
gprof can tell you that a program spends 20%
of its time in one function. The difficulty is

270 • Perfmon2: a flexible performance monitoring interface for Linux

to know why. Is this because the function is
called a lot? Is this due to algorithmic prob-
lems? Is it because the processor stalls? If so,
what is causing the stalls? As this simple ex-
ample shows, the two levels of monitoring can
be complementary.

The current CPU hardware trends are increas-
ing the need for powerful hardware monitor-
ing. New hardware features present the op-
portunity to gain considerable performance im-
provements through software changes. To ben-
efit from a multi-threaded CPU, for instance,
a program must become multi-threaded itself.
To run well on a NUMA machine, a program
must be aware of the topology of the machine
to adjust memory allocations and thread affinity
to minimize the number of remote memory ac-
cesses. On the Itanium [3] processor architec-
ture, the quality of the code produced by com-
pilers is a big factor in the overall performance
of a program, i.e, the compiler must extract the
parallelism of the program to take advantage of
the hardware.

Hardware-based performance monitoring can
help pinpoint problems in how software uses
those new hardware features. An operating sys-
tem scheduler can benefit from cache profiles
to optimize placement of threads to avoiding
cache thrashing in multi-threaded CPUs. Static
compilers can use performance profiles to im-
prove code quality, a technique called Profile-
Guided Optimization (PGO). Dynamic compil-
ers, in Managed Runtime Environments (MRE)
can also apply the same technique. Profile-
Guided Optimizations can also be applied di-
rectly to a binary by tools such as iSpike [11].
In virtualized environments, such as Xen [14],
system managers can also use monitoring infor-
mation to guide load balancing. Developers can
also use this information to optimize the lay-
out of data structures, improve data prefetch-
ing, analyze code paths [13]. Performance pro-
files can also be used to drive future hardware

requirements such as cache sizes, cache laten-
cies, or bus bandwidth.

Hardware performance counters are logically
implemented by the Performance Monitoring
Unit (PMU) of the CPU. By nature, this is a
fairly complex piece of hardware distributed all
across the chip to collect information about key
components such as the pipeline, the caches,
the CPU buses. The PMU is, by nature, very
specific to each processor implementation, e.g.,
the Pentium M and Pentium 4 PMUs [9] have
not much in common. The Itanium proces-
sor architecture specifies the framework within
which the PMU must be implemented which
helps develop portable software.

One of the difficulties to standardize on a per-
formance monitoring interface is to ensure that
it supports all existing and future PMU mod-
els without preventing access to some of their
model specific features. Indeed, some models,
such as the Itanium 2 PMU [8], go beyond just
counting events, they can also capture branch
traces, where cache misses occur, or filter on
opcodes.

In Linux and across all architectures, the wealth
of information provided by the PMU is often-
times under-exploited because a lack of a flex-
ible and standardized interface on which tools
can be developed.

In this paper, we give an overview of perfmon2,
an interface designed to solve this problem for
all major architectures. We begin by reviewing
what Linux offers today. Then, we describe the
various key features of this new interface. We
conclude with the current status and a short de-
scription of the existing tools.

2 Existing interfaces

The problem with performance monitoring in
Linux is not the lack of interface, but rather the

2006 Linux Symposium, Volume One • 271

multitude of interfaces. There are at least three
interfaces:

• OProfile [16]: it is designed for DCPI-
style [15] system-wide profiling. It is sup-
ported on all major architectures and is en-
abled by major Linux distributions. It can
generate a flat profile and a call graph per
program. It comes with its own tool set,
such as opcontrol. Prospect [18] is an-
other tool using this interface.

• perfctr [12]: it supports per-kernel-thread
and system-wide monitoring for most ma-
jor processor architectures, except for Ita-
nium. It is distributed as a stand-alone ker-
nel patch. The interface is mostly used by
tools built on top of the PAPI [19] perfor-
mance toolkit.

• VTUNE [10]: the Intel VTUNE perfor-
mance analyzer comes with its own kernel
interface, implemented by an open-source
driver. The interface supports system-
wide monitoring only and is very specific
to the needs of the tool.

All these interfaces have been designed with a
specific measurement or tool in mind. As such,
their design is somewhat limited in scope, i.e.,
they typically do one thing very well. For in-
stance, it is not possible to use OProfile to count
the number of retired instructions in a thread.
The perfctr interface is the closest match to
what we would like to build, yet it has some
shortcomings. It is very well designed and
tuned for self-monitoring programs but sam-
pling support is limited, especially for non self-
monitoring configurations.

With the current situation, it is not necessarily
easy for developers to figure out how to write
or port their tools. There is a question of func-
tionalities of each interfaces and then, a ques-
tion of distributions, i.e., which interface ships

with which distribution. We believe this situa-
tion does not make it attractive for developers
to build modern tools on Linux. In fact, Linux
is lagging in this area compared to commercial
operating systems.

3 Design choices

First of all, it is important to understand why a
kernel interface is needed. A PMU is accessi-
ble through a set of registers. Typically those
registers are only accessible, at least for writ-
ing, at the highest privilege level of execution
(pl0 or ring0) which is where only the kernel
executes. Furthermore, a PMU can trigger in-
terrupts which need kernel support before they
can be converted into a notification to a user-
level application such as a signal, for instance.
For those reasons, the kernel needs to provide
an interface to access the PMU.

The goal of our work is to solve the hardware-
based monitoring interface problem by design-
ing a single, generic, and flexible interface that
supports all major processor architectures. The
new interface is built from scratch and intro-
duces several innovations. At the same time,
we recognize the value of certain features of
the other interfaces and we try to integrate them
wherever possible.

The interface is designed to be built into the
kernel. This is the key for developers, as it
ensures that the interface will be available and
supported in all distributions.

To the extent possible, the interface must al-
low existing monitoring tools to be ported with-
out many difficulties. This is useful to ensure
undisrupted availability of popular tools such
as VTUNE or OProfile, for instance.

The interface is designed from the bottom up,
first looking at what the various processors pro-

272 • Perfmon2: a flexible performance monitoring interface for Linux

vide and building up an operating system in-
terface to access the performance counters in a
uniform fashion. Thus, the interface is not de-
signed for a specific measurement or tool.

There is efficient support for per-thread mon-
itoring where performance information is col-
lected on a kernel thread basis, the PMU state is
saved and restored on context switch. There is
also support for system-wide monitoring where
all threads running on a CPU are monitored and
the PMU state persists across context switches.

In either mode, it is possible to collect simple
counts or profiles. Neither applications nor the
Linux kernel need special compilation to en-
able monitoring. In per-thread mode, it is pos-
sible to monitor unmodified programs or multi-
threaded programs. A monitoring session can
be dynamically attached and detached from a
running thread. Self-monitoring is supported
for both counting and profiling.

The interface is available to regular users and
not just system administrators. This is espe-
cially important for per-thread measurements.
As a consequence, it is not possible to assume
that tools are necessarily well-behaved and the
interface must prevent malicious usage.

The interface provides a uniform set of fea-
tures across platforms to maximize code re-use
in performance tools. Measurement limitations
are mandated by the PMU hardware not the
software interface. For instance, if a PMU does
not capture where cache misses occur, there
is nothing the interface nor its implementation
can do about it.

The interface must be extensible because we
want to support a variety of tools on very dif-
ferent hardware platforms.

4 Core Interface

The interface leverages a common property of
all PMU models which is that the hardware in-
terface always consists of a set of configura-
tion registers, that we call PMC (Performance
Monitor Configuration), and a set of data reg-
isters, that we call PMD (Performance Moni-
tor Data). Thus, the interface provides basic
read/write access to the PMC/PMD registers.

Across all architectures, the interface exposes
a uniform register-naming scheme using the
PMC and PMD terminology inherited from the
Itanium processor architecture. As such, appli-
cations actually operate on a logical PMU. The
mapping from the logical to the actual PMU is
described in Section 4.3.

The whole PMU machine state is represented
by a software abstraction called a perfmon con-
text. Each context is identified and manipulated
using a file descriptor.

4.1 System calls

The interface is implemented with multiple sys-
tem calls rather than a device driver. Per-
thread monitoring requires that the PMU ma-
chine state be saved and restored on context
switch. Access to such routine is usually pro-
hibited for drivers. A system call provides more
flexibility than ioctl for the number, type,
and type checking of arguments. Furthermore,
system calls reinforce our goal of having the in-
terface be an integral part of the kernel, and not
just an optional device driver.

The list of system calls is shown in Table 1.
A context is created by the pfm_create_

context call. There are two types of contexts:
per-thread or system-wide. The type is deter-
mined when the context is created. The same
set of functionalities is available to both types

2006 Linux Symposium, Volume One • 273

int pfm_create_context(pfarg_ctx_t *c, void *s, size_t s)
int pfm_write_pmcs(int f, pfarg_pmc_t *p, int c)
int pfm_write_pmds(int f, pfarg_pmd_t *p, int c)
int pfm_read_pmds(int f, pfarg_pmd_t *p, int c)
int pfm_load_context(int f, pfarg_load_t *l)
int pfm_start(int fd, pfarg_start_t *s)
int pfm_stop(int f)
int pfm_restart(int f)
int pfm_create_evtsets(int f, pfarg_setdesc_t *s, int c)
int pfm_getinfo_evtsets(int f, pfarg_setinfo_t *i, int c)
int pfm_delete_evtsets(int f, pfarg_setdesc_t *s, int c)
int pfm_unload_context(int f)

Table 1: perfmon2 system calls

of context. Upon return from the call, the con-
text is identified by a file descriptor which can
then be used with the other system calls.

The write operations on the PMU registers are
provided by the pfm_write_pmcs and pfm_

write_pmds calls. It is possible to access
more than one register per call by passing a
variable-size array of structures. Each structure
consists, at a minimum, of a register index and
value plus some additional flags and bitmasks.

An array of structures is a good compromise
between having a call per register, i.e., one reg-
ister per structure per call, and passing the en-
tire PMU state each time, i.e., one large struc-
ture per call for all registers. The cost of a sys-
tem call is amortized, if necessary, by the fact
that multiple registers are accessed, yet flexibil-
ity is not affected because the size of the array
is variable. Furthermore, the register structure
definition is generic and is used across all ar-
chitectures.

The PMU can be entirely programmed before
the context is attached to a thread or CPU. Tools
can prepare a pool of contexts and later attach
them on-the-fly to threads or CPUs.

To actually load the PMU state onto the ac-
tual hardware, the context must be bound to ei-
ther a kernel thread or a CPU with the pfm_

load_context call. Figure 1 shows the ef-
fect of the call when attaching to a thread of

file table pfm_context pfm_contextfile table

kernel
user

fd

monitoring tool monitored process

fd

controlling process monitored process

before pfm_load_context()

m

after pfm_load_context(12)

12 14 12 14

Figure 1: attaching to a thread

a dual-threaded process. A context can only
be bound to one thread or CPU at a time. It
is not possible to bind more than one context
to a thread or CPU. Per-thread monitoring and
system-wide monitoring are currently mutually
exclusive. By construction, multiple concurrent
per-thread contexts can co-exist. Potential con-
flicts are detected when the context is attached
and not when it is created.

An attached context persists across a call to
exec. On fork or pthread_create, the
context is not automatically cloned in the new
thread because it does not always make sense
to aggregate results or profiles from child pro-
cesses or threads. Monitoring tools can lever-
age the 2.6 kernel ptrace interface to receive
notifications on the clone system call to de-
cide whether or not to monitor a new thread or
process. Because the context creation and at-
tachment are two separate operations, it is pos-
sible to batch creations and simply attach and
start on notification.

Once the context is attached, monitoring can be
started and stopped using the pfm_start and
pfm_stop calls. The values of the PMD regis-
ters can be extracted with the pfm_read_pmds
call. A context can be detached with pfm_

unload_context. Once detached the context
can later be re-attached to any thread or CPU if
necessary.

A context is destroyed using a simple close

274 • Perfmon2: a flexible performance monitoring interface for Linux

call. The other system calls listed in Table 1 re-
late to sampling or event sets and are discussed
in later sections.

Many 64-bit processor architectures provide
the ability to run with a narrow 32-bit instruc-
tion set. For instance, on Linux for x86_64,
it is possible to run unmodified 32-bit i386 bi-
naries. Even though, the PMU is very imple-
mentation specific, it may be interesting to de-
velop/port tools in 32-bit mode. To avoid data
conversions in the kernel, the perfmon2 ABI is
designed to be portable between 32-bit (ILP32)
and 64-bit (LP64) modes. In other words, all
the data structures shared with the kernel use
fixed-size data types.

4.2 System-wide monitoring

fd1 fd2

CPU1CPU0

monitoring tool

user
kernel

worker processes

Figure 2: monitoring two CPUs

A perfmon context can be bound to only one
CPU at a time. The CPU on which the call to
pfm_load_context is executed determines
the monitored CPU. It is necessary to set the
affinity of the calling thread to ensure that it
runs on the CPU to monitor. The affinity can

later be modified, but all operations requiring
access to the actual PMU must be executed on
the monitored CPU, otherwise they will fail. In
this setup, coverage of a multi-processor sys-
tem (SMP), requires that multiple contexts be
created and bound to each CPU to monitor.
Figure 2 shows a possible setup for a moni-
toring tool on a 2-way system. Multiple non-
overlapping system-wide attached context can
co-exist.

The alternative design is to have the kernel
propagate the PMU access to all CPUs of inter-
est using Inter-Processor-Interrupt (IPI). Such
approach does make sense if all CPUs are al-
ways monitored. This is the approach chosen
by OProfile, for instance.

With the perfmon2 approach, it is possible to
measure subsets of CPUs. This is very inter-
esting for large NUMA-style or multi-core ma-
chines where all CPUs do not necessarily run
the same workload. And even then, with a uni-
form workload, it possible to divide the CPUs
into groups and capture different events in each
group, thereby overlapping distinct measure-
ments in one run. Aggregation of results can
be done by monitoring tools, if necessary.

It is relatively straightforward to construct a
user-level helper library that can simplify mon-
itoring multiple CPUs from a single thread of
control. Internally, the library can pin threads
on the CPUs of interest. Synchronization be-
tween threads can easily be achieved using a
barrier built with the POSIX-threads primitives.
We have developed and released such a library
as part of the libpfm [6] package.

Because PMU access requires the controlling
thread to run on the monitored CPU, proces-
sor and memory affinity are inherently enforced
thereby minimizing overhead which is impor-
tant when sampling in NUMA machines. Fur-
thermore, this design meshes well with certain
PMU features such as the Precise-Event-Based

2006 Linux Symposium, Volume One • 275

Sampling (PEBS) support of the Pentium 4 pro-
cessor (see Section 5.4 for details).

4.3 Logical PMU

PMU register names and implementations are
very diverse. On the Itanium processor archi-
tecture, they are implemented by actual PMC
and PMD indirect registers. On the AMD
Opteron [1] processors, they are called PERF-
SEL and PERFCTR indirect registers but are
actually implemented by MSR registers. A
portable tool would have to know about those
names and the interface would have to change
from one architecture to another to accommo-
date the names and types of the registers for the
read and write operations. This would defeat
our goal of having a uniform interface on all
platforms.

To mask the diversity without compromising
access to all PMU features, the interface ex-
poses a logical PMU. This PMU is tailored to
the underlying hardware PMU for properties
such as the number of registers it implements.
But it also guarantees the following properties
across all architectures:

• the configuration registers are called PMC
registers and are managed as 64-bit wide
indirect registers

• the data registers are called PMD registers
and are managed as 64-bit wide indirect
registers

• counters are 64-bit wide unsigned integers

The mapping of PMC/PMD to actual PMU reg-
isters is defined by a PMU description table
where each entry provides the default value, a
bitmask of reserved fields, and the actual name
of the register. The mapping is defined by the

implementation and is accessible via a sysfs
interface.

The routine to access the actual register is part
of the architecture specific part of a perfmon2
implementation. For instance, on Itanium 2
processor, the mapping is defined such that the
index in the table corresponds to the index of
the actual PMU register, e.g., logical PMD0
corresponds to actual PMD0. The read function
consists of a single mov rXX=pmd[0] instruc-
tion. On the Pentium M processor however, the
mapping is defined as follows:

% cat /sys/kernel/perfmon/pmu_desc/mappings

PMC0:0x100000:0xffcfffff:PERFEVTSEL0

PMC1:0x100000:0xffcfffff:PERFEVTSEL1

PMD0:0x0:0xffffffffffffffff:PERFCTR0

PMD1:0x0:0xffffffffffffffff:PERFCTR1

When a tool writes to register PMD0, it writes
to register PERFEVTSEL0. The actual regis-
ter is implemented by MSR 0x186. There
is an architecture specific section of the PMU
description table that provides the mapping to
the MSR. The read function consist of a single
rdmsr instruction.

On the Itanium 2 processors, we use this map-
ping mechanism to export the code (IBR) and
data (DBR) debug registers as PMC registers
because they can be used to restrict monitoring
to a specific range of code or data respectively.
There was no need to create an Itanium 2 pro-
cessor specific system call in the interface to
support this useful feature.

To make applications more portable, counters
are always exposed as 64-bit wide unsigned in-
tegers. This is particularly interesting when
sampling, see Section 5 for more details. Usu-
ally, PMUs implement narrower counters, e.g.,
47 bits on Itanium 2 PMU, 40 bits on AMD
Opteron PMU. If necessary, each implemen-
tation must emulate 64-bit counters. This can
be accomplished fairly easily by leveraging the

276 • Perfmon2: a flexible performance monitoring interface for Linux

counter overflow interrupt capability present on
all modern PMUs. Emulation can be turned off
by applications on a per-counter basis, if neces-
sary.

Oftentimes, it is interesting to associate PMU-
based information with non-PMU based infor-
mation such as an operating system resource
or other hardware resource. For instance, one
may want to include the time since monitoring
has been started, the number of active networks
connections, or the identification of the current
process in a sample. The perfctr interface pro-
vides this kind of information, e.g., the virtual
cycle counter, through a kernel data structure
that is re-mapped to user level.

With perfmon2, it is possible to leverage the
mapping table to define Virtual PMD regis-
ters, i.e., registers that do not map to actual
PMU or PMU-related registers. This mecha-
nism provides a uniform and extensible nam-
ing and access interface for those resources.
Access to new resources can be added with-
out breaking the ABI. When a tool invokes
pfm_read_pmds on a virtual PMD register, a
read call-back function, provided by the PMU
description table, is invoked and returns a 64-
bit value for the resource.

4.4 PMU description module

Hardware and software release cycles do not al-
ways align correctly. Although Linux kernel
patches are produced daily on the kernel.
org web site, most end-users really run pack-
aged distributions which have a very differ-
ent development cycle. Thus, new hardware
may become available before there is an ac-
tual Linux distribution ready. Similarly, pro-
cessors may be revised and new steppings may
fix bugs in the PMU. Although providing up-
dates is fairly easy nowadays, end-users tend to
be reluctant to patch and recompile their own
kernels.

It is important to understand that monitoring
tool developers are not necessarily kernel de-
velopers. As such, it is important to provide
simple mechanisms whereby they can enable
early access to new hardware, add virtual PMD
registers and run experimentations without full
kernel patching and recompiling.

There are no technical reasons for having the
PMU description tables built into the kernel.
With a minimal framework, they can as well
be implemented by kernel modules where they
become easier to maintain. The perfmon2 in-
terface provides a framework where a PMU de-
scription module can be dynamically inserted
into the kernel at runtime. Only one module can
be inserted at a time. When new hardware be-
comes available, assuming there is no changes
needed in the architecture specific implementa-
tion, a new description module can be provided
quickly. Similarly, it becomes easy to experi-
ment with virtual PMD registers by modifying
the description table and not the interface nor
the core implementation.

5 Sampling Support

Statistical Sampling or profiling is the act of
recording information about the execution of
a program at some interval. The interval is
commonly expressed in units of time, e.g., ev-
ery 20ms. This is called Time-Based sampling
(TBS). But the interval can also be expressed
in terms of a number of occurrences of a PMU
event, e.g., every 2000 L2 cache misses. This is
called Event-Based sampling (EBS). TBS can
easily be emulated with EBS by using an event
with a fixed correlation to time, e.g., the num-
ber of elapsed cycles. Such emulation typically
provides a much finer granularity than the op-
erating system timer which is usually limited to
millisecond at best. The interval, regardless of
its unit, does not have to be constant.

2006 Linux Symposium, Volume One • 277

At the end of an interval, the information is
stored into a sample which may contain infor-
mation as simple as where the thread was, i.e.,
the instruction pointer. It may also include val-
ues of some PMU registers or other hardware
or software resources.

The quality of a profile depends mostly on the
duration of the run and the number of samples
collected. A good profile can provide a lot of
useful information about the behavior of a pro-
gram, in particular it can help identify bottle-
necks. The difficulty is to manage to overhead
involved with sampling. It is important to make
sure that sampling does not perturb the execu-
tion of the monitored program such that it does
not exhibit its normal behavior. As the sam-
pling interval decreases, overhead increases.

The perfmon2 interface has an extensive set of
features to support sampling. It is possible to
manage sampling completely at the user level.
But there is also kernel-level support to mini-
mize the overhead. The interface provides sup-
port for EBS.

5.1 Sampling periods

All modern PMUs implement a counter over-
flow interrupt mechanism where the proces-
sor generates an interrupt whenever a counter
wraps around to zero. Using this mechanism
and supposing a 64-bit wide counter, it is pos-
sible to implement EBS by expressing a sam-
pling period p as 264 − p or in two’s comple-
ment arithmetics as −p. After p occurrences,
the counter overflows, an interrupt is generated
indicating that a sample must be recorded.

Because all counters are 64-bit unsigned in-
tegers, tools do not have to worry about the
actual width of counters when setting the pe-
riod. When 64-bit emulation is needed, the
implementation maintains a 64-bit software

hwPMD fffe7960

ffffffff fffe7960

32 bits 32 bits

ffffffff

32 bits

swPMD 0

value = −100000 =

Figure 3: 64-bit counter emulation

value and loads only the low-order bits onto
the actual register as shown in Figure 3. An
EBS overflow is declared only when the 64-bit
software-maintained value overflows.

The interface does not have the notion of a sam-
pling period, all it knows about is PMD values.
Thus a sampling period p, is programmed into
a PMD by setting its value to −p. The num-
ber of sampling periods is only limited by the
number of counters. Thus, it is possible to over-
lap sampling measurements to collect multiple
profiles in one run.

For each counter, the interface provides three
values which are used as follows:

• value: the value loaded into the PMD reg-
ister when the context is attached. This is
the initial value.

• long_reset: the value to reload into the
PMD register after an overflow with user-
level notification.

• short_reset: the value to reload into the
PMD register after an overflow with no
user-level notification.

The three values can be used to try and mask
some of the overhead involved with sampling.
The initial period would typically be large be-
cause it is not always interesting to capture
samples in initialization code. The long and
short reset values can be used to mask the noise
generated by the PMU interrupt handler. We
explain how they are used in Section 5.3.

278 • Perfmon2: a flexible performance monitoring interface for Linux

5.2 Overflow notifications

To support sampling at the user level, it is nec-
essary to inform the tool when a 64-bit over-
flow occurs. The notification can be requested
per counter and is sent as a message. There is
only one notification per interrupt even when
multiple counters overflow at the same time.

Each perfmon context has a fixed-depth mes-
sage queue. The fixed-size message contains
information about the overflow such as which
counter(s) overflowed, the instruction pointer,
the current CPU at the time of the overflow.
Each new message is appended to the queue
which is managed as a FIFO.

Instead of re-inventing yet another notification
mechanism, existing kernel interfaces are lever-
aged and messages are extracted using a simple
read call on the file descriptor of the context.
The benefit is that common interfaces such as
select or poll can be used to wait on mul-
tiple contexts at the same time. Similarly, asyn-
chronous notifications via SIGIO are also sup-
ported.

Regular file descriptor sharing semantic ap-
plies, thus it is possible to delegate notification
processing to a specific thread or child process.

During a notification, monitoring is stopped.
When monitoring another thread, it is possi-
ble to request that this thread be blocked while
the notification is being processed. A tool may
choose the block on notification option when
the context is created. Depending on the type
of sampling, it may be interesting to have the
thread run just to keep the caches and TLB
warm, for instance.

Once a notification is processed, the pfm_

restart function is invoked. It is used to reset
the overflowed counters using their long reset
value, to resume monitoring, and potentially to
unblock the monitored thread.

5.3 Kernel sampling buffer

It is quite expensive to send a notification to
user level for each sample. This is particularly
bad when monitoring another thread because
there could be, at least, two context switches
per overflow and a couple of system calls.

One way to minimize this cost, it is to amor-
tize it over a large set of samples. The idea is
to have the kernel directly record samples into
a buffer. It is not possible to take page faults
from the PMU interrupt handler, usually a high
priority handler. As such the memory would
have to be locked, an operation that is typi-
cally restricted to privileged users. As indicated
earlier, sampling must be available to regular
users, thus, the buffer is allocated by the kernel
and marked as reserved to avoid being paged
out.

When the buffer becomes full, the monitoring
tool is notified. A similar approach is used by
the OProfile and VTUNE interfaces. Several
issues must be solved for the buffer to become
useable:

• how to make the kernel buffer accessible
to the user?

• how to reset the PMD values after an over-
flow when the monitoring tool is not in-
volved?

• what format for the buffer?

The buffer can be made available via a read
call. This is how OProfile and VTUNEwork.
Perfmon2 uses a different approach to try and
minimize overhead. The buffer is re-mapped
read-only into the user address space of the
monitoring tool with a call to mmap, as shown
in Figure 4. The content of the buffer is guaran-
teed consistent when a notification is received.

2006 Linux Symposium, Volume One • 279

file table file tablepfm_context

monitoring tool

fd

user

kernel

sampling buffer

pfm_context

monitoring tool

fd

user
kernel

sampling buffer

after pfm_create_context() after mmap()

Figure 4: re-mapping the sampling buffer

On counter overflow, the kernel needs to know
what value to reload into an overflowed PMD
register. This information is passed, per reg-
ister, during the pfm_write_pmd call. If the
buffer does not become full, the kernel uses the
short reset value to reload the counter.

When the buffer becomes full, monitoring is
stopped and a notification is sent. Reset is de-
ferred until the monitoring tool invokes pfm_
restart, at which point, the buffer is marked
as empty, the overflowed counter is reset with
the long reset value and monitoring resumes.

long period short period

monitoring active
program executes

recovery period

short period short period

program executes
monitoring active

stopped
monitoring

processing
overflow

Figure 5: short vs. long reset values.

The distinction between long and short reset
values allows tools to specify a different, po-
tentially larger value, for the first period after an
overflow notification. It is very likely that the
user-level notification and subsequent process-
ing will modify the CPU state, e.g., caches and
TLB, such that when monitoring resumes, the
execution will enter a recovery phase where its
behavior may be different from what it would
have been without monitoring. Depending on

the type of sampling, the long vs. short reset
values can be leveraged to hide that recovery
period. This is demonstrated in Figure 5 which
shows where the long reset value is used after
overflow processing is completed. Of course,
the impact and duration of the recovery period
is very specific to each workload and CPU.

It is possible to request, per counter, that both
reset values be randomized. This is very use-
ful to avoid biased samples for certain mea-
surements. The pseudo-random number gen-
erator does not need to be very fancy, simple
variation are good enough. The randomization
is specified by a seed value and a bitmask to
limit the range of variation. For instance, a
mask of 0xff allows a variation in the inter-
val [0-255] from the base value. The exist-
ing implementation uses the Carta [2] pseudo-
random number generator because it is simple
and very efficient.

A monitoring tool may want to record the val-
ues of certain PMD registers in each sample.
Similarly, after each sample, a tool may want to
reset certain PMD registers. This could be used
to compute event deltas, for instance. Each
PMD register has two bitmasks to convey this
information to the kernel. Each bit in the bit-
mask represents a PMD register, e.g., bit 1 rep-
resents PMD1. Let us suppose that on overflow
of PMD4, a tool needs to record PMD6 and
PMD7 and then reset PMD7. In that case, the
tool would initialize the sampling bitmask of
PMD4 to 0xc0 and the reset bitmask to 0x80.

With a kernel-level sampling buffer, the for-
mat in which samples are stored and what
gets recorded becomes somehow fixed and it is
more difficult to evolve. Monitoring tools can
have very diverse needs. Some tools may want
to store samples sequentially into the buffer,
some may want to aggregate them immediately,
others may want to record non PMU-based in-
formation, e.g., the kernel call stack.

280 • Perfmon2: a flexible performance monitoring interface for Linux

As indicated earlier, it is important to ensure
that existing interfaces such as OProfile or
VTUNE, both using their own buffer formats,
can be ported without having to modify a lot of
their code. Similarly, It is important to ensure
the interface can take advantage of advanced
PMU support sampling such as the PEBS fea-
ture of the Pentium 4 processor.

Preserving a high level of flexibility for the
buffer, while having it fully specified into the
interface did not look very realistic. We re-
alized that it would be very difficult to come
up with a universal format that would satisfy
all needs. Instead, the interface uses a radi-
cally different approach which is described in
the next section.

5.4 Custom Sampling Buffer Formats

kernel

user
user interface

core
perfmon custom sampling

format

user interface

cu
st

om
 fo

rm
at

 in
te

rfa
ce

sa
m

pl
in

g
fo

rm
at

 in
te

rfa
ce

Figure 6: Custom sampling format architecture

The interface introduces a new flexible mecha-
nism called Custom Sampling Buffer Formats,
or formats for short. The idea is to remove
the buffer format from the interface and instead
provide a framework for extending the interface
via specific sampling formats implemented by
kernel modules. The architecture is shown in
Figure 6.

Each format is uniquely identified by a 128-bit
Universal Unique IDentifier (UUID) which can
be generated by commands such as uuidgen.
In order to use a format, a tool must pass this
UUID when the context is created. It is possible

to pass arguments, such as the buffer size, to a
format when a context is created.

When the format module is inserted into the
kernel, it registers with the perfmon core via
a dedicated interface. Multiple formats can be
registered. The list of available formats is ac-
cessible via a sysfs interface. Formats can
also be dynamically removed like any other
kernel module.

Each format provides a set of call-backs func-
tions invoked by the perfmon core during cer-
tain operations. To make developing a format
fairly easy, the perfmon core provides certain
basic services such as memory allocation and
the ability to re-map the buffer, if needed. For-
mats are not required to use those services.
They may, instead, allocate their own buffer
and expose it using a different interface, such
as a driver interface.

At a minimum, a format must provide a call-
back function invoked on 64-bit counter over-
flow, i.e., an interrupt handler. That handler
does not bypass the core PMU interrupt han-
dler which controls 64-bit counter emulation,
overflow detection, notification, and monitor-
ing masking. This layering make it very simple
to write a handler. Each format controls:

• how samples are stored

• what gets recorded on overflow

• how the samples are exported to user-level

• when an overflow notification must be sent

• whether or not to reset counters after an
overflow

• whether or not to mask monitoring after an
overflow

2006 Linux Symposium, Volume One • 281

The interface specifies a simple and relatively
generic default sampling format that is built-
in on all architectures. It stores samples se-
quentially in the buffer. Each sample has a
fixed-size header containing information such
as the instruction pointer at the time of the
overflow, the process identification. It is fol-
lowed by a variable-size body containing 64-
bit PMD values stored in increasing index or-
der. Those PMD values correspond to the infor-
mation provided in the sampling bitmask of the
overflowed PMD register. Buffer space is man-
aged such that there can never be a partial sam-
ple. If multiple counters overflow at the same
time, multiple contiguous samples are written.

Using the flexibility of formats, it was fairly
easy to port the OProfile kernel code over
to perfmon2. An new format was created to
connect the perfmon2 PMU and OProfile
interrupt handlers. The user-level OProfile,
opcontrol tool was migrated over to use the
perfmon2 interface to program the PMU. The
resulting format is about 30 lines of C code.
The OProfile buffer format and management
kernel code was totally preserved.

Other formats have been developed since then.
In particular we have released a format that
implements n-way buffering. In this format,
the buffer space is split into equal-size regions.
Samples are stored in one region, when it fills
up, the tool is notified but monitoring remains
active and samples are stored in the next region.
This idea is to limit the number of blind spots
by never stopping monitoring on counter over-
flow.

The format mechanism proved particularly use-
ful to implement support for the Pentium 4 pro-
cessor Precise Event-Based Sampling (PEBS)
feature where the CPU is directly writing sam-
ples to a designated region of memory. By
having the CPU write the samples, the skew
observed on the instruction pointer with typ-
ical interrupt-based sampling can be avoided,

thus a much improved precision of the sam-
ples. That skew comes from the fact that the
PMU interrupt is not generated exactly on the
instruction where the counter overflowed. The
phenomenon is especially important on deeply-
pipelined processor implementations, such as
Pentium 4 processor. With PEBS, there is a
PMU interrupt when the memory region given
to the CPU fills up.

The problem with PEBS is that the sample for-
mat is now fixed by the CPU and it cannot be
changed. Furthermore, the format is different
between the 32-bit and 64-bit implementations
of the CPU. By leveraging the format infras-
tructure, we created two new formats, one for
32-bit and one for 64-bit PEBS with less than
one hundred lines of C code each. Perfmon2
is the first to provide support for PEBS and it
required no changes to the interface.

6 Event sets and multiplexing

On many PMU models, the number of coun-
ters is fairly limited yet certain measurements
require lots of events. For instance, on the Ita-
nium 2 processor, it takes about a dozen events
to gather a cycle breakdown, showing how each
CPU cycle is spent, yet there are only 4 coun-
ters. Thus, it is necessary to run the workload
under test multiple times. This is not always
very convenient as workloads sometimes can-
not be stopped or are long to restart. Further-
more, this inevitably introduces fluctuations in
the collected counts which may affect the accu-
racy of the results.

Even with a large number of counters, e.g., 18
for the Pentium 4 processor, there are still hard-
ware constraints which make it difficult to col-
lect some measurements in one run. For in-
stance, it is fairly common to have constraints
such as:

282 • Perfmon2: a flexible performance monitoring interface for Linux

• event A and B cannot be measured to-
gether

• event A can only be measured on counter
C.

Those constraints are unlikely to go away in
the future because that could impact the perfor-
mance of CPUs. An elegant solution to these
problems is to introduce the notion of events
sets where each set encapsulates the full PMU
machine state. Multiple sets can be defined and
they are multiplexed on the actual PMU hard-
ware such that only one set if active at a time.
At the end of the multiplexed run, the counts
are scaled to compute an estimate of what they
would have been, had they been collected for
the entire duration of the measurement.

The accuracy of the scaled counts depends a
lot of the switch frequency and the workload,
the goal being to avoid blind spots where cer-
tain events are not visible because the set that
measures them did not activate at the right time.
The key point is to balance to the need for high
switch frequency with higher overhead.

Sets and multiplexing can be implemented to-
tally at the user level and this is done by the
PAPI toolkit, for instance. However, it is criti-
cal to minimize the overhead especially for non
self-monitoring measurements where it is ex-
tremely expensive to switch because it could in-
cur, at least, two context switches and a bunch
of system calls to save the current PMD val-
ues, reprogram the new PMC and PMD regis-
ters. During that window of time the monitored
thread usually keeps on running opening up a
large blind spot.

The perfmon2 interface supports events sets
and multiplexing at the kernel level. Switch-
ing overhead is significantly minimized, blind
spots are eliminated by the fact that switching
systematically occurs in the context of the mon-
itored thread.

Sets and multiplexing is supported for per-
thread and system-wide monitoring and for
both counting and sampling measurements.

6.1 Defining sets

0 5

3 50

0

pfm_context

sets

after pfm_create_evtsets(5)

pfm_context

sets

after pfm_create_evtsets(3)

after pfm_create_context()

pfm_context

sets

Figure 7: creating sets.

Each context is created with a default event
set, called set0. Sets can be dynamically cre-
ated, modified, or deleted when the context
is detached using the pfm_create_evtsets

and pfm_delete_evtsets calls. Informa-
tion, such as the number of activations of a
set, can be retrieved with the pfm_getinfo_

evtsets call. All these functions take array
arguments and can, therefore, manipulate mul-
tiple sets per call.

A set is identified with a 16-bit number. As
such, there is a theoretical limit of 65k sets.
Sets are managed through an ordered list based
on their identification numbers. Figure 7 shows
the effect of adding set5 and set3 on the list.

Tools can program registers in each set by pass-
ing the set identification for each element of the
array passed to the read or write calls. In one
pfm_write_pmcs call it is possible to pro-
gram registers for multiple sets.

2006 Linux Symposium, Volume One • 283

6.2 Set switching

Set switching can be triggered by two different
events: a timeout or a counter overflow. This is
another innovation of the perfmon2 interface,
again giving tools maximum flexibility. The
type of trigger is determined, per set, when it
is created.

The timeout is specified in micro-seconds when
the set is created. The granularity of the time-
out depends on the granularity of kernel inter-
nal timer tick, usually 1ms or 10ms. If the gran-
ularity is 10ms, then it is not possible to switch
more than 100 times per second, i.e., the time-
out cannot be smaller than 100µs. Because the
granularity can greatly affect the accuracy of a
measurement, the actual timeout, rounded up
the the closest multiple of the timer tick, is re-
turned by the pfm_create_evtsets call.

It is also possible to trigger a switch on counter
overflow. To avoid dedicating a counter as a
trigger, there is a trigger threshold value asso-
ciated with each counter. At each overflow, the
threshold value is decremented, when it reaches
zero, switching occurs. It is possible to have
multiple trigger counters per set, i.e., switch on
multiple conditions.

The next set is determined by the position in
the ordered list of sets. Switching is managed
in a round-robin fashion. In the example from
Figure 7, this means that the set following set5
is set0.

Using overflow switching, it is possible to im-
plement counter cascading where a counter
starts counting only when a certain number of
occurrences, n, of an event E is reached. In a
first set, a PMC register is programmed to mea-
sure event E, the corresponding PMD register
is initialized to −n, and its switch trigger is set
to 1. The next set is setup to count the event of
interest and it will activated only when there is
an overflow in the first set.

6.3 Sampling

Sets are fully integrated with sampling. Set in-
formation is propagated wherever is necessary.
The counter overflow notification carries the
identification of the active set. The default sam-
pling format fully supports sets. Samples from
all sets are stored them into the same buffer.
The active set at the time of the overflow is
identified in the header of each sample.

7 Security

The interface is designed to be built into the
base kernel, as such, it must follow the same
security guidelines.

It is not possible to assume that tools will al-
ways be well-behaved. Each implementation
must check arguments to calls. It must not be
possible to use the interface for malicious at-
tacks. A user cannot run a monitoring tool to
extract information about a process or the sys-
tem without proper permission.

All vector arguments have a maximum size to
limit the amount of kernel memory necessary
to perform the copy into kernel space. By
nature, those calls are non-blocking and non-
preemptible, ensuring that memory is eventu-
ally freed. The default limit is set to a page.

The sampling buffer size is also limited be-
cause it consumes kernel memory that cannot
be paged out. There is a system-wide limit
and a per-process limit. The latter is using
the resource limit on locked memory (RLIMIT_
MEMLOCK). The two-level protection is required
to prevent users from launching lots of pro-
cesses each allocating a small buffer.

In per-thread mode, the user credentials are
checked against the permission of the thread

284 • Perfmon2: a flexible performance monitoring interface for Linux

to monitor when the context is attached. Typi-
cally, if a user cannot send a signal to the pro-
cess, it is not possible to attach. By default,
per-thread monitoring is available to all users,
but a system administrator can limit to a user
group. An identical, but separate, restriction is
available for system-wide contexts.

On several architectures, such as Itanium, it
is possible to read the PMD registers directly
from user-level, i.e., with a simple instruction.
There is always a provision to turn this fea-
ture off. The interface supports this mode of
access by default for all self-monitoring per-
thread context. It is turned off by default for
all other configurations, thereby preventing spy
applications from peeking at values left in PMD
registers by others.

All size and user group limitations can be con-
figured by a system administrator via a simple
sysfs interface.

As for sampling, we are planning on adding a
PMU interrupt throttling mechanism to prevent
Denial-of-Service (DoS) attacks when applica-
tions set very high sampling rates.

8 Fast user-level PMD read

Invoking a system call to read a PMD register
can be quite expensive compared to the cost of
the actual instruction. On an Itanium 2 1.5GHz
processor, for instance, it costs about 36 cycles
to read a PMD with a single instruction and
about 750 cycles via pfm_read_pmds which
is not really optimized at this point. As a ref-
erence, the simplest system call, i.e., getpid,
costs about 210 cycles.

On many PMU models, it is possible to directly
read a PMD register from user level with a sin-
gle instruction. This very lightweight mode

of access is allowed by the interface for all
self-monitoring threads. Yet, if actual counters
width is less than 64-bit, only the partial value
is returned. The software-maintained value re-
quires a kernel call.

To enable fast 64-bit PMD read accesses from
user level, the interface supports re-mapping of
the software-maintained PMD values to user
level for self-monitoring threads. This mech-
anism was introduced by the perfctr interface.
This enables fast access on architectures with-
out hardware support for direct access. For the
others, this enables a full 64-bit value to be
reconstructed by merging the high-order bits
from the re-mapped PMD with the low-order
bit obtained from hardware.

Re-mapping has to be requested when the con-
text is created. For each event set, the PMD reg-
ister values have to be explicitly re-mapped via
a call to mmap on the file descriptor identify-
ing the context. When a set is created a special
cookie value is passed back by pfm_create_

evtset. It is used as an offset for mmap and
is required to identify the set to map. The map-
ping is limited to one page per set. For each set,
the re-mapped region contains the 64-bit soft-
ware value of each PMD register along with a
status bit indicating whether the set is the active
set or not. For non-active sets, the re-mapped
value is the up-to-date full 64-bit value.

Given that the merge of the software and hard-
ware values is not atomic, there can be a race
condition if, for instance, the thread is pre-
empted in the middle of building the 64-bit
value. There is no way to avoid the race, instead
the interface provides an atomic sequence num-
ber for each set. The number is updated each
time the state of the set is modified. The num-
ber must be read by user-level code before and
after reading the re-mapped PMD value. If the
number is the same before and after, it means
that the PMD value is current, otherwise the

2006 Linux Symposium, Volume One • 285

operation must be restarted. On the same Ita-
nium 2 processor and without conflict, the cost
is about 55 cycles to read the 64-bit value of a
PMD register.

9 Status

A first generation of this interface has been im-
plemented for the 2.6 kernel series for the Ita-
nium Processor Family (IPF). It uses a single
multiplexing system call, perfmonctl, and is
missing events sets, PMU description tables,
and fast user-level PMD reads. It is currently
shipping with all major Linux distributions for
this architecture.

The second generation interface, which we de-
scribe in this paper, currently exists as a kernel
patch against the latest official 2.6 kernel from
kernel.org. It supports the following pro-
cessor architectures and/or models:

• all the Itanium processors

• the AMD Opteron processors in 64-bit
mode

• the Intel Pentium M and P6 processors

• the Intel Pentium 4 and Xeon processors.
That includes 32-bit and 64-bit (EM64T)
processors. Hyper-Threading and PEBS
are supported.

• the MIPS 5k and MIPS 20k processors

• preliminary support for IBM Power5 pro-
cessor

Certain ports were contributed by other com-
panies or developers. As our user community
grows, we expect other contributions to both
kernel and user-level code. The kernel patch

has been widely distributed and has generated
a lot of discussions on various Linux mailing
lists.

Our goal is to establish perfmon2 as the stan-
dard Linux interface for hardware-based per-
formance monitoring. We are in the process of
getting it reviewed by the Community in prepa-
ration for a merge with the mainline kernel.

10 Existing tools

Several tools already exists for the interface.
Most of them are only available for Itanium
processors at this point, because an implemen-
tation exists since several years.

The first open-source tool to use the interface is
pfmon [6] from HP Labs. This is a command-
line oriented tool initially built to test the in-
terface. It can collect counts and profiles on a
per-thread or system-wide basis. It supports the
Itanium, AMD Opteron, and Intel Pentium M
processors. It is built on top of a helper library,
called libpfm, which handles all the event en-
codings and assignment logic.

HP Labs also developed q-tools [7], a re-
placement program for gprof. Q-tools uses
the interface to collect a flat profile and a sta-
tistical call graph of all processes running in a
system. Unlike gprof, there is no need to re-
compile applications or the kernel. The profile
and call graph include both user- and kernel-
level execution. The tool only works on Ita-
nium 2 processors because it leverages certain
PMU features, in particular the Branch Trace
Buffer. This tool takes advantage of the in-
terface by overlapping two sampling measure-
ments to collect the flat profile and call graph in
one run.

The HP Caliper [5] is an official HP product
which is free for non-commercial use. This is

286 • Perfmon2: a flexible performance monitoring interface for Linux

a professional tool which works with all ma-
jor Linux distributions for Itanium processors.
It collects counts or profiles on a per-thread or
per-CPU basis. It is very simple to use and
comes with a large choice of preset metrics
such as flat profile (fprof), data cache misses
(dcache_miss). It exploits all the advanced
PMU features, such as the Branch Trace Buffer
(BTB) and the Data Event Address Registers
(D-EAR). The profiles are correlated to source
and assembly code.

The PAPI toolkit has long been available on top
of the perfmon2 interface for Itanium proces-
sors. We expect that PAPI will migrate over to
perfmon2 on other architectures as well. This
migration will likely simplify the code and al-
low better support for sampling and set multi-
plexing.

The BEA JRockit JVM on Linux/ia64, start-
ing with version 1.4.2 is also exploiting the in-
terface. The JIT compiler is using a, dynam-
ically collected, per-thread profile to improve
code generation. This technique [4], called Dy-
namic Profile Guided Optimization (DPGO),
takes advantage of the efficient per-thread sam-
pling support of the interface and of the abil-
ity of the Itanium 2 PMU to sample branches
and locations of cache misses (Data Event Ad-
dress Registers). What is particularly interest-
ing about this example is that it introduces a
new usage model. Monitoring is used each time
a program runs and not just during the develop-
ment phase. Optimizations are applied in the
end-user environment and for the real work-
load.

11 Conclusion

We have designed the most advanced perfor-
mance monitoring interface for Linux. It pro-
vides a uniform set of functionalities across all

architectures making it easier to write portable
performance tools. The feature set was care-
fully designed to allow efficient monitoring and
a very high degree of flexibility to support a
diversity of usage models and hardware archi-
tectures. The interface provides several key
features such as custom sampling buffer for-
mats, kernel support event sets multiplexing,
and PMU description modules.

We have developed a multi-architecture imple-
mentation of this interface that support all ma-
jor processors. On the Intel Pentium 4 proces-
sor, this implementation is the first to offer sup-
port for PEBS.

We are in the process of getting it merged into
the mainline kernel. Several open-source and
commercial tools are available on Itanium 2
processors at this point and we expect that oth-
ers will be released for the other architectures
as well.

Hardware-based performance monitoring is the
key tool to understand how applications and op-
erating systems behave. The monitoring infor-
mation is used to drive performance improve-
ments in applications, operating system ker-
nels, compilers, and hardware. As proces-
sor implementation enhancements shift from
pure clock speed to multi-core, multi-thread,
the need for powerful monitoring will increase
significantly. The perfmon2 interface is well
suited to address those needs.

References

[1] AMD. AMD64 Architecture
Programmer’s Manual: System
Programming, 2005.
http://www.amd.com/us-en/
Processors/DevelopWithAMD.

[2] David F. Carta. Two fast implementations
of the minimal standard random number

2006 Linux Symposium, Volume One • 287

generator. Com. of the ACM,
33(1):87–88, 1990. http://doi.
acm.org/10.1145/76372.76379.

[3] Intel Coporation. The Itanium processor
family architecture. http://
developer.intel.com/design/
itanium2/documentation.htm.

[4] Greg Eastman, Shirish Aundhe, Robert
Knight, and Robert Kasten. Intel
dynamic profile-guided optimization in
the BEA JRockitTM JVM. In 3rd
Workshop on Managed Runtime
Environments, MRE’05, 2005.
http://www.research.ibm.
com/mre05/program.html.

[5] Hewlett-Packard Company. The Caliper
performance analyzer. http:
//www.hp.com/go/caliper.

[6] Hewlett-Packard Laboratories. The
pfmon tool and the libpfm library.
http://perfmon2.sf.net/.

[7] Hewlett-Packard Laboratories. q-tools,
and q-prof tools. http://www.hpl.
hp.com/research/linux.

[8] Intel. Intel Itanium 2 Processor
Reference Manual for Software
Development and Optimization, April
2003. http:
//www.intel.com/design/
itanium/documentation.htm.

[9] Intel. IA-32 Intel Architecture Software
Developers’ Manual: System
Programming Guide, 2004.
http://developer.intel.com/
design/pentium4/manuals/
index_new.htm.

[10] Intel Corp. The VTuneTM performance
analyzer. http://www.intel.com/
software/products/vtune/.

[11] Chi-Keung Luk and Robert Muth et al.
Ispike: A post-link optimizer for the Intel
Itanium architecture. In Code Generation
and Optimization Conference 2004
(CGO 2004), March 2004.
http://www.cgo.org/cgo2004/
papers/01_82_luk_ck.pdf.

[12] Mikael Pettersson. the Perfctr interface.
http://user.it.uu.se/
~mikpe/linux/perfctr/.

[13] Alex Shye et al. Analysis of path
profiling information generated with
performance monitoring hardware. In
INTERACT HPCA’04 workshop, 2004.
http://rogue.colorado.edu/
draco/papers/
interact05-pmu_pathprof.pdf.

[14] B.D̃ragovic et al. Xen and the art of
virtualization. In Proceedings of the
ACM Symposium on Operating Systems
Principles, October 2003.
http://www.cl.cam.ac.uk/
Research/SRG/netos/xen/
architecture.html.

[15] J.Ãnderson et al. Continuous profiling:
Where have all the cycles gone?, 1997.
http://citeseer.ist.psu.
edu/article/
anderson97continuous.html.

[16] John Levon et al. Oprofile.
http://oprofile.sf.net/.

[17] Robert Cohn et al. The PIN tool. http:
//rogue.colorado.edu/Pin/.

[18] Alex Tsariounov. The Prospect
monitoring tool.
http://prospect.sf.net/.

[19] University of Tenessee, Knoxville.
Performance Application Programming
Interface (PAPI) project.
http://icl.cs.utk.edu/papi.

288 • Perfmon2: a flexible performance monitoring interface for Linux

OCFS2: The Oracle Clustered File System, Version 2

Mark Fasheh
Oracle

mark.fasheh@oracle.com

Abstract

This talk will review the various components
of the OCFS2 stack, with a focus on the file
system and its clustering aspects. OCFS2 ex-
tends many local file system features to the
cluster, some of the more interesting of which
are posix unlink semantics, data consistency,
shared readable mmap, etc.

In order to support these features, OCFS2 logi-
cally separates cluster access into multiple lay-
ers. An overview of the low level DLM layer
will be given. The higher level file system
locking will be described in detail, including
a walkthrough of inode locking and messaging
for various operations.

Caching and consistency strategies will be dis-
cussed. Metadata journaling is done on a per
node basis with JBD. Our reasoning behind that
choice will be described.

OCFS2 provides robust and performant recov-
ery on node death. We will walk through the
typical recovery process including journal re-
play, recovery of orphaned inodes, and recov-
ery of cached metadata allocations.

Allocation areas in OCFS2 are broken up into
groups which are arranged in self-optimizing
“chains.” The chain allocators allow OCFS2 to
do fast searches for free space, and dealloca-
tion in a constant time algorithm. Detail on the
layout and use of chain allocators will be given.

Disk space is broken up into clusters which can
range in size from 4 kilobytes to 1 megabyte.
File data is allocated in extents of clusters. This
allows OCFS2 a large amount of flexibility in
file allocation.

File metadata is allocated in blocks via a sub
allocation mechanism. All block allocators in
OCFS2 grow dynamically. Most notably, this
allows OCFS2 to grow inode allocation on de-
mand.

1 Design Principles

A small set of design principles has guided
most of OCFS2 development. None of them
are unique to OCFS2 development, and in fact,
almost all are principles we learned from the
Linux kernel community. They will, however,
come up often in discussion of OCFS2 file sys-
tem design, so it is worth covering them now.

1.1 Avoid Useless Abstraction Layers

Some file systems have implemented large ab-
straction layers, mostly to make themselves
portable across kernels. The OCFS2 develop-
ers have held from the beginning that OCFS2
code would be Linux only. This has helped us
in several ways. An obvious one is that it made

290 • OCFS2: The Oracle Clustered File System, Version 2

the code much easier to read and navigate. De-
velopment has been faster because we can di-
rectly use the kernel features without worrying
if another OS implements the same features, or
worse, writing a generic version of them.

Unfortunately, this is all easier said than done.
Clustering presents a problem set which most
Linux file systems don’t have to deal with.
When an abstraction layer is required, three
principles are adhered to:

• Mimic the kernel API.

• Keep the abstraction layer as thin as pos-
sible.

• If object life timing is required, try to use
the VFS object life times.

1.2 Keep Operations Local

Bouncing file system data around a cluster can
be very expensive. Changed metadata blocks,
for example, must be synced out to disk before
another node can read them. OCFS2 design at-
tempts to break file system updates into node
local operations as much as possible.

1.3 Copy Good Ideas

There is a wealth of open source file system im-
plementations available today. Very often dur-
ing OCFS2 development, the question “How do
other file systems handle it?” comes up with re-
spect to design problems. There is no reason to
reinvent a feature if another piece of software
already does it well. The OCFS2 developers
thus far have had no problem getting inspira-
tion from other Linux file systems.1 In some
cases, whole sections of code have been lifted,
with proper citation, from other open source
projects!

1Most notably Ext3.

2 Disk Layout

Near the top of the ocfs2_fs.h header, one
will find this comment:

/*
* An OCFS2 volume starts this way:

* Sector 0: Valid ocfs1_vol_disk_hdr that cleanly

* fails to mount OCFS.

* Sector 1: Valid ocfs1_vol_label that cleanly

* fails to mount OCFS.

* Block 2: OCFS2 superblock.

*
* All other structures are found

* from the superblock information.

*/

The OCFS disk headers are the only amount of
backwards compatibility one will find within an
OCFS2 volume. It is an otherwise brand new
cluster file system. While the file system basics
are complete, there are many features yet to be
implemented. The goal of this paper then, is to
provide a good explanation of where things are
in OCFS2 today.

2.1 Inode Allocation Structure

The OCFS2 file system has two main alloca-
tion units, blocks and clusters. Blocks can
be anywhere from 512 bytes to 4 kilobytes,
whereas clusters range from 4 kilobytes up to
one megabyte. To make the file system math-
ematics work properly, cluster size is always
greater than or equal to block size. At format
time, the disk is divided into as many cluster-
sized units as will fit. Data is always allocated
in clusters, whereas metadata is allocated in
blocks

Inode data is represented in extents which are
organized into a b-tree. In OCFS2, extents are
represented by a triple called an extent record.

Extent records are stored in a large in-inode ar-
ray which extends to the end of the inode block.
When the extent array is full, the file system
will allocate an extent block to hold the current

2006 Linux Symposium, Volume One • 291

EXTENT BLOCK

DISK INODE

Figure 1: An Inode B-tree

Record Field Field Size Description
e_cpos 32 bits Offset into the

file, in clusters
e_clusters 32 bits Clusters in this

extent
e_blkno 64 bits Physical disk

offset

Table 1: OCFS2 extent record

array. The first extent record in the inode will
be re-written to point to the newly allocated ex-
tent block. The e_clusters and e_cpos
values will refer to the part of the tree under-
neath that extent. Bottom level extent blocks
form a linked list so that queries accross a range
can be done efficiently.

2.2 Directories

Directory layout in OCFS2 is very similar to
Ext3, though unfortunately, htree has yet to be
ported. The only difference in directory en-
try structure is that OCFS2 inode numbers are
64 bits wide. The rest of this section can be
skipped by those already familiar with the di-
rent structure.

Directory inodes hold their data in the same
manner which file inodes do. Directory data
is arranged into an array of directory en-
tries. Each directory entry holds a 64-bit inode
pointer, a 16-bit record length, an 8-bit name
length, an 8-bit file type enum (this allows us
to avoid reading the inode block for type), and

of course the set of characters which make up
the file name.

2.3 The Super Block

The OCFS2 super block information is con-
tained within an inode block. It contains a
standard set of super block information—block
size, compat/incompat/ro features, root inode
pointer, etc. There are four values which are
somewhat unique to OCFS2.

• s_clustersize_bits – Cluster size
for the file system.

• s_system_dir_blkno – Pointer to
the system directory.

• s_max_slots – Maximum number of
simultaneous mounts.

• s_first_cluster_group – Block
offset of first cluster group descriptor.

s_clustersize_bits is self-explanatory.
The reason for the other three fields will be ex-
plained in the next few sections.

2.4 The System Directory

In OCFS2 file system metadata is contained
within a set of system files. There are two types
of system files, global and node local. All sys-
tem files are linked into the file system via the
hidden system directory2 whose inode number
is pointed to by the superblock. To find a sys-
tem file, a node need only search the system
directory for the name in question. The most
common ones are read at mount time as a per-
formance optimization. Linking to system files

2debugfs.ocfs2 can list the system dir with the
ls // command.

292 • OCFS2: The Oracle Clustered File System, Version 2

from the system directory allows system file lo-
catations to be completely dynamic. Adding
new system files is as simple as linking them
into the directory.

Global system files are generally accessible
by any cluster node at any time, given that it
has taken the proper cluster-wide locks. The
global_bitmap is one such system file.
There are many others.

Node local system files are said to be owned by
a mounted node which occupies a unique slot.
The maximum number of slots in a file sys-
tem is determined by the s_max_slots su-
perblock field. The slot_map global system
file contains a flat array of node numbers which
details which mounted node occupies which set
of node local system files.

Ownership of a slot may mean a different
thing to each node local system file. For
some, it means that access to the system file
is exclusive—no other node can ever access it.
For others it simply means that the owning node
gets preferential access—for an allocator file,
this might mean the owning node is the only
one allowed to allocate, while every node may
delete.

A node local system file has its slot number en-
coded in the file name. For example, the jour-
nal used by the node occupying the third file
system slot (slot numbers start at zero) has the
name journal:0002.

2.5 Chain Allocators

OCFS2 allocates free disk space via a special
set of files called chain allocators. Remember
that OCFS2 allocates in clusters and blocks, so
the generic term allocation units will be used
here to signify either. The space itself is broken
up into allocation groups, each of which con-
tains a fixed number of allocation units. These

GROUP

DESCRIPTOR

ALLOCATION UNITS

Figure 2: Allocation Group

groups are then chained together into a set of
singly linked lists, which start at the allocator
inode.

The first block of the first allocation unit
within a group contains an ocfs2_group_
descriptor. The descriptor contains a small
set of fields followed by a bitmap which ex-
tends to the end of the block. Each bit in the
bitmap corresponds to an allocation unit within
the group. The most important descriptor fields
follow.

• bg_free_bits_count – number of
unallocated units in this group.

• bg_chain – describes which group
chain this descriptor is a part of.

• bg_next_group – points to the next
group descriptor in the chain.

• bg_parent_dinode – pointer to disk
inode of the allocator which owns this
group.

Embedded in the allocator inode is an ocfs2_
chain_list structure. The chain list con-
tains some fields followed by an array of
ocfs2_chain_rec records. An ocfs2_
chain_rec is a triple which describes a
chain.

• c_blkno – First allocation group.

2006 Linux Symposium, Volume One • 293

ALLOCATOR

INODE

GROUP

DESCRIPTOR

GROUP

DESCRIPTOR

GROUP

DESCRIPTOR

Figure 3: Chain Allocator

• c_total – Total allocation units.

• c_free – Free allocation units.

The two most interesting fields at the top of
an ocfs2_chain_list are: cl_cpg, clus-
ters per group; and cl_bpc, bits per cluster.
The product of those two fields describes the
total number of blocks occupied by each allo-
cation group. As an example, the cluster allo-
cator whose allocation units are clusters has a
cl_bpc of 1 and cl_cpg is determined by
mkfs.ocfs2 (usually it just picks the largest
value which will fit within a descriptor bitmap).

Chain searches are said to be self-optimizing.
That is, while traversing a chain, the file system
will re-link the group with the most number of
free bits to the top of the list. This way, full
groups can be pushed toward the end of the list
and subsequent searches will require fewer disk
reads.

2.6 Sub Allocators

The total number of file system clusters is
largely static as determined by mkfs.ocfs2
or optionally grown via tunefs.ocfs2. File
system blocks however are dynamic. For exam-
ple, an inode block allocator file can be grown
as more files are created.

To grow a block allocator, cl_bpc clusters
are allocated from the cluster allocator. The
new ocfs2_group_descriptor record is
populated and that block group is linked to the
top of the smallest chain (wrapping back to
the first chain if all are equally full). Other
than the descriptor block, zeroing of the re-
maining blocks is skipped—when allocated, all
file system blocks will be zeroed and written
with a file system generation value. This allows
fsck.ocfs2 to determine which blocks in a
group are valid metadata.

2.7 Local Alloc

Very early in the design of OCFS2 it was de-
termined that a large amount of performance
would be gained by reducing contention on the
cluster allocator. Essentially the local alloc is a
node local system file with an in-inode bitmap
which caches clusters from the global cluster
allocator. The local alloc file is never locked
within the cluster—access to it is exclusive to
a mounted node. This allows the block to re-
main valid in memory for the entire lifetime of
a mount.

As the local alloc bitmap is exhausted of free
space, an operation called a window slide is
done. First, any unallocated bits left in the lo-
cal alloc are freed back to the cluster alloca-
tor. Next, a large enough area of contiguous
space is found with which to re-fill the local al-
loc. The cluster allocator bits are set, the local

294 • OCFS2: The Oracle Clustered File System, Version 2

alloc bitmap is cleared, and the size and offset
of the new window are recorded. If no suitable
free space is found during the second step of a
window slide, the local alloc is disabled for the
remainder of that mount.

The size of the local alloc bitmap is tuned at
mkfs time to be large enough so that most
block group allocations will fit, but the total
size would not be so large as to keep an in-
ordinate amount of data unallocatable by other
nodes.

2.8 Truncate Log

The truncate log is a node local system file with
nearly the same properties of the local alloc file.
The major difference is that the truncate log is
involved in de-allocation of clusters. This in
turn dictates a difference in disk structure.

Instead of a small bitmap covering a section of
the cluster allocator, the truncate log contains
an in-inode array of ocfs2_truncate_rec
structures. Each ocfs2_truncate_rec is
an extent, with a start (t_start) cluster and a
length (t_clusters). This structure allows
the truncate log to cover large parts of the clus-
ter allocator.

All cluster de-allocation goes through the trun-
cate log. It is flushed when full, two seconds af-
ter the most recent de-allocation, or on demand
by a sync(2) call.

3 Metadata Consistency

A large amount of time is spent inside a clus-
ter file system keeping metadata blocks consis-
tent. A cluster file system not only has to track
and journal dirty blocks, but it must understand
which clean blocks in memory are still valid
with respect to any disk changes which other
nodes might initiate.

3.1 Journaling

Journal files in OCFS2 are stored as node local
system files. Each node has exclusive access to
its journal, and retains a cluster lock on it for
the duration of its mount.

OCFS2 does block based journaling via the
JBD subsystem which has been present in the
Linux kernel for several years now. This is the
same journaling system in use by the Ext3 file
system. Documentation on the JBD disk format
can be found online, and is beyond the scope of
this document.

Though the OCFS2 team could have invented
their own journaling subsystem (which could
have included some extra cluster optimiza-
tions), JBD was chosen for one main reason—
stability. JBD has been very well tested as a re-
sult of being in use in Ext3. For any journaled
file system, stability in its journaling layer is
critical. To have done our own journaling layer
at the time, no matter how good, would have
inevitably introduced a much larger time pe-
riod of unforeseen stability and corruption is-
sues which the OCFS2 team wished to avoid.

3.2 Clustered Uptodate

The small amount of code (less than 550 lines,
including a large amount of comments) in fs/
ocfs2/updtodate.c attempts to mimic
the buffer_head caching API while main-
taining those properties across the cluster.

The Clustered Uptodate code maintains a small
set of metadata caching information on ev-
ery OCFS2 memory inode structure (struct
ocfs2_inode_info). The caching informa-
tion consists of a single sector_t per block.
These are stored in a 2 item array unioned with
a red-black tree root item struct rb_root.
If the number of buffers that require tracking

2006 Linux Symposium, Volume One • 295

grows larger than the array, then the red-black
tree is used.

A few rules were taken into account before de-
signing the Clustered Uptodate code:

1. All metadata changes are done under clus-
ter lock.

2. All metadata changes are journaled.

3. All metadata reads are done under a read-
only cluster lock.

4. Pinning buffer_head structures is not
necessary to track their validity.

5. The act of acquiring a new cluster lock can
flush metadata on other nodes and invali-
date the inode caching items.

There are actually a very small number of ex-
ceptions to rule 2, but none of them require the
Clustered Uptodate code and can be ignored for
the sake of this discussion.

Rules 1 and 2 have the effect that the return
code of buffer_jbd() can be relied upon to
tell us that a buffer_head can be trusted. If
it is in the journal, then we must have a clus-
ter lock on it, and therefore, its contents are
trustable.

Rule 4 follows from the logic that a newly
allocated buffer head will not have its
BH_Uptodate flag set. Thus one does not
need to pin them for tracking purposes—a
block number is sufficient.

Rule 5 instructs the Clustered Uptodate code to
ignore BH_Uptodate buffers for which we
do not have a tracking item—the kernel may
think they’re up to date with respect to disk, but
the file system knows better.

From these rules, a very simple algorithm
is implemented within ocfs2_buffer_
uptodate().

1. If buffer_uptodate() returns false,
return false.

2. If buffer_jbd() returns true, return
true.

3. If there is a tracking item for this block,
return true.

4. Return false.

For existing blocks, tracking items are in-
serted after they are succesfully read from disk.
Newly allocated blocks have an item inserted
after they have been populated.

4 Cluster Locking

4.1 A Short DLM Tutorial

OCFS2 includes a DLM which exports a pared-
down VMS style API. A full description of the
DLM internals would require another paper the
size of this one. This subsection will concen-
trate on a description of the important parts of
the API.

A lockable object in the OCFS2 DLM is re-
ferred to as a lock resource. The DLM has no
idea what is represented by that resource, nor
does it care. It only requires a unique name by
which to reference a given resource. In order to
gain access to a resource, a process 3 acquires
locks on it. There can be several locks on a re-
source at any given time. Each lock has a lock
level which must be compatible with the levels
of all other locks on the resource. All lock re-
sources and locks are contained within a DLM
domain.

3When we say process here, we mean a process
which could reside on any node in the cluster.

296 • OCFS2: The Oracle Clustered File System, Version 2

Name Access Type Compatible
Modes

EXMODE Exclusive NLMODE
PRMODE Read Only PRMODE,

NLMODE
NLMODE No Lock EXMODE,

PRMODE,
NLMODE

Table 2: OCFS2 DLM lock Modes

In OCFS2, locks can have one of three levels,
also known as lock modes. Table 2 describes
each mode and its compatibility.

Most of the time, OCFS2 calls a single DLM
function, dlmlock(). Via dlmlock() one
can acquire a new lock, or upconvert, and
downconvert existing locks.

typedef void (dlm_astlockfunc_t)(void ∗);

typedef void (dlm_bastlockfunc_t)(void ∗, int);

enum dlm_status dlmlock(
struct dlm_ctxt ∗dlm,
int mode,
struct dlm_lockstatus ∗lksb,
int flags,
const char ∗name,
dlm_astlockfunc_t ∗ast,
void ∗data,
dlm_bastlockfunc_t ∗bast);

Upconverting a lock asks the DLM to change
its mode to a level greater than the currently
granted one. For example, to make changes to
an inode it was previously reading, the file sys-
tem would want to upconvert its PRMODE lock
to EXMODE. The currently granted level stays
valid during an upconvert.

Downconverting a lock is the opposite of
an upconvert—the caller wishes to switch to
a mode that is more compatible with other
modes. Often, this is done when the currently

granted mode on a lock is incompatible with the
mode another process wishes to acquire on its
lock.

All locking operations in the OCFS2 DLM are
asynchronous. Status notification is done via
a set of callback functions provided in the ar-
guments of a dlmlock() call. The two most
important are the AST and BAST calls.

The DLM will call an AST function after a
dlmlock() request has completed. If the sta-
tus value on the dlm_lockstatus structure
is DLM_NORMAL then the call has suceeded.
Otherwise there was an error and it is up to the
caller to decide what to do next.

The term BAST stands for Blocking AST. The
BAST is the DLMs method of notifying the
caller that a lock it is currently holding is block-
ing the request of another process.

As an example, if process A currently holds an
EXMODE lock on resource foo and process B
requests an PRMODE lock, process A will be
sent a BAST call. Typically this will prompt
process A to downconvert its lock held on foo
to a compatible level (in this case, PRMODE or
NLMODE), upon which an AST callback is trig-
gered for both process A (to signify completion
of the downconvert) and process B (to signify
that its lock has been acquired).

The OCFS2 DLM supports a feature called
Lock Value Blocks, or LVBs for short. An LVB
is a fixed length byte array associated with a
lock resource. The contents of the LVB are en-
tirely up to the caller. There are strict rules to
LVB access. Processes holding PRMODE and
EXMODE locks are allowed to read the LVB
value. Only processes holding EXMODE locks
are allowed to write a new value to the LVB.
Typically a read is done when acquiring or up-
converting to a new PRMODE or EXMODE lock,
while writes to the LVB are usually done when
downconverting from an EXMODE lock.

2006 Linux Symposium, Volume One • 297

4.2 DLM Glue

DLM glue (for lack of a better name) is a
performance-critical section of code whose job
it is to manage the relationship between the file
system and the OCFS2 DLM. As such, DLM
glue is the only part of the stack which knows
about the internals of the DLM—regular file
system code never calls the DLM API directly.

DLM glue defines several cluster lock types
with different behaviors via a set of function
pointers, much like the various VFS ops struc-
tures. Most lock types use the generic func-
tions. The OCFS2 metadata lock defines most
of its own operations for complexity reasons.

The most interesting callback that DLM glue
requires is the unblock operation, which has the
following definition:

int (∗unblock)(struct ocfs2_lock_res ∗, int ∗);

When a blocking AST is recieved for an
OCFS2 cluster lock, it is queued for process-
ing on a per-mount worker thread called the
vote thread. For each queued OCFS2 lock,
the vote thread will call its unblock() func-
tion. If possible the unblock() function is
to downconvert the lock to a compatible level.
If a downconvert is impossible (for instance the
lock may be in use), the function will return a
non-zero value indicating the operation should
be retried.

By design, the DLM glue layer never deter-
mines lifetiming of locks. That is dictated
by the container object—in OCFS2, this is
predominantly the struct inode which al-
ready has a set of lifetime rules to be obeyed.

Similarly, DLM glue is only concerned with
multi-node locking. It is up to the callers to
serialize themselves locally. Typically this is
done via well-defined methods such as holding
inode->i_mutex.

The most important feature of DLM glue is
that it implements a technique known as lock
caching. Lock caching allows the file system to
skip costly DLM communication for very large
numbers of operations. When a DLM lock is
created in OCFS2 it is never destroyed until the
container object’s lifetime makes it useless to
keep around. Instead, DLM glue maintains its
current mode and instead of creating new locks,
calling processes only take references on a sin-
gle cached lock. This means that, aside from
the initial acquisition of a lock and barring any
BAST calls from another node, DLM glue can
keep most lock / unlock operations down to a
single integer increment.

DLM glue will not block locking processes in
the case of an upconvert—say a PRMODE lock
is already held, but a process wants exclusive
access in the cluster. DLM glue will continue
to allow processes to acquire PRMODE level ref-
erences while upconverting to EXMODE. Sim-
ilarly, in the case of a downconvert, processes
requesting access at the target mode will not be
blocked.

4.3 Inode Locks

A very good example of cluster locking in
OCFS2 is the inode cluster locks. Each OCFS2
inode has three locks. They are described in
locking order, outermost first.

1. ip_rw_lockres which serializes file
read and write operations.

2. ip_meta_lockres which protects in-
ode metadata.

3. ip_data_lockres which protects in-
ode data.

The inode metadata locking code is responsible
for keeping inode metadata consistent across

298 • OCFS2: The Oracle Clustered File System, Version 2

the cluster. When a new lock is acquired at
PRMODE or EXMODE, it is responsible for re-
freshing the struct inode contents. To do
this, it stuffs the most common inode fields in-
side the lock LVB. This allows us to avoid a
read from disk in some cases. The metadata
unblock() method is responsible for waking
up a checkpointing thread which forces jour-
naled data to disk. OCFS2 keeps transaction
sequence numbers on the inode to avoid check-
pointing when unecessary. Once the check-
point is complete, the lock can be downcon-
verted.

The inode data lock has a similar responsibil-
ity for data pages. Complexity is much lower
however. No extra work is done on acquiry of
a new lock. It is only at downconvert that work
is done. For a downconvert from EXMODE to
PRMODE, the data pages are flushed to disk.
Any downconvert to NLMODE truncates the
pages and destroys their mapping.

OCFS2 has a cluster wide rename lock, for
the same reason that the VFS has s_vfs_
rename_mutex—certain combinations of
rename(2) can cause deadlocks, even be-
tween multiple nodes. A comment in ocfs2_
rename() is instructive:
/* Assume a directory hierarchy thusly:

* a/b/c

* a/d

* a,b,c, and d are all directories.

*
* from cwd of ’a’ on both nodes:

* node1: mv b/c d

* node2: mv d b/c

*
* And that’s why, just like the VFS, we need a

* file system rename lock. */

Serializing operations such as mount(2) and
umount(2) is the super block lock. File sys-
tem membership changes occur only under an
EXMODE lock on the super block. This is used
to allow the mounting node to choose an ap-
propriate slot in a race-free manner. The super
block lock is also used during node messaging,
as described in the next subsection.

4.4 Messaging

OCFS2 has a network vote mechanism which
covers a small number of operations. The vote
system stems from an older DLM design and
is scheduled for final removal in the next major
version of OCFS2. In the meantime it is worth
reviewing.

Vote Type Operation
OCFS2_VOTE_REQ_MOUNT Mount notification
OCFS2_VOTE_REQ_UMOUNT Unmount notification
OCFS2_VOTE_REQ_UNLINK Remove a name
OCFS2_VOTE_REQ_RENAME Remove a name
OCFS2_VOTE_REQ_DELETE Query an inode wipe

Table 3: OCFS2 vote types

Each vote is broadcast to all mounted nodes
(except the sending node) where they are pro-
cessed. Typically vote messages about a given
object are serialized by holding an EXMODE
cluster lock on that object. That way the send-
ing node knows it is the only one sending that
exact vote. Other than errors, all votes ex-
cept one return true. Membership is kept
static during a vote by holding the super block
lock. For mount/unmount that lock is held at
EXMODE. All other votes keep a PRMODE lock.
This way most votes can happen in parallel
with respect to each other.

The mount/unmount votes instruct the other
mounted OCFS2 nodes to the mount status of
the sending node. This allows them in turn to
track whom to send their own votes to.

The rename and unlink votes instruct receiving
nodes to look up the dentry for the name being
removed, and call the d_delete() function
against it. This has the effect of removing the
name from the system. If the vote is an unlink
vote, the additional step of marking the inode as
possibly orphaned is taken. The flag OCFS2_

2006 Linux Symposium, Volume One • 299

INODE_MAYBE_ORPHANED will trigger addi-
tional processing in ocfs2_drop_inode().
This vote type is sent after all directory and in-
ode locks for the operation have been acquired.

The delete vote is crucial to OCFS2 being
able to support POSIX style unlink-while-open
across the cluster. Delete votes are sent from
ocfs2_delete_inode(), which is called
on the last iput() of an orphaned inode. Re-
ceiving nodes simply check an open count on
their inode. If the count is anything other than
zero, they return a busy status. This way the
sending node can determine whether an inode
is ready to be truncated and deleted from disk.

5 Recovery

5.1 Heartbeat

The OCFS2 cluster stack heartbeats on disk and
via its network connection to other nodes. This
allows the cluster to maintain an idea of which
nodes are alive at any given point in time. It is
important to note that though they work closely
together, the cluster stack is a separate entity
from the OCFS2 file system.

Typically, OCFS2 disk heartbeat is done on ev-
ery mounted volume in a contiguous set of sec-
tors allocated to the heartbeat system file
at file system create time. OCFS2 heartbeat
actually knows nothing about the file system,
and is only given a range of disk blocks to
read and write. The system file is only used
as a convenient method of reserving the space
on a volume. Disk heartbeat is also never ini-
tiated by the file system, and always started
by the mount.ocfs2 program. Manual con-
trol of OCFS2 heartbeat is available via the
ocfs2_hb_ctl program.

Each node in OCFS2 has a unique node num-
ber, which dictates which heartbeat sector it
will periodically write a timestamp to. Opti-
mizations are done so that the heartbeat thread
only reads those sectors which belong to nodes
which are defined in the cluster configuration.
Heartbeat information from all disks is accu-
mulated together to determine node liveness. A
node need only write to one disk to be consid-
ered alive in the cluster.

Network heartbeat is done via a set of keep-
alive messages that are sent to each node. In the
event of a split brain scenario, where the net-
work connection to a set of nodes is unexpect-
edly lost, a majority-based quorum algorithm
is used. In the event of a 50/50 split, the group
with the lowest node number is allowed to pro-
ceed.

In the OCFS2 cluster stack, disk heartbeat is
considered the final arbiter of node liveness.
Network connections are built up when a node
begins writing to its heartbeat sector. Likewise
network connections will be torn down when a
node stops heartbeating to all disks.

At startup time, interested subsystems regis-
ter with the heartbeat layer for node up and
node down events. Priority can be assigned to
callbacks and the file system always gets node
death notification before the DLM. This is to
ensure that the file system has the ability to
mark itself needing recovery before DLM re-
covery can proceed. Otherwise, a race exists
where DLM recovery might complete before
the file system notification takes place. This
could lead to the file system gaining locks on
resources which are in need of recovery—for
instance, metadata whose changes are still in
the dead node’s journal.

300 • OCFS2: The Oracle Clustered File System, Version 2

5.2 File System Recovery

Upon notification of an unexpected node death,
OCFS2 will mark a recovery bitmap. Any
file system locks which cover recoverable re-
sources have a check in their locking path for
any set bits in the recovery bitmap. Those paths
will then block until the bitmap is clear again.
Right now the only path requiring this check
is the metadata locking code—it must wait on
journal replay to continue.

A recovery thread is then launched which takes
a EXMODE lock on the super block. This en-
sures that only one node will attempt to recover
the dead node. Additionally, no other nodes
will be allowed to mount while the lock is held.
Once the lock is obtained, each node will check
the slot_map system file to determine which
journal the dead node was using. If the node
number is not found in the slot map, then that
means recovery of the node was completed by
another cluster node.

If the node is still in the slot map then journal
replay is done via the proper JBD calls. Once
the journal is replayed, it is marked clean and
the node is taken out of the slot map.

At this point, the most critical parts of OCFS2
recovery are complete. Copies are made of the
dead node’s truncate log and local alloc files,
and clean ones are stamped in their place. A
worker thread is queued to reclaim the disk
space represented in those files, the node is re-
moved from the recovery bitmap and the super
block lock is dropped.

The last part of recovery—replay of the copied
truncate log and local alloc files—is (appropri-
ately) called recovery completion. It is allowed
to take as long as necessary because locking op-
erations are not blocked while it runs. Recovery
completion is even allowed to block on recov-
ery of other nodes which may die after its work

is queued. These rules greatly simplify the code
in that section.

One aspect of recovery completion which has
not been covered yet is orphan recovery. The
orphan recovery process must be run against
the dead node’s orphan directory, as well as the
local orphan directory. The local orphan direc-
tory is recovered because the now dead node
might have had open file descriptors against
an inode which was locally orphaned—thus the
delete_inode() code must be run again.

Orphan recovery is a fairly straightforward pro-
cess which takes advantage of the existing in-
ode life-timing code. The orphan directory
in question is locked, and the recovery com-
pletion process calls iget() to obtain an in-
ode reference on each orphan. As references
are obtained, the orphans are arranged in a
singly linked list. The orphan directory lock is
dropped, and iput() is run against each or-
phan.

6 What’s Been Missed!

Lots, unfortunately. The DLM has mostly been
glossed over. The rest of the OCFS2 cluster
stack has hardly been mentioned. The OCFS2
tool chain has some unique properties which
would make an interesting paper. Readers in-
terested in more information on OCFS2 are
urged to explore the web page and mailing lists
found in the references section. OCFS2 devel-
opment is done in the open and when not busy,
the OCFS2 developers love to answer questions
about their project.

7 Acknowledgments

A huge thanks must go to all the authors of Ext3
from which we took much of our inspiration.

2006 Linux Symposium, Volume One • 301

Also, without JBD OCFS2 would not be what
it is today, so our thanks go to those involved in
its development.

Of course, we must thank the Linux kernel
community for being so kind as to accept our
humble file system into their kernel. In partic-
ular, our thanks go to Christoph Hellwig and
Andrew Morton whose guidance was critical in
getting our file system code up to kernel stan-
dards.

8 References

The OCFS2 home page can be found at
http://oss.oracle.com/projects/

ocfs2/.

From there one can find mailing lists, documen-
tation, and the source code repository.

302 • OCFS2: The Oracle Clustered File System, Version 2

tgt: Framework for Storage Target Drivers

Tomonori FUJITA
NTT Cyber Solutions Laboratories

tomof@acm.org

Mike Christie
Red Hat, Inc.

michaelc@cs.wisc.edu

Abstract

In order to provide block I/O services, Linux
users have had to modify kernel code by hand,
use binary kernel modules, or purchase spe-
cialized hardware. With the mainline kernel
now having SCSI Parallel Interface (SPI), Fibre
Channel (FC), iSCSI, and SCSI RDMA (SRP)
initiator support, Linux target framework (tgt)
aims to fill the gap in storage functionality by
consolidating several target driver implementa-
tions and providing a SCSI protocol indepen-
dent API that will simplify target driver cre-
ation and maintenance.

Tgt’s key goal and its primary hurdle has been
implementing a great portion of tgt in user
space, while continuing to provide performance
comparable to a target driver implemented en-
tirely in the kernel. By pushing the SCSI state
machine, I/O execution, and the management
components of the framework outside of the
kernel, it enjoys debugging, maintenance and
mainline inclusion benefits. However, it has
created new challenges. Both traditional ker-
nel target implementations and tgt have had
to transform Block Layer and SCSI Layer de-
signs, which assume requests will be initiated
from the top of the storage stack (the request
queue’s make_request_fn()) to an archi-
tecture that can efficiently handle asynchronous
requests initiated by the the end of the stack
(the low level drivers interrupt handler), but
tgt also must efficiently communicate and syn-

chronize with the user-space daemon that im-
plements the SCSI target state machine and per-
forms I/O.

1 Introduction

The SCSI protocol was originally designed to
use a parallel bus interface and used to be tied
closely to it. With the increasing demands of
storage capacity and accessibility, it became
obvious that Direct Attached Storage (DAS),
the classic storage architecture, in which a host
and storage devices are directly connected by
system buses and parallel cable, cannot meet
today’s industry scalability and manageabil-
ity requirements. This lead to the invention
of Storage Area Network (SAN) technology,
which enables hosts and storage devices to be
connected via high-speed interconnection tech-
nologies such as Fibre Channel, Gigabit Ether-
net, Infiniband, etc.

To enable SAN technology, the SCSI-3 archi-
tecture, as can be seen in Figure 1, brought an
important change to the division of the stan-
dard into interface, protocol, device model, and
command set. This allows device models and
command sets with various transports (physi-
cal interfaces), such as Fibre Channel, Ether-
net, and Infiniband. The device type specific
command set, the primary command set, and
transport are independent of each other.

304 • tgt: Framework for Storage Target Drivers

SCSI Primary command set (for all device types)

Interlock

Protocol

Parallel

Interface

Fibre

Channel

Protocol

Fibre

Channel

RDMA

Protocol

InfiniBand

iSCSI

Internet

Block

commands

(disk)

Stream

Commands

(tape)

Multi-Media

Commands

(CD, DVD)

Controller

Commands

(RAID)

Interconnects

Transport

Protocols

Device Type

Specific

Command sets

Figure 1: SCSI-3 architecture

1.1 What is a Target

SCSI uses a client-server model (Figure 2). Re-
quests are initiated by a client, which in SCSI
terminology is called an Initiator Device, and
are processed by a server, which in SCSI termi-
nology is known as a Target Device. Each tar-
get contains one or more logical units and pro-
vides services performed by device servers and
task management functions performed by task
managers. A logical unit is an object that im-
plements one or more device functional mod-
els described in the SCSI command standards
and processes commands (eq., reading from or
writing to the media) [5].

Currently, the Linux kernel has support for sev-
eral types of initiators including ones that use
FC, TCP/IP, RDMA, or SPI for their transport
protocol. There is however, no mainline target
support.

2 Overview of Target Drivers

2.1 Target Driver

Generally in the past, a target driver is respon-
sible for the following tasks:

Initiator

Logical Units

Target

0 1 2

Transport

Figure 2: SCSI target and initiator

1. Handling its interconnect hardware inter-
face and transport protocol.

2. Processing the primary and device specific
command sets.

3. Accessing local devices (attached to the
server directly) when necessary.

Since hardware interfaces are unique, the ker-
nel needs a specific target driver for every
hardware interface. However, the rest of the
tasks are independent of hardware interfaces
and transport protocols.

The duplication of code between tasks two and
three lead to the necessity for a target frame-
work that provides a API set useful for every
target driver. In tgt, target drivers simply take
SCSI commands from transport protocol pack-
ets, hand them over to the framework, and send
back the responses to the clients via transport
protocol packets. Figure 3 shows a simplified
view of how hardware interfaces and transport
protocols interact in tgt. It is more complicated
than the above explanation of the ideal model
due to some exceptions described below.

Tgt is integrated with Linux’s SCSI Mid Layer
(SCSI-ML), so it supports two hardware inter-
face models:

Hardware A Host Bus Adapter (HBA) han-
dles the major part of transport protocol

2006 Linux Symposium, Volume One • 305

iSCSI

FCP

SRP

Hardware

Interface

Transport

Protocols

Target drivers

& kernel subsystems

TCP stackNIC

FC HBA

iSCSI HBA

RNIC

IB TCA

RNIC

IB TCA

RNIC stack

IB stack

RNIC stack

IB stack

Target driver

Target driver

Target driver

Target driver

Target driver

Target driver

Target driver

Target

Framework

Figure 3: transport protocols and hardware in-
terfaces

processing and the target driver imple-
ments the functionality to communicate
between the HBA and tgt. Tgt needs a spe-
cific target driver for each type of HBA.
FCP and SPI drivers follow this model.
Drivers for other transports like iSCSI or
SRP or for interconnects like iSER fol-
low this model when there is specialized
hardware to offload protocol or intercon-
nect processing.

Software For transports like iSCSI and SRP
or interconnects like iSER, a target driver
can implement the transport protocol pro-
cessing in a kernel module and access low
level hardware through another subsystem
such as the networking or infiniband stack.
This allows a single target driver to work
with various hardware interfaces.

3 Target Framework (tgt)

Our key design philosophy is implementing a
significant portion of tgt in user space while
maintaining performance comparable to a tar-
get driver implemented in kernel space. This
conforms to the current trend of pushing code
that can be implemented in user space out of

tgt daemontgtadm

Kernel Space

tgt core

User Space

Unix socket

Netlink socket

SCSI Mid Layer

Block LayerTarget Drivers

Target driver

libraries

Transport

libraries

Dynamic libraries

Figure 4: tgt components

the kernel [6] and enables developers to use rich
user space libraries and development tools such
as gdb.

As can be seen in Figure 4, the tgt architecture
has two kernel components: the target driver
and tgt core. The target driver’s primary re-
sponsibilities are to manage the transport con-
nections with initiator devices and pass com-
mands and task management function requests
between its hardware or interconnect subsys-
tem and tgt core. tgt core is a simple connector
between target drivers and the user space dae-
mon (tgtd) that enables the driver to send tgtd a
vector of commands or task management func-
tion requests through a netlink interface.

Tgt core was integrated into scsi-ml with minor
modifications to the scsi_host_template
and various scsi helper functions for allocating
scsi commands. This allows tgt to rely on scsi-
ml and the Block Layer for tricky issues such as
hot-plugging, command buffer mapping, scat-
ter gather list creation, and transport class inte-
gration. Note that tgt does not change the cur-
rent scsi-ml API set, so normally the only mod-
ifications are required to the initiator low level
driver’s (LLD) interrupt handler to process tar-
get specific requests and to the transport classes
so that they are able to present target specific at-
tributes.

All SCSI protocol processing is performed in

306 • tgt: Framework for Storage Target Drivers

user space, so as can be seen by Figure 4 the
bulk of the tgt is implemented in: tgtadm, tgtd,
transport libraries and driver libraries. tgtadm
is a simple management tool. A transport li-
brary is equivalent to a kernel transport class
where functionality common to a set of drivers
using the same transport can be placed. Driver
libraries, are dynamically linked target driver
specific libraries that can be used to imple-
ment functionality such as special setup and
tear down operations. And, tgtd is the SCSI
state machine that executes commands and task
management requests.

The clear concern over the user space SCSI pro-
tocol processing is degraded performance1. We
explain some techniques to overcome this prob-
lem as we discuss in more detail the tgt compo-
nents.

3.1 API for Target Drivers

The target drivers interact with tgt core
through a new tgt API set, and the exist-
ing mid-layer API set and data structures.
For the most part, target drivers work in a
very similar manner as the existing initia-
tor drivers. In many cases the initiator only
needs to implement the new target callbacks on
the scsi_host_template: transfer_
response(), transfer_data(), and
tsk_mgmt_response(), to enable a target
mode in its hardware. We examine the details
of the new callbacks later in this section.

3.1.1 Kernel Setup

The first step in registering a target driver with
scsi-ml and tgt core is to create a scsi host

1In the early days, tgt performed performance sen-
sitive SCSI commands in kernel space (eq. read/write
from/to storage devices). However, it turned out that the
current design was able to achieve comparable perfor-
mance.

adapter instance. This is accomplished by call-
ing the same functions that are used for the
initiator: scsi_host_alloc() and scsi_
add_host(). If an HBA will be running in
both target and initiator mode then only a sin-
gle call to each of those functions is necessary
for each HBA. The final step in setting up a
target driver is to allocate a uspace_req_q
for each scsi host that will be running in tar-
get mode. A uspace_req_q is used by tgt
core to send requests to user-space. It can be al-
located and initialized by calling scsi_tgt_
alloc_queue().

3.1.2 Processing SCSI Commands in the
Target Driver

The target driver needs to allocate the scsi_
cmnd data structure for a SCSI command re-
ceived from a client via scsi_host_get_
command(). This corresponds to scsi-ml’s
scsi_get_command() usage for allocat-
ing a scsi_cmnd for each request coming
from the Block Layer or scsi-ml Upper Layer
Driver (ULD). While the former allocates the
scsi_cmnd and the request data struc-
tures, the latter allocates only the scsi_cmnd
data structure.

The target driver sets up and passes the scsi_
cmnd data structure to tgt core via scsi_
tgt_queue_command(). The following
information is passed to tgt core from the tar-
get driver:

SCSI command buffer to contain SCSI com-
mand.

lun buffer buffer to represent logical unit
number.

tag unique value to identify this SCSI com-
mand.

2006 Linux Symposium, Volume One • 307

task attribute task attribute for ordering.

buffer length number of data bytes to transfer.

On completion of executing a SCSI command,
tgt core invokes transfer_response(),
which is specified in the scsi_host_
template data structure.

transfer_data() is invoked prior to
transfer_response() if a SCSI com-
mand involves data transfer. Like scsi-ml, a
scatter gather list of pages at the request_
buffer member in the scsi_cmnd data
structure is used to specify data to transfer.
Also like scsi-ml, tgt core utilizes Block Layer
and scsi-ml helpers to create scatter gather
lists within the scsi_host_template lim-
its such as max_sectors, dma_boundary,
sg_tablesize, and use_clustering.

If the SCSI command involves a target-to-
initiator data transfer, a target driver transfers
data pointed out by the scatter gather list to
the client, and then invokes the function pointer
passed as a argument of transfer_data()
to notify tgt core of the completion of the oper-
ation.

If the SCSI command involves a initiator-to-
target data transfer, the target driver copies
(through a DMA operation or memcpy) data
to the scatter gather list (the LLD or transport
class requests the client to send data to write be-
fore the actual transfer if necessary), and then
invokes the function pointer passed as a ar-
gument of transfer_data() to notify tgt
core of the completion of the transfer.

Depending on the transfer size and hardware or
transport limitations, tgt core may have to call
transfer_data() multiple times to trans-
mit the entire payload. To accomplish this, tgt
is not able to easily reuse the existing Block
Layer and SCSI API. This is due to tgt core

executing from interrupt context, and because
the scatter list APIs tgt utlizes were not in-
tended for requests starting at end of the storage
stack. To work around the Block Layer scatter
gather list allocation function assumption that
a request will normally be completed in one
scatter list, tgt required two modifications or
workarounds. The first and easiest, was the ad-
dition of an offset field to the scsi_cmnd
to track where the LLD is currently at in the
transfer. The more difficult change, and prob-
ably more of a hack, was for tgt core to main-
tain two lists of BIOs for each request. One
list contains BIOs that have not been mapped
to scatter lists and the second list contains BIOs
that have been mapped into scatter gather lists,
completed, and need to be unmapped from pro-
cess context when the command is completed.

3.1.3 Task Management Function

A target driver can send task management func-
tion (TMF) requests to tgt core via scsi_
tgt_tsk_mgmt_request().

The first argument is the TMF type. Currently,
the supported TMF types are ABORT_TASK,
ABORT_TASK_SET, and LOGICAL_UNIT_
RESET.

The second argument is the tag value to iden-
tify a command to abort. This corresponds
to the tag argument of scsi_tgt_queue_
command() and used only with ABORT_
TASK.

The third argument is the lun buffer to identify
a logical unit against which the TMF request
is performed. This is used with TMF requests
except for ABORT_TASK.

The last argument is a pointer to enable target
drivers to identify this TMF request on comple-
tion of it.

308 • tgt: Framework for Storage Target Drivers

tgt core invokes eh_abort_handler() per
aborted command to allow the target driver to
clean up any resources that it may have inter-
nally allocated for the command. Unlike when
it is called by scsi-ml’s error handler, the host
is not guaranteed to be quiesced and may have
initiator and target commands running.

Subsequently to eh_abort_handler(),
tsk_mgmt_response() is invoked. The
pointer to identify the completed TMF request
is passed as the argument.

3.2 tgt core

tgt core conveys SCSI commands, TMF re-
quests, and these results between target drivers
and the user space daemon, tgtd, through a
netlink interface, which enables a user space
process to read and write a stream of data via
the socket API. tgt core encapsulates the re-
quests into netlink packets and sends them to
user space to be executed. Then it receives
netlink packets from user space, extracts the re-
sults of the operation, and performs auxiliary
tasks in compliance with the results. Figure 5
shows the packet format for SCSI commands.

struct {
int host_no;

uint32_t cid;

uint32_t data_len;

uint8_t scb[16];

uint8_t lun[8];

int attribute;

uint64_t tag;

} cmd_req;

Figure 5: Netlink packet for SCSI commands

Since moving large amounts of data via netlink
leads to a performance drop because of the
memory copies, for the command’s data buffer

tgt uses the memory mapped I/O technique uti-
lized by the Linux SCSI generic (SG) device
driver [4], which moves an address that the
mmap() system call returns instead of lots of
data.

When tgt core receives the address from user
space, it increments the reference count on
the pages of the mapped region and sets
up the the scatter gather list in scsi_
cmnd data structure. tgt core relies on
the standard kernel API, bio_map_user(),
scsi_alloc_sgtable(), and blk_rq_
map_sg() for these chores. Similarly,
bio_unmap_user() and scsi_free_
sgtable() decrements the reference and
cleans up the the scatter gather list. The former
also marks the pages as dirty in case of initiator-
to-target data transfer (WRITE_* command).

3.3 User Space Daemon (tgtd)

The user space daemon, tgtd, is the heart of tgt.
It contains the SCSI state machine, executes re-
quests and provides a consistent API for man-
agement via Unix domain sockets. It commu-
nicates with the target drivers through tgt core’s
netlink interface.

tgtd currently uses a single process model.
This enables us to avoid tricky race conditions.
Imagine that a SCSI command is sent to a par-
ticular device and a management request to re-
move the device comes at the same time. How-
ever, this means that tgtd always needs to work
in an asynchronous manner.

The tgtd code is independent of transport proto-
cols and target drivers. The transport-protocol
dependent and target-driver dependent features,
such as showing parameters, are implemented
in dynamic libraries: transport-protocol li-
braries and target-driver libraries.

2006 Linux Symposium, Volume One • 309

There are two instances that the administrators
must understand: target and device. A target
instance works as a SCSI target device server.
Every working scsi host adapter that imple-
ments a target driver is bound to a particular
target instance. Multiple scsi host adapter in-
stances can be bound to a single target instance.
A device instance corresponds to a SCSI logi-
cal unit. A target instance can have multiple
device instances.

3.3.1 SCSI Command Processing in tgtd

In previous sections, the process by which a
command is moved between the kernel and user
space and how it is transferred between the tar-
get and initiator ports has been detailed. Now,
the final piece of the process, where tgtd per-
forms command execution, is described.

1. tgtd receives a netlink packet containing
a SCSI command and finds the the tar-
get instance (the device instance is looked
up if necessary) to which the command
should be routed. As shown in Figure 5,
the packet contains the host bus adapter ID
and the logical unit buffer.

2. tgtd processes the task attribute to know
when to execute the command (immedi-
ately or delay).

3. When the command is scheduled, tgtd ex-
ecutes it and sends the result to tgt core.

4. tgtd is notified via tgt core’s netlink inter-
face that the target driver has completed
any needed data transfer and has success-
fully sent the response. tgtd is then able to
free resources that it had allocated for the
command.

In case of non-I/O commands, involving target-
to-initiator data transfer, tgtd allocates buffer

via valloc(), builds the response in it, and
sends the address of the buffer to tgt core. The
buffer is freed on completion of the command.

In case of I/O commands, tgtd maps the re-
quested length starting at the offset from the
device’s file, and sends the address to the tgt
core. On completion of the command, tgt calls
the munmap system call.

To improve performance, if tgtd can map the
whole device file (typically, it is possible with
64-bit architectures), tgtd does not call the
mmap or munmap system calls per command.
Instead, it maps the whole device file when the
device instance is added to a target instance.

3.3.2 Task Management Function

When tgtd receives task management function
requests to abort SCSI commands, it searches
the commands, sends an abort request per the
found commands, and then sends the TMF
completion notification to tgt core.

Once tgt core marks pages as a dirty, it is im-
possible to stop them being committed to disk.
Thus, tgtd does not try to abort a command if it
is waiting for the completion. If tgtd receives a
request to abort such command, it waits for the
completion of the command and then sends the
TMF completion notification indicating that the
command is not found.

3.4 Configuration

The currently supported management opera-
tions are: creation and deletion of target and
device instances and binding a host adapter in-
stance to a target instance. All objects are in-
dependent of transport protocols. Transport-
protocol dependent management requests (such

310 • tgt: Framework for Storage Target Drivers

as showing parameters) are performed by using
the corresponding transport-protocol library.

The command-line management tool, tgtadm,
is distributed together with tgt for ease of use,
though tgtd provides a management API via
Unix domain sockets so that administrators or
vendors can implement their own management
tools.

4 Status and the Future

Today, tgt implements only what is necessary
to be able to benchmark it against kernel driver
implementations and provide basic functional-
ity. This has been due to the code being desta-
bilized several times as a result of code review
comments that have forced most of the code to
be pushed to user space. This means that there
is a long list of features to be implemented and
ported from previous versions of tgt.

4.1 Target Driver Support

At the time of the writing of this paper, there
is only one working target driver, ibmvstgt,
which is a SRP target driver, though it works
only for virtualization environments on IBM
pSeries [2]. The virtual machines communi-
cate via RDMA. One virtual machine (called
the Virtual I/O server) works as a SRP server
that provides I/O services for the rest of virtual
machines. ibmvstgt is based on the IBM stan-
dalone (not a framework) target driver [3], ib-
mvscsis. By converting ibmvscsis to tgt more
than 2,000 lines were removed from the origi-
nal driver.

Currently, there is a Qlogic FC, qla2xxx-based,
target driver being converted from kernel based
target framework, SCST [9], to tgt. And, an

Emulex FC, lpfc-based, target driver that uti-
lized a GPL FC target framework is being
worked on. Both of these require FC transport
class Remote Port (rport) changes that will al-
low the FC class and tgt core to perform trans-
port level recovery for the target LLDs.

The iSCSI code in mainline has also begun to
be modified to support target mode. With the
introduction of libiscsi a target could be imple-
mented by creating a new iscsi transport mod-
ule or by modifying the iscsi tcp module.

4.2 Kernel and User Space Communica-
tion

Netlink usage leads to memory allocations and
memory copies for every netlink packet. It
also suffers from frequent system calls. tgt
avoids a significant performance drop by us-
ing the memory mapped I/O technique for the
command data buffer, but there is still room
for improvement. By removing the copy of the
command and its status and sending a vector of
commands or status we can reduce the memory
copies and kernel user space trips.

Previous versions of tgt had used a mmapped
packet socket (AF_PACKET), to send messages
to user space. This removes netlink from the
command execution initiation and proved to
be a performance gain, but difficulties in the
mmapped packet socket interface usage have
prevented tgt from currently using it. Another
option that provides high speed data transfers
is the relayfs file system [10]. Unfortunately,
both are unidirectional, and only communica-
tion from the kernel to user space is improved.

Another common technique for reducing sys-
tem call usage is to send multiple requests in
one invocation. During testing of tgt, this was
attempted and showed promise, but was dif-
ficult to tune. Investigation will be resumed

2006 Linux Symposium, Volume One • 311

when more drivers are stabilized and can be
benchmarked.

4.3 Virtualization

The logical unit that executes requests from a
remote initiator is not limited to being backed
by a local device that provides a SCSI interface.
The object being used by tgt for the logical
unit’s device instance could be a IDE, SATA,
SCSI, Device Mapper (DM), or Multiple De-
vice (MD) device or a file. To provide this flex-
ibility, previous versions of tgt provided virtu-
alized devices for the clients regardless of the
attached local object. tgtd had two types of vir-
tualization:

device virtualization With device virtual-
ization, a device_type_handler
(DTH) emulates commands that cannot
be executed directly by its device type.
For example, a MD or DM device has no
notion of a SCSI INQUIRY. In this case
the DTH has the generic SCSI protocol
emulation library execute the INQUIRY.

I/O virtualization With I/O virtualization a
io_type_handler (IOTH) enables tgt
to access regular and block device files
using mmap or use specialized interfaces
such as SG IO.

Many types and combinations of device and I/O
virtualization are possible. A Virtual Tape Li-
brary (VTL) could provide a tape library using
disk drives, or by using the virtual CD device
and file I/O virtualization a tgt machine could
provide cdrom devices for the client with ISO
image files.

Another interesting virtualization mechanism is
passthrough, directly passing SCSI commands
to SCSI devices. This provides a feature, called

storage bridge, to bind different SAN protocols.
For example, suppose that you are already in a
working FC environment, where there are is FC
storage server and clients with a FC HBA. If
you need to add new clients that need to access
the FC storage server, however you cannot af-
ford to buy new FC HBAs, an iSCSI-FC bridge
can connect the existing FC network with a new
iSCSI network.

Currently, tgt supports disk device virtualiza-
tion and file I/O virtualization. The file I/O vir-
tualization simply opens a file and accesses its
data via the mmap system call.

5 Related Work

SCST is the first GPLed attempt to implement
a complete framework for target drivers. There
are several major differences between tgt and
SCST: SCST is mature and contains many fea-
tures, all the SCST components reside in kernel
space, and SCST duplicates functionality found
in scsi-ml and the Block Layer instead of ex-
ploiting and modifying those subsystems.

Besides ibmvscsis, there have been several
standalone target drivers. iSCSI Enterprise Tar-
get software (IET) [1] is a popular iSCSI tar-
get driver for Ethernet adapters, which tgt has
used as a base for istgt2. Other software iSCSI
targets include the UNH and Intel implementa-
tions [8, 7] and there are several iSCSI and FC
drivers for specific hardware like Qlogic and
Chelsio.

2The first author has maintained IET. The failure to
push it into the mainline kernel is one of the reasons why
tgt was born.

312 • tgt: Framework for Storage Target Drivers

6 Conclusion

This paper describes tgt, a new framework that
adds storage target driver support to the SCSI
subsystem. What differentiates tgt from other
target frameworks and standalone drivers is its
attempt to push the SCSI state model and I/O
execution to user space.

By using the Block and SCSI layer, tgt has been
able to quickly implement a solution that by-
passes performance problems that result from
executing memory copies to and from the ker-
nel. However, the Block and SCSI Layers, were
not designed to handle large asynchronous re-
quests originating from the LLDs interrupt han-
dlers. Since the Block Layer SG IO and SCSI
Upper Layer Drivers like SG, share a common
technique, code, and problems, we hope we
will be able to find a final solution that will ben-
efit tgt core and the rest of the kernel.

Tgt has undergone several rewrites as a result of
code reviews, but is now reaching a point where
hardware interface vendors and part time devel-
opers are collaborating to solidify tgt core and
tgtd, implement new target drivers, make mod-
ifications to other kernel subsystems to support
tgt, and implement new features.

The source code is available from http://
stgt.berlios.de/

References

[1] iSCSI Enterprise Target software, 2004.
http://iscsitarget.
sourceforge.net/.

[2] Dave Boutcher and Dave Engebretsen.
Linux Virtualization on IBM POWER5
Systems. In Ottawa Linux Symposium,
pages 113–120, July 2004.

[3] Dave Boutcher. SCSI target for IBM
Power5 LPAR, 2005. http:
//patchwork.ozlabs.org/
linuxppc64/patch?id=2285.

[4] Douglas Gilbert. The Linux SCSI
Generic (sg) Driver, 1999.
http://sg.torque.net/sg/.

[5] T10 Technical Editor. SCSI architecture
model-3, 2004.
http://www.t10.org/ftp/t10/
drafts/sam3/sam3r14.pdf.

[6] Edward Goggin, Alasdair Kergon,
Christophe Varoqui, and David Olien.
Linux Multipathing. In Ottawa Linux
Symposium, pages 147–167, July 2005.

[7] Intel iSCSI Reference Implementation,
2001. http://sourceforge.net/
projects/intel-iscsi/.

[8] UNH-iSCSI initiator and target, 2003.
http://unh-iscsi.
sourceforge.net/.

[9] Vladislav Bolkhovitin. Generic SCSI
Target Middle Level for Linux, 2003.
http:
//scst.sourceforge.net/.

[10] Karim Yaghmour, Robert Wisniewski,
Richard Moore, and Michel Dagenais.
relayfs: An efficient unified approach for
trasmitting data from kernel to user
space. In Ottawa Linux Symposium,
pages 519–531, July 2003.

More Linux for Less
uClinuxTM on a $5.00 (US) Processor

Michael Hennerich
Analog Devices

hennerich@blackfin.uclinux.org

Robin Getz
Analog Devices

rgetz@blackfin.uclinux.org

Abstract

While many in the Linux community focus on
enterprise and multi-processor servers, there
are also many who are working and deploy-
ing Linux on the network edge. Due to its
open nature, and the ability to swiftly develop
complex applications, Linux is rapidly becom-
ing the number one embedded operating sys-
tem. However, there are many differences be-
tween running Linux on a Quad processor sys-
tem with 16Gig of Memory and 250Gig of
RAID storage than a on a system where the to-
tal cost of hardware is less than the price of a
typical meal.

1 Introduction

In the past few years, Linux
TM

has become an
increasingly popular operating system choice
not only in the PC and Server market, also
in the development of embedded devices—
particularly consumer products, telecommuni-
cations routers and switches, Internet appli-
ances, and industrial and automotive applica-
tions.

The advantage of Embedded Linux is that it is
a royalty-free, open source, compact solution

that provides a strong foundation for an ever-
growing base of applications to run on. Linux
is a fully functional operating system (OS) with
support for a variety of network and file han-
dling protocols, a very important requirement
in embedded systems because of the need to
“connect and compute anywhere at anytime.”
Modular in nature, Linux is easy to slim down
by removing utility programs, tools, and other
system services that are not needed in the tar-
geted embedded environment. The advantages
for companies using Linux in embedded mar-
kets are faster time to market, flexibility, and
reliability.

This paper attempts to answer several questions
that all embedded developers ask:

• Why use a kernel at all?

• What advantages does Linux provide over
other operating systems?

• What is the difference between Linux on
x86 and low cost processors?

• Where can I get a kernel and how do I get
started?

• Is Linux capable of providing real-time
functionality?

• What are the possibilities to port a existing
real-time application to a system running
also Linux?

314 • More Linux for Less

2 Why use a kernel at all

All applications require control code as support
for the algorithms that are often thought of as
the “real” program. The algorithms require data
to be moved to and/or from peripherals, and
many algorithms consist of more than one func-
tional block. For some systems, this control
code may be as simple as a “super loop” blindly
processing data that arrives at a constant rate.
However, as processors become more power-
ful, considerably more sophisticated control or
signal processing may be needed to realize the
processor’s potential, to allow the processor to
absorb the required functionality of previously
supported chips, and to allow a single processor
to do the work of many. The following sections
provide an overview of some of the benefits of
using a kernel on a processor.

2.1 Rapid Application Development

The use of the Linux kernel allows rapid de-
velopment of applications compared to creat-
ing all of the control code required by hand.
An application or algorithm can be created and
debugged on an x86 PC using powerful desk-
top debugging tools, and using standard pro-
gramming interfaces to device drivers. Moving
this code base to an embedded linux kernel run-
ning on a low-cost embedded processor is triv-
ial because the device driver model is exactly
the same. Opening an audio device on the x86
Desktop is done in exactly the same was as on
an embedded Linux system. This allows you to
concentrate on the algorithms and the desired
control flow rather than on the implementation
details. Embedded Linux kernels and applica-
tions supports the use of C, C++, and assem-
bly language, encouraging the development of
code that is highly readable and maintainable,
yet retaining the option of hand-optimizing if
necessary.

2.2 Debugged Control Structures

Debugging a traditional hand-coded applica-
tion can be laborious because development
tools (compiler, assembler, and linker among
others) are not aware of the architecture of the
target application and the flow of control that
results. Debugging complex applications is
much easier when instantaneous snapshots of
the system state and statistical runtime data are
clearly presented by the tools. To help offset
the difficulties in debugging software, embed-
ded Linux kernels are tested with the same tests
that many desktop distributions use before re-
leasing a Linux kernel. This ensure that the em-
bedded kernel is as bug-free as possible.

2.3 Code Reuse

Many programmers begin a new project by
writing the infrastructure portions that transfers
data to, from, and between algorithms. This
necessary control logic usually is created from
scratch by each design team and infrequently
reused on subsequent projects. The Linux ker-
nel provides much of this functionality in a
standard, portable, and reusable manner. Fur-
thermore, the kernel and its tight integration
with the GNU development and debug tools
are designed to promote good coding practice
and organization by partitioning large appli-
cations into maintainable and comprehensible
blocks. By isolating the functionality of sub-
systems, the kernel helps to prevent the morass
all too commonly found in systems program-
ming. The kernel is designed specifically to
take advantage of commonality in user applica-
tions and to encourage code reuse. Each thread
of execution is created from a user-defined tem-
plate, either at boot time or dynamically by an-
other thread. Multiple threads can be created
from the same template, but the state associ-
ated with each created instance of the thread

2006 Linux Symposium, Volume One • 315

remains unique. Each thread template repre-
sents a complete encapsulation of an algorithm
that is unaware of other threads in the system
unless it has a direct dependency.

2.4 Hardware Abstraction

In addition to a structured model for algo-
rithms, the Linux kernel provides a hardware
abstraction layer. Presented programming in-
terfaces allow you to write most of the applica-
tion in a platform-independent, high-level lan-
guage (C or C++). The Linux Application Pro-
gramming Interface (API) is identical for all
processors which support Linux, allowing code
to be easily ported to a different processor core.
When porting an application to a new plat-
form, programmers must only address the areas
necessarily specific to a particular processor—
normally device drivers. The Linux architec-
ture identifies a crisp boundary around these
subsystems and supports the traditionally dif-
ficult development with a clear programming
framework and code generation. Common de-
vices can use the same driver interface (for ex-
ample a serial port driver may be specific for a
certain hardware, but the application←→ serial
port driver interface should be exactly the same,
providing a well-defined hardware abstraction,
and making application development faster).

2.5 Partitioning an Application

A Linux application or thread is an encapsu-
lation of an algorithm and its associated data.
When beginning a new project, use this notion
of an application or thread to leverage the ker-
nel architecture and to reduce the complexity
of your system. Since many algorithms may be
thought of as being composed of subalgorithm
building blocks, an application can be parti-
tioned into smaller functional units that can be

individually coded and tested. These build-
ing blocks then become reusable components
in more robust and scalable systems.

You define the behavior of Linux applications
by creating the application. Many application
or threads of the same type can be created, but
for each thread type, only one copy of the code
is linked into the executable code. Each appli-
cation or thread has its own private set of vari-
ables defined for the thread type, its own stack,
and its own C run-time context.

When partitioning an application into threads,
identify portions of your design in which a
similar algorithm is applied to multiple sets of
data. These are, in general, good candidates for
thread types. When data is present in the sys-
tem in sequential blocks, only one instance of
the thread type is required. If the same opera-
tion is performed on separate sets of data simul-
taneously, multiple threads of the same type can
coexist and be scheduled for prioritized execu-
tion (based on when the results are needed).

2.6 Scheduling

The Linux kernel can be a preemptive multi-
tasking kernel. Each application or thread be-
gins execution at its entry point. Then, it ei-
ther runs to completion or performs its primary
function repeatedly in an infinite loop. It is the
role of the scheduler to preempt execution of a
an application or thread and to resume its ex-
ecution when appropriate. Each application or
thread is given a priority to assist the scheduler
in determining precedence.

The scheduler gives processor time to the
thread with the highest priority that is in the
ready state. A thread is in the ready state when
it is not waiting for any system resources it has
requested.

316 • More Linux for Less

2.7 Priorities

Each application or thread is assigned a dy-
namically modifiable priority. An application
is limited to forty (40) priority levels. How-
ever, the number of threads at each priority is
limited, in practice, only by system memory.
Priority level one is the highest priority, and pri-
ority thirty is the lowest. The system maintains
an idle thread that is set to a priority lower than
that of the lowest user thread.

Assigning priorities is one of the most difficult
tasks of designing a real-time preemptive sys-
tem. Although there has been research in the
area of rigorous algorithms for assigning pri-
orities based on deadlines (for example, rate-
monotonic scheduling), most systems are de-
signed by considering the interrupts and signals
triggering the execution, while balancing the
deadlines imposed by the system’s input and
output streams.

2.8 Preemption

A running thread continues execution unless
it requests a system resource using a kernel
system call. When a thread requests a signal
(semaphore, event, device flag, or message) and
the signal is available, the thread resumes exe-
cution. If the signal is not available, the thread
is removed from the ready queue; the thread is
blocked. The kernel does not perform a con-
text switch as long as the running thread main-
tains the highest priority in the ready queue,
even if the thread frees a resource and enables
other threads to move to the ready queue at the
same or lower priority. A thread can also be
interrupted. When an interrupt occurs, the ker-
nel yields to the hardware interrupt controller.
When the ISR completes, the highest priority
thread resumes execution.

2.9 Application and Hardware Interaction

Applications should have minimal knowledge
of hardware; rather, they should use device
drivers for hardware control. A application can
control and interact with a device in a portable
and hardware abstracted manner through a
standard set of APIs.

The Linux Interrupt Service Routine frame-
work encourages you to remove specific knowl-
edge of hardware from the algorithms encap-
sulated in threads. Interrupts relay informa-
tion to threads through signals to device drivers
or directly to threads. Using signals to con-
nect hardware to the algorithms allows the ker-
nel to schedule threads based on asynchronous
events. The Linux run-time environment can be
thought of as a bridge between two domains,
the thread domain and the interrupt domain.
The interrupt domain services the hardware
with minimal knowledge of the algorithms, and
the thread domain is abstracted from the de-
tails of the hardware. Device drivers and sig-
nals bridge the two domains.

2.10 Downside of using a kernel

• Memory consumption: to have a usable
Linux system, you should consider having
at least 4–8 MB of SDRAM, and at least
2MB of Flash.

• Boot Time: the kernel is fast, but some-
times not fast enough, expect to have a 2–5
second boot time.

• Interrupt Latency: On occasions, a Linux
device driver, or even the kernel, will dis-
able interrupts. Some critical kernel op-
erations can not be interrupted, and it is
unfortunate, but interrupts must be turned
off for a bit. Care has been taken to keep
critical regions as short as possible as they

2006 Linux Symposium, Volume One • 317

cause increased and variable interrupt la-
tency.

• Robustness: although a kernel has gone
through lots of testing, and many people
are using it, it is always possible that there
are some undiscovered issues. Only you
can test it in the configuration that you will
ship it.

3 Advantages of Linux

Despite the fact that Linux was not originally
designed for use in embedded systems, it has
found its way into many embedded devices.
Since the release of kernel version 2.0.x and the
appearance of commercial support for Linux
on embedded processors, there has been an ex-
plosion of embedded devices that use Linux as
their OS. Almost every day there seems to be a
new device or gadget that uses Linux as its op-
erating system, in most cases going completely
unnoticed by the end users. Today a large
number of the available broadband routers, fire-
walls, access points, and even some DVD play-
ers utilize Linux, for more examples see Lin-
uxdevices.1

Linux offers a huge amount of drivers for all
sorts of hardware and protocols. Combine that
with the fact that Linux does not have run-time
royalties, and it quickly becomes clear why
there are so many developers using Linux for
their devices. In fact, in a recent embedded sur-
vey, 75% of developers indicated they are us-
ing, or are planning on using an open source
operating system.2

1http://www.linuxdevices.org
2Embedded systems survey http://www.

embedded.com/showArticle.jhtml?
articleID=163700590

Many commercial and non-commercial Linux
kernel trees and distributions enable a wide var-
ity of choices for the embedded developer.

One of the special trees is the uClinux
(Pronounced you-see-linux, the name uClinux
comes from combining the greek letter mu (µ)
and the English capital C. Mu stands for mi-
cro, and the C is for controller) kernel tree, at
http://www.uclinux.org. This is a dis-
tribution which includes a Linux kernel opti-
mized for low-cost processors, including pro-
cessors without a Memory Management Unit
(MMU). While the nommu kernel patch has
been included in the official Linux 2.6.x kernel,
the most up-to-date development activity and
projects can be found at uClinux Project Page
and Blackfin/uClinux Project Page3. Patches
such as these are used by commercial Linux
vendors in conjunction with their additional en-
hancements, development tools, and documen-
tation to provide their customers an easy-to-use
development environment for rapidly creating
powerful applications on uClinux.

Contrary to most people’s understanding,
uClinux is not a “special” Linux kernel tree, but
the name of a distribution, which goes through
testing on low-cost embedded platforms.

www.uclinux.org provides developers
with a Linux distribution that includes different
kernels (2.0.x, 2.4.x, 2.6.x) along with required
libraries; basic Linux shells and tools; and a
wide range of additional programs such as web
server, audio player, programming languages,
and a graphical configuration tool. There are
also programs specially designed with size and
efficiency as their primary considerations. One
example is busybox, a multicall binary, which
is a program that includes the functionality of
a lot of smaller programs and acts like any one
of them if it is called by the appropriate name.
If busybox is linked to ls and contains the ls

3http://www.blackfin.uclinux.org

318 • More Linux for Less

code, it acts like the ls command. The benefit
of this is that busybox saves some overhead for
unique binaries, and those small modules can
share common code.

In general, the uClinux distribution is more
than adequate enough to compile a full Linux
image for a communication device, like a
router, without writing a single line of code.

4 Differences between MMU Linux
and noMMU Linux

Since Linux on processors with MMU and
without MMU are similar to UNIX256 in that it
is a multiuser, multitasking OS, the kernel has
to take special precautions to assure the proper
and safe operation of up to thousands of pro-
cesses from different users on the same system
at once. The UNIX security model, after which
Linux is designed, protects every process in its
own environment with its own private address
space. Every process is also protected from
processes being invoked by different users. Ad-
ditionally, a Virtual Memory (VM) system has
additional requirements that the Memory Man-
agement Unit (MMU) must handle, like dy-
namic allocation of memory and mapping of ar-
bitrary memory regions into the private process
memory.

Some processors, like Blackfin, do not pro-
vide a full-fledged MMU. These processors are
more power efficient and significantly cheaper
than the alternatives, while sometimes having
higher performance.

Even on processors featuring Virtual Memory,
some system developers target their applica-
tion to run without the MMU turned on, be-
cause noMMU Linux can be significantly faster
than Linux on the same processor. Overhead
of MMU operations can be significant. Even

when a MMU is available, it is sometimes not
used in systems with high real-time constraints.
Context switching and Inter Process Communi-
cation (IPC) can also be several times faster on
uClinux. A benchmark on an ARM9 processor,
done by H.S. Choi and H.C. Yun, has proven
this.4

To support Linux on processors without an
MMU, a few trade-offs have to be made:

1. No real memory protection (a faulty pro-
cess can bring the complete system down)

2. No fork system call

3. Only simple memory allocation

4. Some other minor differences

4.1 Memory Protection

Memory protection is not a real problem for
most embedded devices. Linux is a very sta-
ble platform, particularly in embedded devices,
where software crashes are rarely observed.
Even on a MMU-based system running Linux,
software bugs in the kernel space can crash
the whole system. Since Blackfin has mem-
ory protection, but not Virtual Memory, Black-
fin/uClinux has better protection than other no-
MMU systems, and does provide some protec-
tion from applications writing into peripherals,
and therefore will be more robust than uClinux
running on different processors.

There are two most common principal reasons
causing uClinux to crash:

• Stack overflow: When Linux is running
on an architecture where a full MMU ex-
ists, the MMU provides Linux programs

4http://opensrc.sec.samsung.com/
document/uc-linux-04_sait.pdf

2006 Linux Symposium, Volume One • 319

basically unlimited stack and heap space.
This is done by the virtualization of phys-
ical memory. However most embedded
Linux systems will have a fixed amount
of SDRAM, and no swap, so it is not re-
ally “unlimited.” A program with a mem-
ory leak can still crash the entire system on
embedded Linux with a MMU and virtual
memory.

Because noMMU Linux can not support
VM, it allocates stack space during com-
pile time at the end of the data for the ex-
ecutable. If the stack grows too large on
noMMU Linux, it will overwrite the static
data and code areas. This means that the
developer, who previously was oblivious
to stack usage within the application, must
now be aware of the stack requirements.

On gcc for Blackfin, there is a com-
piler option to enable stack checking.
If the option -fstack-limit-symbol=

_stack_start is set, the compiler will
add in extra code which checks to en-
sure that the stack is not exceeded. This
will ensure that random crashes due to
stack corruption/overflow will not happen
on Blackfin/uClinux. Once an application
compiled with this option and exceeds its
stack limit, it gracefully dies. The devel-
oper then can increase the stack size at
compile time or with the flthdr utility
program during runtime. On production
systems, stack checking can either be re-
moved (increase performance/reduce code
size), or left in for the increase in robust-
ness.

• Null pointer reference: The Blackfin
MMU does provide partial memory pro-
tection, and can segment user space from
kernel (supervisor) space. On Black-
fin/uClinux, the first 4K of memory start-
ing at NULL is reserved as a buffer for
bad pointer dereferences. If an applica-

tion uses a uninitialized pointer that reads
or writes into the first 4K of memory, the
application will halt. This will ensure that
random crashes due to uninitialized point-
ers are less likely to happen. Other im-
plementations of noMMU Linux will start
writing over the kernel.

4.2 No Fork

The second point can be little more problem-
atic. In software written for UNIX or Linux,
developers sometimes use the fork system call
when they want to do things in parallel. The
fork() call makes an exact copy of the orig-
inal process and executes it simultaneously. To
do that efficiently, it uses the MMU to map the
memory from the parent process to the child
and copies only those memory parts to that
child it writes. Therefore, uClinux cannot pro-
vide the fork() system call. It does, how-
ever, provide vfork(), a special version of
fork(), in which the parent is halted while
the child executes. Therefore, software that
uses the fork() system call has to be modi-
fied to use either vfork() or POSIX threads
that uClinux supports, because they share the
same memory space, including the stack.

4.3 Memory Allocation

As for point number three, there usually is
no problem with the malloc support noMMU
Linux provides, but sometimes minor modifi-
cations may have to be made. Memory allo-
cation on uClinux can be very fast, but on the
other hand a process can allocate all available
memory. Since memory can be only allocated
in contiguous chunks, memory fragmentation
can be sometimes an issue.

320 • More Linux for Less

4.4 Minor Differences

Most of the software available for Linux or
UNIX (a collection of software can be found on
http://freshmeat.net) can be directly
compiled on uClinux. For the rest, there is usu-
ally only some minor porting or tweaking to do.
There are only very few applications that do not
work on uClinux, with most of those being ir-
relevant for embedded applications.

5 Developing with uClinux

When selecting development hardware, devel-
opers should not only carefully make their se-
lection with price and availability considera-
tions in mind, but also look for readily available
open source drivers and documentation, as well
as development tools that makes life easier—
e.g., kernel, driver and application debugger,
profiler, strace.

/subsectionTesting uClinux Especially when
developing with open source—where software
is given as-is—developers making a platform
decision should also carefully have a eye on the
test methodology for kernel, drivers, libraries,
and toolchain. After all, how can a developer,
in a short time, determine if the Linux kernel
running on processor A is better or worse than
running on processor B?

The simplest way to test a new kernel on a new
processor is to just boot the platform, and try
out the software you normally run. This is an
important test, because it tests most quickly the
things that matter most, and you are most likely
to notice things that are out of the ordinary from
the normal way of working. However, this ap-
proach does not give widespread test coverage;
each user tends to use the GNU/Linux system
only for a very limited range of the available

functions it offers and it can take significant
time to build the processor tool chain, build the
kernel, and download it to the target for the test-
ing.

Another alternative is to run test suites. These
are software packages written for the express
purpose of testing, and they are written to cover
a wide range of functions and often to expose
things that are likely to go wrong.

The Linux Test Project (LTP), as an example,
is a joint project started by SGI and maintained
by IBM, that has a goal to deliver test suites to
the open source community that validate the re-
liability, robustness, and stability of Linux. The
LTP test suite contains a collection of tools for
testing the Linux kernel and related features.
Analog Devices, Inc., sponsored the porting
of LTP to architectures supported by noMMU
Linux.

Testing with test suites applies not only the ker-
nel, also all other tools involved during the de-
velopment process. If you can not trust your
compiler or debugger, then you are lost. Black-
fin/uClinux uses DejaGnu to ease and automate
the over 44,000 toolchain tests, and checking
of their expected results while running on tar-
get hardware. In addition there are test suites
included in Blackfin/uClinux to do automated
stress tests on kernel and device drivers using
expect scripts. All these tests can be easily re-
produced because they are well documented.

Here are the test results for the Blackfin gcc-4.x
compiler.

2006 Linux Symposium, Volume One • 321

=== gas Summary ===
of expected passes 79

== binutils Summary ===
of expected passes 26
of untested testcases 7

=== gdb Summary ===
of expected passes 9018
of unexpected failures 62
of expected failures 41
of known failures 27
of unresolved testcases 9
of untested testcases 5
of unsupported tests 32

=== gcc Summary ===
of expected passes 36735
of unexpected failures 33
of unexpected successes 1
of expected failures 75
of unresolved testcases 28
of untested testcases 28
of unsupported tests 393

=== g++ Summary ===
of expected passes 11792
of unexpected failures 10
of unexpected successes 1
of expected failures 67
of unresolved testcases 14
of unsupported tests 165

All of the unexpected failures have been anal-
ysed to ensure that the toolchain is as stable as
possible with all types of software that some-
one could use it with.

6 Where can I get uClinux and how
do I get started?

Normally, the first selection that is made once
Linux is chosen as the embedded operating sys-

tem, is to identify the lowest cost processor
that will meet the performance targets. Luck-
ily, many silicon manufacturers are fighting for
this position.

During this phase of development it is about the
5 processor Ps.

• Penguins

• Price

• Power

• Performance

• Peripherals

6.1 Low-cost Processors

Although the Linux kernel supports many ar-
chitectures, including alpha, arm, frv, h8300,
i386, ia64, m32r, m68k, mips, parisc, powerpc,
s390, sh, sparc, um, v850, x86_64, and xtensa,
many Linux developers are surprised to hear of
a recent new Linux port to the Blackfin Proces-
sor.

Blackin Processors combine the ability for real-
time signal processing and the functionality of
microprocessors, fulfilling the requirements of
digital audio and communication applications.
The combination of a signal processing core
with traditional processor architecture on a sin-
gle chip avoids the restrictions, complexity, and
higher costs of traditional heterogeneous multi-
processor systems.

All Blackfin Processors combine a state-of-the-
art signal processing engine with the advan-
tages of a clean, orthogonal RISC-like micro-
processor instruction set and Single Instruc-
tion Multiple Data (SIMD) multimedia capa-
bilities into a single instruction set architecture.
The Micro Signal Architecture (MSA) core is a

322 • More Linux for Less

dual-MAC (Multiply Accumulator Unit) mod-
ified Harvard Architecture that has been de-
signed to have unparalleled performance on
typical signal processing5 algorithms, as well
as standard program flow and arbitrary bit ma-
nipulation operations mainly used by an OS.

The single-core Blackfin Processors have two
large blocks of on-chip memory providing high
bandwidth access to the core. These memory
blocks are accessed at full processor core speed
(up to 756MHz). The two memory blocks sit-
ting next to the core, referred to as L1 mem-
ory, can be configured either as data or in-
struction SRAM or cache. When configured
as cache, the speed of executing external code
from SDRAM is nearly on par with running
the code from internal memory. This feature is
especially well suited for running the uClinux
kernel, which doesn’t fit into internal memory.
Also, when programming in C, the memory ac-
cess optimization can be left up to the core by
using cache.

6.2 Development Environment

A typical uClinux development environment
consists of a low-cost Blackfin STAMP board,
and the GNU Compiler Collection (gcc cross
compiler) and the binutils (linker, assembler,
etc.) for the Blackfin Processor. Additionally,
some GNU tools like awk, sed, make, bash,
etc., plus tcl/tk are needed, although they
usually come by default with the desktop Linux
distribution.

An overview of some of the STAMP board fea-
tures are given below:

• ADSP-BF537 Blackfin device with JTAG
interface

5Analog Devices, Inc. Blackfin Processors http:
//www.analog.com/blackfin

• 500MHz core clock

• Up to 133MHz system clock

• 32M x 16bit external SDRAM (64MB)

• 2M x 16bit external flash (4MB)

• 10/100 Mbps Ethernet Interface (via on-
chip MAC, connected via DMA)

• CAN Interface

• RS-232 UART interface with DB9 serial
connector

• JTAG ICE 14 pin header

• Six general-purpose LEDs, four general-
purpose push buttons

• Discrete IDC Expansion ports for all pro-
cessor peripherals

All sources and tools (compiler, binutils, gnu
debugger) needed to create a working uClinux
kernel on the Blackfin Processors can be freely
obtained from http://www.blackfin.
uclinux.org. To use the binary rpms, a
PC with a Linux distribution like Red Hat or
SuSE is needed. Developers who can not
install Linux on their PC have a alternative.
Cooperative Linux (coLinux) is a relatively
new means to provide Linux services on a
Windows host. There already exists an out-
of-the-box solution that can be downloaded
for free from http://blackfin.uclinux.

org/projects/bfin-colinux. This pack-
age comes with a complete Blackfin uClinux
distribution, including all user-space applica-
tions and a graphical Windows-like installer.

After the installation of the development envi-
ronment and the decompression of the uClinux
distribution, development may start.

2006 Linux Symposium, Volume One • 323

Figure 1: BF537-STAMP Board from Analog Devices

6.3 Compiling a kernel & Root Filesystem

First the developer uses the graphical config-
uration utility to select an appropriate Board
Support Package (BSP) for his target hard-
ware. Supported target platforms are STAMP
for BF533, BF537, or the EZKIT for the Dual
Core Blackfin BF561. Other Blackfin deriva-
tives not listed like BF531, BF532, BF536, or
BF534 are also supported but there isn’t a de-
fault configuration file included.

After the default kernel is configured and suc-
cessfully compiled, there is a full-featured
Linux kernel and a filesystem image that can be
downloaded and executed or flashed via NFS,
tftp, or Kermit protocol onto the target hard-
ware with the help of preinstalled u-boot boot
loader. Once successful, further development
can proceed.

6.4 Hello World

A further step could be the creation of a simple
Hello World program.

Here is the program hello.c as simple as it
can be:

#include <stdio.h>

int main () {
printf("Hello World\n");
return 0;

}

The first step is to cross compile hello.c on
the development host PC:

host> bfin-uclinux-gcc -Wl,-elf2flt \
hello.c -o hello

The output executable is hello.

When compiling programs that run
on the target under the Linux kernel,

324 • More Linux for Less

bfin-uclinux-gcc is the compiler used.
Executables are linked against the uClibc
runtime library. uClibc is a C library for
developing embedded Linux systems. It is
much smaller than the GNU C Library, but
nearly all applications supported by glibc also
work perfectly with uClibc. Library function
calls like printf() invoke a system call,
telling the operating system to print a string to
stdout, the console. The elf2flt command
line option tells the linker to generate a flat
binary—elf2flt converts a fully linked
ELF object file created by the toolchain into a
binary flat (BFLT) file for use with uClinux.

The next step is to download hello to the tar-
get hardware. The are many ways to accom-
plish that. One convenient way is be to place
hello into a NFS or SAMBA exported file
share on the development host, while mount-
ing the share form the target uClinux system.
Other alternatives are placing hello in a web
server’s root directory and use the wget com-
mand on the target board. Or simply use ftp,
tftp, or rcp to transfer the executable.

6.5 Debugging in uClinux

Debugging tools in the hello case are not a
necessity, but as programs become more so-
phisticated, the availablilty of good debugging
tools become a requirement.

Sometimes an application just terminates after
being executed, without printing an appropriate
error message. Reasons for this are almost infi-
nite, but most of the time it can be traced back
to something really simple, e.g. it can not open
a file, device driver, etc.

strace is a debugging tool which prints out a
trace of all the system calls made by a another
program. System calls and signals are events
that happen at the user/kernel interface. A close

examination of this boundary is very useful for
bug isolation, sanity checking, and attempting
to capture race conditions.

If strace does not lead to a quick result,
developers can follow the unspectacular way
most Linux developers go using printf or
printk to add debug statements in the code
and recompile/rerun.

This method can be exhausting. The standard
Linux GNU Debugger (GDB) with its graphi-
cal front-ends can be used instead to debug user
applications. GDB supports single stepping,
backtrace, breakpoints, watchpoints, etc. There
are several options to have gdb connected to the
gdbserver on the target board. Gdb can connect
over Ethernet, Serial, or JTAG (rproxy). For de-
bugging in the kernel space, for instance device
drivers, developers can use the kgdb Blackfin
patch for the gdb debugger.

If a target application does not work because
of hidden inefficiencies, profiling is the key to
success. OProfile is a system-wide profiler for
Linux-based systems, capable of profiling all
running code at low overhead. OProfile uses
the hardware performance counters of the CPU
to enable profiling of a variety of interesting
statistics, also including basic time spent pro-
filing. All code is profiled: hardware and soft-
ware interrupt handlers, kernel modules, the
kernel, shared libraries, and applications.

The Blackfin gcc compiler has very favor-
able performance, a comparison with other gcc
compilers can be found here: GCC Code-Size
Benchmark Environment (CSiBE). But some-
times it might be necessary to do some hand
optimization, to utilize all enhanced instruction
capabilities a processor architecture provides.
There are a few alternatives: Use Inline assem-
bly, assembly macros, or C-callable assembly.

2006 Linux Symposium, Volume One • 325

GCC Code Size Benchmark

3,634,174

3,410,494

3,057,192

2,884,078

2,875,194

2,991,774

3,861,877

3,500,098

3,193,538

2,747,131

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

arm
-elf

arm
-linux

bfin-elf

i386-elf

i686-linux

m
68k-elf

m
ips-elf

ppc-elf

sh-elf

thum
b-elf

Architectures

C
o

d
e

S
iz

e
(i

n
 B

yt
es

)

Figure 2: Results from GCC Code-Size Benchmark Environment (CSiBE) Department of Software
Engineering, University of Szeged

6.6 C callable assembly

For a C program to be able to call an assem-
bly function, the names of the function must be
known to the C program. The function proto-
type is therefore declared as an external func-
tion.

extern int minimum(int,int);

In the assembly file, the same function name is
used as the label at the jump address to which
the function call branches. Names defined in
C are used with a leading underscore. So the
function is defined as follows.

.global _minimum;
_minimum:

R0 = MIN(R0,R1);
RTS; /*Return*/

The function name must be declared using the
.global directive in the assembly file to let
the assembler and compiler know that its used
by a another file. In this case registers R0 and
R1 correspond to the first and second function
parameter. The function return value is passed
in R0. Developers should make themselves
comfortable with the C runtime parameter pass-
ing model of the used architecture.

6.7 Floating Point & Fractional Floating
Point

Since many low cost architectures (like Black-
fin) do not include hardware floating point unit
(FPU), floating point operations are emulated
in software. The gcc compiler supports two
variants of soft floating-point support. These
variants are implemented in terms of two alter-
native emulation libraries, selected at compile
time.

326 • More Linux for Less

The two alternative emulation libraries are:

• The default IEEE-754 floating-point li-
brary: It is a strictly-conforming vari-
ant, which offers less performance, but in-
cludes all the input-checking that has been
relaxed in the alternative library.

• The alternative fast floating-point library:
It is a high-performance variant, which re-
laxes some of the IEEE rules in the in-
terests of performance. This library as-
sumes that its inputs will be value num-
bers, rather than Not-a-number values.

The selection of these libraries is controlled
with the -ffast-math compiler option.

Luckily, most embedded applications do not
use floating point.

However, many signal processing algorithms
are performed using fractional arithmetic. Un-
fortunately, C does not have a fixed point frac-
tional data type. However, fractional operations
can be implemented in C using integer opera-
tions. Most fractional operations must be im-
plemented in multiple steps, and therefore con-
sume many C statements for a single opera-
tion, which makes them hard to implement on
a general purpose processor. Signal processors
directly support single cycle fractional and in-
teger arithmetic, while fractional arithmetic is
used for the actual signal processing operations
and integer arithmetic is used for control op-
erations such as memory address calculations,
loop counters and control variables.

The numeric format in signed fractional no-
tation makes sense to use in all kind of sig-
nal processing computations, because it is hard
to overflow a fractional result, because mul-
tiplying a fraction by a fraction results in a
smaller number, which is then either truncated

or rounded. The highest full-scale positive frac-
tional number is 0.99999, while the highest
full-scale negative number is –1.0. To convert
a fractional back to an integer number, the frac-
tional must be multiplied by a scaling factor so
the result will be always between ±2N−1 for
signed and 2N for unsigned integers.

6.8 libraries

The standard uClinux distribution con-
tains a rich set of available C libraries for
compression, cryptography, and other pur-
poses. (openssl, libpcap, libldap,
libm, libdes, libaes, zlib, libpng,
libjpeg, ncurses, etc.) The Black-
fin/uClinux distribution additionally includes:
libaudio, libao, libSTL, flac,
tremor, libid3tag, mpfr, etc. Further-
more Blackfin/uClinux developers currently
incorporate signal processing libraries into
uClinux with highly optimized assembly func-
tions to perform all kinds of common signal
processing algorithms such as Convolution,
FFT, DCT, and IIR/FIR Filters, with low MIPS
overhead.

6.9 Application Development

The next step would be the development of the
special applications for the target device or the
porting of additional software. A lot of de-
velopment can be done in shell scripts or lan-
guages like Perl or Python. Where C program-
ming is mandatory, Linux, with its extraordi-
nary support for protocols and device drivers,
provides a powerful environment for the devel-
opment of new applications.

Example: Interfacing a CMOS Camera Sensor

The Blackfin processor is a very I/O-balanced
processor. This means it offers a variety of

2006 Linux Symposium, Volume One • 327

high-speed serial and parallel peripheral inter-
faces. These interfaces are ideally designed in
a way that they can be operated with very low
or no-overhead impact to the processor core,
leaving enough time for running the OS and
processing the incoming or outgoing data. A
Blackfin Processor as an example has multiple,
flexible, and independent Direct Memory Ac-
cess (DMA) controllers. DMA transfers can
occur between the processor’s internal mem-
ory and any of its DMA-capable peripherals.
Additionally, DMA transfers can be performed
between any of the DMA-capable peripherals
and external devices connected to the exter-
nal memory interfaces, including the SDRAM
controller and the asynchronous memory con-
troller.

The Blackfin processor provides, besides other
interfaces, a Parallel Peripheral Interface (PPI)
that can connect directly to parallel D/A
and A/D converters, ITU-R-601/656 video en-
coders and decoders, and other general-purpose
peripherals, such as CMOS camera sensors.
The PPI consists of a dedicated input clock pin,
up to three frame synchronization pins, and up
to 16 data pins.

Figure 3 is an example of how easily a CMOS
imaging sensor can be wired to a Blackfin Pro-
cessor, without the need of additional active
hardware components.

Below is example code for a simple program
that reads from a CMOS Camera Sensor, as-
suming a PPI driver is compiled into the kernel
or loaded as a kernel module. There are two
different PPI drivers available, a generic full-
featured driver, supporting various PPI opera-
tion modes (ppi.c), and a simple PPI Frame
Capture Driver (adsp-ppifcd.c). The lat-
ter is used here. The application opens the
PPI device driver, performs some I/O controls
(ioctls), setting the number of pixels per line
and the number of lines to be captured. After
the application invokes the read system call,

the driver arms the DMA transfer. The start of a
new frame is detected by the PPI peripheral, by
monitoring the Line- and Frame-Valid strobes.
A special correlation between the two signals
indicates the start of frame, and kicks off the
DMA transfer, capturing pixels-per-line times
lines samples. The DMA engine stores the in-
coming samples at the address allocated by the
application. After the transfer is finished, exe-
cution returns to the application. The image is
then converted into the PNG (Portable Network
Graphic) format, utilizing libpng included in
the uClinux distribution. The converted image
is then written to stdout. Assuming the com-
piled program executable is called readimg, a
command line to execute the program, writing
the converted output image to a file, can look
like following:

root:~> readimg > /var/image.png

Example: Reading from a CMOS Camera Sen-
sor

Audio, Video, and Still-image silicon products
widely use an I2C-compatible Two Wire In-
terface (TWI) as a system configuration bus.
The configuration bus allows a system master
to gain access over device internal configura-
tion registers such as brightness. Usually, I2C
devices are controlled by a kernel driver. But
it is also possible to access all devices on an
adapter from user space, through the /dev in-
terface. The following example shows how to
write a value of 0x248 into register 9 of a I2C
slave device identified by I2C_DEVID:

#define I2C_DEVID (0xB8>>1)
#define I2C_DEVICE "/dev/i2c-0"

i2c_write_register(I2C_DEVICE,

I2C_DEVID,9,0x0248);

328 • More Linux for Less

MICRON MT9T001 ADSP−BF537

PPI_FS1

PPI_FS3

TMRn
SDA

PPI_FS2

PPIn_DATA
PPI_CLK

SCL

FRAME VALID

DATA
PIXEL CLOCK

SCL

LINE_VALID

SDA

8/16

Figure 3: Micron CMOS Imager gluelessly connected to Blackfin

Example: Writing configuration data to e.g. a
CMOS Camera Sensor

The power of Linux is the inexhaustible num-
ber of applications released under various open
source licenses that can be cross compiled to
run on the embedded uClinux system. Cross
compiling can be sometimes a little bit tricky,
that’s why it is discussed here.

6.10 Cross compiling

Linux or UNIX is not a single platform, there
is a wide range of choices. Most programs dis-
tributed as source code come with a so-called
configure script. This is a shell script that must
be run to recognize the current system config-
uration, so that the correct compiler switches,
library paths, and tools will be used. When
there isn’t a configure script, the developer can
manually modify the Makefile to add target-
processor-specific changes, or can integrate it

into the uClinux distribution. Detailed instruc-
tions can be found here. The configure script is
usually a big script, and it takes quite a while
to execute. When this script is created from re-
cent autoconf releases, it will work for Black-
fin/uClinux with minor or no modifications.

The configure shell script inside a source pack-
age can be executed for cross compilation using
following command line:

host> CC=’bfin-uclinux-gcc -O2 \
-Wl,-elf2flt’ ./configure \
--host=bfin-uclinux \
--build=i686-linux

Alternatively:

host> ./configure \
--host=bfin-uclinux \
--build=i686-linux \
LDFLAGS=’-Wl,-elf2flt’ \
CFLAGS=-O2

2006 Linux Symposium, Volume One • 329

#define WIDTH 1280
#define HEIGHT 1024

int main(int argc, char *argv[]) {
int fd;
char * buffer;

/* Allocate memory for the raw image */
buffer = (char*) malloc (WIDTH * HEIGHT);

/* Open /dev/ppi */
fd = open("/dev/ppi0", O_RDONLY,0);
if (fd == -1) {

printf("Could not open dev\/ppi\n");
free(buffer);
exit(1);

}

ioctl(fd, CMD_PPI_SET_PIXELS_PER_LINE, WIDTH);
ioctl(fd, CMD_PPI_SET_LINES_PER_FRAME, HEIGHT);

/* Read the raw image data from the PPI */
read(fd, buffer, WIDTH * HEIGHT);

put_image_png (buffer, WIDTH, HEIGHT)

close(fd); /* Close PPI */
}

/*
* convert image to png and write to stdout

*/
void put_image_png (char *image, int width, int height) {

int y;
char *p;
png_infop info_ptr;

png_structp png_ptr = png_create_write_struct (PNG_LIBPNG_VER_STRING,
NULL, NULL, NULL);

info_ptr = png_create_info_struct (png_ptr);

png_init_io (png_ptr, stdout);

png_set_IHDR (png_ptr, info_ptr, width, height,
8, PNG_COLOR_TYPE_GRAY, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);

png_write_info (png_ptr, info_ptr);
p = image;

for (y = 0; y < height; y++) {
png_write_row (png_ptr, p);
p += width;

}
png_write_end (png_ptr, info_ptr);
png_destroy_write_struct (&png_ptr, &info_ptr);

}

Figure 4: read.c file listing

330 • More Linux for Less

#define I2C_SLAVE_ADDR 0x38 /* Randomly picked */

int i2c_write_register(char * device, unsigned char client, unsigned char reg,
unsigned short value) {

int addr = I2C_SLAVE_ADDR;
char msg_data[32];
struct i2c_msg msg = { addr, 0, 0, msg_data };
struct i2c_rdwr_ioctl_data rdwr = { &msg, 1 };

int fd,i;

if ((fd = open(device, O_RDWR)) < 0) {
fprintf(stderr, "Error: could not open %s\n", device);
exit(1);

}

if (ioctl(fd, I2C_SLAVE, addr) < 0) {
fprintf(stderr, "Error: could not bind address %x \n", addr);

}

msg.len = 3;
msg.flags = 0;
msg_data[0] = reg;
msg_data[2] = (0xFF & value);
msg_data[1] = (value >> 8);
msg.addr = client;

if (ioctl(fd, I2C_RDWR, &rdwr) < 0) {
fprintf(stderr, "Error: could not write \n");

}

close(fd);
return 0;

}

Figure 5: Application to write configuration data to a CMOS Sensor

There are at least two causes able to stop the
running script: some of the files used by the
script are too old, or there are missing tools or
libraries. If the supplied scripts are too old to
execute properly for bfin-uclinux, or they
don’t recognize bfin-uclinux as a possi-
ble target, the developer will need to replace
config.subwith a more recent version from
e.g. an up-to-date gcc source directory. Only in
very few cases cross compiling is not supported
by the configure.in script manually writ-
ten by the author and used by autoconf. In this
case latter file can be modified to remove or
change the failing test case.

7 Network Oscilloscope

The Network Oscilloscope Demo is one of
the sample applications, besides the VoIP Lin-
phone Application or the Networked Audio
Player, included in the Blackfin/uClinux dis-
tribution. The purpose of the Network Oscil-
loscope Project is to demonstrate a simple re-
mote GUI (Graphical User Interface) mecha-
nism to share access and data distributed over
a TCP/IP network. Furthermore, it demon-
strates the integration of several open source
projects and libraries as building blocks into
single application. For instance gnuplot, a
portable command-line driven interactive data
file and function plotting utility, is used to
generate graphical data plots, while thttpd,
a CGI (Common Gateway Interface) capable

2006 Linux Symposium, Volume One • 331

web server, is servicing incoming HTTP re-
quests. CGI is typically used to generate dy-
namic webpages. It’s a simple protocol to
communicate between web forms and a spec-
ified program. A CGI script can be written in
any language, including C/C++, that can read
stdin, write to stdout, and read environ-
ment variables.

The Network Oscilloscope works as follow-
ing. A remote web browser contacts the HTTP
server running on uClinux where the CGI script
resides, and asks it to run the program. Pa-
rameters from the HTML form such as sam-
ple frequency, trigger settings, and display op-
tions are passed to the program through the en-
vironment. The called program samples data
from a externally connected Analog-to-Digital
Converter (ADC) using a Linux device driver
(adsp-spiadc.c). Incoming samples are
preprocessed and stored in a file. The CGI
program then starts gnuplot as a process and
requests generation of a PNG or JPEG im-
age based on the sampled data and form set-
tings. The webserver takes the output of the
CGI program and tunnels it through to the web
browser. The web browser displays the output
as an HTML page, including the generated im-
age plot.

A simple C code routine can be used to supply
data in response to a CGI request.

Example: Simple CGI Hello World application

8 Real-time capabilities of uClinux

Since Linux was originally developed for
server and desktop usage, it has no hard real-
time capabilities like most other operating sys-
tems of comparable complexity and size. Nev-
ertheless, Linux and in particular, uClinux has
excellent so-called soft real-time capabilities.

This means that while Linux or uClinux can-
not guarantee certain interrupt or scheduler la-
tency compared with other operating systems
of similar complexity, they show very favorable
performance characteristics. If one needs a so-
called hard real-time system that can guarantee
scheduler or interrupt latency time, there are a
few ways to achieve such a goal:

Provide the real-time capabilities in the form
of an underlying minimal real-time kernel
such as RT-Linux (http://www.rtlinux.
org) or RTAI (http://www.rtai.org).
Both solutions use a small real-time kernel that
runs Linux as a real-time task with lower pri-
ority. Programs that need predictable real time
are designed to run on the real-time kernel and
are specially coded to do so. All other tasks
and services run on top of the Linux kernel and
can utilize everything that Linux can provide.
This approach can guarantee deterministic in-
terrupt latency while preserving the flexibility
that Linux provides.

For the initial Blackfin port, included in Xeno-
mai v2.1, the worst-case scheduling latency ob-
served so far with userspace Xenomai threads
on a Blackfin BF533 is slightly lower than 50
us under load, with an expected margin of im-
provement of 10–20 us, in the future.

Xenomai and RTAI use Adeos as a underlying
Hardware Abstraction Layer (HAL). Adeos is
a real time enabler for the Linux kernel. To
this end, it enables multiple prioritized O/S do-
mains to exist simultaneously on the same hard-
ware, connected through an interrupt pipeline.

Xenomai as well as Adeos has been ported to
the Blackfin architecture by Philippe Gerum
who leads both projects. This development has
been significantly sponsored by Openwide, a
specialist in embedded and real time solutions
for Linux.

Nevertheless in most cases, hard real-time is

332 • More Linux for Less

not needed, particularly for consumer multime-
dia applications, in which the time constraints
are dictated by the abilities of the user to recog-
nize glitches in audio and video. Those physi-
cally detectable constraints that have to be met
normally lie in the area of milliseconds, which
is no big problem on fast chips like the Black-
fin Processor. In Linux kernel 2.6.x, the new
stable kernel release, those qualities have even
been improved with the introduction of the new
O(1) scheduler.

Figures below show the context switch time for
a default Linux 2.6.x kernel running on Black-
fin/uClinux:

Context Switch time was measured with lat_
ctx from lmbench. The processes are con-
nected in a ring of Unix pipes. Each process
reads a token from its pipe, possibly does some
work, and then writes the token to the next pro-
cess. As number of processes increases, effect
of cache is less. For 10 processes the average
context switch time is 16.2us with a standard
deviation of .58, 95% of time is under 17us.

9 Conclusion

Blackfin Processors offer a good price/
performance ratio (800 MMAC @ 400 MHz
for less than (US)$5/unit in quantities), ad-
vanced power management functions, and
small mini-BGA packages. This represents
a very low-power, cost- and space-efficient
solution. The Blackfin’s advanced DSP and
multimedia capabilities qualify it not only
for audio and video appliances, but also
for all kinds of industrial, automotive, and
communication devices. Development tools
are well tested and documented, and include
everything necessary to get started and suc-
cessfully finished in time. Another advantage
of the Blackfin Processor in combination with

uClinux is the availability of a wide range of
applications, drivers, libraries and protocols,
often as open source or free software. In most
cases, there is only basic cross compilation
necessary to get that software up and running.
Combine this with such invaluable tools as
Perl, Python, MySQL, and PHP, and develop-
ers have the opportunity to develop even the
most demanding feature-rich applications in
a very short time frame, often with enough
processing power left for future improvements
and new features.

10 Legal

This work represents the view of the authors and
does not necessarily represent the view of Analog
Devices, Inc.

Linux is registered trademark of Linus Torvalds.
uClinux is trademark of Arcturus Networks Inc.
SGI is trademark of Silicon Graphics, Inc. ARM
is a registered trademark of ARM Limited. Black-
fin is a registered trademark of Analog Devices Inc.
IBM is a registered trademark of International Busi-
ness Machines Corporation. UNIX is a registered
trademark of The Open Group. Red Hat is regis-
tered trademark of Red Hat, Inc. SuSE is registered
trademark of Novell Inc.

All other trademarks belong to their respective own-
ers.

Hrtimers and Beyond: Transforming the Linux Time
Subsystems

Thomas Gleixner
linutronix

tglx@linutronix.de

Douglas Niehaus
University of Kansas

niehaus@eecs.ku.edu

Abstract

Several projects have tried to rework Linux
time and timers code to add functions such as
high-precision timers and dynamic ticks. Pre-
vious efforts have not been generally accepted,
in part, because they considered only a sub-
set of the related problems requiring an inte-
grated solution. These efforts also suffered sig-
nificant architecture dependence creating com-
plexity and maintenance costs. This paper
presents a design which we believe provides a
generally acceptable solution to the complete
set of problems with minimum architecture de-
pendence.

The three major components of the design are
hrtimers, John Stulz’s new timeofday approach,
and a new component called clock events.
Clock events manages and distributes clock
events and coordinates the use of clock event
handling functions. The hrtimers subsystem
has been merged into Linux 2.6.16. Although
the name implies “high resolution” there is no
change to the tick based timer resolution at
this stage. John Stultz’s timeofday rework ad-
dresses jiffy and architecture independent time
keeping and has been identified as a fundamen-
tal preliminary for high resolution timers and
tickless/dynamic tick solutions. This paper pro-
vides details on the hrtimers implementation
and describes how the clock events component

will complement and complete the hrtimers and
timeofday components to create a solid foun-
dation for architecture independent support of
high-resolution timers and dynamic ticks.

1 Introduction

Time keeping and use of clocks is a fundamen-
tal aspect of operating system implementation,
and thus of Linux. Clock related services in op-
erating systems fall into a number of different
categories:

• time keeping

• clock synchronization

• time-of-day representation

• next event interrupt scheduling

• process and in-kernel timers

• process accounting

• process profiling

These service categories exhibit strong interac-
tions among their semantics at the design level
and tight coupling among their components at
the implementation level.

334 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

Hardware devices capable of providing clock
sources vary widely in their capabilities, accu-
racy, and suitability for use in providing the de-
sired clock services. The ability to use a given
hardware device to provide a particular clock
service also varies with its context in a unipro-
cessor or multi-processor system.

TOD Clock source HW

ISR Clock event source HW

TOD Clock source HW

ISR Clock event source HW

TOD Clock source HW

ISR Clock event source HW

Arch 1

Arch 2

Arch 3

Timekeeping

Tick

Process acc.

Profiling

Jiffies

Timer wheel

Figure 1: Linux Time System

Figure 1 shows the current software architec-
ture of the clock related services in a vanilla 2.6
Linux system. The current implementation of
clock related services in Linux is strongly asso-
ciated with individual hardware devices, which
results in parallel implementations for each ar-
chitecture containing considerable amounts of
essentially similar code. This code duplication
across a large number of architectures makes it
difficult to change the semantics of the clock
related services or to add new features such
as high resolution timers or dynamic ticks be-
cause even a simple change must be made in
so many places and adjusted for so many im-
plementations. Two major factors make im-
plementing changes to Linux clock related ser-
vices difficult: (1) the lack of a generic ab-
straction layer for clock services and (2) the
assumption that time is tracked using periodic
timer ticks (jiffies) that is strongly integrated
into much of the clock and timer related code.

2 Previous Efforts

A number of efforts over many years have ad-
dressed various clock related services and func-
tions in Linux including various approaches to
high resolution time keeping and event schedul-
ing. However, all of these efforts have encoun-
tered significant difficulty in gaining broad ac-
ceptance because of the breadth of their impact
on the rest of the kernel, and because they gen-
erally addressed only a subset of the clock re-
lated services in Linux.

Interestingly, all those efforts have a common
design pattern, namely the attempt to inte-
grate new features and services into the existing
clock and timer infrastructure without changing
the overall design.

There are no projects to our knowledge which
attempt to solve the complete problem as we
understand and have described it. All existing
efforts, in our view, address only a part of the
whole problem as we see it, which is why, in
our opinion, the solutions to their target prob-
lems are more complex than under our pro-
posed architecure, and are thus less likely to be
accepted into the main line kernel.

3 Required Abstractions

The attempt to integrate high resolution timers
into Ingo Molnar’s real-time preemption patch
led to a thorough analysis of the Linux timer
and clock services infrastructure. While
the comprehensive solution for addressing the
overall problem is a large-scale task it can be
separated into different problem areas.

• clock sources management for time keep-
ing

2006 Linux Symposium, Volume One • 335

• clock synchronization

• time-of-day representation

• clock event management for scheduling
next event interrupts

• eliminating the assumption that timers are
supported by periodic interrupts and ex-
pressed in units of jiffies

These areas of concern are largely independent
and can thus be addressed more or less inde-
pendently during implementation. However,
the important points of interaction among them
must be considered and supported in the overall
design.

3.1 Clock Source Management

An abstraction layer and associated API are re-
quired to establish a common code framework
for managing various clock sources. Within
this framework, each clock source is required to
maintain a representation of time as a monoton-
ically increasing value. At this time, nanosec-
onds are the favorite choice for the time value
units of a clock source. This abstraction layer
allows the user to select among a range of avail-
able hardware devices supporting clock func-
tions when configuring the system and pro-
vides necessary infrastructure. This infras-
tructure includes, for example, mathematical
helper functions to convert time values specific
to each clock source, which depend on prop-
erties of each hardware device, into the com-
mon human-oriented time units used by the
framework, i.e. nanoseconds. The centraliza-
tion of this functionality allows the system to
share significantly more code across architec-
tures. This abstraction is already addressed by
John Stultz’s work on a Generic Time-of-day
subsystem [5].

3.2 Clock Synchronization

Crystal driven clock sources tend to be impre-
cise due to variation in component tolerances
and environmental factors, such as tempera-
ture, resulting in slightly different clock tick
rates and thus, over time, different clock val-
ues in different computers. The Network Time
Protocol (NTP) and more recently GPS/GSM
based synchronization mechanisms allow the
correction of system time values and of clock
source drift with respect to a selected standard.
Value correction is applied to the monotoni-
cally increasing value of the hardware clock
source. This is an optional functionality as
it can only be applied when a suitable refer-
ence time source is available. Support for clock
synchronization is a separate component from
those discussed here. There is work in progress
to rework the current mechanism by John Stultz
and Roman Zippel.

3.3 Time-of-day Representation

The monotonically increasing time value pro-
vided by many hardware clock sources cannot
be set. The generic interface for time-of-day
representation must thus compensate for drift
as an offset to the clock source value, and rep-
resent the time-of-day (calendar or wall clock
time) as a function of the clock source value.
The drift offset and parameters to the func-
tion converting the clock source value to a wall
clock value can set by manual interaction or
under control of software for synchronization
with external time sources (e.g. NTP).

It is important to note that the current Linux im-
plementation of the time keeping component is
the reverse of the proposed solution. The inter-
nal time representation tracks the time-of-day
time fairly directly and derives the monotoni-
cally increasing nanosecond time value from it.

336 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

This is a relic of software development history
and the GTOD/NTP work is already addressing
this issue.

3.4 Clock Event Management

While clock sources provide read access to
the monotonically increasing time value, clock
event sources are used to schedule the next
event interrupt(s). The next event is currently
defined to be periodic, with its period defined
at compile time. The setup and selection of
the event sources for various event driven func-
tionalities is hardwired into the architecture de-
pendent code. This results in duplicated code
across all architectures and makes it extremely
difficult to change the configuration of the sys-
tem to use event interrupt sources other than
those already built into the architecture. An-
other implication of the current design is that
it is necessary to touch all the architecture-
specific implementations in order to provide
new functionality like high resolution timers or
dynamic ticks.

The clock events subsystem tries to address
this problem by providing a generic solution to
manage clock event sources and their usage for
the various clock event driven kernel function-
alities. The goal of the clock event subsystem
is to minimize the clock event related architec-
ture dependent code to the pure hardware re-
lated handling and to allow easy addition and
utilization of new clock event sources. It also
minimizes the duplicated code across the ar-
chitectures as it provides generic functionality
down to the interrupt service handler, which is
almost inherently hardware dependent.

3.5 Removing Tick Dependencies

The strong dependency of Linux timers on us-
ing the the periodic tick as the time source

and representation was one of the main prob-
lems faced when implementing high resolution
timers and variable interval event scheduling.
All attempts to reuse the cascading timer wheel
turned out to be incomplete and inefficient for
various reasons. This led to the implementation
of the hrtimers (former ktimers) subsystem. It
provides the base for precise timer scheduling
and is designed to be easily extensible for high
resolution timers.

4 hrtimers

The current approach to timer management in
Linux does a good job of satisfying an ex-
tremely wide range of requirements, but it can-
not provide the quality of service required in
some cases precisely because it must satisfy
such a wide range of requirements. This is why
the essential first step in the approach described
here is to implement a new timer subsystem
to complement the existing one by assuming a
subset of its existing responsibilities.

4.1 Why a New Timer Subsystem?

The Cascading Timer Wheel (CTW), which
was implemented in 1997, replaced the original
time ordered double linked list to resolve the
scalability problem of the linked list’s O(N) in-
sertion time. It is based on the assumption that
the timers are supported by a periodic interrupt
(jiffies) and that the expiration time is also rep-
resented in jiffies. The difference in time value
(delta) between now (the current system time)
and the timer’s expiration value is used as an in-
dex into the CTW’s logarithmic array of arrays.
Each array within the CTW represents the set
of timers placed within a region of the system
time line, where the size of the array’s regions
grow exponentially. Thus, the further into the

2006 Linux Symposium, Volume One • 337

array start end granularity
1 1 256 1
2 257 16384 256
3 16385 1048576 16384
4 1048577 67108864 1048576
5 67108865 4294967295 67108864

Table 1: Cascading Timer Wheel Array Ranges

future a timer’s expiration value lies, the larger
the region of the time line represented by the
array in which it is stored. The CTW groups
timers into 5 categories. Note that each CTW
array represents a range of jiffy values and that
more than one timer can be associated with a
given jiffy value.

Table 1 shows the properties of the different
timer categories. The first CTW category con-
sists of n1 entries, where each entry represents
a single jiffy. The second category consists of
n2 entries, where each entry represents n1*n2
jiffies. The third category consists of n3 en-
tries, where each entry represents n1*n2*n3
jiffies. And so forth. The current kernel uses
n1=256 and n2..n5 = 64. This keeps the num-
ber of hash table entries in a reasonable range
and covers the future time line range from 1 to
4294967295 jiffies.

The capacity of each category depends on the
size of a jiffy, and thus on the periodic in-
terrupt interval. While the 10 ms tick period
in 2.4 kernels implied 2560ms for the CTW
first category, this was reduced to 256ms in the
early 2.6 kernels (1 ms tick) and readjusted to
1024ms when the HZ value was set to 250.
Each CTW category maintains an time index
counter which is incremented by the “wrap-
ping” of the lower category index which occurs
when its counter increases to the point where
its range overlaps that of the higher category.
This triggers a “cascade” where timers from the
matching entry in the higher category have to

be removed and reinserted into the lower cat-
egory’s finer-grained entries. Note that in the
first CTW category the timers are time-sorted
with jiffy resolution.

While the CTW’s O(1) insertion and removal
is very efficient, timers with an expiration time
larger than the capacity of the first category
have to be cascaded into a lower category at
least once. A single step of cascading moves
many timers and it has to be done with inter-
rupts disabled. The cascading operation can
thus significantly increase maximum latencies
since it occasionally moves very large sets of
timers. The CTW thus has excellent average
performance but unacceptable worst case per-
formance. Unfortunately the worst case perfor-
mance determines its suitability for supporting
high resolution timers.

However, it is important to note that the CTW
is an excellent solution (1) for timers hav-
ing an expiration time lower than the capac-
ity of the primary category and (2) for timers
which are removed before they expire or have
to be cascaded. This is a common scenario
for many long-term protocol-timeout related
timers which are created by the networking and
I/O subsystems.

The KURT-Linux project at the University of
Kansas was the first to address implementing
high resolution timers in Linux [4]. Its con-
centration was on investigating various issues
related to using Linux for real-time computing.
The UTIME component of KURT-Linux exper-
imented with a number of data structures to
support high resolution timers, including both
separate implementations and those integrated
with general purpose timers. The HRT project
began as a fork of UTIME code [1]. both
projects added a sub-jiffy time tracking compo-
nent to increase resolution, and when integrat-
ing support with the CTW, sorted timers within
a given jiffy on the basis of the subjiffy value.

338 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

This increased overhead involved with cascad-
ing due to the O(N) sorting time. The experi-
ence of both projects demonstrated that timer
management overhead was a significant factor,
and that the necessary changes in the timer code
were quite scattered and intrusive. In sum-
mary, the experience of both projects demon-
strated that separating support for high resolu-
tion and longer-term generic (CTW) timers was
necessary and that a comprehensive restructur-
ing of the timer-related code would be required
to make future improvements and additions to
timer-related functions possible. The hrtimers
design and other aspects of the architecture de-
scribed in this paper was strongly motivated by
the lessons derived from both previous projects.

4.2 Solution

As a first step we categorized the timers into
two categories:

Timeouts: Timeouts are used primarily by
networking and device drivers to detect when
an event (I/O completion, for example) does
not occur as expected. They have low resolu-
tion requirements, and they are almost always
removed before they actually expire.

Timers: Timers are used to schedule ongoing
events. They can have high resolution require-
ments, and usually expire. Timers are mostly
related to applications (user space interfaces)

The timeout related timers are kept in the ex-
isting timer wheel and a new subsystem opti-
mized for (high resolution) timer requirements
hrtimers was implemented.

hrtimers are entirely based on human time
units: nanoseconds. They are kept in a time

sorted, per-CPU list, implemented as a red-
black tree. Red-black trees provide O(log(N))
insertion and removal and are considered to
be efficient enough as they are already used
in other performance critical parts of the ker-
nel e.g. memory management. The timers are
kept in relation to time bases, currently CLOCK_
MONOTONIC and CLOCK_REALTIME, ordered
by the absolute expiration time. This separa-
tion allowed to remove large chunks of code
from the POSIX timer implementation, which
was necessary to recalculate the expiration time
when the clock was set either by settimeofday
or NTP adjustments.

hrtimers went through a couple of revision cy-
cles and were finally merged into Linux 2.6.16.
The timer queues run from the normal timer
softirq so the resulting resolution is not better
than the previous timer API. All of the struc-
ture is there to do better once the other parts of
the overall timer code rework are in place.

After adding hrtimers the Linux time(r) system
looks like this:

TOD Clock source HW

ISR Clock event source HW

TOD Clock source HW

ISR Clock event source HW

TOD Clock source HW

ISR Clock event source HW

Arch 1

Arch 2

Arch 3

Timekeeping

Tick

Process acc.

Profiling

Jiffies

Timer wheel

hrtimers

Figure 2: Linux time system + htimers

4.3 Further Work

The primary purpose of the separate imple-
mentation for the high resolution timers, dis-

2006 Linux Symposium, Volume One • 339

cussed in Section 7, is to improve their sup-
port by eliminating the overhead and variable
latency associated with the CTW. However, it is
also important to note that this separation also
creates an opportunity to improve the CTW
behavior in supporting the remaining timers.
For example, using a coarser CTW granular-
ity may lower overhead by reducing the num-
ber of timers which are cascaded, given that an
even larger percentage of CTW timers would be
canceled under an architecture supporting high
resolution timers separately. However, while
this is an interesting possibility, it is currently
a speculation that must be tested.

5 Generic Time-of-day

The Generic Time-of-day subsystem (GTOD)
is a project led by John Stultz and was pre-
sented at OLS 2005. Detailed information is
available from the OLS 2005 proceedings [5].
It contains the following components:

• Clock source management

• Clock synchronization

• Time-of-day representation

GTOD moves a large portion of code out of
the architecture-specific areas into a generic
management framework, as illustrated in Fig-
ure 3. The remaining architecture-dependent
code is mostly limited to the direct hardware in-
terface and setup procedures. It allows simple
sharing of clock sources across architectures
and allows the utilization of non-standard clock
source hardware. GTOD is work in progress
and intends to produce set of changes which
can be adopted step by step into the main-line
kernel.

HW

ISR Clock event source HW

HW

ISR Clock event source HW

HW

ISR Clock event source HW

Arch 1

Arch 2

Arch 3

Timekeeping

Tick

Process acc.

Profiling

Jiffies

Timer wheel

hrtimers

Clock source

TODClock synchr.

Shared HW

Figure 3: Linux time system + htimers +
GTOD

6 Clock Event Source Abstraction

Just as it was necessary to provide a general
abstraction for clock sources in order to move
a significant amount of code into the architec-
ture independent area, a general framework for
managing clock event sources is also required
in the architecture independent section of the
source under the architecture described here.
Clock event sources provide either periodic or
individual programmable events. The manage-
ment layer provides the infrastructure for regis-
tering event sources and manages the distribu-
tion of the events for the various clock related
services. Again, this reduces the amount of es-
sentially duplicate code across the architectures
and allows cross-architecture sharing of hard-
ware support code and the easy addition of non-
standard clock sources.

The management layer provides interfaces for
hrtimers to implement high resolution timers
and also builds the base for a generic dy-
namic tick implementation. The management
layer supports these more advanced functions
only when appropriate clock event sources have
been registered, otherwise the traditional peri-
odic tick based behavior is retained.

340 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

6.1 Clock Event Source Registration

Clock event sources are registered either by the
architecture dependent boot code or at mod-
ule insertion time. Each clock event source
fills a data structure with clock-specific prop-
erty parameters and callback functions. The
clock event management decides, by using the
specified property parameters, the set of system
functions a clock event source will be used to
support. This includes the distinction of per-
CPU and per-system global event sources.

System-level global event sources are used for
the Linux periodic tick. Per-CPU event source
are used to provide local CPU functionality
such as process accounting, profiling, and high
resolution timers. The clock_event data
structure contains the following elements:

• name: clear text identifier

• capabilities: a bit-field which describes
the capabilities of the clock event source and
hints about the preferred usage

• max_delta_ns: the maximum event delta
(offset into future) which can be scheduled

• min_delta_ns: the minimum event delta
which can be scheduled

• mult: multiplier for scaled math conversion
from nanoseconds to clock event source units

• shift: shift factor for scaled math conver-
sion from nanoseconds to clock event source
units

• set_next_event: function to schedule the
next event

• set_mode: function to toggle the clock event
source operating mode (periodic / one shot)

• suspend: function which has to be called be-
fore suspend

• resume: function which has to be called be-
fore resume

• event_handler: function pointer which is
filled in by the clock event management code.
This function is called from the event source
interrupt

• start_event: function called before the
event_handler function in case that the
clock event layer provides the interrupt han-
dler

• end_event: function called after the
event_handler function in case that the
clock event layer provides the interrupt han-
dler

• irq: interrupt number in case the clock event
layer requests the interrupt and provides the in-
terrupt handler

• priv: pointer to clock source private data
structures

The clock event source can delegate the inter-
rupt setup completely to the management layer.
It depends on the type of interrupt which is as-
sociated with the event source. This is possible
for the PIT on the i386 architecture, for exam-
ple, because the interrupt in question is handled
by the generic interrupt code and can be ini-
tialized via setup_irq. This allows us to com-
pletely remove the timer interrupt handler from
the i386 architecture-specific area and move the
modest amount of hardware-specific code into
appropriate source files. The hardware-specific
routines are called before and after the event
handling code has been executed.

In case of the Local APIC on i386 and the
Decrementer on PPC architectures, the inter-
rupt handler must remain in the architecture-
specific code as it can not be setup through
the standard interrupt handling functions. The
clock management layer provides the function
which has to be called from the hardware level

2006 Linux Symposium, Volume One • 341

handler in a function pointer in the clock source
description structure. Even in this case the
shared code of the timer interrupt is removed
from the architecture-specific implementation
and the event distribution is managed by the
generic clock event code. The Clock Events
subsystem also has support code for clock event
sources which do not provide a periodic mode;
e.g. the Decrementer on PPC or match regis-
ter based event sources found in various ARM
SoCs.

6.2 Clock Event Distribution

The clock event layer provides a set of prede-
fined functions, which allow the association of
various clock event related services to a clock
event source.

The current implementation distributes events
for the following services:

• periodic tick

• process accounting

• profiling

• next event interrupt (e.g. high resolution
timers, dynamic tick)

6.3 Interfaces

The clock event layer API is rather small.
Aside from the clock event source registration
interface it provides functions to schedule the
next event interrupt, clock event source notifi-
cation service, and support for suspend and re-
sume.

6.4 Existing Implementations

At the time of this writing the base framework
code and the conversion of i386 to the clock
event layer is available and functional.

The clock event layer has been successfully
ported to ARM and PPC, but support has not
been continued due to lack of human resources.

6.5 Code Size Impact

The framework adds about 700 lines of code
which results in a 2KB increase of the kernel
binary size.

The conversion of i386 removes about 100 lines
of code. The binary size decrease is in the range
of 400 bytes.

We believe that the increase of flexibility and
the avoidance of duplicated code across archi-
tectures justifies the slight increase of the bi-
nary size.

The first goal of the clock event implementation
was to prove the feasibility of the approach.
There is certainly room for optimizing the size
impact of the framework code, but this is an is-
sue for further development.

6.6 Further Development

The following work items are planned:

• Streamlining of the code

• Revalidation of the clock distribution de-
cisions

• Support for more architectures

• Dynamic tick support

342 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

6.7 State of Transformation

The clock event layer adds another level of
abstraction to the Linux subsystem related to
time keeping and time-related activities, as il-
lustrated in Figure 4. The benefit of adding the
abstraction layer is the substantial reduction in
architecture-specific code, which can be seen
most clearly by comparing Figures 3 and 4.

HW

HW

HW

HW

HW

ISR HW

Arch 1

Arch 2

Arch 3

Timekeeping

Tick

Process acc.

Profiling

Jiffies

Timer wheel

hrtimers

Clock source

TODClock synchr.

Shared HW

Clock events

ISR

Event distribution

Shared HW

Figure 4: Linux time system + htimers +
GTOD + clock events

7 High Resolution Timers

The inclusion of the clock source and clock
event source management and abstraction lay-
ers provides now the base for high resolution
support for hrtimers.

While previous attempts of high resolution
timer implementations needed modification all
over the kernel source tree, the hrtimers based
implementation only changes the hrtimers code
itself. The required change to enable high
resolution timers for an architecture which is
supported by the Generic Time-of-day and the

clock event framework is the inclusion of a sin-
gle line in the architecture specific Kconfig file.

The next event modifications remove the im-
plicit but strong binding of hrtimers to jiffy
tick boundaries. When the high resolution ex-
tension is disabled the clock event distribu-
tion code works in the original periodic mode
and hrtimers are bound to jiffy tick boundaries
again.

8 Implementation

While the base functionality of hrtimers re-
mains unchanged, additional functionality had
to be added.

• Management function to switch to high
resolution mode late in the boot process.

• Next event scheduling

• Next event interrupt handler

• Separation of the hrtimers queue from the
timer wheel softirq

During system boot it is not possible to use the
high resolution timer functionality, while mak-
ing it possible would be difficult and would
serve no useful function. The initialization of
the clock event framework, the clock source
framework and hrtimers itself has to be done
and appropriate clock sources and clock event
sources have to be registered before the high
resolution functionality can work. Up to the
point where hrtimers are initialized, the sys-
tem works in the usual low resolution peri-
odic mode. The clock source and the clock
event source layers provide notification func-
tions which inform hrtimers about availability
of new hardware. hrtimers validates the usabil-
ity of the registered clock sources and clock

2006 Linux Symposium, Volume One • 343

event sources before switching to high reso-
lution mode. This ensures also that a kernel
which is configured for high resolution timers
can run on a system which lacks the necessary
hardware support.

The time ordered insertion of hrtimers pro-
vides all the infrastructure to decide whether
the event source has to be reprogrammed when
a timer is added. The decision is made per timer
base and synchronized across timer bases in a
support function. The design allows the system
to utilize separate per-CPU clock event sources
for the per-CPU timer bases, but mostly only
one reprogrammable clock event source per-
CPU is available. The high resolution timer
does not support SMP machines which have
only global clock event sources.

The next event interrupt handler is called from
the clock event distribution code and moves
expired timers from the red-black tree to a
separate double linked list and invokes the
softirq handler. An additional mode field in the
hrtimer structure allows the system to execute
callback functions directly from the next event
interrupt handler. This is restricted to code
which can safely be executed in the hard inter-
rupt context and does not add the timer back
to the red-black tree. This applies, for exam-
ple, to the common case of a wakeup function
as used by nanosleep. The advantage of exe-
cuting the handler in the interrupt context is the
avoidance of up to two context switches—from
the interrupted context to the softirq and to the
task which is woken up by the expired timer.
The next event interrupt handler also provides
functionality which notifies the clock event dis-
tribution code that a requested periodic interval
has elapsed. This allows to use a single clock
event source to schedule high resolution timer
and periodic events e.g. jiffies tick, profiling,
process accounting. This has been proved to
work with the PIT on i386 and the Incrementer
on PPC.

The softirq for running the hrtimer queues
and executing the callbacks has been separated
from the tick bound timer softirq to allow ac-
curate delivery of high resolution timer signals
which are used by itimer and POSIX interval
timers. The execution of this softirq can still be
delayed by other softirqs, but the overall laten-
cies have been significantly improved by this
separation.

HW

HW

HW

HW

HW

ISR HW

Arch 1

Arch 2

Arch 3

Timekeeping

Process acc.

Profiling

Jiffies

Timer wheel

hrtimers

Clock source

TODClock synchr.

Shared HW

Clock events

ISR

Event distribution

Shared HW

Next event

Figure 5: Linux time system + htimers +
GTOD + clock events + high resolution timers

8.1 Accuracy

All tests have been run on a Pentium III
400MHz based PC. The tables show compar-
isons of vanilla Linux 2.6.16, Linux-2.6.16-
hrt5 and Linux-2.6.16-rt12. The tests for inter-
vals less than the jiffy resolution have not been
run on vanilla Linux 2.6.16. The test thread
runs in all cases with SCHED_FIFO and pri-
ority 80.

Test case: clock_nanosleep(TIME_
ABSTIME), Interval 10000 microseconds,
10000 loops, no load.

344 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

Kernel min max avg
2.6.16 24 4043 1989
2.6.16-hrt5 12 94 20
2.6.16-rt12 6 40 10

Test case: clock_nanosleep(TIME_
ABSTIME), Interval 10000 micro seconds,
10000 loops, 100% load.

Kernel min max avg
2.6.16 55 4280 2198
2.6.16-hrt5 11 458 55
2.6.16-rt12 16

Test case: POSIX interval timer, Interval 10000
micro seconds, 10000 loops, no load.

Kernel min max avg
2.6.16 21 4073 2098
2.6.16-hrt5 22 120 35
2.6.16-rt12 20 60 31

Test case: POSIX interval timer, Interval 10000
micro seconds, 10000 loops, 100% load.

Kernel min max avg
2.6.16 82 4271 2089
2.6.16-hrt5 31 458 53
2.6.16-rt12 21 70 35

Test case: clock_nanosleep(TIME_
ABSTIME), Interval 500 micro seconds,
100000 loops, no load.

Kernel min max avg
2.6.16-hrt5 5 108 24
2.6.16-rt12 5 48 7

Test case: clock_nanosleep(TIME_
ABSTIME), Interval 500 micro seconds,
100000 loops, 100% load.

Kernel min max avg
2.6.16-hrt5 9 684 56
2.6.16-rt12 10 60 22

Test case: POSIX interval timer, Interval 500
micro seconds, 100000 loops, no load.

Kernel min max avg
2.6.16-hrt5 8 119 22
2.6.16-rt12 12 78 16

Test case: POSIX interval timer, Interval 500
micro seconds, 100000 loops, 100% load.

Kernel min max avg
2.6.16-hrt5 16 489 58
2.6.16-rt12 12 95 29

The real-time preemption kernel results are sig-
nificantly better under high load due to the gen-
eral low latencies for high priority real-time
tasks. Aside from the general latency opti-
mizations, further improvements were imple-
mented specifically to optimize the high reso-
lution timer behavior.

Separate threads for each softirq. Long
lasting softirq callback functions e.g. in the
networking code do not delay the delivery of
hrtimer softirqs.

Dynamic priority adjustment for high reso-
lution timer softirqs. Timers store the prior-
ity of the task which inserts the timer and the
next event interrupt code raises the priority of
the hrtimer softirq when a callback function
for a high priority thread has to be executed.
The softirq lowers its priority automatically af-
ter the execution of the callback function.

9 Dynamic Ticks

We have not yet done a dynamic tick imple-
mentation on top of the existing framework, but
we considered the requirements for such an im-
plementation in every design step.

The framework does not solve the general prob-
lem of dynamic ticks: how to find the next ex-
piring timer in the timer wheel. In the worst

2006 Linux Symposium, Volume One • 345

case the code has to walk through a large num-
ber of hash buckets. This can not be changed
without changing the basic semantics and im-
plementation details of the timer wheel code.

The next expiring hrtimer is simply retrieved
by checking the first timer in the time ordered
red-black tree.

On the other hand, the framework will deliver
all the necessary clock event source mecha-
nisms to reprogram the next event interrupt and
enable a clean, non-intrusive, out of the box, so-
lution once an architecture has been converted
to use the framework components.

The clock event functionalities necessary for
dynamic tick implementations are available
whether the high resolution timer functionality
is enabled or not. The framework code takes
care of those use cases already.

With the integration of dynamic ticks the trans-
formation of the Linux time related subsystems
will become complete, as illustrated in Fig-
ure 6.

HW

HW

HW

HW

HW

ISR HW

Arch 1

Arch 2

Arch 3

Timekeeping

Process acc.

Profiling

Jiffies

Timer wheel

hrtimers

Clock source

TODClock synchr.

Shared HW

Clock events

ISR

Event distribution

Shared HW

Next event

Dynamic tick

Figure 6: Transformed Linux Time Subsystem

10 Conclusion

The existing parts and pieces of the overall so-
lution have proved that a generic solution for
high resolution timers and dynamic tick is fea-
sible and provides a valuable benefit for the
Linux kernel.

Although most of the components have been
tested extensively in the high resolution timer
patch and the real-time preemption patch there
is still a way to go until a final inclusion into
the mainline kernel can be considered.

In general this can only be achieved by a step by
step conversion of functional units and archi-
tectures. The framework code itself is almost
self contained so a not converted architecture
should not have any impacts.

We believe that we provided a clear vision of
the overall solution and we hope that more de-
velopers get interested and help to bring this
further in the near future.

10.1 Acknowledgments

We sincerely thank all those people who helped
us to develop this solution. Help has been pro-
vided in form of code contributions, code re-
views, testing, discussion, and suggestions. Es-
pecially we want to thank Ingo Molnar, John
Stultz, George Anzinger, Roman Zippel, An-
drew Morton, Steven Rostedt and Benedikt
Spranger. A special thank you goes to Jonathan
Corbet who wrote some excellent articles about
hrtimers (and the previous ktimers) implemen-
tation [2, 3].

References

[1] George Anzinger and Monta Vista. High
resolution timers home page.

346 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

http://high-res-timers.
sourceforge.net.

[2] J. Corbet. Lwn article: A new approach to
kernel timers. http:
//lwn.net/Articles/152436.

[3] J. Corbet. Lwn article: The high resolution
timer api. http:
//lwn.net/Articles/167897.

[4] B. Srinivasan, S. Pather, R. Hill, F. Ansari,
and D. Niehaus. A firm real-time system
implementation using commercial off-the
shelf hardware and free software. In 4th

Real-Time Technology and Applications
Symposium, Denver, June 1998.

[5] J. Stulz. We are not getting any younger:
A new approach to timekeeping and
timers. In Ottawa Lnux Symposium,
Ottawa, Ontario, Canada, July 2005.

Making Applications Mobile Under Linux

Cédric Le Goater, Daniel Lezcano, Clément Calmels
IBM France

{clg, dlezcano, clement.calmels}@fr.ibm.com

Dave Hansen, Serge E. Hallyn
IBM Linux Technology Center

{haveblue, serue}@us.ibm.com

Hubertus Franke
IBM T.J. Watson Research Center

frankeh@watson.ibm.com

Abstract

Application mobility has been an operating sys-
tem research topic for many years. Many
approaches have been tried and solutions are
found across the industry. However, perfor-
mance remains the main issue and all the ef-
forts are now focused on performant solutions.
In this paper, we will discuss a prototype which
minimizes the overhead at runtime and the
amount of application state. We will examine
constraints and requirements to enhance perfor-
mance. Finally, we will discuss features and en-
hancements in the Linux kernel needed to im-
plement migration of applications.

1 Introduction and Motivation

Applications increasingly run for longer peri-
ods of time and build more context over time as
well. Recovering that context can be time con-
suming, depending on the application, and usu-
ally requires that the application be re-run from
the beginning to reconstruct its context. A few
applications now provide the ability to check-
point their data or context to a file, enabling that
application to be restarted later in the case of

a failure, a system upgrade, or a need to rede-
ploy hardware resources. This ability to check-
point context is most common in what is re-
ferred to as the High Performance Computing
(HPC) environment, which is often composed
of large numbers of computers working on a
distributed, long running computation. The ap-
plications often run for days or weeks at a time,
some even as long as a year.

Even outside the HPC arena, there are many
applications which have long start up times,
long periods of processing configuration files,
pre-computing information and so on. Histor-
ically, emacs was built with a script which in-
cluded undump—the ability to checkpoint the
full state of emacs into a binary which could
then be started much more quickly. Some enter-
prise class applications have thirty minute start
up times, and those applications continue to
build complex context as they continue to run.

Increasingly we as users tend to expect that our
applications will perform quickly, start quickly,
re-start quickly on a failure, and be always
available. However, we also expect to be able
to upgrade our operating system, apply secu-
rity fixes, add components, memory, some-
times even processing power without losing all
of the context that our applications have ac-

348 • Making Applications Mobile Under Linux

quired.

This paper discusses a generic mechanism for
saving the state of an application at any point,
with the ability to later restart that applica-
tion exactly where it left off. This ability to
save status and restart an application is typi-
cally referred to as checkpoint/restart, abbre-
viated throughout as CPR. This paper focuses
on the key areas for allowing applications to
be virtualized, simplifying the ability to check-
point and later restart an application. Further,
the technologies covered here would allow ap-
plications to potentially be restarted on a differ-
ent operating system image than the one from
which it was checkpointed. This provides the
ability to move an application (or even a set of
applications) dynamically from one machine or
virtual operating system image to another.

Once the fundamental mechanisms are in
place, this technology can be used for such
more advanced capabilities such as check-
pointing a cluster wide application—in other
words synchronizing and stopping a coordi-
nated, distributed applications, and restarting
them. Cluster wide CPR would allow a site
administrator to install a security update or
perform scheduled maintainance on the entire
cluster without impacting the application run-
ning.

Also, CPR would enable applications to be
moved from host to host depending on sys-
tem load. For instance, an overloaded machine
could have its workload rebalanced by moving
an application set from one machine to another
that is otherwise underutilized. Or, several sys-
tems which are underloaded could have their
applications consolidated to a single machine.
CPR plus migration will henceforth be referred
to as CPRM.

Most of the capabilities we’ve highlighted here
are best enabled via application virtualization.

Application virtualization is a means of ab-
stracting, or virtualizing, the software resources
of the system. These include such things as pro-
cess id’s, IPC ids, network connections, mem-
ory mappings, etc. It is also a means to contain
and isolate resources required by the applica-
tion to enable its mobility. Compared to the
virtual machine approach, application virtual-
ization approach minimizes the state of the ap-
plication to be transferred and also allows for a
higher degree of resource sharing between ap-
plications. On the other hand, it has limited
fault containment, when compared to the vir-
tual machine approach.

We built a prototype, called MCR, by modify-
ing the Linux kernel and creating such a layer
of containment. They are various other projects
with similar goals, for instance VServer [8]
and OpenVZ [7] and dated Linux implementa-
tion of BSD Jails [4]. In this paper, we will
describe our experiences from implementing
MCR and examine the many communalities of
these projects.

2 Related Work in CPR

CPR is theoretically simple. Stop execution
of the task and store the state of all mem-
ory, registers, and other resources. To restart,
reload the executable image, load the state
saved during the checkpoint, and restart exe-
cution at the location indicated by the instruc-
tion pointer register. In practice, complications
arise due to issues like inter-processes sharing,
security implications, and the ways that the ker-
nel transparently manages resources. This sec-
tion groups some of the existing solutions and
reviews their shortcomings.

Virtual machines control the entire system
state, making CPR easy to implement. The
state of all memory and resources can simply be

2006 Linux Symposium, Volume One • 349

stored into a file, and recreated by the machine
emulator or the operating system itself. In-
deed, the two most commonly mentioned VMs,
VMware [9] and Xen [10], both enable live mi-
gration of their guest operating systems. The
drawbacks of CPRM of an entire virtual ma-
chine is the increased overhead of dealing with
all resources defining the VM. This can make
the approach unsuitable for load balancing ap-
plications, since a requirement to add the over-
head of a full VM and associated daemons to
each migrateable application can have tremen-
dous performance implications. This issue is
further explored in Section 6.

A more lighter weight CPRM approach can
be achieved by isolating applications, which
is predicated on the safe and proper isolation
and migration of its underlying resources. In
general, we look at these isolated and migrate-
able units as containers around the relevant pro-
cesses and resources. We distinguish conceptu-
ally system containers, such as VServer [8] or
OpenVZ [7], and application containers, such
as Zap [12] and our own prototype MCR. Since
containers share a single OS instance, many re-
sources provided by the OS must be specially
isolated. These issues are discussed in detail
in Section 5. Common to both container ap-
proaches is their requirement to be able to CPR
an isolated set of individual resources.

For many applications CPR can be completely
achieved from user space. An example imple-
mentation is ckpt [5]. Ckpt teaches applica-
tions to checkpoint themselves in response to
a signal by either preloading a library, or in-
jecting code after application startup. The new
code, when triggered, writes out a new exe-
cutable file. This executable reloads the appli-
cation and resets its state before continuing exe-
cution where it left off. Since this method is im-
plemented with no help from the kernel, there
is state which cannot easily be stored, such as
pending signals, or recreated, such as a pro-

cess’ original process id. This method is also
potentially very inefficient as described in Sec-
tion 5.2. The user space approaches also fall
short by requiring applications to be rewritten
and by exhibiting poor resource sharing.

CPR becomes much easier given some help
from the kernel. Kernel-based CPR solutions
include zap [12], crak [2], and our MCR pro-
totype. We will be analyzing MCR in detail in
Section 4, followed by the requirements for a
consolidated application virtualization and mi-
gration kernel approach.

3 Concepts and principles

A user application is a set of resources—tasks,
files, memory, IPC objects, etc.—that are ag-
gregated to provide some features. The general
concept behind CPR is to freeze the application
and save all its state (in both kernel and user
spaces) so that it can be resumed later, possibly
on another host. Doing this transparently with-
out any modification to the application code is
quite an easy task, as long as you maintain a
single strong requirement: consistency.

3.1 Consistency

The kernel ensures consistency for each re-
source’s internal state and also provides system
identifiers to user space to manipulate these re-
sources. These identifiers are part of the ap-
plication state, and as such are critical to the
application’s correct behavior. For example, a
process waiting for a child will use the known
process id of that child. If you were to re-
sume a checkpointed application, you would
recreate the child’s pid to ensure that the par-
ent would wait on the correct process. Unfortu-
nately, Linux does not provide such control on

350 • Making Applications Mobile Under Linux

how pids, or many other system identifiers, are
associated with resources.

An interesting approach to this problem is vir-
tualization: a resource can be associated with a
supplementary virtual system identifier for user
space. The kernel can maintain associations
between virtual and system identifiers and of-
fer interfaces to control the way virtual iden-
tifiers are assigned. This makes it possible to
change the underlying resource and its system
identifier without changing the virtual identi-
fier known by the application. A direct side ef-
fect is that such virtualized applications can be
confused by virtual identifier collisions if they
are not separated from one another. These con-
flicts can be avoided if the virtualization is im-
plemented with resource containment features.
For example, /proc should only export virtual
pid entries for processes in the same virtualized
container as the reading process.

3.2 Process subsystem

Processes are the essential resources. They of-
fer many features and are involved in many re-
lationships, such as parent, thread group, and
process group. The pid is involved in many
system calls and regular UNIX features such
as session management and shell job control.
Correct virtualization must address the whole
picture to preserve existing semantics. For ex-
ample, if we want to run multiple applications
in different containers from the same login ses-
sion, we will also want to keep the same system
session identifier for the ancestor of the con-
tainer so as to still benefit from the regular ses-
sion cleanup mechanism. The consequence is
that we need a system pid to be virtualized mul-
tiple times in different containers. This means
that any kernel code dealing with pids that are
copied to/from user space must be patched to
provide containment and choose the correct vir-

tualization space according to the implied con-
text.

3.3 Filesystem and Devices

A filesystem may be divided into two parts. On
one hand, global entries that are visible from all
containers like /usr. On the other hand, lo-
cal entries that may be specific to the contain-
ers like /tmp and of course /proc. /proc
virtualization for numerical process entries is
quite straightforward: simply generate a file-
name out of the virtual pid. Tagging the re-
sultant dentries with a container id makes
it possible to support conflicting names in the
directory name cache and to filter out unrelated
entries during readdir().

The same tagging mechanism can be applied
using files attributes for instance. Some user
level administration commands can be used by
the system administrator to keep track of files
created by the containers. Devices files can be
tagged to be visible and usable by dedicated
containers. And of course, the mknod system
call should fail on containers or be restricted to
a minimal usage.

3.4 Network

If the application is network oriented, the mi-
gration is more complex because resources are
seen from outside the container, such as IP ad-
dresses, communication ports, and all the un-
derlying data related to the TCP protocol. Mi-
gration needs to take all these resources into ac-
count, including in-flight messages.

The IP address assigned to a source host should
be recreated on the target host during the mi-
gration. This mobile IP is the foundation of the
migration, but adds a constraint on the network.
We will need to stay on the same network.

2006 Linux Symposium, Volume One • 351

The migration of an application will be possible
only if the communication channels are clearly
isolated. The connections and the data associ-
ated with each application should be identified.
To ensure such a containment, we need to iso-
late the network interfaces.

We will need to freeze the TCP layer before
the checkpoint, to make sure the state of the
peers is consistent with the snapshot. To do
this, we will block network traffic for both in-
coming and outgoing packets. The application
will be migrated immediately after the check-
point and all the network resources related to
the container will be cleaned up.

4 Design Overview

We have designed and implemented MCR,
a lightweight application oriented container
which supports mobility. It is discussed here
because it is one of a few implementations
which are relatively complete. It provides an
excellent view on what issues and complexities
arise. However, from our prototype work, we
have concluded that certain functionality im-
plemented in user space in MCR is best sup-
ported by the kernel itself.

An important idea behind the design of MCR
is that it is kernel-friendly and does not do ev-
erything in kernel space. A balance needed to
be struck between striving towards a minimal
kernel impact to facilitate proper forward ports
and ensuring that functional correctness and ac-
ceptable performance is achieved. This means
using available kernel features and mechanisms
where possible and not violating important
principles which ensure that user space appli-
cations work properly.

With that principle in mind, CPR from user
space makes your life much easier. It also en-

ables some nifty and useful extensions like dis-
tributed CPR and system management.

4.1 Architecture

The following section provides an overview of
the MCR architecture (Figure 1). It relies on a
set of user level utilities which control the con-
tainer: creation, checkpoint, restart, etc. New
features in the kernel and a kernel module are
required today to enable the container and the
CPR features.

Process 1

Process 2

Process n

User Space

Kernel Space

MCRK (Kernel Module)

container 1

MCR (command line)

syscall

MCR Kernel APIs

/dev/mcr

MCRP (plugin)

Figure 1: MCR architecture

The CPR of the container is not handled by
one component. It is distributed across the 3
components of MCR depending on the local-
ity of the resourse to checkpoint. The user
level utility mcr (Section 4.1.2) invokes and
orchestrates the overall checkpoint of a con-
tainer. It also is in charge of checkpointing the
resources which are global to a container, like
SYSV shared memory for instance. The user
level plugin mcrp (Section 4.1.4) checkpoints
the resources at the process level, memory, and
at the thread level, signals and cpu state. Both
rely on the kernel module mcrk (Section 4.1.3)
to access kernel internals.

352 • Making Applications Mobile Under Linux

4.1.1 Kernel enhancements and API

Despite a user space-oriented approach, the
kernel still requires modifications in order to
support CPR. But, surprisingly, it may no be
as much as one might expect. There are three
high level needs:

The biggest challenge is to build a container for
the application. The aim here is neither security
nor resource containment, but making sure that
the snapshot taken at checkpoint time is consis-
tent. To that end we need a container much like
the VServer[8] context. This will isolate and
identify all kernel resources and objects used
by an application. This kernel feature is not
only a key requirement to application mobil-
ity, but also for other frameworks in the secu-
rity and resource management domains. The
container will also virtualize system identifiers
to make sure that the resources used by the ap-
plication do not overlap with other containers.
This includes resources such as processes IDs,
threads IDs, SysV IPC IDs, UTS names, and IP
addresses, among others.

The second need regards freezing a con-
tainer. Today, we use the SIGSTOP signal to
freeze all running tasks. This gives valid re-
sults, but for upstream kernel development we
would prefer to use a container version of the
refrigerator() service from swsusp.
swsusp uses fake signals to freeze nearly all
kernel tasks before dumping the memory.

Finally, MCR exposes the internals of different
Linux subsystems and provides new services
to get and set their state. These interfaces are
by necessity very intrusive, and expose inter-
nal state. For an upstream migration solution,
using a /proc or /sysfs interface which ex-
poses more selective data would be more ap-
propriate.

4.1.2 User level utilities

Applications are made mobile simply by being
started under mcr-execute. The container
is created before the exec() of the command
starting the application. It is maintained around
the application until the last process dies.

mcr-checkpoint and mcr-restart in-
voke and orchestrate the overall checkpoint or
restart of a container. These commands also
perform the get and set of the resources which
are global to a container, as opposed to those lo-
cal to a single process within the container. For
instance, this is where the SYSV IPC and file
descriptors are handled. They rely on the kernel
module (Section 4.1.3) to manage the container
and access kernel internals.

4.1.3 Kernel module

The kernel module is the container manager in
terms of resource usage and resource virtualiza-
tion. It maintains a real time definition of the
container view around the application which
ensures that a checkpoint will be consistent at
any time.

It is in charge of the global synchronization
of the container during the CPR sequence. It
freezes all tasks running in the container, and
maps into the process a user level plugin (see
Section 4.1.4). It provides the synchronization
barriers which unrolls the full sequence of the
checkpoint before letting each process resume
its execution.

It also acts as a proxy to capture the states which
cannot be captured directly from user space. In-
ternal states handled by this module include, for
example, the process’ memory page mapping,
socket buffers, clone flags, and AIO states.

2006 Linux Symposium, Volume One • 353

4.1.4 User level plugin

When a checkpoint or a restart of a container is
invoked, the kernel module maps a plugin into
each process of the container. This plugin is
run in the process context and is removed af-
ter completion of the checkpoint. It serves 2
purposes. The first is synchronization, which
it orchestrates with the help of the kernel mod-
ule. Secondly, it performs get and set of states
which can be handled from user space using
standard syscalls. Such states include sigac-
tions, memory mapping, and rlimits.

When all threads of a process enter the plugin, a
master thread, not necessarily the main thread,
is elected to handle the checkpoint of the re-
sources at process level. The other threads only
checkpoint the resources at thread level, like
cpu state.

4.2 Linux subsystems CPR

The following subsections describe the check-
point and the restart of the essential resources
without doing a deep dive in all the issues
which need to be addressed. The following sec-
tion 5 will delve deeper into selected issues for
the interested reader.

4.2.1 CPU state

Checkpointing the cpu state is indirectly done
by the kernel because the checkpoint is signal
oriented: it is saved by the kernel on the top
of the stack before the signal handler is called.
This stack is then saved with the rest of the
memory. At restart, the kernel will restore the
cpu state in sigreturn() when it jumps out
of the signal handler.

4.2.2 Memory

The memory mapping is checkpointed from
the process context, parsing /proc/self/

maps. However, some vm_area flags (i.e.
MAP_GROWSDOWN) are not exposed through
the /proc file system. The latter are read from
the kernel using the kernel module. The same
method is used to retrieve the list of the mapped
pages for each vm_area and reduce signifi-
cantly the size of the snapshot.

Special pages related to POSIX shared mem-
ory and POSIX semaphores are detected and
skipped. They are handled by the checkpoint
of resources global to a container.

4.2.3 Signals

Signal handlers are registered using
sigaction() and called when the pro-
cess gets a signal. They are checkpointed and
restarted using the same service in the process
context. Signals can be sent to the process
or directly to an invidual thread using the
tkill() syscall. In the former, the signal
goes into a shared sigpending queue, where
any thread can be selected to handle it. In
the latter, the signal goes to a thread private
sigpending queue. To guarantee correct signal
ordering, these queues must be checkpointed
and restored separately using a dedicated
kernel service.

4.2.4 Process hierarchy

The relationships between processes must be
preserved across CPR sequences. Groups and
sessions leaders are detected and taken into ac-
count. At checkpoint, each process and thread
stores in the snapshot its execution command
using /proc/self/exe and its pid and ppid

354 • Making Applications Mobile Under Linux

using getpid() and getppid(). Threads
also need to save their tid, ptid, and their
stack frame. At restart time, the processes
are recreated by execve() and immediately
killed with the checkpoint signal. Each process
then jumps into the user level plugin (See Sec-
tion 4.1.4) and spawns its children. Each pro-
cess also respawns its threads using clone().
The process tree is recreated recursively. On
restart, attention must be paid to correctly set-
ting the pid, pgid, tid, tgid for each newly cre-
ated process and thread.

4.2.5 Interprocess communication

The contents and attributes of SYSV IPCs, and
more recently POSIX IPCs, are checkpointed
as resources global to a container, excepting se-
mundos.

Most of the IPC resource checkpoint is done at
the user level using standard system calls. For
example, mq_receive() to drain all mes-
sages from a queue, and mq_send() to put
them back into the queue. The two main draw-
backs to such an approach are that access time
to resources are altered and that the process
must have read and write access to them. Some
functionalities like mq_notify() are a bit
trickier. In these cases, the kernel sends noti-
fication cookies using an AF_NETLINK socket
which also needs to be checkpointed.

4.2.6 Threads

Every thread in a process shares the same mem-
ory, but has its own register set. The threads can
dump themselves in user context by asking the
kernel for their properties. At restart time, the
main thread can read other threads’ data back
from the snapshot and respawn each with its
original tid.

The thread local storage contains the thread
specific information, data set by pthread_

setspecific() and the pthread_self()

pointer. On some architectures it is stored in
a general purpose register. In that case it is
already covered in the signal handler frame.
But on some other architectures, like Intel, it is
stored in a separate segment, and this segment
mapping must be saved using a dedicated call
to kernel.

4.2.7 Open files

File descriptors reference open files, which can
be of any type, including regular files, pipes,
sockets, FIFOs, and POSIX message queues.

CPR of file descriptors is not done entirely in
the process context because they can be shared.
Processes get their fd list by walking /proc/

self/fd. They send this list, using ancillary
messages, to a helper daemon running in the
container during the checkpoint. Using the ad-
dress of the struct file as a unique identi-
fier, the daemon checkpoints the file descriptor
only once per container, since two file descrip-
tors pointing to the same opened file will have
the same struct file.

File descriptors 0, 1, and 2 are considered spe-
cial. We may not want to checkpoint or restart
them if we do the restart on another login
console for example. The file descriptors are
tagged and bypassed at checkpoint time.

4.2.8 Asynchronous I/O

Asynchronous I/Os are difficult to handle by
nature because they can not easily be frozen.
The solution we found is to let the process reach
a quiescence point where all AIOs have com-
pleted before checkpointing the memory. The

2006 Linux Symposium, Volume One • 355

other issue to cover is the ring buffer of com-
pleted events which is mapped in user space
and filled by the kernel. This memory area
needs to be mapped at the same address when
the process is restarted. This requires a small
patch to control the address used for the map-
ping.

5 Zooming in

This section will examine in more detail three
major aspects of application mobility. The first
topic covers a key requirement in process mi-
gration: the ability to restart a process keep-
ing the same pid. Next we will discuss issues
and solutions to VM migration, which has the
biggest impact on performance. Finally, we
will address network isolation and migration of
live network communications.

5.1 Process Virtualization

A pid is a handle to a particular task or task
group. Inside the kernel, a pid is dynamically
assigned to a task at fork time. The relationship
is recorded in the pid hash table (pid → task)
and remains in place until a task exits. For sys-
tem calls that return a pid (e.g. getpid()),
the pid is typically extracted straight out of
the task structure. For system calls that uti-
lize a user provided pid, the task associated
with that pid is determined from the pid hash
table. In addition various checks need to be
performed that guarantee the isolation between
users and system tasks (in particular during the
sys_kill() call).

Because pids might be cached at the user
level, processes should be restarted with their
original pids. However, it is difficult if not
impossible to ensure that the same pid will

always be available upon restart of a check-
pointed application, as another process could
already have been started with this pid. Hence,
pids need to be virtualized. Virtualization in
this context can be and is interpreted in vari-
ous manners. Ultimately the requirement, that
an application consistently sees the same pid
associated with a task (process/thread) across
CPR, must be satisfied.

There are essentially three issues that need to
be dealt with in any solution:

1. container init process visibility,

2. where in the kernel the virtualization inter-
ception will take place,

3. how the virtualization is maintained.

Particularly 1. is responsible for the non-trivial
complexities of the various prototypes. It stems
from the necessity to “rewrite” the pid relation-
ships between the top process of a container
(short cinit) and its parent. cinit essen-
tially lives in both contexts, the creating con-
tainer and the created container. The creat-
ing container requires a pid in its context for
cinit to be able to deploy regular wait()
semantics. At the same time, cinitmust refer
to its parent as the perceived system init process
(vpid = 1).

5.1.1 Isolation

Various solutions have been proposed and im-
plemented. Zap [12] intercepts and wraps all
pid related system calls and virtualizes the pids
in the interception layer through a pid ↔ vpid
lookup table associated with the caller’s con-
tainer either before and/or after calling the orig-
inal syscall implementation with the real pids.
The benefit of this approach is that the kernel

356 • Making Applications Mobile Under Linux

does not need to be modified. However, the
ability of overwriting the syscall table is not a
direction Linux embraces.

MCR, presented in greater detail in Section 4,
pushes the interception further down into the
various syscalls itself, but also utilizes a pid ↔
vpid lookup function. In general, the calling
task provides the context for the lookup.

The isolation between containers is imple-
mented in the lookup function. Tasks that
are created inside a container are looked up
through this function. For global tasks the pid
== vpid holds. In both implementations the
vpid is not explicitly stored with the task, but
is determined through the pid ↔vpid lookup
each and every time. On restart tasks can
be recreated through the fork(); exec()
sequence and only the lookup table needs to
record the different pid. The cinit parent
problem mentioned earlier is solved by map-
ping cinit twice, in the created context as
vpid=1 and in the creating container contexts
with the assigned vpid. The lookup function is
straight forward, essentially we need to ensure
that we identify any cinit process and return
the vpid/task associated with it relative to the
provided container context.

The OpenVZ implementation [7] provides an
interesting, yet worthwhile optimization that
only requires a lookup for tasks that have
been restarted. OpenVZ relies on the fact that
tasks do have a unique pid when tasks are in
their original incarnation (not yet C/R’d). The
lookup function, which is called at the same
code locations as the MCR implementation,
hence only has to maintain the isolation prop-
erty. In the case of a restarted task the unique-
ness can no further be guaranteed, so the pid
must be virtualized. Common to all three ap-
proaches is the fact that virtual pids are all rela-
tive to their respective containers and that they
are translated into system-wide unique pids.
The guts of the pidhash have not changed.

A different approach is taken by the namespace
proposal [6]. Here, the container principle is
driven further down into the kernel. The pid-
hash now is defined as a ({pid,container} →
task) function. The namespace approach natu-
rally elevates the container as a first class ker-
nel object. Hence minor changes were required
to the pid allocation which maintains a pidmap
for each and every namespace now. The benefit
of this approach is that the code modifications
clearly highlight the conditions where con-
tainer boundaries need to be crossed, where in
the earlier virtualization approach these cross-
ings came implicitly through the results of the
lookup function. On the other hand, the names-
pace approach needs special provisioning for
the cinit problem. To maintain the ability to
wait() on the cinit process from the cinit’s
parent (child_reaper), a task->wid is de-
fined, that reflects the pid in the parent’s context
and on which the parent needs to wait. There is
no clear recommendation between the names-
pace and virtualization approach that we want
to give in this paper; both the OpenVZ and the
namespace proposal are very promising.

5.1.2 CPR on Process Virtualization

The CPR of the Process Virtualization is
straight forward in both cases. In the ZAP,
MCR and OpenVZ case, the lookup table is
recreated upon restart and populated with the
vpid and the real pid translations, thus requir-
ing the ability to select a specific vpid for a
restarted process. Which real pid is chosen is
irrelevant and is hence left to the pidmap man-
agement of the kernel. In the namespace ap-
proach since the pid selection is pushed into
the kernel a function requires that a task can
be forked at a specific pid with in a container’s
pidmap. Ultimately, both approaches are very
similar to each other.

2006 Linux Symposium, Volume One • 357

5.2 CPR on the Linux VM

At first glance, the mechanism for checkpoint-
ing a process’s memory state is an easy task.
The mechanism described in section 2 can be
implemented with a simple ptrace.

This approach is completely in user space, so
why is it not used in the MCR prototype, nor
any commercial CPR systems? Or in other
words, why do we need to push certain func-
tionalities further down into the kernel?

5.2.1 Anonymous Memory

One of the simplest kind of memory to check-
point is anonymous memory. It is never used
outside the process in which it is allocated.

However, even this kind of memory would have
serious issues with a ptrace approach.

When memory is mapped, the kernel does not
fill it in at that time, but waits until it is used
to populate it. Any user space program do-
ing a checkpoint could potentially have to it-
erate over multiple gigabytes of sparse, entirely
empty memory areas. While such an approach
could consolidate such empty memory after the
fact, simply iterating over it could be an incred-
ibly significant resource drain.

The kernel has intimate knowledge of which
memory areas actually contain memory, and
can avoid such resource drains.

5.2.2 Shared Memory

The key to successful CPR is getting a consis-
tent snapshot. If two interconnected processes
are checkpointed at different times, they may
become confused when restarted. Success-
ful memory checkpointing requires a consistent

quiescence of all tasks sharing data. This in-
cludes all shared memory areas and files.

5.2.3 Copy on Write

When a process forks, both the forker and the
new child have exactly the same view of mem-
ory. The kernel gives both processes a read-
only view into the same memory. Although not
explicit, these memory areas are shared as long
as neither process writes to the area.

The above proposed ptrace mechanism would
be a very poor choice for any processes which
have these copy-on-write areas. The areas have
no practical bounds on their sizes, and are
indistinguishable from normal, writable areas
from the user’s (and thus ptrace’s) perspective.

Any mechanism utilizing the ptrace mecha-
nism could potentially be forced to write out
many, many copies of redundant data. This
could be avoided with checksums, but it causes
user space reconstruction of information about
which the kernel already explicitly knows.

In addition, user space has no way of explic-
itly recreating these copy-on-write shared areas
during a resume operation. The only mecha-
nism is fork, which is an awfully blunt instru-
ment by which to recreate an entire system full
of processes sharing memory in this manner.
The only alternative is restoring all processes
and breaking any sharing that was occurring be-
fore the checkpoint. Breaking down any shar-
ing is highly undesirable because it has the po-
tential to greatly increase memory utilization.

5.2.4 Anonymous Shared

Anonymous shared memory is that which is
shared, but has no backing in a file. In Linux
there is no true anonymous shared memory.

358 • Making Applications Mobile Under Linux

The memory area is simply backed by a pseudo
file on a ram-based filesystem. So, there is no
disk backing, but there certainly is a file back-
ing.

It can only be created by an mmap() call
which uses the MAP_SHARED and MAP_
ANONYMOUS. Such a mapping is unique to a
single process and not truly shared. That is, un-
til a fork().

No running processes may attach to such mem-
ory because there is no handle by which to find
or address it, neither does it have persistence.
The pseudo-file is actually deleted, which cre-
ates a unique problem for the CPR system.

Since the “anonymous” file is mapped by some
process, the entire addressable contents of the
file can be recovered through the aforemen-
tioned ptrace mechanism. Upon resume, the
“anonymous” areas can be written to a real file
in the same ram-based filesystem. After all
processes sharing the areas have recreated their
references to the “anonymous” area, the file can
be deleted, preserving the anonymous seman-
tics. As long as the process performing the
checkpoint has ptrace-like capabilities for all
processes sharing the memory area, this should
not be difficult to implement.

5.2.5 File-backed Shared

Shared memory backed by files is perhaps the
simplest memory to checkpoint. As long as
all dirty data has been written back, requir-
ing filesystem consistency be kept between a
checkpoint and restart is all that is required.
This can be done completely from user space.

One issue is with deleted files. However, these
can be treated in the same way as “anonymous”
shared memory mentioned above.

5.2.6 File-backed Private

When an application wants a copy of a file to
be mapped into memory, but does not want any
changes reflected back on the disk, it will map
the file MAP_PRIVATE.

These areas have the same issues as anonymous
memory. Just like anonymous memory, sepa-
rately checkpointing a page is only necessary
after a write. When simply read, these areas
exactly mirror contents on the disk and do not
need to be treated differently from normal file-
backed shared memory.

However, once a write occurs, these areas’
treatment resembles that of anonymous mem-
ory. The contents of each area must be read
and preserved. As with anonymous memory,
user space has no detailed knowledge of spe-
cific pages having been written. It must sim-
ply assume that the entire area has changed, and
must be checkpointed.

This assumption can, of course, be overridden
by actually comparing the contents of memory
with the contents of the disk, choosing not to
explicitly write out any data which has not ac-
tually changed.

5.2.7 Using the Kernel

From the ptrace discussions above, it should
be apparent that the he various kinds of mem-
ory mappings in Linux can be checkpointed
from userspace while preserve many of their
important pre-checkpoint attributes. However,
it should now be apparent that user space lacks
the detailed knowledge to do these operations
efficiently.

The kernel has exact knowledge of exactly
which pages have been allocated and popu-
lated. Our MCR prototype uses this informa-
tion to efficiently create memory snapshots.

2006 Linux Symposium, Volume One • 359

It walks the pagetables of each memory area,
and marks for checkpoint only those pages
which actually have contents, and have been
touched by the process being checkpointed. For
instance, it records the fact that “page 14” in
a memory area has contents. This solves the
issues with sparsely populated anonymous and
private file-backed memory areas, because it
accurately records the process’s actual use of
the memory.

However, it misses two key points: the simple
presence of a page’s mapping in the page tables
does not indicate whether its contents exactly
mirror those on the disk.

This is an issue for efficiently checkpointing the
file-backed private areas because the page may
be mapped, but it may be either a page which
has been only read, or one to which a write has
occurred. To properly distinguish between the
two, the PageMappedToDisk() flag must
be checked.

5.2.8 File-backed Remapped

Assume that a file containing two pages worth
of data is mmap()ed. It is mapped from the
beginning of the file through the end. One
would assume that the first page of that map-
ping would contain the first page of data from
the disk. By default, this is the behavior. But,
Linux contains a feature which invalidates this
assumption: remap_file_pages().

That system call allows a user to remap a mem-
ory area’s contents such that the nth page of a
mapping does not correspond to the nth page
on the disk. The only place in which the in-
formation about the mapping is stored is in the
pagetables. In addition, the presence of one of
these areas is not openly available to user space.

Our user space ptrace mechanism could likely
detect these situations by double-checking that

each page in a file-backed memory area is truly
backed by the contents on the disk, but that
would be an enormous undertaking. In addi-
tion, it would not be a complete solution be-
cause two different pages in the file could con-
tain the same data. Userspace would have abso-
lutely no way to uniquely identify the position
of a page in a file, simply given that page’s con-
tents.

This means that the MCR implementation is
incomplete, at least in regards to any mem-
ory area to which remap_file_pages() has
been applied.

5.2.9 Implementation Proposal

Any effective and efficient checkpoint mecha-
nism must implement, at the least:

1. Detection and preservation of sharing of
file-backed and other shared memory ar-
eas for both efficiency and correctness.

2. Efficient handling of sparse files and un-
touched anonymous areas.

3. Lower-level visibility than simply the file
and contents for remap_file_pages()
compatibility (such as effective page table
contents).

There is one mechanism in the kernel today
which deals with all these things: the swap
code. It does not attempt to swap out areas
which are file backed, or sparse areas which
have not been populated. It also correctly han-
dles the nonlinear memory areas from remap_

file_pages().

We propose that the checkpointing of a pro-
cess’s memory could largely be done with a
synthetic swap file used only by that container.

360 • Making Applications Mobile Under Linux

This swap file, along with the contents of
the pagetables of the checkpointed processes,
could completely reconstruct the contents of a
process’ memory. The process of checkpoint-
ing a container could become very similar to
the operation which swsusp performs on an
entire system.

The swap code also has a feature which makes
it very attractive to CPR: the swap cache. The
swap cache allows a page to be both mapped
into memory and currently written out to swap
space. The caveat is that, if there is a write
to the page, the on-disk copy must be thrown
away.

Memory which is very rarely written to, such
as the file-backed private memory used in the
jump table in dynamically linked libraries, has
the most to gain from the swap cache. Users of
this memory can run unimpeded, even during
a checkpoint operation, as long as they do not
perform writes.

Just as has been done with other live cross-
system migration[11] systems, the process of
moving the data across can be iterative. First,
copy data in several passes until, despite the ef-
forts to swap them out, the working set size of
the applications ceases to decrease.

The application-level approach has the poten-
tial to be at least marginally faster than the
whole-system migration because it is only con-
cerned with application data. Xen must deal
with the kernel’s working set in addition to the
application. This must increase the amount of
data which must be migrated, and thus must in-
crease the potential downtime during a migra-
tion.

5.3 Migrating Sockets

In Section 3.4, the needs for a network migra-
tion were roughly defined. This section focuses

on the four essential networking components
required for container migration: network iso-
lation, network quiescent points, network state
access for a CPR, and network resource clean-
up.

5.3.1 Network isolation

The network interface isolation consists of se-
lectively revealing network interfaces to con-
tainers. These can be either physical or aliased
interfaces. Aliased interfaces are more flexi-
ble for managing the network in the contain-
ers because different IP addresses can be as-
signed to different containers with the same
physical network interface. The net_device
and in_ifaddr structures have been modi-
fied to store a list of the containers which may
view the interface.

The isolation ensures that each container uses
its own IP address. But any return packet must
also go to the right interface. If a container con-
nects to a peer without specifying the source
address, the system is free to assign a source
address owned by an another container. This
must be avoided. The tcp_v4_connect()
udp_sendmsg() functions are modified in
order to choose a source address associated
with an interface visible from the source con-
tainer.

The network isolation ensures that network
traffic is dispatched to the right container.
Therefore it becomes quite easy to drop the
traffic for any specific container.

5.3.2 Reaching a quiescent point

As the processes need to reach a quiescent point
in order to stop their activities, the network
must reach this same point in order to retrieve
network resource states at a fixed moment.

2006 Linux Symposium, Volume One • 361

This point is reached by blocking the network
traffic for a specified container. The filtering
mechanism relies on netfilter hooks. Every
packet is contained in a struct skbuff.
This structure has a link to the struct sock
connection which has a record of the owner
container. Using this mechanism, packets re-
lated to a container being checkpointed can be
identified and dropped.

For dropping packets, iptables is not directly
suitable because each drop rule returns a NF_
DROP, which interacts with the TCP stack. But,
we need the TCP stack to be frozen for our
container. So a kernel module has been im-
plemented which drops the packets but returns
NF_STOLEN instead of NF_DROP.

This of course relies on the TCP protocol’s re-
transmission of the lost packets. However, traf-
fic blocking has a drawback: if the time needed
for the migration is too large, the connections
on the peers will be broken. The same will
occur if the TCP keep alive time is too small.
This encourages any implementation to have a
very short downtime during a migration. How-
ever, note that, when both sides of a connection
are checkpointed simultaneously, there are no
problems with TCP timeouts. In that case the
restart could occurs years later.

5.3.3 Socket CPR

Now that we have successfully blocked the traf-
fic and frozen the TCP state, the CPR can actu-
ally be performed.

Retrieving information on UDP sockets is
straightforward. The protocol control block is
simple and the queues can be dropped because
UDP communication is not reliable. Retriev-
ing a TCP socket is more complex. The TCP
sockets are classified into two groups: SS_
UNCONNECTED and SS_CONNECTED. The

former have little information to retrieve be-
cause the PCB (Protocol Control Block) is not
used and the send/receive queues are empty.
The latter have more information to be check-
pointed, such as information related to the
socket, the PCB, and the send/receive queues.
Minisocks and the orphan sockets also fall in
the connected category.

A socket can be retrieved from /proc be-
cause the file descriptors related to the current
process are listed. The getpeername(),
getsockname() and getsockopt() can
be directly used with the file descriptors. How-
ever, some information is not accessible from
user space, particularly the list of the minisocks
and the orphaned sockets, because no fd is as-
sociated with them. The PCB is also unacces-
sible because it is an internal kernel structure.
MCR adds several accessors to the kernel inter-
nals to retrieve this missing information.

The PCB is not completely checkpointed and
restored because there is a set of fields which
need to be modified by the kernel itself. For
example, the round time trip values.

5.3.4 Socket Cleanup

When the container is migrated, the local net-
work resources remaining in the source host
should be cleaned up in order to avoid dupli-
cate resources on the network. This is done us-
ing the container identifier. The IP addresses
can not be used to find connections related to
a container because if several interconnected
containers are running on the same machine,
there is no way to find the connection owner.

5.3.5 CPR Dynamics

The fundamentals for the migration have been
described in the previous sections. Figure 2

362 • Making Applications Mobile Under Linux

illustrates how they are used to move network
resources from one machine to an another.

Virtual IP
administrator

eth0
192.168.10.111

eth0:0
10.0.10.10

IP

UDP TCP

Netfilter

Server

clients

Virtual IP
administrator

eth0
192.168.10.10

eth0:0
10.0.10.10

IP

UDP TCP

Netfilter

Server

Migrate

Container

Global

1

5

3a

3b

1

2

4a

4b

4c

4d

Figure 2: Migrating network resources

1. Creation

A network administration component is
launched; it creates an aliased interface
and assigns it to a container.

2. Running

The IP address associated with the aliased
interface is the only one seen by the appli-
cations inside the container.

3. Checkpoint

(a) All the traffic related to the aliased
interface assigned to the container is
blocked.

(b) The network resources are retrieved
for each kind of socket and saved:
addresses, ports, multicast groups,
socket options, PCB, in-flight data
and listening points.

4. Restart

(a) The traffic is blocked

(b) The network resources are set from
the file to the system.

(c) An ARP (adress request package) re-
sponse is sent to the network in or-
der to boost up and ensure correct
mac↔ ip address association.

(d) The traffic is unblocked.

5. Destruction

The traffic is blocked, the aliased interface
is destroyed and the sockets related to the
container are removed from the system.

6 What is the cost?

This section presents an overview of the cost
of virtualization in different frameworks. We
have focused on VServer, OpenVZ, and our
own prototype MCR, which are all lightweight
containers. We have also included Xen, when
possible, as a point of reference in the field of
full machine virtualization.

The first set of tests assesses the virtualization
overhead on a single container for each above
mentioned solution. The second measures scal-
ability of each solution by measuring the im-
pact of idle containers on one active container.
The last set provides performance measures of
the MCR CPR functionality with a real world
application.

6.1 Virtualization overhead

At the time of this writing, no single kernel
version was supported by each of VServer,
OpenVZ, and MCR. Furthermore, patches
against newer kernel versions come out faster
than we can collect results, and clearly by the
time of publication the patches and base ker-
nel used in testing will be outdated anyway.
Hence for each virtualization implementation
we present results normalized against results
obtained from the same version vanilla kernel.

2006 Linux Symposium, Volume One • 363

6.1.1 Virtualization overhead inside a con-
tainer

The following tests were made on quad PIII
700MHz running Debian Sarge using the fol-
lowing versions:

• VServer version vs2.0.2rc9 on a 2.6.15.4
kernel with util-vserver version
0.30.210

• MCR version 2.5.1 on a 2.6.15 kernel

We used dbench to measure filesystem load,
LMbench for microbenchmarks, and a kernel
build test for a generic macro benchmark. Each
test was executed inside a container, with only
one container created.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

A
F_

U
N

IX
 s

oc
ke

t
ba

nd
w

id
th

L
m

be
nc

h
(l

ib
c

bc
op

y
al

ig
ne

d)

L
m

be
nc

h
(M

m
ap

 r
ea

d
op

en
2c

lo
se

 b
w

)

So
ck

et
 b

an
dw

id
th

us
in

g
lo

ca
lh

os
t

L
m

be
nc

h
(M

em
or

y
lo

ad
la

te
nc

y)

K
er

ne
l

bu
ild

 ti
m

e

D
be

nc
h

Overhead with patched kernel and within container

MCR
VServer

Figure 3: Various tests inside a container

The results shown in figure 3 demonstrate that
the overhead is hardly measurable. OpenVZ,
being a full virtualized server, was not taken
into account.

6.1.2 Virtualization overhead within a vir-
tual server

The next set of tests were run in a full vir-
tual server rather than a simple container. For

these tests, the nodes used were 64bit dual
Xeon 2.8GHz (4 threads/2 real processors).
Nodes were equipped with a 25P3495a IBM
disk (SATA disk drive) and a Tigon3 gigabit
ethernet adapter. The host nodes were running
RHEL AS 4 update 1 and all guest servers were
running Debian Sarge. We ran tbench and a
2.6.15.6 kernel build test in three environments:
on the system running the vanilla kernel, on the
host system running the patched kernel, and in-
side a virtual server (or guest system). The ker-
nel build test was done with warmed up cache.

• VServer version 2.1.0 on a 2.6.14.4 kernel
with util-vserver version 0.30.209

• OpenVZ version 022stab064 on a 2.6.8
kernel with vzctl utilities version 2.7.0-
26

• Xen version 3.0.1 on a 2.6.12.6 kernel

The results are shown in the figures 4 and 5.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

Xen(2.6.12.6)Vserver(2.6.14.4)

Tbench bandwidth overhead

Host
Guest

Figure 4: tbench results regarding a vanilla ker-
nel

The OpenVZ virtual server did not survive all
the tests. tbench looped forever and the kernel
build test failed with a virtual memory alloca-
tion error. As expected, lightweight containers
outperform a virtual machine. Considering the

364 • Making Applications Mobile Under Linux

 0.5

 1

 1.5

 2

 2.5

 3

Xen(2.6.12.6)Vserver(2.6.14.4)

Kernel build system time

Host
Guest

Figure 5: System time of a kernel build regard-
ing a vanilla kernel

level of containment provided by Xen and the
configuration of the domain, using file-backed
virtual block device, Xen also behaved quite
well. It would surely have better results with
a LVM-backed VBD.

6.2 Resource requirement

Using the same tests, we have studied how
performance is impacted when the number of
containers increases. To do so, we have con-
tinously added idle containers to the system
and recorded the application performance of
the reference test in the presence of an increas-
ing number of idle containers. This gives some
insight in the resource consumption of the var-
ious virtualization techniques and its impact on
application performance. This set of tests com-
pared:

• VServer version 2.1.0 on a 2.6.14.4 kernel
with util-vserver version 0.30.209

• OpenVZ version 022stab064 on a 2.6.8
kernel with vzctl utilities version 2.7.0-
26

• Xen version 3.0.1 on a 2.6.12.6 kernel

• MCR version 2.5.1 on a 2.6.15 kernel

 100

 200

 300

 400

 500

 600

 1000 500 200 100 50 20 10 5 2 1

D
be

nc
h

ba
nd

w
id

th

number of running containers

Performance Scalability

MCR
VServer chcontext

VServer virtual server
OpenVZ

Xen
Vanilla 2.6.15

Figure 6: dbench performance with an increas-
ing number of containers

 240

 260

 280

 300

 320

 340

 360

 380

 400

 1000 500 200 100 50 20 10 5 2 1

Tb
en

ch
 b

an
dw

id
th

number of running containers

Performance Scalability

MCR
VServer chcontext

VServer virtual server
OpenVZ

Xen
Vanilla 2.6.15

Figure 7: tbench performance with an increas-
ing number of containers

The results are shown in the figures 6, 7, and 8.
Lightweight containers are not really impacted
by the number of idle containers. Xen over-
head is still very reasonable but the number of
simultaneous domains we were able to run sta-
bly was quite low. This issue is a bug in current
Xen, and is expected to be solved. OpenVZ
performance was poor again and did not sur-
vive the tbench test not the kernel build. The
tests should definitely be rerun with a newer
version.

2006 Linux Symposium, Volume One • 365

 40

 60

 80

 100

 120

 140

 160

 1000 500 200 100 50 20 10 5 2 1

K
er

ne
l b

ui
ld

 sy
ste

m
 ti

m
e

number of running containers

Performance Scalability

MCR
VServer chcontext

VServer virtual server
OpenVZ

Xen
Vanilla 2.6.15

Figure 8: Kernel build time with an increasing
number of containers

6.3 Migration performance

To illustrate the cost of a migration, we have
set up a simple test case with Oracle (http://
www.oracle.com/index.html) and Dots, a
database benchmark coming from the Linux
Test Project (http://ltp.sourceforge.
net/). The nodes used in our test were
dual Xeon 2.4GHz HT (4 cpus/2 real proces-
sors). Nodes were equipped with a ST380011A
(ATA disk drive) and a Tigon3 gigabit ethernet
adapter. Theses nodes were running a RHEL
AS 4 update 1 with a patched 2.6.9-11.EL ker-
nel. We used Oracle version 9.2.0.1.0 running
under MCR 2.5.1 on one node and Dots version
1.1.1 running on another node (nodes are linked
by a gigabit switch). We measured the dura-
tion of checkpoint, the duration of restart and
the size of the resulting snapshot with different
Dots cpu workloads: no load, 25%, 50%, 75%,
and 100% cpu load. The results are shown in
Figures 9 and 10.

The duration of the checkpoint is not im-
pacted by the load but is directly correlated to
the size of the snapshot (real memory size).
Using a swap file dedicated to a container
and incremental checkpoints in that swap file
(Section 5.2) should improve dramatically the

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

Ti
m

e
in

 s

CPU Load in percentage

Checkpoint/Restart locally

Checkpoint time
Restart time

Checkpoint + Restart

Figure 9: Oracle CPR time under load on local
disk

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 120 130 140 150 160 170 180 190 200 210 220 230

Ch
ec

kp
oi

nt
 ti

m
e

in
 s

Statefile size in M

Checkpoint time regarding statefile size

Checkpoint time

Figure 10: Time of checkpoint according to the
snapshot size

checkpoint time. It will also improve service
downtime when the application is migated from
a node to another.

At the time we wrote the paper, we were not
able to run the same test with Xen, their migra-
tion framework not yet being available.

7 Conclusion

We have presented in this paper a motivation
for application mobility as an alternative to

366 • Making Applications Mobile Under Linux

the heavier virtual machine approach. We dis-
cussed our prototype of application mobility
using the simple CPR approach. This proto-
type helped us to identify issues and work on
solutions that would bring useful features to the
Linux kernel. These features are isolation of
resources through containers, virtualization of
resources and CPR of the kernel subsystem to
provide mobility. We also went through the var-
ious other alternatives projects in that are cur-
rently persued within community and exempli-
fied the many communalities and currents in
this domain. We believe the time has come to
consolidate these efforts and drive the neces-
sary requirements into the kernel. These are the
necessary steps that will lead us to live migra-
tion of applications as a native kernel feature on
top of containers.

8 Acknowledgments

First all, we would like to thank all the for-
mer Meiosys team who developed the ini-
tial MCR prototype, Frédéric Barrat, Laurent
Dufour, Gregory Kurz, Laurent Meyer, and
François Richard. Without their work and ex-
pertise, there wouldn’t be much to talk about.
A very special thanks to Byoung-jip Kim from
the Department of Computer Science at KAIST
and Jong Hyuk Choi from the IBM T.J. Wat-
son Research Center for their contribution to
the s390 port, tests, benchmarks and this pa-
per. And, most of all we need to thank Gerrit
Huizenga for his patience and his encourage-
ments. Merci, DonkeySchön!

9 Download

Patches, documentations and benchmark re-
sults will be available at http://lxc.sf.
net.

References

[1] William R. Dieter and James E. Lumpp,
Jr. User-level Checkpointing for
LinuxThreads Programs, Department of
Electrical and Computer Engineering,
University of Kentucky

[2] Hua Zhong and Jason Nieh, CRAK:
Linux Checkpoint/Restart As a Kernel
Module, Department of Computer
Science, Columbia University, Technical
Report CUCS-014-01, November, 2001.

[3] Duell, J., Hargrove, P., and Roman., E.
The Design and Implementation of
Berkeley Lab’s Linux Checkpoint/Restart,
Berkeley Lab Technical Report
(publication LBNL-54941).

[4] Poul-Henning Kamp and Robert N. M.
Watson, R. N. M. Jails: Confining the
omnipotent root, in Proc. 2nd Intl. SANE
Conference (May, 2000).

[5] Victor Zandy, Ckpt—A process
checkpoint library, http://www.cs.
wisc.edu/~zandy/ckpt/.

[6] Eric Biederman, Code to implement
multiple instances of various linux
namespaces, git://git.kernel.
org/pub/scm/linux/kernel/git/

ebiederm/linux-2.6-ns.git/.

[7] SWSoft, OpenVZ: Server Virtualization
Open Source Project,
http://openvz.org, 2005.

[8] Jacques Gélinas, Virtual private servers
and security contexts, http://www.
solucorp.qc.ca/miscprj/s_

context.hc?prjstate=1&nodoc=0,
2004.

[9] VMware Inc, VMware,
http://www.vmware.com/, 2005.

2006 Linux Symposium, Volume One • 367

[10] Boris Dragovic, Keir Fraser, Steve Hand,
Tim Harris, Alex Ho, Ian Pratt, Andrew
Warfield, Paul Barham, and Rolf
Neugebauer, Xen and the art of
virtualization, in Proceedings of the
ACM Symposium on Operating Systems
Principles, October 2003.

[11] Christopher Clark, Keir Fraser, Steven
Hand, Jakob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and
Andrew Warfield, Live Migration of
Virtual Machines, In Proceedings of the
2nd Symposium on Networked Systems
Design and Implementation (NSDI ’05),
May, 2005, Boston, MA.

[12] Steven Osman, Dinesh Subhraveti, Gong
Su, and Jason Nieh. The design and
implementation of zap: A system for
migrating computing environments, in
Proceedings of the 5th Usenix
Symposium on Operating Systems
Design and Implementation, pp.
361–376, December, 2002.

[13] Daniel Price and Andrew Tucker.
“Solaris Zones: Operating System
Support for Consolidating Commercial
Workloads.” From Proceedings of the
18th Large Installation Systems
Administration Conference (USENIX
LISA ’04).

[14] Werner Almesberger, Tcp Connection
Passing, http:
//tcpcp.sourceforge.net

Copyright c© 2006 IBM.

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM and the IBM logo are trademarks or registered
trademarks of International Business Machines Cor-
poration in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds
in the United States, other countries, or both. Other
company, product, and service names may be trade-
marks or service marks of others. References in this
publication to IBM products or services do not im-
ply that IBM intends to make them available in all
countries in which IBM operates.

This document is provided “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.

368 • Making Applications Mobile Under Linux

The What, The Why and the Where To of
Anti-Fragmentation

Mel Gorman
IBM Corp. and Uni. of Limerick

mel@csn.ul.ie

Andy Whitcroft
LTC, IBM Corp.

andyw@uk.ibm.com

Abstract

Linux R© uses a variant of the binary buddy allo-
cator that is fast but suffers badly from external
fragmentation and is unreliable for large con-
tiguous allocations. We begin by introducing
two cases where large contiguous regions are
needed: the allocation of HugeTLB pages dur-
ing the lifetime of the system and using mem-
ory hotplug to on-line and off-line memory on
demand in support of changing loads. We also
mention subsystems that may benefit from us-
ing contiguous groups of pages. We then de-
scribe two anti-fragmentation strategies, dis-
cuss their strengths and weaknesses and exam-
ine their implementations within the kernel. We
cover the standardised tests, the metrics used,
the system architectures tested in the evaluation
of these strategies and conclude with an exam-
ination of their effectiveness at satisfying large
allocations. We also look at a page reclamation
strategy that is suited to freeing contiguous re-
gions of pages and finish with a look at the fu-
ture direction of anti-fragmentation and related
work.

1 Introduction

The page allocator in any operating system is
a critical component. It must be fast and have

the ability to satisfy all requests to avoid sub-
systems building reserve page pools [4]. Linux
uses a variant of the binary buddy allocator that
is known to be fast in comparison to other allo-
cator types [3] but behaves poorly in the face of
fragmentation [5].

Fragmentation is a space-efficiency problem
affecting all dynamic memory allocators and
comes in two varieties; internal and external.
Internal fragmentation occurs when a larger
free block than necessary is granted for a re-
quest, such as allocating one entire page to sat-
isfy a request for 32 bytes. Linux uses a slab
allocator for small requests to address this is-
sue. External fragmentation refers to the inabil-
ity to satisfy an allocation because a suitably
large block of memory is not free even though
enough memory may be free overall [6]. Linux
deals with external fragmentation by rarely re-
quiring larger (high order) pages. Although
this works well in general, Section 2 presents
situations where it performs poorly.

To be clear, anti-fragmentation is not the same
as defragmentation, which is a mechanism to
reduce fragmentation by moving or reclaim-
ing pages to have contiguous free space. Anti-
fragmentation enables a system to conduct a
partial defragmentation using the existing page
reclamation mechanism. The remainder of this
paper is arranged as described in the abstract.

370 • The What, The Why and the Where To of Anti-Fragmentation

2 Motivation for Low Fragmenta-
tion

HugeTLB pages are contiguous regions that
match a large page size provided by an archi-
tecture, which is 1024 small pages on x86 and
4096 on PPC64. Use of these large pages re-
duces both expensive TLB misses [2] and the
number of Page Table Entries (PTEs) required
to map an area, thus increasing performance
and reducing memory consumption. Linux
keeps a HugeTLB freelist in the HugeTLB page
pool. This pool is sized at boot time, which
is a problem for workloads requiring differ-
ent amounts of HugeTLB memory at differ-
ent times. For example, workloads that use
large in-memory data sets, such as X Win-
dows, High-Performance Computing (HPC),
many Java applications, and some desktop ap-
plications (e.g. Konqueror) require variable
amounts of memory depending on the input
data and type of usage. It is not possible to
guess their needs at boot time. Instead it would
be better to maintain low fragmentation so that
their needs could be met as needed at run-time.

Contiguous regions are also required when a
section of memory needs to be on-lined and
then off-lined later. For example, a virtual ma-
chine running a service like a web server may
require more memory due to a spike in usage,
but later need to return the memory to the host.
Some architectures can return memory to a hy-
pervisor using a balloon driver but this only
works when memory can be off-lined at the
page granularity. The minimum sized region
that can be off-lined is the same as the size
of a memory section defined for the SPARSE-
MEM memory model. This model mandates
that the memory section size be a power-of-two
number of pages and the architecture selects
a size within that constraint. On the PPC64,
the minimum sized region of memory that can
be off-lined is 16MiB which is the minimum

size OpenFirmware uses for a Logical Memory
Block (LMB). On x86, the minimum sized re-
gion is 64MiB. This is the smallest DIMM size
taken by the IBM xSeries R© 445 which sup-
ports the memory hot-add feature. Low frag-
mentation increases the probability of finding
regions large enough to off-line.

A third case where contiguous regions are de-
sired, but not required, is for drivers that use
DMA but do not support scatter/gather IO ef-
ficiently or do not have an IO-MMU available.
These drivers must spend time breaking up the
DMA request into page-sized units. Ideally,
drivers could ask for a page-aligned block of
memory and receive a list of large contiguous
regions. With low fragmentation, the expec-
tation is that the driver would have a better
chance of getting one contiguous block and not
need to break up the request.

3 External Fragmentation

The extent of fragmentation depends on the
number of free blocks1 in the system, their size
and the size of the requested allocation. In this
section, we define two metrics that are used to
measure the ability of a system to satisfy an al-
location and the degree of fragmentation.

We measure the fraction of available free mem-
ory that can be used to satisfy allocations of a
specific size using an unusable free space in-
dex, Fu.

Fu(j) =
TotalFree−∑

i=n
i= j 2iki

TotalFree

1A free block is a single contiguous region stored on
a freelist. In rare cases with the buddy allocator, two free
blocks are adjacent but not merged because they are not
buddies.

2006 Linux Symposium, Volume One • 371

where TotalFree is the number of free pages,
2n is the largest allocation that can be satisfied,
j is the order of the desired allocation and ki is
the number of free page blocks of size 2i. When
TotalFree is 0, we define Fu to be 1. A more
traditional, if slightly inaccurate2, view of frag-
mentation is available by multiplying Fu(j) by
100. At 0, there is 0% fragmentation, at 1, there
is 100% fragmentation, at 0.25, fragmentation
is at 25% and 75% of available free memory
can be used to satisfy a request for 2 j contigu-
ous pages.

Fu(j) can be calculated at any time, but external
fragmentation is not important until an alloca-
tion fails [5] when Fu(j) will be 1. We further
define a fragmentation index, Fi(j), which de-
termines if the failure to allocate a contiguous
block of 2 j pages is due to lack of memory or
to external fragmentation. The higher the frag-
mentation of the system, the more free blocks
there will be. At the time of failure, the ideal
number of blocks shall be related to the size of
the requested allocation. Hence, the index at
the time of an allocation failure is

Fi(j) = 1− TotalFree/2 j

BlocksFree

where TotalFree is the number of free pages,
j is the order of the desired allocation and
BlocksFree is the number of contiguous re-
gions stored on freelists. When BlocksFree is
0, we define Fi(j) to be 0. A negative value of
Fi(j) implies that the allocation can be satisfied
and the fragmentation index is only meaning-
ful when an allocation fails. A value tending
towards 0 implies the allocation failed due to
a lack of memory. A value tending towards 1
implies that the failure is due to fragmentation.

2Discussions on fragmentation are typically con-
cerned with internal fragmentation where the percentage
represents wasted memory. A percentage value for ex-
ternal fragmentation is not as meaningful because it de-
pends on the request size.

Obviously the fewer times the Fi are calculated,
the better.

4 Allocator Placement Policies

It is common for allocators to exploit known
characteristics of the request stream to improve
their efficiency. For example, allocation size
and the relative time of the allocation have been
used to heuristically group objects of an ex-
pected lifetime together [1]. Similar heuristics
cannot be used within an operating system as
it does not have the same distinctive phases as
application programs have. There is also lit-
tle correlation between the size of an alloca-
tion and its expected use. However, operating
system allocations do have unique characteris-
tics that may be exploited to control placement
thereby reducing fragmentation.

First, certain pages can be freed on demand;
saved to backing storage; or discarded. Sec-
ond, a large amount of kernel allocations are
for caches, such as the buffer and inode caches
which may be reclaimed on demand. Since it is
known in advance what the page will be used
for, an anti-fragmentation strategy can group
pages by allocation type. We define three types
of reclaimability

Easy to reclaim (EasyRclm) pages are allo-
cated directly for a user process. Almost
all pages mapped to a userspace page table
and disk buffers, but not their management
structures, are in this category.

Kernel reclaimable (KernRclm) pages are
allocated for the kernel but can often be
reclaimed on demand. Examples include
inodes, buffer head and directory entry
caches. Other examples, not applicable
to Linux, include kernel data and PTEs
where the system is capable of paging
them to swap.

372 • The What, The Why and the Where To of Anti-Fragmentation

Kernel non-reclaimable (KernNoRclm)
pages are essentially impossible to
reclaim on demand.

To distinguish among the reclamation types,
additional GFP flags are used when calling
alloc_pages(). For simplicity, the strategies
presented here treat KernNoRclm and KernR-
clm the same so we use only one flag GFP_

EASYRCLM to distinguish between user and ker-
nel allocations. Variations exist that deal with
all three reclamation types, but the resulting
code is relatively more complex.

Allocation requests that specify the GFP_

EASYRCLM flag include requests for buffer
pages, process faulted pages, high pages allo-
cated with alloc_zeroed_user_highpage

and shared memory pages. The strategies prin-
cipally differ in the semantics of the GFP flag
and its treatment in the implementation.

5 Anti-Fragmentation With Lists

The binary buddy allocator maintains
max_order lists of free blocks of each
power-of-two from 20 to 2max_order−1. Instead
of one list at each order, this strategy uses two
lists by extending struct free_area. At
each order, one list is used to satisfy EasyRclm
allocations and the second list is used for all
other allocations. struct per_cpu_pages

is similarly extended to have one list for
EasyRclm and one for kernel allocations.

The difference in design between the standard
and list-based anti-fragmentation allocator is
illustrated in Figure 1. Where possible, al-
locations of a specified type use their own
freelist but can steal pages from each other
in low memory conditions. When allocated,
SetPageEasyRclm() is called for EasyRclm

allocations so that they will be freed back to
the correct lists. The two lists mean that a
page’s buddy is likely to be of the same re-
claimability. The success of this strategy de-
pends on there being a large enough number
of EasyRclm pages and that there are no pro-
longed bursts of requests for kernel pages lead-
ing to excessive stealing.

One advantage of this strategy is that a high or-
der kernel allocation can push out EasyRclm
pages to satisfy the allocation. The assumption
is that high-order allocations during the lifetime
of the system are short-lived. Performance re-
gressions tests did not show any problems de-
spite the allocator hot paths being affected by
this strategy.

A disadvantage is related to the advantage. As
kernel order-0 allocations can use the EasyR-
clm freelists, the strategy can break down if
there are prolonged periods of small allocations
without frees. The likelihood is also that long-
term light loads, such as desktops running for
a number of days will allow kernel pages to
slowly leak to all areas of physical memory.
Over time, the list-based strategy would have
similar success rates to the standard allocator.

6 Anti-Fragmentation With Zones

The Linux kernel splits available memory into
one or more zones, each representing mem-
ory with different usage limitations as shown
in Figure 2. On a typical x86, we have
ZONE_DMA representing memory capable of
use for Direct Memory Access (DMA), ZONE_
NORMAL representing memory which is di-
rectly accessible by the kernel, and ZONE_
HIGHMEM covering the remainder. Each zone
has its own set of lists for the buddy allocator
to track free memory within the zone.

2006 Linux Symposium, Volume One • 373

 1

Linked lists of
free pages

0

1

order

MAX_ORDER-1

...

...

...

...

...

4

3

2

1 x 2 block
 3

2 x 2 block
 2

2 x 2 block

Requesting
Process

Hot
Pages

Per-CPU cache

Cold
Pages

One cache per CPU
order-0 pages only

Cache hitCache miss

0

1

3

2

MAX_ORDER-1

0

1

...

3

2

MAX_ORDER-1

...

Requesting Process

EasyRclm
pages

 KernNoRclm+KernRclm
pages

Type of Allocation?

BINARY BUDDY ALLOCATOR ANTI-FRAGMENTATION WITH LISTS

Figure 1: Comparison of the standard and list-based anti-frag allocators

This strategy introduces a new memory
zone, ZONE_EASYRCLM, to contain EasyR-
clm pages as illustrated in Figure 3. EasyR-
clm allocations that cannot be satisfied from
this zone fallback to regular zones, but
non-EasyRclm allocations cannot use ZONE_
EASYRCLM. This is a crucial difference be-
tween the list-based and zone-based strate-
gies for anti-fragmentation as list-based allows
stealing in both directions.

While booting, the system memory is split
into portions required by the kernel for its
operation and that which will be used for
EasyRclm allocations. The size of the ker-
nel portion is defined by the system adminis-
trator via the kernelcore= kernel parame-
ter, which bounds the memory placed in the
standard zones; the remaining memory consti-
tutes ZONE_EASYRCLM. If kernelcore= is
not specified, no pages are placed in ZONE_
EASYRCLM.

The principal advantage of this strategy are
that it provides a high likelihood of being
able to reclaim appropriately sized portions of

ZONE_EASYRCLM for any higher order allo-
cation if the high-order allocation is also eas-
ily reclaimable. Another significant advan-
tage is that ZONE_EASYRCLM may be used
for HugeTLB page allocations as they do not
worsen the fragmentation state of the system in
a meaningful way. This allows us to use the
ZONE_EASYRCLM as a “soft allocation” zone
from the HugeTLB pool to expand into.

One disadvantage is similar to the HugeTLB
pool sizing problem because the usage of the
system must be known in advance. Sizing is
workload dependant and performance may suf-
fer if an inappropriate size is specified with
kernelcore=. The second major disadvan-
tage is that the strategy does not provide any
help for high-order kernel allocations.

ZONE_NORMALZONE_DMA ZONE_HIGHMEM

Figure 2: Standard Linux kernel zone layout

374 • The What, The Why and the Where To of Anti-Fragmentation

CPU Xeon R© 2.8GHz
Physical CPUs 2
CPUs 4
Main Memory 1518MiB

CPU Power5 R© PPC64 1.9GHz
Physical CPUs 2
CPUs 4
Main Memory 4019MiB

X86-BASED TEST MACHINE POWER5-BASED TEST MACHINE

Figure 4: Specification of Test Machines

ZONE_NORMALZONE_DMA ZONE_HIGHMEM ZONE_EASYRCLM

Figure 3: Easy Reclaim zone layout

7 Experimental Methodology

The strategies were evaluated using five tests,
two related to performance and three related to
the system’s ability to satisfy large contiguous
allocations. The system is cleanly booted at the
beginning of a single set of tests. Each of the
five tests are run in order without intervening
reboots to maximise the chances of the system
suffering fragmentation. The tests are as fol-
lows

kbuild is similar to kernbench and it measures
the time taken to extract and build a kernel. The
test gives an overall view of the performance of
a kernel, including the rate the kernel is able to
satisfy allocations.

AIM9 is a micro-benchmark that includes tests
for VM-related operations like page allocation
and the time taken to call brk(). AIM9 is
a good barometer for performance regressions.
Crucially, it is sensitive to regressions in the
page allocator paths.

HugeTLB-Capability is a kernel compile
based benchmark. For every 250MiB of phys-
ical memory, a kernel compile is executed (in
parallel, simultaneously). During the compile,
one attempt is made to grow the HugeTLB
page pool from 0 by echoing a large number
to /proc/sys/vm/nr_hugepages. After the
re-size attempt, the pool is shrunk back to 0.

The kernel compiles are then stopped and an
attempt is made to grow the pool while the sys-
tem is under no significant load. A zero-filled
file that is the same size as physical memory
is then created with dd, then deleted, before a
third attempt is made to re-size the HugeTLB
pool. This test determines how capable the sys-
tem is of allocating HugeTLB pages at run-time
using the conventional interfaces.

Highalloc-Stress is a kernel compile based
benchmark. Kernel compiles are started as in
the HugeTLB-Capability test, plus updatedb
is also run in the background. A ker-
nel module is loaded to aggressively allocate
as many HugeTLB-sized pages as the sys-
tem has by calling alloc_pages(). These
persistent attempts force kswapd to start
reclaiming as well as triggering direct re-
claim which does not occur when resiz-
ing the HugeTLB pool via /proc/sys/

vm/nr_hugepages. Fu(hugetlb_order) is
calculated at each allocation attempt and
Fi(hugetlb_order) is calculated at each failure
(see Section 3). The results are graphed at the
end of the test. This test indicates how many
HugeTLB pages could be allocated under the
best of circumstances.

HotRemove-Capability is a memory hotplug
remove test. For each section of memory re-
ported in /sys/devices/system/memory,
an attempt is made to off-line the memory. As-
suming the kernel supports hotplug-remove, a
report states how many sections and what per-
centage of memory was off-lined. The base
kernel used for this paper was 2.6.16-rc6

2006 Linux Symposium, Volume One • 375

which did not support hotplug remove, so no re-
sults were produced and it will not be discussed
further.

All of these benchmarks were run using driver
scripts from VMRegress 0.363 in conjunction
with the same system that generates the reports
on http://test.kernel.org. Two ma-
chines were used to run the benchmarks based
on the x86 and Power5 R© architectures as de-
tailed in Figure 4. In both cases, the tests were
run and results collected with scripts to min-
imise variation and prevent bias during testing.
Four sets of configurations were run on each ar-
chitecture

1. List-based strategy under light load

2. List-based strategy under heavy load

3. Zone-based with no kernelcore spec-
ified giving a ZONE_EASYRCLM with zero
pages.

4. Zone-based with kernelcore=1024MB

on x86 and kernelcore=2048MB on
PPC64.

The list-based strategy is tested under light
and heavy loads to determine if the strat-
egy breaks down under pressure. We an-
ticipated the results of the benchmarks to
be similar if no breakdown was occurring.
The zone-based strategy is tested with and
without kernelcore to show that ZONE_
EASYRCLM is behaving as expected and that
the existence of the zone does not incur a per-
formance penalty. The choice of 2048MB on
PPC64 is 50% of physical memory. The choice
of 1024MB on x86 is to give some memory to
ZONE_EASYRCLM, but to leave some memory
in ZONE_HIGHMEM for PTE use as CONFIG_
HIGHPTE was set.

3http://www.csn.ul.ie/∼mel/projects/vmregress/
vmregress-0.37.tar.gz

8 Results

On the successful completion of a test run, a
summarised report is generated similar4 to the
one shown in Figure 11. These reports get ag-
gregated into the graphs shown in Figures 12
and 13. For each architecture the graphs show
how the two strategies compare against the
base allocator in terms of performance and the
ability to satisfy HugeTLB allocations. These
graphs will be the focus of our discussion on
performance in Section 8.1.

Figures 5 and 6 shows the values of
Fu(hugetlb_order) at each allocation at-
tempt during the Highalloc-Stress Test while
the system was under no load. Note that in all
cases, the starting value of Fu(hugetlb_order)
is close to 1 indicating that free memory was
not in large contiguous regions after the kernel
compiles were stopped. The value drops
over time as pages are reclaimed and buddies
coalesce. Kernels using anti-fragmentation
strategies had a higher rate of decline for the
value of Fu(hugetlb_order), which implies that
the anti-fragmentation strategies had a measure
of success. These figures will be the focus
of our discussion on the ability of the system
to satisfy requests for contiguous regions in
Section 8.2.

Finally, Figures 7 and 8 show the value of
Fi(hugetlb_order) at each allocation failure
during the Highalloc-Stress Test while the sys-
tem was under no load. These illustrate the
root cause of the allocation failures and are dis-
cussed in Section 8.3.

8.1 Performance

On both architectures, absolute performance
was comparable. The “KBuild Comparison”

4Edited to fit

376 • The What, The Why and the Where To of Anti-Fragmentation

graphs in Figures 12 and 13 show the tim-
ings were within seconds of each other and this
was consistent among runs. The “AIM9 Com-
parison” graphs show that any regression was
within 3% of the base kernel’s performance.
This is expected as that test varies by a few
percent in each run and the results represent
one run, not an average. This leads us to con-
clude that neither list-based nor zone-based has
a significant performance penalty on either x86
or PPC64 architectures, at least for our sample
workloads.

8.2 Free Space Usability

In general, zone-based was more predictable
and reliable at providing contiguous free space.
On both architectures, the zone-based anti-
fragmentation kernels were able to allocate al-
most all of the pages in ZONE_EASYRCLM at
rest after the tests. As shown on Figure 6, 0.66
was the final value of Fu(hugetlb_order) on
PPC64 with half of physical memory in ZONE_
EASYRCLM. We would expect it to reach 0.50
after multiple HugeTLB allocation attempts.
Without specifying kernelcore, the scheme
made no difference to absolute performance or
fragmentation as ZONE_EASYRCLM is empty.

The list-based strategy was potentially able
to reduce fragmentation throughout physical
memory. On x86, list-based anti-fragmentation
kept overall fragmentation lower than zone-
based but it was only fractionally better on the
PPC64 than the standard allocator. An ex-
amination of the x86 “High Allocation Stress
Test Comparison Test” report in Figure 12 hints
why. On x86, advantage is being taken of
the existing zone-based groupings of alloca-
tion types in Normal and HighMem. Effec-
tively, it was using a simple zone-based anti-
fragmentation that did not take PTEs into ac-
count. The list-based strategy succeeds on x86
because it keeps the PTE pages in HighMem

grouped together in addition to some success
in ZONE_NORMAL. Nevertheless, the strategy
clearly breaks down in ZONE_NORMAL due to
large amounts of kernel allocations falling back
to the EasyRclm freelists in low-memory sit-
uations. The breakdown is is illustrated by
the different values of Fu(hugetlb_order) after
the different loads where similar values would
be expected if no breakdown was occurring.
Figure 5 shows that the light-load performed
worse than full-load due to the unpredictability
of the strategy. On an earlier run, the list-based
strategy under light load was able to allocate
119 HugeTLB pages from ZONE_NORMAL but
only 77 after full-load.

Under load, neither scheme was significantly
better than the other at keeping free areas con-
tiguous. This is because we were depending on
the LRU-approximation to reclaim a contigu-
ous region. Under load, zone-based was gen-
erally better because page reclaim was able to
reclaim within ZONE_EASYRCLM but the list-
based strategy did not have the same focus.
With either anti-fragmentation strategy, LRU
simply is not suitable for reclaiming contiguous
regions and an alternative strategy is discussed
in Section 10.

8.3 Fragmentation Index at Failure

Figures 7 and 8 clearly show that allocations
failed with both strategies due to fragmenta-
tion and not lack of memory. By design, the
zone-based strategy does not reduce fragmen-
tation in the kernel zones. When an allocation
fails at rest, it is because ZONE_EASYRCLM is
likely nearly depleted and we are looking at the
high fragmentation in the kernel zones. The
figures for list-based implied that, under load,
fragmentation had crept into all zones which
means the strategy broke down due to excessive
stealing.

2006 Linux Symposium, Volume One • 377

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350

U
nu

sa
bl

e
Fr

ee
 S

pa
ce

 In
de

x

Allocation Attempt

base
list-full

list-light

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350

U
nu

sa
bl

e
Fr

ee
 S

pa
ce

 In
de

x

Allocation Attempt

base
linear-zone-0MB

linear-zone-1024MB

X86 LIST-BASED X86 ZONE-BASED

Figure 5: x86 Unusable Free Space Index During Highalloc-Stress Test, System At Rest

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

U
nu

sa
bl

e
Fr

ee
 S

pa
ce

 In
de

x

Allocation Attempt

base
list-full

list-light

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

U
nu

sa
bl

e
Fr

ee
 S

pa
ce

 In
de

x

Allocation Attempt

base
linear-zone-0M

linear-zone-2048MB

PPC64 LIST-BASED PPC64 ZONE-BASED

Figure 6: PPC64 Unusable Free Space Index During Highalloc-Stress Test, System At Rest

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 50 100 150 200 250 300 350

Fr
ag

m
en

ta
tio

n
In

de
x

Allocation Attempt

base
list-full

list-light

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 50 100 150 200 250 300 350

Fr
ag

m
en

ta
tio

n
In

de
x

Allocation Attempt

base
linear-zone-0MB

linear-zone-1024MB

X86 LIST-BASED X86 ZONE-BASED

Figure 7: x86 Fragmentation Index at Allocation Failures During Highalloc-Stress Test

378 • The What, The Why and the Where To of Anti-Fragmentation

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 50 100 150 200 250

Fr
ag

m
en

ta
tio

n
In

de
x

Allocation Attempt

base
list-full

list-light

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 50 100 150 200 250

Fr
ag

m
en

ta
tio

n
In

de
x

Allocation Attempt

base
linear-zone-0M

linear-zone-2048MB

PPC64 LIST-BASED PPC64 ZONE-BASED

Figure 8: PPC64 Fragmentation Index at Allocation Failures During Highalloc-Stress

9 Results Conclusions

The two strategies had different advantages and
disadvantages but both were able to increase
availability of HugeTLB pages. The fact that
list-based does not require configuration and
works on all of memory makes it desirable but
our figures show that it breaks down in its cur-
rent implementation. Once correctly config-
ured, zone-based is more reliable even though
it does not help high-order kernel allocations.

The zone-based strategy is currently the best
available solution. In the short-to-medium
term, the zone-based strategy creates a soft-
area that can satisfy HugeTLB allocations on
demand. In the long-term, we intend to de-
velop a strategy that takes the best from both
approaches without incurring a performance re-
gression.

10 Linear Reclaim

Anti-fragmentation improves our chances of
finding contiguous regions of memory that may
be reclaimed to satisfy a high order allocation.

However, the existing LRU-approximation al-
gorithm for page reclamation is not suitable for
finding contiguous regions.

In the worst-case scenario, the LRU list con-
tains randomly ordered pages across the system
so the release of pages will also be in random
order. To free a contiguous region of 2 j pages
within a zone containing N pages, we may need
to release Fr(j) pages in that zone where

Fr(j) = (N
2 j ∗ (2 j−1))+1

The table in Figure 9 shows the relative propor-
tion of memory we will need to reclaim before
we can guarantee to free a contiguous region
of sufficient size for the specified order. We
can see that beyond the lowest orders we need
to reclaim most pages in the system to guar-
antee freeing pages of the desired order. Or-
der 10 and 12 are interesting as they represent
the HugeTLB page sizes for x86 and PPC64 re-
spectively. The average case is not this severe,
but a detailed analysis of the average case is be-
yond the scope of this paper.

We introduced an alternative reclaim algorithm
called Linear Reclaim designed to target larger

2006 Linux Symposium, Volume One • 379

Order Percentage
1 50.00
2 75.00
3 87.50
4 93.75
5 96.88
6 98.44

10 99.90
12 99.98

Figure 9: Reclaim Difficulty

Reclaimable Reclaimable

Non-Reclaimable

Reclaimable

Free

Figure 10: Linear Reclaim

contiguous regions of pages. It is used when
the failing allocation is of order 3 or greater.
With linear reclaim we view the entire memory
space as a set of contiguous regions, each of the
size we are trying to release. For each region,
we check if all of the pages are likely to be re-
claimable or are already free. If so, the allo-
cated pages are removed from the LRU and an
attempt is made to reclaim them. This contin-
ues until a proportion of the contiguous regions
have been scanned.

In our example in Figure 10, linear reclaim will
only attempt to reclaim pages in the second and
fourth regions, applying reclaim to all the pages
in the selected region at the same time. It is
clear that in the case where reclaim succeeds
we should be able to free the region by releas-
ing just its pages which is significantly less than
that required with LRU-based reclaim.

An early proof-of-concept implementation of
linear reclaim was promising. A HugeTLB-

capability test was run on the x86 machine.
Under load, a clean kernel was able to allo-
cate 6 HugeTLB pages, the zone-based anti-
fragmentation allocator was able to allocate 10
HugeTLB pages and with both zone-based anti-
fragmentation and linear-reclaim, it was able
to allocate 41 HugeTLB pages. We do not
have detailed timing information but early in-
dications are that linear reclaim is able to sat-
isfy allocation requests faster but spends more
time scanning than the existing page reclama-
tion policy before a failure. In summary, linear
reclaim is promising, but needs further devel-
opment.

11 Future Work

We intend to develop the zone-based anti-
fragmentation strategy further. The patches
that exist at the time of writing include some
complex architecture-specific code that calcu-
late the size of ZONE_EASYRCLM. As the code
for sizing zones and memory holes in each ar-
chitecture is similar, we are developing code
to calculate the size of zones and holes in an
architecture-independent fashion. Our initial
patches show a net reduction of code.

Once an anti-fragmentation strategy is in place,
we would like to develop the linear reclaim
scanner further as LRU reclaims far too much
memory to satisfy a request for a contiguous re-
gion. Our current testing strategy records how
long it takes to satisfy a large allocation and
we anticipate linear reclaim will show improve-
ments in those figures.

In a perfect world, with everything in place, the
plan is to work on the transparent support of
HugeTLB pages in Linux. Although there are
known applications that benefit from this such
as database and java-based software, we would

380 • The What, The Why and the Where To of Anti-Fragmentation

also like to show benefits for desktop software
such as X.

We will then determine if there is a perfor-
mance case for the use of higher-order alloca-
tions by the kernel. If there is, we will revisit
the list-based approach and determine if a more
general solution can be developed to control
fragmentation throughout the system, and not
just in pre-configured zones.

Acknowledgements

We would like to thank Nishanth Aravamudan
for reviewing a number of drafts of this pa-
per and his suggestions on how to improve the
quality. We would like to thank Dave Hansen
for his clarifications on the content, particularly
on the size of SPARSEMEM memory sections
on x86. Finally, we would like to thank Paul
McKenney for his in-depth commentary on an
earlier version of the paper and particularly for
his feedback on Section 3.

Legal Statement

This work represents the view of the authors
and does not necessarily represent the view of
IBM.

Linux is a trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names
may be the trademarks or service marks of oth-
ers.

References

[1] D. A. Barrett and B. G. Zorn. Using
lifetime predictors to improve memory

allocation performance. In PLDI, pages
187–196, 1993.

[2] J. B. Chen, A. Borg, and N. P. Jouppi. A
simulation based study of TLB
performance. In ISCA, pages 114–123,
1992.

[3] D. G. Korn and K.-P. Bo. In search of a
better malloc. In Proceedings of the
Summer 1985 USENIX Conference, pages
489–506, 1985.

[4] M. K. McKusick. The design and
implementation of the 4.4BSD operating
system. Addison-Wesley, 1996.

[5] J. L. Peterson and T. A. Norman. Buddy
systems. Communications of the ACM,
20(6):421–431, 1977.

[6] B. Randell. A note on storage
fragmentation and program segmentation.
Commun. ACM, 12(7):365–369, 1969.

2006 Linux Symposium, Volume One • 381

Kernel comparison report

Architecture: x86
Huge Page Size: 4 MB
Physical memory: 1554364 KB
Number huge pages: 379

KBuild Comparison

2.6.16-rc6-clean 2.6.16-rc6-zone-0MB 2.6.16-rc6-zone-1024MB
Time taken to extract kernel: 25 24 24
Time taken to build kernel: 393 391 391

AIM9 Comparison

2.6.16-rc6-clean zone-0MB zone-1024MB
1 creat-clo 105965.67 105866.67 -0.09% 106500.00 0.50% File Creations and Closes/s
2 page_test 259306.67 271558.07 4.72% 258300.28 -0.39% System Allocations & Pages/s
3 brk_test 1666572.24 1866883.33 12.02% 1880766.67 12.85% System Memory Allocations/s
4 jmp_test 14805650.00 13949966.67 -5.78% 15088700.00 1.91% Non-local gotos/second
5 signal_test 286252.29 280183.33 -2.12% 282950.00 -1.15% Signal Traps/second
6 exec_test 131.79 131.98 0.14% 131.68 -0.08% Program Loads/second
7 fork_test 3857.69 3842.69 -0.39% 3862.69 0.13% Task Creations/second
8 link_test 21291.90 21693.58 1.89% 21499.37 0.97% Link/Unlink Pairs/second

High Allocation Stress Test Comparison

HighAlloc Under Load Test Results Pass 1

2.6.16-rc6-clean 2.6.16-rc6-zone-0MB 2.6.16-rc6-zone-1024MB
Order 10 10 10
Success allocs 72 20 82
Failed allocs 307 359 297
DMA zone allocs 1 1 1
Normal zone allocs 5 5 6
HighMem zone allocs 66 14 7
EasyRclm zone allocs 0 0 68
% Success 18 5 21
HighAlloc Under Load Test Results Pass 2

2.6.16-rc6-clean 2.6.16-rc6-zone-0MB 2.6.16-rc6-zone-1024MB
Order 10 10 10
Success allocs 82 70 106
Failed allocs 297 309 273
DMA zone allocs 1 1 1
Normal zone allocs 5 5 6
HighMem zone allocs 76 64 7
EasyRclm zone allocs 0 0 92
% Success 21 18 27
HighAlloc Test Results while Rested

2.6.16-rc6-clean 2.6.16-rc6-zone-0MB 2.6.16-rc6-zone-1024MB
Order 10 10 10
Success allocs 110 130 181
Failed allocs 269 249 198
DMA zone allocs 1 1 1
Normal zone allocs 16 46 44
HighMem zone allocs 93 83 9
EasyRclm zone allocs 0 0 127
% Success 29 34 47

HugeTLB Page Capability Comparison

2.6.16-rc6-clean 2.6.16-rc6-zone-0MB 2.6.16-rc6-zone-1024MB
During compile: 5 5 5
At rest before dd of large file: 51 52 48
At rest after dd of large file: 67 64 92

Figure 11: Example Kernel Comparison Report

382 • The What, The Why and the Where To of Anti-Fragmentation

 0

 100

 200

 300

 400

 500
list-light

list-full

zone-1024MB

zone-0MB

base

Seconds

E
xtract
B

uild

 0

 50

 100

 150

 200

 250

 300

 350

list-light Rest

list-full Rest

zone-1024MB Rest

zone-0MB Rest

base Rest

list-light #2

list-full #2

zone-1024MB #2

zone-0MB #2

base #2

list-light #1

list-full #1

zone-1024MB #1

zone-0MB #1

base #1

HugeTLB pages

D
M

A
N

orm
al

H
ighM

em
E

asyR
clm

KBUILD COMPARISON HIGH ALLOCATION STRESS TEST COMPARISON

-15

-10 -5 0 5

 10

 15

list-light fork_test

list-full fork_test

zone-1024MB fork_test

zone-0MB fork_test

base fork_test

list-light exec_test

list-full exec_test

zone-1024MB exec_test

zone-0MB exec_test

base exec_test

list-light brk_test

list-full brk_test

zone-1024MB brk_test

zone-0MB brk_test

base brk_test

list-light page_test

list-full page_test

zone-1024MB page_test

zone-0MB page_test

base page_test

Deviation %

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

list-light after

list-full after

zone-1024MB after

zone-0MB after

base after

list-light before

list-full before

zone-1024MB before

zone-0MB before

base before

list-light compile

list-full compile

zone-1024MB compile

zone-0MB compile

base compile

HugeTLB pages

AIM9 COMPARISON HUGETLB PAGE CAPABILITY COMPARISON

Figure 12: Anti-Fragmentation Strategy Comparison on x86

2006 Linux Symposium, Volume One • 383

 0

 100

 200

 300

 400

 500

 600

 700

list-light

list-full

zone-2048MB

zone-0MB

base

Seconds

E
xtract
B

uild

 0

 20

 40

 60

 80

 100

 120

 140

list-light Rest

list-full Rest

zone-2048MB Rest

zone-0MB Rest

base Rest

list-light #2

list-full #2

zone-2048MB #2

zone-0MB #2

base #2

list-light #1

list-full #1

zone-2048MB #1

zone-0MB #1

base #1

HugeTLB pages

D
M

A
E

asyR
clm

KBUILD COMPARISON HIGH ALLOCATION STRESS TEST COMPARISON

-4 -2 0 2 4

list-light fork_test

list-full fork_test

zone-2048MB fork_test

zone-0MB fork_test

base fork_test

list-light exec_test

list-full exec_test

zone-2048MB exec_test

zone-0MB exec_test

base exec_test

list-light brk_test

list-full brk_test

zone-2048MB brk_test

zone-0MB brk_test

base brk_test

list-light page_test

list-full page_test

zone-2048MB page_test

zone-0MB page_test

base page_test

Deviation %

 0

 10

 20

 30

 40

 50

 60

list-light after

list-full after

zone-2048MB after

zone-0MB after

base after

list-light before

list-full before

zone-2048MB before

zone-0MB before

base before

list-light compile

list-full compile

zone-2048MB compile

zone-0MB compile

base compile

HugeTLB pages

AIM9 COMPARISON HUGETLB PAGE CAPABILITY COMPARISON

Figure 13: Anti-Fragmentation Strategy on PPC64

384 • The What, The Why and the Where To of Anti-Fragmentation

GIT—A Stupid Content Tracker

Junio C. Hamano
Twin Sun, Inc.

junio@twinsun.com

Abstract

Git was hurriedly hacked together by Linus
Torvalds, after the Linux kernel project lost
its license to use BitKeeper as its source
code management system (SCM). It has since
quickly grown to become capable of managing
the Linux kernel project source code. Other
projects have started to replace their existing
SCMs with it.

Among interesting things that it does are:

1. giving a quick whole-tree diff,

2. quick, simple, stupid-but-safe merge,

3. facilitating e-mail based patch exchange
workflow, and

4. helping to pin-point the change that caused
a particular bug by a bisection search in
the development history.

The core git functionality is implemented as a
set of programs to allow higher-layer systems
(Porcelains) to be built on top of it. Several
Porcelains have been built on top of git, to sup-
port different workflows and individual taste of
users. The primary advantage of this architec-
ture is ease of customization, while keeping
the repositories managed by different Porce-
lains compatible with each other.

The paper gives an overview of how git evolved
and discusses the strengths and weaknesses of
its design.

1 Low level design

Git is a “stupid content tracker.” It is designed
to record and compare the whole tree states ef-
ficiently. Unlike traditional source code control
systems, its data structures are not geared to-
ward recording changes between revisions, but
for making it efficient to retrieve the state of in-
dividual revisions.

The unit in git storage is an object. It records:

• blob – the contents of a file (either the
contents of a regular file, or the path
pointed at by a symbolic link).

• tree – the contents of a directory, by
recording the mapping from names to ob-
jects (either a blob object or a tree object
that represents a subdirectory).

• commit – A commit associates a tree
with meta-information that describes how
the tree came into existence. It records:

– The tree object that describes the
project state.

386 • GIT—A Stupid Content Tracker

– The author name and time of creation
of the content.

– The committer name and time of cre-
ation of the commit.

– The parent commits of this commit.

– The commit log that describes why
the project state needs to be changed
to the tree contained in this commit
from the trees contained in the parent
commits.

• tag – a tag object names another object
and associates arbitrary information with
it. A person creating the tag can attest that
it points at an authentic object by GPG-
signing the tag.

Each object is referred to by taking the SHA1
hash (160 bits) of its internal representation,
and the value of this hash is called its object
name. A tree object maps a pathname to the
object name of the blob (or another tree, for a
subdirectory).

By naming a single tree object that represents
the top-level directory of a project, the entire di-
rectory structure and the contents of any project
state can be recreated. In that sense, a tree ob-
ject is roughly equivalent to a tarball.

A commit object, by tying its tree object with
other commit objects in the ancestry chain,
gives the specific project state a point in project
history. A merge commit ties two or more lines
of developments together by recording which
commits are its parents. A tag object is used to
attach a label to a specific commit object (e.g. a
particular release).

These objects are enough to record the project
history. A project can have more than one lines
of developments, and they are called branches.
The latest commit in each line of development
is called the head of the branch, and a reposi-
tory keeps track of the heads of currently active

branches by recording the commit object names
of them.

To keep track of what is being worked on in
the user’s working tree, another data structure
called index, is used. It associates pathnames
with object names, and is used as the staging
area for building the next tree to be committed.

When preparing an index to build the next tree,
it also records the stat(2) information from
the working tree files to optimize common op-
erations. For example, when listing the set of
files that are different between the index and
the working tree, git does not have to inspect
the contents of files whose cached stat(2)
information match the current working tree.

The core git system consists of many relatively
low-level commands (often called Plumbing)
and a set of higher level scripts (often called
Porcelain) that use Plumbing commands. Each
Plumbing command is designed to do a spe-
cific task and only that task. The Plumbing
commands to move information between the
recorded history and the working tree are:

• Files to index. git-update-index
records the contents of the working tree
files to the index; to write out the blob
recorded in the index to the working tree
files, git-checkout-index is used;
and git-diff-files compares what
is recorded in the index and the working
tree files. With these, an index is built that
records a set of files in the desired state to
be committed next.

• Index to recorded history. To write
out the contents of the index as a tree
object, git-write-index is used;
git-commit-tree takes a tree object,
zero or more commit objects as its parents,
and the commit log message, and creates
a commit object. git-diff-index

2006 Linux Symposium, Volume One • 387

compares what is recorded in a tree ob-
ject and the index, to serve as a preview
of what is going to be committed.

• Recorded history to index. The directory
structure recorded in a tree object is read
by git-read-tree into the index.

• Index to files. git-checkout-index
writes the blobs recorded in the index to
the working tree files.

By tying these low-level commands together,
Porcelain commands give usability to the
whole system for the end users. For ex-
ample, git-commit provides a UI to ask
for the commit log message, create a new
commit object (using git-write-tree and
git-commit-tree), and record the object
name of that commit as the updated topmost
commit in the current line of development.

2 Design Goals

From the beginning, git was designed specifi-
cally to support the workflow of the Linux ker-
nel project, and its design was heavily influ-
enced by the common types of operations in the
kernel project. The statistics quoted below are
for the 10-month period between the beginning
of May 2005 and the end of February 2006.

• The source tree is fairly large. It has
approximately 19,000 files spread across
1,100 directories, and it is growing.

• The project is very active. Approximately
20,000 changes were made during the 10-
month period. At the end of the examined
period, around 75% of the lines are from
the version from the beginning of the pe-
riod, and the rest are additions and modifi-
cations.

• The development process is highly dis-
tributed. The development history led
to v2.6.16 since v2.6.12-rc2 contains
changes by more than 1,800 authors that
were committed by a few dozen people.

• The workflow involves many patch ex-
changes through the mailing list. Among
20,000 changes, 16,000 were committed
by somebody other than the original au-
thor of the change.

• Each change tends to touch only a handful
files. The source tree is highly modular
and a change is often very contained to a
small part of the tree. A change touches
only three files on average, and modifies
about 160 lines.

• The tree reorganization by addition and
deletion is not so uncommon, but often
happens over time, not as a single rename
with some modifications. 4,500 files were
added or deleted, but less than 600 were
renamed.

• The workflow involves frequent merges
between subsystem trees and the mainline.
About 1,500 changes are merges (7%).

• A merge tends to be straightforward. The
median number of paths involved in the
1,500 merges was 185, and among them,
only 10 required manual inspection of
content-level merges.

Initial design guidelines came from the above
project characteristics.

• A few dozen people playing the integrator
role have to handle work by 2,000 contrib-
utors, and it is paramount to make it effi-
cient form them to perform common oper-
ations, such as patch acceptance and merg-
ing.

388 • GIT—A Stupid Content Tracker

• Although the entire project is large, in-
dividual changes tend to be localized.
Supporting patch application and merging
with a working tree with local modifica-
tions, as long as such local modifications
do not interfere with the change being pro-
cessed, makes the integrators’ job more ef-
ficient.

• The application of an e-mailed patch must
be very fast. It is not uncommon to feed
more than 1,000 changes at once during a
sync from the -mm tree to the mainline.

• When existing contents are moved around
in the project tree, renaming of an entire
file (with or without modification at the
same time) is not a majority. Other con-
tent movements happen more often, such
as consolidating parts of multiple files to
one new file or splitting an existing files
into multiple new files. Recording file re-
names and treating them specially does not
help much.

• Although the merge plays an important
role in building the history of the project,
clever merge algorithms do not make
much practical difference, because ma-
jority of the merges are trivial; nontriv-
ial cases need to be examined carefully
by humans anyway, and the maintainer
can always respond, “This does not apply,
please rework it based on the latest ver-
sion and resubmit.” Faster merge is more
important, as long as it does not silently
merge things incorrectly.

• Frequent and repeated merges are the
norm. It is important to record what has
already been merged in order to avoid hav-
ing to resolve the same merge conflicts
over and over again.

• Two revisions close together tend to have
many common directories unchanged be-

tween them. Tree comparison can take ad-
vantage of this to avoid descending into
subdirectories that are represented by the
same tree object while examining changes.

3 Evolution

The very initial version of git, released by Linus
Torvalds on April 7, 2005, had only a handful
of commands to:

• initialize the repository;

• update the index to prepare for the next
tree;

• create a tree object out of the current index
contents;

• create a commit object that points at its
tree object and its parent commits;

• print the contents of an object, given its
object name;

• read a tree object into the current index;

• show the difference between the index and
the working tree.

Even with this only limited set of commands, it
was capable of hosting itself. It needed script-
ing around it even for “power users.”

By the end of the second week, the Plumbing
level already had many of the fundamental data
structure of today’s git, and the initial commit
of the modern Linux kernel history hosted on
git (v2.6.12-rc2) was created with this version.
It had commands to:

• read more than one tree object to process
a merge in index;

2006 Linux Symposium, Volume One • 389

• perform content-level merges by iterating
over an unmerged index;

• list the commit ancestry and find the most
recent common commit between two lines
of development;

• show differences between two tree objects,
in the raw format;

• fetch from a remote repository over rsync
and merge the results.

When two lines of development meet, git uses
the index to match corresponding files from the
common ancestor (merge base) and the tips of
the two branches. If one side changed a file
while the other side didn’t, which often hap-
pens in a big project, the merge algorithm can
take the updated version without looking at the
contents of the file itself. The only case that
needs the content-level merge is when both side
changed the same file. This tree merge opti-
mization is one of the foundations of today’s
git, and it was already present there. The first
ever true git merge in the Linux kernel repos-
itory was made with this version on April 17,
2005.

By mid May, 2005, it had commands to:

• fetch objects from remote repositories
over HTTP;

• create tags that point at other objects;

• show differences between the index and a
tree, working tree files and a tree, in ad-
dition to the original two tree compari-
son commands—both raw and patch for-
mat output were supported;

• show the commit ancestry along with the
list of changed paths.

By the time Linus handed the project over to the
current maintainer in late July 2005, the core
part was more or less complete. Added during
this period were:

• packed archive for efficient storage, ac-
cess, and transfer;

• the git “native” transfer protocol, and the
git-daemon server;

• exporting commits into the patch format
for easier e-mail submission.

• application of e-mailed patches.

• rename detection by diff commands.

• more “user friendliness” layer commands,
such as git-add and git-diff wrap-
pers.

The evolution of git up to this point primar-
ily concentrated on supporting the people in
the integrator role better. Support for individ-
ual developers who feed patches to integrators
was there, but providing developers with more
pleasant user experiences was left to third-party
Porcelains, most notably Cogito and StGIT.

4 Features and Strengths

This section discusses a few examples of how
the implementation achieves the design goals
stated earlier.

4.1 Patch flows

There are two things git does to help developers
with the patch-based workflow.

390 • GIT—A Stupid Content Tracker

Generating a patch out of a git-managed history
is done by using the git-diff-tree com-
mand, which knows how to look at only sub-
trees that are actually different in two trees for
efficient patch generation.

The diff commands in git can optionally be told
to detect file renames. When a file is renamed
and modified at the same time, with this op-
tion, the change is expressed as a diff between
the file under the old name in the original tree
and the file under the new name in the updated
tree. Here is an example taken from the kernel
project:

5e7b83ffc67e15791d9bf8b2a18e4f5fd0eb69b8
diff --git a/arch/um/kernel/sys_call_table....
similarity index 99%
rename from arch/um/kernel/sys_call_table.c
rename to arch/um/sys-x86_64/sys_call_table.c
index b671a31..3f5efbf 100644
--- a/arch/um/kernel/sys_call_table.c
+++ b/arch/um/sys-x86_64/sys_call_table.c
@@ -16,2 +16,8 @@ #include "kern_util.h"

+#ifdef CONFIG_NFSD
+#define NFSSERVCTL sys_nfsservctl
+#else
+#define NFSSERVCTL sys_ni_syscall
+#endif
+
#define LAST_GENERIC_SYSCALL __NR_keyctl

This is done to help reviewing such a change by
making it easier than expressing it as a deletion
and a creation of two unrelated files.

The committer (typically the subsystem main-
tainer) keeps the tip of the development branch
checked out, and applies e-mailed patches to it
with git-apply command. The command
checks to make sure the patch applies cleanly
to the working tree, paths affected by the patch
in the working tree are unmodified, and the in-
dex does not have modification from the tip of
the branch. These checks ensure that after ap-
plying the patch to the working tree and the in-
dex, the index is ready to be committed, even

when there are unrelated changes in the work-
ing tree. This allows the subsystem maintainer
to be in the middle of doing his own work and
still accept patches from outside.

Because the workflow git supports should not
require all participants to use git, it understands
both patches generated by git and traditional
diff in unified format. It does not matter how
the change was prepared, and does not nega-
tively affect contributors who manage their own
patches using other tools, such as Andrew Mor-
ton’s patch-scripts, or quilt.

4.2 Frequent merges

A highly distributed development process
involves frequent merges between different
branches. Git uses its commit ancestry relation
to find common ancestors of the branches being
merged, and uses a three-way merge algorithm
at two levels to resolve them. Because merges
tend to happen often, and the subprojects are
highly modular, most of the merges tend to
deal with cases where only one branch modi-
fies paths that are left intact by the other branch.
This common case is resolved within the index,
without even having to look at the contents of
files. Only paths that need content-level merges
are given to an external three-way merge pro-
gram (e.g. “merge” from the RCS suite) to be
processed. Similarly to the patch-application
process, the merge can be done as long as the
index does not have modification from the tip of
the branch and there is no change to the work-
ing tree files that are involved in the merge, to
allow the integrator to have local changes in the
working tree.

While merging, if one branch renamed a file
from the common ancestor while the other
branch kept it at the same location (or renamed
it to a different location), the merge algorithm

2006 Linux Symposium, Volume One • 391

notices the rename between the common an-
cestor and the tips of the branches, and ap-
plies three-way merge algorithm to merge the
renames (i.e. if one branch renamed but the
other kept it the same, the file is renamed). The
experiences by users of this “merging renamed
paths” feature is mixed. When merges are fre-
quently done, it is more likely that the differ-
ences in the contents between the common an-
cestor and the tip of the branch is small enough
that automated rename detector notices it.

When two branches are merged frequently with
each other, there can be more than one closest
common ancestor, and depending on which an-
cestor is picked, the three-way merge is known
to produce different results. The merge al-
gorithms git uses notice this case and try to
be safe. The faster “resolve” algorithm leaves
the resolution to the end-user, while the more
careful “recursive” algorithm first attempts to
merge the common ancestors (recursively—
hence its name) and then uses the result as the
merge base of the three-way merge.

4.3 Following changes

The project history is represented as a parent-
child ancestry relation of commit objects, and
the Plumbing command git-rev-list is
used to traverse it. Because detecting subdirec-
tory changes between two trees is a very cheap
operation in git, it can be told to ignore commits
that do not touch certain parts of the directory
hierarchy by giving it optional pathnames. This
allows the higher-level Porcelain commands to
efficiently inspect only “interesting” commits
more closely.

The traversal of the commit ancestry graph is
also done while finding a regression, and is
used by the git-bisect command. This
traversal can also be told to omit commits that
do not touch a particular area of the project di-
rectory; this speeds up the bug-hunting process

when the source of the regression is known to
be in a particular area.

4.4 Interoperating with other SCM

A working tree checked out from a foreign
SCM system can be made into a git reposi-
tory. This allows an individual participant of
a project whose primary SCM system is not
git to manage his own changes with git. Typ-
ically this is done by using two git branches
per the upstream branch, one to track the for-
eign SCM’s progress, another to hold his own
changes based on that. When changes are
ready, they are fed back by the project’s pre-
ferred means, be it committing into the foreign
SCM system or sending out a series of patches
via e-mail, without affecting the workflow of
the other participants of the projects. This al-
lows not just distributed development but dis-
tributed choice of SCM. In addition, there are
commands to import commits from other SCM
systems (as of this writing, supported systems
are: GNU arch, CVS, and Subversion), which
helps to make this process smoother.

There also is an emulator that makes a git
repository appear as if it is a CVS reposi-
tory to remote CVS clients that come over the
pserver protocol. This allows people more
familiar with CVS to keep using it while others
work in the same project that is hosted on git.

4.5 Interoperating among git users

Due to the clear separation of the Plumbing and
Porcelain layers, it is easy to implement higher-
level commands to support different workflows
on top of the core git Plumbing commands. The
Porcelain layer that comes with the core git re-
quires the user to be fairly familiar with how the
tools work internally, especially how the index
is used. In order to make effective use of the

392 • GIT—A Stupid Content Tracker

tool, the users need to be aware that there are
three levels of entities: the histories recorded in
commits, the index, and the working tree files.

An alternative Porcelain, Cogito, takes a dif-
ferent approach by hiding the existence of the
index from the users, to give them a more tra-
ditional two-level world model: recorded his-
tories and the working tree files. This may fall
down at times, especially for people playing the
integrator role during merges, but gives a more
familiar feel to new users who are used to other
SCM systems.

Another popular tool based on git, StGIT, is de-
signed to help a workflow that depends more
heavily on exchange of patches. While the pri-
mary way to integrate changes from different
tracks of development is to make merges in
the workflow git and Cogito primarily targets,
StGIT supports the workflow to build up piles
of patches to be fed upstream, and re-sync with
the upstream when some or all of the patches
are accepted by rebuilding the patch queue.

While different Porcelains can be used by dif-
ferent people with different work habits, the de-
velopment history recorded by different Porce-
lains are eventually made by the common
Plumbing commands in the same underlying
format, and therefore are compatible with each
other. This allows people with different work-
flow and choice of tools to cooperate on the
same project.

5 Weakness and Future Works

There are various missing features and unfin-
ished parts in the current system that require
further improvements. Note that the system is
still evolving at a rapid pace and some of the
issues listed here may have already been ad-
dressed when this paper is published.

5.1 Partial history

The system operates on commit ancestry chains
to perform many of the interesting things it
does, and most of the time it only needs to look
at the commits near the tip of the branches. An
obvious example is to look at recent develop-
ment histories. Merging branches need access
to the commits on the ancestry chain down to
the latest common ancestor commit, and no ear-
lier history is required. One thing that is often
desired but not currently supported is to make
a “shallow” clone of a repository that records
only the recent history, and later deepen it by
retrieving older commits.

Synchronizing two git repositories is done by
comparing the heads of branches on both repos-
itories, finding common ancestors and copying
the commits and their associated tree and blob
objects that are missing from one end to the
other. This operation relies on an invariant that
all history behind commits that are recorded as
the heads of branches are already in the repos-
itory. Making a shallow clone that has only
commits near the tip of the branch violates this
invariant, and a later attempt to download older
history would become a no-operation. To sup-
port “shallow” cloning, this invariant needs to
be conditionally lifted during “history deepen-
ing” operation.

5.2 Subprojects

Multiple projects overlayed in a single direc-
tory are not supported. Different repositories
can be stored along with their associated work-
ing trees in separate subdirectories, but cur-
rently there is no support to tie the versions
from the different subprojects together.

There have been discussions on this topic and
two alternative approaches were proposed, but

2006 Linux Symposium, Volume One • 393

there were not enough interest to cause either
approach to materialize in the form of concrete
code yet.

5.3 Implications of not recording renames

In an early stage of the development, we de-
cided not to record rename information in trees
nor commits. This was both practical and
philosophical.

Files are not renamed that often, and it was ob-
served that moving file contents around with-
out moving the file itself happened just as of-
ten. Not having to record renames specially,
but always recording the state of the whole tree
in each revision, was easier to implement from
a practical point of view.

When examining the project history, the ques-
tion “where did this function come from, and
how did it get into the current form?” is far
more interesting than “where did this file come
from?” and when the former question is an-
swered properly (i.e. “it started in this shape
in file X, but later assumed that shape and mi-
grated to file Y”), the latter becomes a nar-
row special case, and we did not want to only
support the special case. Instead, we wanted
to solve the former problem in a way general
enough to make the latter a non-issue. How-
ever, deliberately not recording renames often
contradicts people’s expectations.

Currently we have a merge strategy that looks
at the common ancestor and two branch heads
being merged to detect file renames and try to
merge the contents accordingly. If the modifi-
cations made to the file in question across re-
names is too big, the rename detection logic
would not notice that they are related. It is
possible for the merge algorithm to inspect all
commits along the ancestry chain to make the
rename detection more precise, but this would
make merges more expensive.

6 Conclusion

Git started as a necessity to have a minimally
usable system, and during its brief development
history, it has quickly become capable of host-
ing one of the most important free software
projects, the Linux kernel. It is now used by
projects other than the kernel (to name a few:
Cairo, Gnumeric, Wine, xmms2, the X.org X
server). Its simple model and tool-based ap-
proach allow it to be enhanced to support differ-
ent workflows by scripting around it and still be
compatible with other people who use it. The
development community is active and is grow-
ing (about 1500 postings are made to the mail-
ing list every month).

394 • GIT—A Stupid Content Tracker

Reducing fsck time for ext2 file systems

Val Henson
Intel, Inc.

val_henson@intel.com

Zach Brown
Oracle, Inc.

zach.brown@oracle.com

Theodore Ts’o
IBM, Inc.

tytso@alum.mit.edu

Arjan van de Ven
Intel, Inc.

arjan@linux.intel.com

Abstract

Ext2 is fast, simple, robust, and fun to hack on.
However, it has fallen out of favor for one ma-
jor reason: if an ext2 file system is not cleanly
unmounted, such as in the event of kernel crash
or power loss, it must be repaired using fsck,
which takes minutes or hours to complete, dur-
ing which time the file system is unavailable.
In this paper, we describe some techniques for
reducing the average fsck time on ext2 file sys-
tems. First, we avoid running fsck in some
cases by adding a filesystem-wide dirty bit in-
dicating whether the file system was being ac-
tively modified at the time it crashed. The per-
formance of ext2 with this change is close to
that of plain ext2, and quite a bit faster than
ext3. Second, we propose a technique called
linked writes which uses dependent writes and
a list of dirty inodes to allow recovery of an ac-
tive file system by only repairing the dirty in-
odes and avoiding a full file system check.

1 Introduction

The Second Extended File System, ext2, was
implemented in 1993 by Remy Card, Theodore

T’so, and Stephen Tweedie, and for many years
was the file system of choice for Linux sys-
tems. Ext2 is similar in on-disk structure to the
Berkeley FFS file system [14], with the notable
exception of sub-block size fragments [2]. In
recent years, ext2 has been overtaken in popu-
larity by the ext3 [6, 16] and reiser3 [4] file sys-
tems, both journaling file systems. While these
file systems are not as fast as ext2 in some cases
[1], and are certainly not as simple, their recov-
ery after crash is very fast as they do not have
to run fsck.

Like the original Berkeley FFS, ext2 file sys-
tem consistency is maintained on a post hoc ba-
sis, by repair after the fact using the file system
checker, fsck [12]. Fsck works by traversing
the entire file system and building up a consis-
tent picture of the file system metadata, which
it then writes to disk. This kind of post hoc
data repair has two major drawbacks. One, it
tends to be fragile. A new set of test and repair
functions had to be written for every common
kind of corruption. Often, fsck had to fall back
to manual mode—that is, asking the human to
make decisions about repairing the file system
for it. As ext2 continued to be used and new
tests and repairs were added to the fsck code
base, this occurred less and less often, and now
most users can reasonably expect fsck to com-

396 • Reducing fsck time for ext2 file systems

plete unattended after a system crash.

The second major drawback to fsck is total run-
ning time. Since fsck must traverse the entire
file system to build a complete picture of allo-
cation bitmaps, number of links to inodes, and
other potentially incorrect metadata, it takes
anywhere from minutes to hours to complete.
File system repair using fsck takes time pro-
portional to the size of the file system, rather
than the size of the ongoing update to the file
system, as is the case for journaling file sys-
tems like ext3 and reiserfs. The cost of the sys-
tem unavailability while fsck is running is so
great that ext2 is generally only used in niche
cases, when high ongoing performance is worth
the cost of occasional system unavailability and
possible greater chance of data loss.

On the other hand, ext2 is fast, simple, easy
to repair, uses little CPU, performs well with
multi-threaded reads and writes, and benefits
from over a decade of debugging and fine tun-
ing. Our goal is to find a way to keep these at-
tributes while reducing the average time it takes
to recover from crashes—that is, reducing the
average time spent running fsck. Our target
use case is a server with many users, infrequent
writes, lots of read-only file system data, and
tolerance for possibly greater chance of data
loss.

Our first approach to reducing fsck time is to
implement a filesystem-wide dirty bit. While
writes are in progress, the bit is set. After
the file system has been idle for some period
of time (one second in our implementation),
we force out all outstanding writes to disk and
mark the file system as clean. If we crash while
the file system is marked clean, fsck knows that
it does not have to do a full fsck. Instead, it
does some minor housekeeping and marks the
file system as valid. Orphan inodes and block
preallocation added some interesting twists to
this solution, but overall it remains a simple
change. While this approach does not improve

worst case fsck time, it does improve average
fsck time. For comparison purposes, recall that
ext3 runs a full fsck on the file system every 30
mounts as usually installed.

Our second approach, which we did not imple-
ment, is an attempt to limit the data fsck needs
to examine to repair the file system to a set of
dirty inodes and their associated metadata. If
we add inodes to an on-disk dirty inode list be-
fore altering them and correctly order metadata
writes to the file system, we will be able to cor-
rect allocation bitmaps, directory entries, and
inode link counts without rebuilding the entire
file system, as fsck does now.

Some consistency issues are difficult to solve
without unsightly and possibly slow hacks,
such as keeping the number of links consis-
tent for a file with multiple hard links during
an unlink() operation. However, they occur
relatively rarely, so we are considering combin-
ing this approach with the filesystem-wide dirty
bit. When a particular operation is too ugly to
implement using the dirty inode list, we sim-
ply mark the file system as dirty for the du-
ration of the operation. It may be profitable
to merely narrow the window during which a
crash will require a full fsck rather than to close
the window fully. Whether this can be done and
still preserve the properties of simplicity of im-
plementation and high performance is an open
question.

2 Why ext2?

Linux has a lot of file systems, many of which
have better solutions for maintaining file sys-
tem consistency than ext2. Why are we work-
ing on improving crash recovery in ext2 when
so many other solutions exist? The answer is
a combination of useful properties of ext2 and
drawbacks of existing file systems.

2006 Linux Symposium, Volume One • 397

First, the advantages of ext2 are simplicity, ro-
bustness, and high performance. The entire
ext2 code base is about 8,000 lines of code;
most programmers can understand and begin
altering the codebase within days or weeks. For
comparison, most other file systems come in
anywhere from 20,000 (ext3 + jbd) to 80,000
(XFS) lines of code. Ext2 has been in active
use since 1993, and benefits from over a decade
of weeding out bugs and repairing obscure and
seldom seen failure cases. Ext2 performance
is quite good overall, especially considering its
simplicity, and definitely superior to ext3 in
most cases.

The main focus of file systems development
in Linux today is ext3. On-disk, ext3 is al-
most identical to ext2; both file systems can be
mounted as either ext2 or ext3 in most cases.
Ext3 is a journalled file system; updates to the
file system are first written as compact entries
in the on-disk journal region before they are
written to their final locations. If a crash oc-
curs during an update, the journal is replayed
on the next mount, completing any unfinished
updates.

Our primary concern with ext3 is lower per-
formance from writing and sharing the journal.
Work is being done to improve performance,
especially in the area of multi-threaded writes
[9], but it is hard to compete in performance
against a file system which has little or no re-
strictions in terms of sharing resources or write
ordering. Our secondary concern is complexity
of code. Journaling adds a whole layer of code
to open transactions, reserve log space, and bail
out when an error occurs. Overall, we feel that
ext3 is a good file system for laptops, but not
very good for write-intensive loads.

The reiser3 [4] file system is the default file
system for the SuSE distribution. It is also a
journaling file system, and is especially good
for file systems with many small files because

it packs the file together, saving space. The per-
formance of reiser3 is good and in some cases
better than ext2. However, reiser3 was devel-
oped outside the mainstream Linux commu-
nity and never attracted a community developer
base. Because of this and the complexity of the
implementation, it is not a good base for file
system development. Reiser4 [4] has less de-
veloper buy-in, more code, worse performance
in many cases [1], and may not be merged into
the mainline Linux tree at all [3].

XFS is another journaling file system. It has
many desirable properties, and is ideal for ap-
plications requiring thousands or millions of
files in one directory, but also suffers from
complexity and lack of developer community.
Performance of more common case operations
(such as file create) suffers for the benefit of fast
look ups in directories with many entries [1].

Other techniques for maintaining file system
complexity are soft updates [13] and copy-on-
write [11]. Without a team of full-time pro-
grammers and several years to work on the
problem, we did not feel we could implement
either of these techniques. In any case, we did
not feel we could maintain the simplicity or the
benefits of more than a decade of testing of ext2
if we used these techniques.

Given these limitations, we decided to look
for “90% solutions” to the file system con-
sistency problem, starting with the ext2 code
base. This paper describes one technique we
implemented, the filesystem-wide dirty bit, and
one we are considering implementing, linked
writes.

3 The fsck program

Cutting down crash recovery time for an ext2
file system depends on understanding how the

398 • Reducing fsck time for ext2 file systems

file system checker program, fsck works. After
Linux has finished booting the kernel, the root
file system is mounted read-only and the kernel
executes the init program. As part of normal
system initialization, fsck is run on the root file
system before it is remounted read-write and on
other file systems before they are mounted. Re-
pair of the file system is necessary before it can
be safely written.

When fsck runs, it checks to see if the ext2
file system was cleanly unmounted by reading
the state field in the file system superblock. If
the state is set as VALID, the file system is al-
ready consistent and does not need recovery;
fsck exits without further ado. If the state is
INVALID, fsck does a full check of the file sys-
tem integrity, repairing any inconsistencies it
finds. In order to check the correctness of al-
location bitmaps, file nlinks, directory entries,
etc., fsck reads every inode in the system, ev-
ery indirect block referenced by an inode, and
every directory entry. Using this information, it
builds up a new set of inode and block alloca-
tion bitmaps, calculates the correct number of
links of every inode, and removes directory en-
tries to unreferenced inodes. It does many other
things as well, such as sanity check inode fields,
but these three activities fundamentally require
reading every inode in the file system. Other-
wise, there is no way to find out whether, for
example, a particular block is referenced by a
file but is marked as unallocated on the block
allocation bitmap. In summary, there are no
back pointers from a data block to the indirect
block that points to it, or from a file to the direc-
tories that point to it, so the only way to recon-
struct reference counts is to start at the top level
and build a complete picture of the file system
metadata.

Unsurprisingly, it takes fsck quite some time
to rebuild the entirety of the file system meta-
data, approximately O(total file system size +
data stored). The average laptop takes several

minutes to fsck an ext2 file system; large file
servers can sometimes take hours or, on oc-
casion, days! Straightforward tactical perfor-
mance optimizations such as requesting reads
of needed blocks in sequential order and read-
ahead requests can only improve the situation
so much, given that the whole operation will
still take time proportional to the entire file sys-
tem. What we want is file system recovery time
that is O(writes in progress), as is the case for
journal replay in journaling file systems.

One way to reduce fsck time is to eliminate the
need to do a full fsck at all if a crash occurs
when the file system is not being changed. This
is the approach we took with the filesystem-
wide dirty bit.

Another way to reduce fsck time is to reduce
the amount of metadata we have to check in
order to repair the file system. We propose a
method of ordering updates to the file system
in such a way that full consistency can be re-
covered by scanning a list of dirty inodes.

4 Implementation of filesystem-
wide dirty bit

Implementing the fs-wide dirty bit seemed at
first glance to be relatively simple. Intuitively,
if no writes are going on in the file system, we
should be able to sync the file system (make
sure all outstanding writes are on disk), reset
the machine, and cleanly mount the unchanged
file system. Our intuition is wrong in two ma-
jor points: orphan inodes, and block prealloca-
tion. Orphan inodes are files which have been
unlinked from the file system, but are still held
open by a process. On crash and recovery, the
inode and its blocks need to be freed. Block
preallocation speeds up block allocation by pre-
allocating a few more blocks than were actually

2006 Linux Symposium, Volume One • 399

requested. Unfortunately, as implemented, pre-
allocation alters on-disk data, which needs to be
corrected if the file is not cleanly closed. First
we’ll describe the overall implementation, then
our handling of orphan inodes and preallocated
blocks.

4.1 Overview of dirty bit implementation

Our first working patch implementing the fs-
wide dirty bit included the following high-level
changes:

• Per-mount kernel thread to mark file sys-
tem clean

• New ext2_mark_*_dirty() func-
tions

• Port of ext3 orphan inode list

• Port of ext3 reservation code

The ports of the ext3 orphan inode list and
reservation code were not frivolous; without
them, the file system would be an inconsistent
state even when no writes were occurring with-
out them.

4.2 Per-mount kernel thread

The basic outline of how the file system is
marked dirty or clean by the per-mount kernel
thread is as follows:

• Mark the file system dirty whenever meta-
data is altered.

• Periodically check the state of the file sys-
tem.

• If the file system is clean, sync the file sys-
tem.

• If no new writes occurred during the sync,
mark the file system clean.

The file system is marked clean or dirty by up-
dating a field in the superblock and submitting
the I/O as a barrier write so that no writes can
pass it and hit the disk before the dirty bit is up-
dated. The update of the dirty bit is done asyn-
chronously, so as to not stall during the first
write to a clean file system (since it is a barrier
write, waiting on it will not change the order of
writes to disk anyway).

In order to implement asynchronous update of
the dirty bit in the superblock, we needed to
create an in-memory copy of the superblock.
Updates to the superblock are written to the in-
memory copy; when the superblock is ready to
be written to disk, the superblock is locked, the
in-memory superblock is copied to the buffer
for the I/O operation, and the I/O is submitted.
The code implementing the superblock copy is
limited to the files ext2/super.c and one
line in ext2/xattr.c.

One item on our to-do list is integration with
the laptop mode code, which tries to mini-
mize the number of disk spin-up and spin-down
events by concentrating disk write activity into
batches. Marking the file system clean should
probably be triggered by the timeout for flush-
ing dirty data in laptop mode.

4.3 Marking the file system dirty

Before any metadata changes are sched-
uled to be written to disk, the file system
must first be marked dirty. Ext2 al-
ready uses the functions mark_inode_

dirty(), mark_buffer_dirty(), and
mark_buffer_dirty_inode() to mark
changed metadata for write-out by the VFS
and I/O subsystems. We created ext2-specific

400 • Reducing fsck time for ext2 file systems

versions of these functions which first mark
the file system dirty and then call the original
function.

4.4 Orphan inodes

The semantics of UNIX file systems allow an
application to create a file, open it, unlink the
file (removing any reference to it from the file
system), and keep the file open indefinitely.
While the file is open, the file system can not
delete the file. In effect, this creates a tem-
porary file which is guaranteed to be deleted,
even if the system crashes. If the system does
crash while the file is still open, the file sys-
tem contains an orphan inode—an inode which
marked as in use, but is not referenced by any
directory entry. This behavior is very conve-
nient for application developers and a real pain
in the neck for file system developers, who wish
they would all use files in tmpfs instead.

In order to clean up orphan inodes after a
crash, we ported the ext3 orphan inode list to
ext2. The orphan inode list is an on-disk singly
linked list of inodes, beginning in the orphan
inode field of the superblock. The i_dtime
field of the inode, normally used to store the
time an inode was deleted, is (ab)used as the
inode number of the next item in the orphan in-
ode list. When fsck is run on the file system,
it traverses the linked list of orphan inodes and
frees them. Fortunately for us, the code in fsck
that does this runs regardless of whether the file
system is mounted as ext2 or ext3.

Our initial implementation followed the ext3
practice of writing out orphan inodes immedi-
ately in order to keep the orphan inode list as
up-to-date as possible on disk. This is expen-
sive, and an up-to-date orphan inode list is su-
perfluous except when the file system is marked
clean. We modified the orphan inode code to
only maintain the orphan inode list in memory,

and write it out to disk on file system sync. We
will need to add a patch to keep fsck from com-
plaining about a corrupted orphan inode list.

4.5 Preallocated blocks

The existing code in ext2 for preallocating
blocks unfortunately alters on-disk metadata,
such as the block group free and allocated block
counts. One solution was to simply turn off
preallocation. Fortunately, Mingming Cao im-
plemented new block preallocation code for
ext3 which reserves blocks without touching
on-disk data, and is superior to the ext2 preal-
location code in several other ways. We chose
to port Mingming Cao’s reservation code to
ext2, which in theory should improve block
allocation anyway. ext2 and ext3 were sim-
ilar enough that we could complete the port
quickly, although porting some parts of the new
get_blocks() functionality was tricky.

4.6 Development under User-mode Linux

We want to note that the implementation of the
filesystem-wide dirty bit was tested almost en-
tirely on User-mode Linux [10], a port of Linux
that runs as a process in Linux. UML is well
suited to file system development, especially
when the developer is limited to a single lap-
top for both development host and target plat-
form (as is often the case on an airplane). With
UML, we could quickly compile, boot, crash,
and reboot our UML instance, all without wor-
rying about corrupting any important file sys-
tems. When we did corrupt the UML file sys-
tem, all that was necessary was to copy a clean
file system image back over the file containing
the UML file system image. The loopback de-
vice made it easy to mount, fsck, or otherwise
examine the UML file system using tools on the
host machine. Only one bug required running

2006 Linux Symposium, Volume One • 401

on a non-UML system to discover, which was
lack of support for suspend in the dirty bit ker-
nel thread.

However, getting UML up and running and
working for file system development was some-
what non-intuitive and occasionally baffling.
Details about running UML on recent 2.6 ker-
nels, including links to a sample root file sys-
tem and working .config file, can be found
here:

http://www.nmt.edu/~val/uml_tips.html

5 Performance

We benchmarked the filesystem-wide dirty bit
implementation to find out if it significantly im-
pacted performance. On the face of it, we ex-
pected a small penalty on the first write, due to
issuing an asynchronous write barrier the first
time the file system is written.

The benchmarks we ran were kuntar, postmark,
and tiobench [7]. Kuntar simply measures the
time to extract a cached uncompressed kernel
tarball and sync the file system. Postmark cre-
ates and deletes many small files in a directory
and is a metadata intensive workload. We ran it
with numbers = 10000 and transactions

= 10000. We also added a sync() system
call to postmark before the final timing mea-
surement was made, in order to measure the
true performance of writing data all the way to
the disk. Tiobench is a benchmark designed to
measure multi-threaded I/O to a single file; we
ran it mainly as a sanity check since we didn’t
expect anything to change in this workload. We
ran tiobench with 16 threads and a 256MB file
size.

The file systems we benchmarked were ext2,
ext2 with the reservations-only patch, ext2 with

reservations only with reservations turned off,
ext2 with the fs-wide bit patch and reserva-
tions, ext3 with defaults, and ext3 with data=
writeback mode. All file systems used 4KB
blocks and were mounted with the noatime
option. The kernel was 2.6.16-mm1. The ma-
chine had two 1533 MHZ AMD Athlon proces-
sors and 1GB of memory. We recored elapsed
time, sectors read, sectors written, and kernel
ticks. The results are in Table 1.

The results are somewhat baffling, but overall
positive for the dirty bit implementation. The
times for the fs-wide dirty bit are within 10%
of those of plain ext2 for all benchmarks ex-
cept postmark. For postmark, writes increased
greatly for the fs-wide dirty bit; we are not sure
why yet. The results for the reservations-only
versions of ext2 are even more puzzling; we
suspect that our port of reservations is buggy or
suboptimal. We will continue researching the
performance issues.

We would like to briefly discuss the noatime
option. All file systems were mounted with the
noatime option, which turns off updates to
the “last accessed time” field in the inode. We
turned this option off not only because it would
prevent the fs-wide dirty bit from being effec-
tive when a file system is under read activity,
but also because it is a common technique for
improving performance. noatime is widely
regarded as the correct behavior for most file
systems, and in some cases is shipped as the
default behavior by distributions. While correct
access time is sometimes useful or even critical,
such as in tracing which files an intruder read,
in most cases it is unnecessary and only adds
unnecessary I/O to the system.

6 Linked writes

Our second idea for reducing fsck time is to or-
der writes to the file system such that the file

402 • Reducing fsck time for ext2 file systems

ext2 ext2r ext2rnor ext2fw ext3 ext3wb
kuntar secs 20.32 21.03 19.06 18.87 20.99 32.02

read 5152 5176 5176 5176 168 168
write 523272 523272 523288 523304 523256 544160
ticks 237 269 357 277 413 402

krmtar secs 9.79 10.92 9.99 10.90 55.64 9.74
read 20874 20842 20874 20874 20866 20874
write 5208 5176 5208 5960 36296 10560
ticks 61 61 62 61 7943 130

postmark secs 33.98 49.34 42.93 50.46 43.48 41.82
read 2568 2568 2568 2568 56 48
write 168312 168392 168392 240720 260704 173936
ticks 641 650 838 674 1364 1481

tiobench secs 37.48 35.22 33.68 33.57 35.16 36.69
read 32 32 32 32 24 112
write 64 64 64 72 136 136
ticks 441 450 456 463 452 463

kuntar: expanding a cached uncompressed kernel tarball and syncing
krmtar: rm -rf on cold untarred kernel tree, sync
postmark: postmark + sync() patch, numbers = 10000, transactions = 10000
tiobench: tiobench: 16 threads, 256m size
ext2: ext2
ext2r: ext2, reservations
ext2rnor: ext2, reservations, -o noreservation option
ext2fw: ext2, reservations, fswide
ext3: ext3, 256m journal
ext3wb: ext3, 256m journal, data=writeback

Table 1: Benchmark results

system can repaired to a consistent state after
processing a short list of dirty inodes. Before an
operation begins, the relevant inodes are added
to an on-disk list of dirty inodes. During the
operation, we only overwrite references to data
(such as indirect blocks or directory entries)
after we have finished all updates that require
that information (such as updating allocation
bitmaps or link counts). If we crash half-way
through an operation, we examine each inode
on the dirty inode list and repair any consis-
tencies in the metadata it points to. For exam-
ple, if we were to crash half-way through allo-

cating a block, we would check if each block
were marked as allocated in the block alloca-
tion bitmap. If it was not, we would free that
block from the file (and all blocks that it points
to). We call this scheme linked writes—a write
erasing a pointer is linked or dependent on the
write of another block completing first.

Some cases are ambiguous as to what operation
was in progress, such as truncating and extend-
ing a file. In these cases, we will take the safest
action. For example, in an ambiguous trun-
cate/extend, we would assume a truncate opera-
tion was in progress, because if we were wrong,

2006 Linux Symposium, Volume One • 403

the new block would contain uninitialized data,
resulting in a security hole. It might be possi-
ble to indicate which operation was in progress
using other metadata, such as inode size, but
if that is not possible or would harm perfor-
mance, we have this option as a fail safe. The
difference between restoring one or the other of
two ambiguous operations is the difference be-
tween restoring the file as of a short time before
the crash versus restoring it as of after the com-
pletion of the operation in progress at the time
of crash. Either option is allowed; only calling
sync() defines what state the file is in on-disk
at any particular moment.

Some operations may not be recoverable only
by ordering writes. Consider removing one
hard link to a file with multiple hard links from
different directories. The only inodes on the
dirty inode list are the inode for the directory
we are removing the link from, and the file
inode—not the inodes for the other directories
with hard links to this file. Say we decrement
the link count for the inode, and then crash. In
the one link case, when we recover, we will
find an inode with link count equal to 0, and
a directory with an entry pointing to this in-
ode. Recovery is simple; free the inode and
delete the directory entry. But if we have mul-
tiple hard links to the file, and the inode has
a link count of one or more, we have no way
of telling whether the link count was already
decremented before we crashed or not. A so-
lution to this is to overwrite the directory en-
try with an invalid directory entry with a magic
record that contains the inode’s correct link
count which is only replayed if the inode has
not already been updated. This regrettably adds
yet another linked write to the process of delet-
ing an entry. On the other hand, adding or re-
moving links to files with link counts greater
than one is painful but blessedly uncommon.
Typically only directories have a link count
greater than one, and in modern Linux, direc-
tory hard links are not allowed, so a directory’s

link count can be recalculated simply by scan-
ning the directory itself.

Another problem is circular dependencies be-
tween blocks that need to be written out. Say
we need to write some part of block A to disk
before we write some part of block B. We up-
date the buffers in memory and mark them to
be written out in order A, B. But then some-
thing else happens, and now we need to write
some part of block B to disk before some part
of block A. We update the buffers in memory—
but now we can’t write either block A or block
B. Linked writes doesn’t run into this problem
because (a) every block contains only one kind
of metadata, (b) the order in which different
kinds of metadata must be written is the same
for every option. This is equivalent to the lock
ordering solution to the deadlock problem; if
you define the order for acquiring locks and ad-
here to it, you can’t get into a deadlock.

Ordinarily, writing metadata in the same order
according to type for all operations would not
be possible. Consider the case of creating a file
versus deleting it. In the create case, we must
write the directory entry pointing to the inode
before updating the bitmap in order to avoid
leaking an inode. In the delete case, we must
write the bitmap before we delete the entry to
avoid leaking an inode. What gets us out of
this circular dependency is the dirty inode list.
If we instead put the inode to be deleted on the
dirty inode list, then we can delete the direc-
tory entry before the bitmap, since if we crash,
the inode’s presence on the dirty inode list will
allow us to update the bitmap correctly. This al-
lows us to define the dependency order “write
bitmaps before directory entries.” The order of
metadata operations for each operation must be
carefully defined and adhered to.

When writing a buffer to disk, we need to be
sure it does not change in flight. We have
two options for accomplishing this: either lock
the buffer and stall any operations that need to

404 • Reducing fsck time for ext2 file systems

write to it while it is in flight, or clone the buffer
and send the copy to disk. The first option is
what soft updates uses [13]; surprisingly per-
formance is quite good so it may be an option.
The second option requires more memory but
would seem to have better performance.

Another issue is reuse of freed blocks or inodes
before the referring inode is removed from the
dirty inode list. If we free a block, then reuse it
before the inode referring to it is removed from
the dirty list, it could be erroneously marked as
free again at recovery time. To track this, we
need a temporary copy of each affected bitmap
showing which items should not be allocated,
in addition to the items marked allocated in the
main copy of the bitmap. Overall, we occasion-
ally need three copies of each active bitmap in
memory. The required memory usage is com-
parable to that of journaling, copy-on-write, or
soft updates.

6.1 Implementing write dependencies

Simply issuing write barriers when we write
the first half of a linked write would be terribly
inefficient, as the only method of implement-
ing this operation that is universally supported
by disks is: (1) issue a cache flush command;
(2) issue the write barrier I/O; (3) wait for the
I/O to complete; (4) issue a second cache flush
command. (Even this implementation may be
an illusion; reports of IDE disks which do not
correctly implement the cache flush command
abound.) This creates a huge bubble in the I/O
pipeline. Instead, we want to block only the de-
pendent write. This can be implemented using
asynchronous writes which kick off the linked
write in the I/O completion handler.

6.2 Comparison of linked writes

Linked writes bears a strong resemblance to
soft updates [13]. Indeed, linked writes can

be thought of as soft updates from the oppo-
site direction. Soft updates takes the approach
of erring on the side of marking things allo-
cated when they are actually free, and then re-
covering leaked inodes and blocks after mount
by running a background fsck on the file sys-
tem. Linked writes errs on the side of mark-
ing things unallocated when they are still refer-
enced by the file system, and repairing incon-
sistencies by reviewing a list of dirty inodes.
Soft updates handles circular buffer dependen-
cies (where block A must be written out be-
fore block B and vice versa) by rolling back the
dependent data before writing the block out to
disk. Linked writes handle circular dependen-
cies by making them impossible.

Linked writes can also be viewed as a form
of journaling in which the journal entries are
scattered across the disk in the form of inodes
and directory entries, and linked together by
the dirty inode list. The advantages of linked
writes over journaling is that changes are writ-
ten once, no journal space has to be allocated,
writes aren’t throttled by journal size, and there
are no seeks to a separate journal region.

6.3 Reinventing the wheel?

Why bother implementing a whole new method
of file system consistency when we have so
many available to us already? Simply put, frus-
tration with code complexity and performance.
The authors have had direct experience with the
implementation of ZFS [8], ext3 [6], and ocfs2
[5] and were disappointed with the complexity
of the implementation. Merely counting lines
of code for reiser3 [4], reiser4 [4], or XFS [15]
incites dismay. We have not yet encountered
someone other than the authors of the original
soft updates [13] implementation who claims
to understand it well enough to re-implement
from scratch. Yet ext2, one of the smallest,
simplest file systems out there, continues to be

2006 Linux Symposium, Volume One • 405

the target for performance on general purpose
workloads.

In a sense, ext2 is cheating, because it does not
attempt to keep the on-disk data structures in-
tact. In another sense, ext2 shows us what our
rock-bottom performance expectations for new
file systems should be, as relatively little effort
has been put into optimizing ext2.

With linked writes, we hope for a file system a
little more complex, a lot more consistent, and
nearly the same performance as ext2.

6.4 Feasibility of linked writes implemen-
tation

We estimate that implementing linked writes
would take on the order of half the effort neces-
sary to implement ext3. Adjusting for program-
mer capability and experience (translation: I’m
no Kirk McKusick or Greg Ganger), we es-
timate that implementing linked writes would
take one fifth the staff-years required by soft
updates.

We acknowledge that the design of linked
writes is half-finished at best and may end up
having fatal flaws, nor do we expect our de-
sign to survive implementation without major
changes—“There’s many a slip ’twixt cup and
lip.”

7 Failed ideas

Linked writes grew out of our original idea
to implement per-block group dirty bits. We
wanted to restrict how much of the file sys-
tem had to be reviewed by fsck after a crash,
and dividing it up by block groups seemed to
make sense. In retrospect, we realized that the
only checks we could do in this case would

start with the inodes in this block group and
check file system consistency based on the in-
formation they point to. On the other hand,
given a block allocation bitmap, we can’t check
whether a particular block is correctly marked
unless we rebuild the entire file system by read-
ing all of the inodes. In the end, we real-
ized that per-bg dirty bits would basically be
a very coarse hash of which inodes need to be
checked. It may make sense to implement some
kind of bitmap showing which inodes need to
be checked rather than a linked list, otherwise
this idea is dead in the water.

Another idea for handling orphan inodes was to
implement a set of “in-memory-only” bitmaps
that record inodes and blocks which are al-
located only for the lifetime of this mount—
in other words, orphan inodes and their data.
However, these bitmaps would in the worst case
require two blocks per cylinder group of unre-
claimable memory. A workaround would be to
allocate space on disk to write them out under
memory pressure, but we abandoned this idea
quickly.

8 Availability

The most recent patches are available from:

http://www.nmt.edu/~val/patches.html

9 Future work

The filesystem-wide dirty bit seems worthwhile
to polish for inclusion in the mainline kernel,
perhaps as a mount option. We will continue to
do work to improve performance and test cor-
rectness.

Implementing linked writes will take a signifi-
cant amount of programmer sweat and may not

406 • Reducing fsck time for ext2 file systems

be considered, shall we say, business-critical to
our respective employers. We welcome discus-
sion, criticism, and code from interested third
parties.

10 Acknowledgments

Many thanks to all those who reviewed and
commented on the initial patches. Our work
was greatly reduced by being able to port the
orphan inode list from ext3, written by Stephen
Tweedie, as well as the ext3 reservation patches
by Mingming Cao.

11 Conclusion

The filesystem-wide dirty bit feature allows
ext2 file systems to skip a full fsck when the
file system is not being actively modified dur-
ing a crash. The performance of our initial, un-
tuned implementation is reasonable, and will be
improved. Our proposal for linked writes out-
lines a strategy for maintaining file system con-
sistency with less overhead than journaling and
simpler implementation than copy-on-write or
soft updates.

We take this opportunity to remind file system
developers that ext2 is an attractive target for
innovation. We hope that developers rediscover
the possibilities inherent in this simple, fast, ex-
tendable file system.

References

[1] Benchmarking file systems part II LG
#122. http://linuxgazette.
net/122/piszcz.html.

[2] Design and implementation of the second
extended filesystem. http:
//e2fsprogs.sourceforge.
net/ext2intro.html.

[3] Linux: Reiser4 and the mainline kernel.
http:
//kerneltrap.org/node/5679.

[4] Namesys.
http://www.namesys.com/.

[5] OCFS2. http://oss.oracle.
com/projects/ocfs2/.

[6] Red hat’s new journaling file system:
ext3. http:
//www.redhat.com/support/
wpapers/redhat/ext3/.

[7] Threaded I/O tester.
http://sourceforge.net/
projects/tiobench.

[8] ZFS at OpenSolaris.org.
http://www.opensolaris.org/
os/community/zfs/.

[9] Mingming Cao, Theodore Y. Ts’o,
Badari Pulavarty, Suparna Bhattacharya,
Andreas Dilger, and Alex Tomas. State
of the art: Where we are with the ext3
filesystem. In Ottawa Linux Symposium
2005, July 2005.

[10] Jeff Dike. User-mode linux. In Ottawa
Linux Symposium 2001, July 2001.

[11] Dave Hitz, James Lau, and Michael A.
Malcolm. File system design for an nfs
file server appliance. In USENIX Winter,
pages 235–246, 1994.

[12] T. J. Kowalski and Marshall K.
McKusick. Fsck - the UNIX file system
check program. Technical report, Bell
Laboratories, March 1978.

2006 Linux Symposium, Volume One • 407

[13] Marshall K. McKusick and Gregory R.
Ganger. Soft updates: A technique for
eliminating most synchronous writes in
the fast filesystem. In USENIX Annual
Technical Conference, FREENIX Track,
pages 1–17. USENIX, 1999.

[14] Marshall K. McKusick, William N. Joy,
Samuel J. Leffler, and Robert S. Fabry. A
fast file system for unix. ACM Trans.
Comput. Syst., 2(3):181–197, 1984.

[15] Adam Sweeney, Doug Doucette, Wei Hu,
Curtis Anderson, Michael Nishimoto,
and Geoff Peck. Scalability in the XFS
file system. In Proceedings of the 1996
USENIX Technical Conference, 1996.

[16] Stephen Tweedie. Journaling the Linux
ext2fs filesystem. In LinuxExpo ’98,
1998.

408 • Reducing fsck time for ext2 file systems

Native POSIX Threads Library (NPTL) Support for
uClibc.

Steven J. Hill
Reality Diluted, Inc.

sjhill@realitydiluted.com

Abstract

Linux continues to gain market share in embed-
ded systems. As embedded processing power
increases and more demanding applications in
need of multi-threading capabilities are devel-
oped, Native POSIX Threads Library (NPTL)
support becomes crucial. The GNU C library
[1] has had NPTL support for a number of years
on multiple processor architectures. However,
the GNU C library is more suited for work-
station and server platforms and not embed-
ded systems due to its size. uClibc [2] is a
POSIX-compliant C library designed for size
and speed, but currently lacking NPTL sup-
port. This paper will present the design and
implementation of NPTL support in uClibc. In
addition to the design overview, benchmarks,
limitations and comparisons between glibc and
uClibc will be discussed. NPTL for uClibc is
currently only supported for the MIPS proces-
sor architecture.

1 The Contenders

Every usable Linux system has applications
built atop a C library run-time environment.
The C library is at the core of user space and
provides all the necessary functions and system

calls for applications to execute. Linux is for-
tunate in that there are a number of C libraries
available for varying platforms and environ-
ments. Whether an embedded system, high-
performance computing, or a home PC, there
is a C library to fit each need.

The GNU C library, known also as glibc [1],
and uClibc [2] are the most common Linux C li-
braries in use today. There are other C libraries
like Newlib [3], diet libc [4], and klibc [5] used
in embedded systems and small root file sys-
tems. We list them only for completeness, yet
they are not considered in this paper. Our focus
will be solely on uClibc and glibc.

2 Comparing C Libraries

To understand the need for NPTL in uClibc, we
first examine the goals of both the uClibc and
glibc projects. We will quickly examine the
strengths and weaknesses of both C implemen-
tations. It will then become evident why NPTL
is needed in uClibc.

2.1 GNU C Library Project Goals

To quote from the main GNU C Library web
page [1], “The GNU C library is primarily de-
signed to be a portable and high performance C

410 • Native POSIX Threads Library (NPTL) Support for uClibc.

library. It follows all relevant standards (ISO C
99, POSIX.1c, POSIX.1j, POSIX.1d, Unix98,
Single Unix Specification). It is also interna-
tionalized and has one of the most complete in-
ternationalization interfaces known.” In short,
glibc, aims to be the most complete C library
implementation available. It succeeds, but at
the cost of size and complexity.

2.2 uClibc Project Goals

Let us see what uClibc has to offer. Again,
quoting from the main page for uClibc [2],
“uClibc (a.k.a. µClibc, pronounced yew-see-
lib-see) is a C library for developing embed-
ded Linux systems. It is much smaller than
the GNU C Library, but nearly all applica-
tions supported by glibc also work perfectly
with uClibc. Porting applications from glibc
to uClibc typically involves just recompiling
the source code. uClibc even supports shared
libraries and threading. It currently runs on
standard Linux and MMU-less (also known as
µClinux) systems. . . ” Sounds great for embed-
ded systems development. Obviously, uClibc is
going to be missing some features since its goal
is to be small in size. However, uClibc has its
own strengths as well.

2.3 Comparing Features

Table 1 shows the important differentiating fea-
tures between glibc and uClibc.

It should be obvious from the table above that
glibc certainly has better POSIX compliance,
backwards binary compatibility, and network-
ing services support. uClibc shines in that it is
much smaller (how much smaller will be cov-
ered later), more configurable, supports more
processor architectures and is easier to build
and maintain.

The last two features in the table warrant ad-
ditional explanation. glibc recently removed
linuxthreads support from its main de-
velopment tree. It was moved into a sepa-
rate ports tree. It is maintained on a volun-
teer basis only. uClibc will maintain both the
linuxthreads and nptl thread models ac-
tively. Secondly, glibc only supports a couple
of primary processor architectures. The rest of
the architectures were also recently moved into
the ports tree. uClibc continues to actively sup-
port many more architectures by default. For
embedded systems, uClibc is clearly the win-
ner.

3 Why NPTL for Embedded Sys-
tems?

uClibc supports multiple thread library
models. What are the shortcomings of
linuxthreads? Why is nptl better, or
worse? The answer lies in the requirements,
software and hardware, of the embedded
platform being developed. We need to first
compare linuxthreads and nptl to
choose the thread library that best meets the
needs of our platform. Table 2 lists the key
features the two thread libraries have to offer.

Using the table above, the nptl model is use-
ful in systems that do not have severe memory
constraints, but need threads to respond quickly
and efficiently. The linuxthreads model is
useful mostly for resource constrained systems
still needing basic thread support. As men-
tioned at the beginning of this paper, embed-
ded systems with faster processors and greater
memory resources are being required to do
more, with less. Using NPTL in conjunction
with the already small C library provided by
uClibc, creates a perfectly balanced embedded
Linux system that has size, speed and an high-
performance multi-threading.

2006 Linux Symposium, Volume One • 411

Feature glibc uClibc
LGPL Y Y
Complete POSIX compliance Y N
Binary compatibility across releases Y N
NSS Support Y N
NIS Support Y N
Locale support Y Y
Small disk storage footprint N Y
Small runtime memory footprint N Y
Supports MMU-less systems N Y
Highly configurable N Y
Simple build system N Y
Built-in configuration system N Y
Easily maintained N Y
NPTL Support Y Y
Linuxthreads Support N (See below) Y
Support many processor architectures N (See below) Y

Table 1: Library Feature Comparison

Feature Description LinuxThreads NPTL

Storage Size The actual amount of storage space consumed
in the file system by the libraries.

Smallest Largest

Memory Usage
The actual amount of RAM consumed at run-
time by the thread library code and data. In-
cludes both kernel and user space memory us-
age.

Smallest Largest

Number of Threads The maximum number of threads available in a
process.

Hard Coded Value Dynamic

Thread Efficiency Rate at which threads are created, destroyed,
managed, and run.

Slowest Fastest

Per-Thread Signals Signals are handled on a per-thread basis and
not the process.

No Yes

Inter-Thread Threads can share synchronization primitives
Synchronization like mutexes and semaphores. No Yes

POSIX.1 Compliance Thread library is compliant No

Table 2: Thread Library Features

412 • Native POSIX Threads Library (NPTL) Support for uClibc.

4 uClibc NPTL Implementation

The following sections outline the major tech-
nical components of the NPTL implementation
for uClibc. For the most part, they should apply
equally to glibc’s implementation except where
noted. References to additional papers and in-
formation are provided should the reader wish
to delve deeper into the inner workings of vari-
ous components.

4.1 TLS—The Foundation of NPTL

The first major component needed for NPTL on
Linux systems is Thread Local Storage (TLS).
Threads in a process share the same virtual ad-
dress space. Usually, any static or global data
declared in the process is visible to all threads
within that process. TLS allows threads to have
their own local static and global data. An ex-
cellent paper, written by Ulrich Drepper, cov-
ers the technical details for implementing TLS
for the ELF binary format [6]. Supporting TLS
required extensive changes to binutils [7], GCC
[8] and glibc [1]. We cover the changes made
in the C library necessary to support TLS data.

4.1.1 The Dynamic Loader

The dynamic loader, also affectionately known
as ld.so, is responsible for the run-time link-
ing of dynamically linked applications. The
loader is the first piece of code to execute be-
fore the main function of the application is
called. It is responsible for loading and map-
ping in all required shared objects for the appli-
cation.

For non-TLS applications, the process of load-
ing shared objects and running the application
is trivial and straight-forward. TLS data types
complicate dynamic linking substantially. The

loader must detect any TLS sections, allocate
initial memory blocks for any needed TLS data,
perform initial TLS relocations, and later per-
form additional TLS symbol look-ups and re-
locations during the execution of the process.
It must also deal with the loading of shared
objects containing TLS data during program
execution and properly allocate and relocate
its data. The TLS paper [6] provides ample
overview of how these mechanisms work. The
document does not, however, currently cover
the specifics of MIPS-specific TLS storage and
implementation. MIPS TLS information is
available from the Linux/MIPS website [9].

Adding TLS relocation support into uClibc’s
dynamic loader required close to 2200 lines
of code to change. The only functionality not
available in the uClibc loader is the handling of
TLS variables in the dynamic loader itself. It
should also be noted that statically linked bi-
naries using TLS/NPTL are not currently sup-
ported by uClibc. Static binaries will not be
supported until all processor architectures ca-
pable of supporting NPTL have working shared
library support. In reality, shared library sup-
port of NPTL is a prerequisite for debugging
static NPTL support. Thank you to Daniel Ja-
cobowitz for pointing this out.

4.1.2 TLS Variables in uClibc

There are four TLS variables currently used in
uClibc. The noticeable difference that can be
observed in the source code is that they have
an additional type modifier of __thread. Ta-
ble 3 lists the TLS in detail. There are 15 ad-
ditional TLS variables for locale support that
were not ported from glibc. Multi-threaded lo-
cale support with NPTL is currently not sup-
ported with uClibc.

2006 Linux Symposium, Volume One • 413

Variable Description

errno
The number of the last error set by system calls and some functions in
the library. Previously it was thread-safe, but still shared by threads
in the same process. For NPTL, it is a TLS variable and thus each
thread has its own instantiation.

h_errno
The error return value for network database operations. This vari-
able was also previously thread safe. It is only available internally to
uClibc.

_res The resolver context state variable for host name look-ups.
RPC_VARS Pointer to internal Remote Procedure Call (RPC) structure for multi-

threaded applications.

Table 3: TLS Variables in uClibc

4.2 Futexes

Futexes [10] [11] are fast user space mutexes.
They are an important part of the locking nec-
essary for a responsive pthreads library imple-
mentation. They are supported by Linux 2.6
kernels and no code porting was necessary for
them to be usable in uClibc other than adding
prototypes in a header file. glibc also uses them
extensively for the file I/O functions. Futexes
were ported for use in uClibc’s I/O functions as
well, although not strictly required by NPTL.
Futex I/O support is a configurable for uClibc
and can be selected with the UCLIBC_HAS_

STDIO_FUTEXES option.

4.3 Asynchronous Thread Cancellation

A POSIX compliant thread library contains the
function pthread_cancel, which cancels
the execution of a thread. Please see the official
definition of this function at The Open Group
website [12]. Cancellation of a thread must
be done carefully and only at certain points in
the library. There are close to 40 functions
where thread cancellation must be checked for
and possibly handled. Some of these are heav-
ily used functions like read, write, open,

close, lseek and others. Extensive changes
were made to uClibc’s C library core in order
to support thread cancellation. A list of these
are available on the NPTL uClibc development
site [13].

4.4 Threads Library

The code in the nptl directory of glibc was ini-
tially copied verbatim from a snapshot dated
20050823. An entirely new set of build files
were created in order to build NPTL within
uClibc. Almost all of the original files re-
main with the exception of Asynchronous I/O
(AIO) related code. All backwards binary
compatibility code and functions have been re-
moved. Any code that was surrounded with
#ifdef SHLIB_COMPAT or associated with
those code blocks was also removed. The
uClibc NPTL implementation should be as
small as possible and not constrained by old
thread compatibility code. This also means that
any files in the root nptl directory with the
prefix of old_pthread_ were also removed.
Finally, there were minor header files changes
and some functions renamed.

414 • Native POSIX Threads Library (NPTL) Support for uClibc.

4.5 POSIX Timers

In addition to the core threads library, there
were also code changes for POSIX Timers.
These changes were integrated into the librt
library in uClibc. These changes were not in the
original statement of work from Broadcom, but
were implemented for completeness. All the
timer tests for POSIX timers associated with
NPTL do pass, but were not required.

For those interested in further details of the
NPTL design, please refer to Ulrich Drepper’s
design document [14].

5 uClibc NPTL Testing

There were a total of four test suites that
the uClibc NPTL implementation was tested
against. Hopefully, with all of these tests,
uClibc NPTL functionality should be at or near
the production quality of glibc’s implementa-
tion.

5.1 uClibc Testsuite

uClibc has its own test suite distributed with the
library source. While there are many tests ver-
ifying the inner workings of the library and the
various subsystems, pthreads tests are minimal.
There are only 7 of them, with another 5 for the
dynamic loader. With the addition of TLS data
and NPTL, these were simply not adequate for
testing the new functionality. They were, how-
ever, useful as regression testing. The test suite
can be retrieved with uClibc from the main
site [2].

5.2 glibc Testsuite

The author would first like to convey immense
appreciation to the glibc developers for creating

such a comprehensive and usable test suite for
TLS and NPTL. Had it not been for the tests
distributed with their code, I would have re-
leased poor code that would have resulted in
customer support nightmares. The tests were
very well designed and extremely helpful in
finding holes in the uClibc NPTL implemen-
tation. 182 selected NPTL tests and 15 TLS
tests were taken from glibc and passed success-
fully with uClibc. There were a number of tests
not applicable to uClibc’s NPTL implementa-
tion that were omitted. For further details con-
cerning the tests, please visit the uClibc NPTL
project website [13].

5.3 Linux Test Project

The Linux Test Project (LTP) suite [15] is used
to “validate the reliability, robustness, and sta-
bility of Linux.” It has 2900+ tests that will not
only test pthreads, but act as a large set of re-
gression tests to make sure uClibc is still func-
tioning properly as a whole.

5.4 Open POSIX Test Suite

To quote from the website [16], “The POSIX
Test Suite is an open source test suite with the
goal of performing conformance, functional,
and stress testing of the IEEE 1003.1-2001 Sys-
tem Interfaces specification in a manner that is
agnostic to any given implementation.” This
suite of tests is the most important indicator
of how correct the uClibc NPTL implemen-
tation actually is. It tests pthreads, timers,
asynchronous I/O, message queues and other
POSIX related APIs.

5.5 Hardware Test Platform

All development and testing was done with an
AMD Alchemy DBAu1500 board graciously

2006 Linux Symposium, Volume One • 415

Source Version
binutils 2.16.1
gcc 4.1.0
glibc 20050823
uClibc-nptl 20060318
Linux Kernel Headers 2.6.15
LTP 20050804
Open POSIX Test Suite

20050804(Distributed w/LTP)
buildroot 20060328
crosstool 0.38
Linux/MIPS Kernel 2.6.15

Table 4: Source and Tool Versions

donated by AMD. Broadcom also provided
their own hardware, but it was not ready for use
until later in the software development cycle.

The DBAu1500 development board is designed
around a 400MHz 32-bit MIPS Au1500 pro-
cessor core. The board has 64MB of 100MHz
SDRAM and 32MB of AMD MirrorBit Flash
memory. The Au1500 utilizes the MIPS32 In-
struction Set and has a 16KB Instruction and
16KB Data Cache. (2) 10/100Mbit Ethernet
Ports, USB host controller, PCI 2.2 compliant
host controller, and other peripherals.

5.6 Software Versions

Table 4 lists the versions of all the sources used
in the development and testing of uClibc NPTL.
buildroot [17] was the build system used to cre-
ate both the uClibc and glibc root filesystems
necessary for running the test suites. crosstool
[18] was used for building the glibc NPTL
toolchain.

The actual Linux kernel version used on the
AMD development board for testing is the re-
leased Linux/MIPS 2.6.15 kernel. The 2.6.16
release is not currently stable enough for test-
ing and development. A number of system calls

glibc uClibc
53m 8.983s 21m 33.129s

Table 5: Toolchain Build Times

appear to be broken along with serial text con-
sole responsiveness. The root filesystem was
mounted over NFS.

6 uClibc NPTL Test Results

6.1 Toolchain Build Time

Embedded system targets do not usually have
the processor and/or memory resources avail-
able to host a complete development environ-
ment (compiler, assembler, linker, etc). Usually
development is done on an x86 host and the bi-
naries are cross compiled for the target using
a cross development toolchain. crosstool [18]
was used to build the x86 hosted MIPS NPTL
toolchain using glibc, and buildroot [17] was
used to build the MIPS NPTL toolchain using
uClibc.

Building a cross development toolchain is a
time consuming process. Not only are they dif-
ficult to get working properly, they also take
a long time to build. glibc itself usually must
be built twice in order to get internal paths and
library dependencies to be correct. uClibc on
the other hand, need only be built once due
to its simpler design and reduced complexity
of the build system. The toolchains were built
and hosted on a dual 248 Opteron system with
1GB of RAM, Ultra 160 SCSI and SATA hard
drives. Times include the actual extraction of
source from the tarballs for toolchain compo-
nents. See Table 5. The toolchains above com-
pile both C and C++ code for the MIPS tar-
get processor. Not only are uClibc’s libraries

416 • Native POSIX Threads Library (NPTL) Support for uClibc.

smaller (as you will see shortly), but creating a
development environment is much simpler and
less time consuming.

6.2 Library Code Size

Throughout our discussion, we have stressed
the small size of uClibc as compared to glibc.
Tables 6 and 7 show these comparisons of li-
braries and shared objects as compared to one
another.

The size difference between the C libraries is
dramatic. uClibc is better than 2 times smaller
than glibc. uClibc’s libdl.a is larger be-
cause some TLS functions only used for shared
objects are being included in the static library.
This is due to a problem in the uClibc build
system that will be addressed. The libnsl.a
and libresolv.a libraries are dramatically
smaller for uClibc only because they are stub
libraries. The functions usually present in the
corresponding glibc libraries are contained in-
side uClibc. Finally, libm.a for uClibc is
much smaller do to reduced math functionality
in uClibc as compared to glibc. Most functions
for handling double data types are not present
for uClibc.

The shared objects of most interest are
libc.so, ld.so, and libpthread.so.
uClibc’s main C library is over 2 times smaller
than glibc. The dynamic loader for uClibc
is 4 times smaller. glibc’s dynamic loader
is complex and larger, but it has to be in or-
der to handle binary backwards compatibility.
Additionally, uClibc’s dynamic loader is can-
not be executed as an application like glibc’s.
Although the NPTL pthread library code was
ported almost verbatim from glibc, uClibc’s li-
brary is 30% smaller. Why? The first reason
is that any backward binary compatibility code
was removed. Secondly, the comments in the
nptl directory of glibc say that the NPTL code

should be compiled with the -O2 compiler op-
tion. For uClibc, the -Os option was used to
reduced the code size and yet NPTL still func-
tioned perfectly. This optimization worked for
MIPS, but other architectures may not be able
to use this optimization.

6.3 glibc NPTL Library Test Results

The developers of NPTL for glibc created a
large and comprehensive test suite for testing
its functionality. 182 tests were taken from
glibc and tested with uClibc’s TLS and NPTL
implementation. All of these tests passed with
uClibc NPTL. For a detailed overview of the
selected tests, please visit the uClibc NPTL
project website.

6.4 Linux Test Project (LTP) Results

Out of over 2900+ tests executed, there were
only 31 failed tests by uClibc. glibc also failed
31 tests. A number of tests that passed with
uClibc, failed with glibc. The converse was
also true. These differences will be examined
at a later date. However, passing all the tests in
the LTP is a goal for uClibc. Detailed test logs
can be obtained from the uClibc NPTL project
website.

6.5 Open POSIX Testsuite Results

Table 8 shows the results of the test runs for
both libraries.

The first discrepancy observed is the total num-
ber of tests. glibc has a larger number of tests
available because of Asynchronous I/O support
and the sigqueue function, which is not cur-
rently available in uClibc. Had these features
been present in uClibc, the totals would have

2006 Linux Symposium, Volume One • 417

Static Library glibc [bytes] uClibc [bytes]
libc.a 3 426 208 1 713 134
libcrypt.a 29 154 15 630
libdl.a 10 670 36 020
libm.a 956 272 248 598
libnsl.a 161 558 1 100
libpthread.a 281 502 250 852
libpthread_nonshared.a 1 404 1 288
libresolv.a 111 340 1 108
librt.a 79 368 29 406
libutil.a 11 464 9 188
TOTAL 5 068 940 2 306 324

Table 6: Static Library Sizes (glibc vs. uClibc)

Shared Object glibc [bytes] uClibc [bytes]
libc.so 1 673 805 717 176
ld.so 148 652 35 856
libcrypt.so 28 748 13 676
libdl.so 16 303 13 716
libm.so 563 876 80 040
libnsl.so 108 321 5 032
libpthread.so 120 825 97 189
libresolv.so 88 470 5 036
librt.so 45 042 14 468
libutil.so 13 432 9 320
TOTAL 2 807 474 991 509

Table 7: Shared Object Sizes (glibc vs. uClibc)

418 • Native POSIX Threads Library (NPTL) Support for uClibc.

RESULT glibc uClibc
TOTAL 1830 1648
PASSED 1447 1373
FAILED 111 83
UNRESOLVED 151 95
UNSUPPORTED 22 29
UNTESTED 92 60
INTERRUPTED 0 0
HUNG 1 3
SEGV 5 5
OTHERS 1 0

Table 8: OPT Results (glibc vs. uClibc)

most likely been the same. The remaining re-
sults are still being analyzed and will be pre-
sented at the Ottawa Linux Symposium in July,
2006. The complete test logs are available from
the uClibc NPTL project website.

7 Conclusions

NPTL support in uClibc is now a reality.
A fully POSIX compliant threads library in
uClibc is a great technology enabler for embed-
ded systems developers who need fast multi-
threading capability in a small memory foot-
print. The results from the Open POSIX Test-
suite need to be analyzed in greater detail in or-
der to better quantify what, if any POSIX sup-
port is missing.

8 Future Work

There is still much work to be done for the
uClibc NPTL implementation. Below is a list
of the important items:

• Sync NPTL code in uClibc tree with latest
glibc mainline code.

• Implement NPTL for other processor ar-
chitectures.

• Get static libraries working for NPTL.

• Merge uClibc-NPTL branch with uClibc
trunk.

• Implement POSIX message queues.

• Implement Asynchronous I/O.

• Implement sigqueue call.

• Fix outstanding LTP and Open POSIX
Test failures.

9 Acknowledgements

I would first like to acknowledge and thank God
for getting me through this project. It has been
a 9-1/2 month journey full of difficulty and
frustration at times. His strength kept me going.
Secondly, my wife Jennifer who was a constant
encourager and supporter of me. I spent many
weekends and evenings working while she kept
the household from falling apart. Obviously, I
would like to thank Broadcom Corporation for
supporting this development effort and provid-
ing the code back to the community. Thanks
to Erik Andersen from Code Poet Consulting
who was my partner in this endeavor, handling
all the contracts and legal issues for me. Thank
you to AMD for supplying me multiple MIPS
development boards free of charge. Special
thanks to Mathieu Chouinard for formatting my
paper in the final hours before submittal. Fi-
nally, I would like to dedicate this paper and
entire effort to my first child, Zachary James
Hill who just turned a year old on March 5th,
2006. I love you son.

2006 Linux Symposium, Volume One • 419

References

[1] GNU C Libary at http://www.gnu.
org/software/libc/ http:
//sourceware.org/glibc/

[2] uClibc at
http://www.uclibc.org/

[3] Newlib at http:
//sourceware.org/newlib/

[4] Diet Libc at http:
//www.fefe.de/dietlibc/

[5] Klibc at ftp://ftp.kernel.org/
pub/linux/libs/klibc/

[6] ELF Handling for Thread Local Storage
at http://people.redhat.com/
drepper/tls.pdf

[7] Binutils at http://www.gnu.org/
software/binutils/

[8] GCC at http://gcc.gnu.org/

[9] NPTL Linux/MIPS at http:
//www.linux-mips.org/wiki/NPTL

[10] Hubertus Franke, Matthew Kirkwood,
Rusty Russell. Fuss, Futexes and
Furwocks: Fast Userlevel Locking in
Linux. In Proceedings of the Ottawa
Linux Symposium, pages 479–494, June
2002.

[11] Futexes Are Tricky at
http://people.redhat.com/
drepper/futex.pdf

[12] pthread_cancel function definition
at http://www.opengroup.org/
onlinepubs/007908799/xsh/

pthread_cancel.html

[13] uClibc NPTL Project at
http://www.realitydiluted.com/

nptl-uclibc/

[14] The Native POSIX Thread Library for
Linux at http://people.redhat.
com/drepper/nptl-design.pdf

[15] Linux Test Project at
http://ltp.sourceforge.net/

[16] Open POSIX Test Suite at http://
posixtest.sourceforge.net/

[17] buildroot at http:
//buildroot.uclibc.org/

[18] crosstool at http:
//www.kegel.com/crosstool/

420 • Native POSIX Threads Library (NPTL) Support for uClibc.

Playing BlueZ on the D-Bus

Marcel Holtmann
BlueZ Project

marcel@holtmann.org

Abstract

The integration of the Bluetooth technology
into the Linux kernel and the major Linux dis-
tributions has progressed really fast over the
last two years. The technology is present al-
most everywhere. All modern notebooks and
mobile phones are shipped with built-in Blue-
tooth. The use of Bluetooth with a Linux based
system is easy and in most cases it only needs
an one-time setup, but all the tools are still com-
mand line based. In general this is not so bad,
but for a greater success it is needed to seam-
lessly integrate the Bluetooth technology into
the desktop. There have been approaches for
the GNOME and KDE desktops. Both have
been quite successful and made the use of Blue-
tooth easy. The problem however is that both
implemented their own framework around the
Bluetooth library and its daemons and there
were no possibilities for programs from one
system to talk to the other. With the final ver-
sion of the D-Bus framework and its adaption
into the Bluetooth subsystem of Linux, it will
be simple to make all applications Bluetooth
aware.

The idea is to establish one central Bluetooth
daemon that takes care of all task that can’t or
shouldn’t be handled inside the Linux kernel.
These jobs include PIN code and link key man-
agement for the authentication and encryption,
caching of device names and services and also
central control of the Bluetooth hardware. All

possible tasks and configuration options are ac-
cessed via the D-Bus interface. This will al-
low to abstract the internals of GNOME and
KDE applications from any technical details of
the Bluetooth specification. Even other appli-
cation will get access to the Bluetooth technol-
ogy without any hassle.

1 Introduction

The Bluetooth specification [1] defines a clear
abstraction layer for accessing different Blue-
tooth hardware options. It is called the Host
Controller Interface (HCI) and is the basis of
all Bluetooth protocols stacks (see Figure 1).

This interface consists of commands and events
that provide support for configuring the local
device and creating connections to other Blue-
tooth devices. The commands are split into six
different groups:

• Link Control Commands

• Link Policy Commands

• Host Controller and Baseband Commands

• Informational Parameters

• Status Parameters

• Testing Commands

422 • Playing BlueZ on the D-Bus

Radio

Baseband

Link Manager

HCI

L2CAP

RFCOMM

Applications and Profiles

OBEX

SDP

Figure 1: Simple Bluetooth stack

With the Link Control Commands it is pos-
sible to search for other Bluetooth devices in
range and to establish connections to other de-
vices. This group also includes commands to
handle authentication and encryption. The Link
Policy Commands are controlling the estab-
lished connections between two or more Blue-
tooth devices. They also control the different
power modes. All local settings of a Blue-
tooth device are modified with commands from
the Host Controller and Baseband Commands
group. This includes for example the friendly
name and the class of device. For detailed in-
formation of the local device, the commands
from the Informational Paramters group can be
used. The Status Parameters group provides
commands for detailed information from the re-
mote device. This includes the link quality and
the RSSI value. With the group Testing Com-
mands the device provides commands for Blue-
tooth qualification testing. All commands are
answered by an event that returns the requested
value or information. Some events can also ar-
rive at any time. For example to request a PIN

code or to notify of a changed power state.

Every Bluetooth implementation must imple-
ment the Host Controller Interface and for
Linux a specific set of commands has been in-
tegrated into the Linux kernel. Another set of
commands are implemented through the Blue-
tooth library. And some of the commands are
not implemented at all. This is because they are
not needed or because they have been depre-
cated by the latest Bluetooth specification. The
range of commands implemented in the kernel
are mostly dealing with Bluetooth connection
handling. The commands in the Bluetooth li-
brary are for configuration of the local device
and handling of authentication and encryption.

While the Host Controller Interface is a clean
hardware abstraction, it is not a clean or easy
programming interface. The Bluetooth library
provides an interface to HCI and an applica-
tion programmer has to write a lot of code to
get Bluetooth specific tasks done via HCI. To
make it easy for application programmers and
also end users, a task based interface to Blue-
tooth has been designed. The definition of this
tasks has been done from an application per-
spective and they are exported through D-Bus
via methods and signal.

2 D-Bus integration

The hcid daemon is the main daemon when
running Bluetooth on Linux. It handles all de-
vice configuration and authentication tasks. All
configuration is done via a simple configuration
file and the PIN code is handled via PIN helper
script. This means that every the configuration
option needed to be changed, it was needed to
edit the configuration file (/etc/bluetooth/
hcid.conf) and to restart hcid. The config-
uration file still configures the basic and also
default settings of hcid, but with the D-Bus

2006 Linux Symposium, Volume One • 423

integration all other settings are configurable
through the D-Bus API. The current API con-
sists of three interfaces:

• org.bluez.Manager

• org.bluez.Adapter

• org.bluez.Security

The Manager interface provides basic meth-
ods for listing all attached adapter and getting
the default adapter. In the D-Bus API terms
an adapter is the local Bluetooth device. In
most cases this might be an USB dongle or
a PCMCIA card. The Adapter interface pro-
vides methods for configuration of the local
device, searching for remote device and han-
dling of remote devices. The Security interface
provides methods to register passkey agents.
These agents can provide fixed PIN codes, di-
alog boxes or wizards for specific remote de-
vices. All Bluetooth applications using the D-
Bus API don’t have to worry about any Blue-
tooth specific details or details of the Linux spe-
cific implementation (see Figure 2).

Besides the provided methods, every interface
contains also signals to broadcast changes or
events from the HCI. This allows passive ap-
plications to get the information without ac-
tively interacting with any Bluetooth related
task. An example for this would be an applet
that changes its icon depending on if the local
device is idle, connected or searching for other
devices.

Every local device is identified by its path.
For the first Bluetooth adapter, this would
be /org/bluez/hci0 and this path will be
used for all methods of the Adapter inter-
face. The best way to get this path is to call
DefaultAdapter() from the Manager in-
terface. This will always return the current de-
fault adapter or in error if no Bluetooth adapter

is attached. With ListAdapters() it is pos-
sible to get a complete list of paths of the at-
tached adapters.

If the path is known, it is possible to use the
full Adapter interface to configure the local de-
vice or handle tasks like pairing or searching
for other devices. An example task would be
the configuration of the device name. With
GetName() the current name can be retrieved
and with SetName() it can be changed.
Changing the name results in storing it on the
filesystem and changing the name with an ap-
propriate HCI command. If the local device al-
ready supports the Bluetooth Lisbon specifica-
tion, then the Extended Inquiry Response will
be also modified.

With the DiscoverDevices() method it
is possible to start the search for other Blue-
tooth devices in range. This method call actu-
ally doesn’t return any remote devices. It only
starts the inquiry procedure of the Bluetooth
chip and every found device is returned via the
RemoteDeviceFound signal. This allows
all applications to handle new devices even if
the discovery procedure has been initiated by a
different application.

3 Current status

The methods and signals for the D-Bus API
for Bluetooth were chosen very carefully. The
goal was to design it with current application
needs in mind. It also aims to fulfill the needs
of current established desktop frameworks like
the GNOME Bluetooth subsystem and the KDE
Bluetooth framework. So it covers the common
tasks and on purpose not everything that might
be possible. The API can be divided into the
following sections:

• Local

424 • Playing BlueZ on the D-Bus

Security Manager

Bluetooth Core

Passkey Manager

org.bluez.Security

Host Controller Interface

Adapter ManagerCore Manager

hcid

org.bluez.Adapterorg.bluez.Manager

kernel

applications

Bluetooth Drivers

Figure 2: D-Bus API overview

– version, revision, manufacturer
– mode, name, class of device

• Remote

– version, revision, manufacturer
– name, class of device
– aliases
– device discovery
– pairing, bondings

• Security

– passkey agent

With these methods and signals all standard
tasks are covered. The Manager, Adapter and
Security interfaces are feature complete at the
moment.

4 Example application

The big advantage of the D-Bus framework
is that it has bindings for multiple program-

ming languages. With the integration of D-
Bus into the Bluetooth subsystem, the use of
Bluetooth from various languages becomes re-
ality. The Figure 3 shows an example of chang-
ing the name of the local device into My Blue-
tooth dongle using the Python programming
language.

The example in Python is straight forward and
simple. Using the D-Bus API within a C pro-
gram is a little bit more complex, but it is still
easier than using the native Bluetooth library
API. Figure 4 shows an example on how to get
the name of the local device.

5 Conclusion

The integration of a D-Bus API into the Blue-
tooth subsystem makes it easy for applications
to access the Bluetooth technology. The cur-
rent API is a big step into the right direction,
but it is still limited. The Bluetooth technology
is complex and Bluetooth services needs to be
extended with an easy to use D-Bus API.

2006 Linux Symposium, Volume One • 425

#!/usr/bin/python

import dbus

bus = dbus.SystemBus();

obj = bus.get_object(’org.bluez’,
’/org/bluez’)

manager = dbus.Interface(obj,
’org.bluez.Manager’)

obj = bus.get_object(’org.bluez’,
manager.DefaultAdapter())

adapter = dbus.Interface(obj,
’org.bluez.Adapter’)

adapter.SetName(’My Bluetooth dongle’)

Figure 3: Example in Python

The next steps would be integration of D-Bus
into the Bluetooth mouse and keyboard ser-
vice. Another goal is the seamless integration
into the Network Manager. This would allow
to connect to Bluetooth access points like any
other WiFi access point.

The current version of the D-Bus API for Blue-
tooth will be used in the next generation of
the Maemo platform which is that basis for the
Nokia 770 Internet tablet.

References

[1] Special Interest Group Bluetooth:
Bluetooth Core Specification Version 2.0
+ EDR, November 2004.

[2] freedesktop.org: D-BUS Specification
Version 0.11.

#include <stdio.h>
#include <stdlib.h>

#include <dbus/dbus.h>

int main(int argc, char **argv) {
DBusConnection *conn;
DBusMessage *msg, *reply;
const char *name;

conn = dbus_bus_get(DBUS_BUS_SYSTEM, NULL);
msg = dbus_message_new_method_call(

"org.bluez",
"/org/bluez/hci0",
"org.bluez.Adapter", "GetName");

reply =
dbus_connection_send_with_reply_and_block(

conn, msg, -1, NULL);

dbus_message_get_args(reply, NULL,
DBUS_TYPE_STRING, &name,
DBUS_TYPE_INVALID);

printf("%s\n", name);

dbus_message_unref(msg);
dbus_message_unref(reply);
dbus_connection_close(conn);

return 0;
}

Figure 4: Example in C

426 • Playing BlueZ on the D-Bus

FS-Cache: A Network Filesystem Caching Facility

David Howells
Red Hat UK Ltd

dhowells@redhat.com

Abstract

FS-Cache is a kernel facility by which a net-
work filesystem or other service can cache data
locally, trading disk space to gain performance
improvements for access to slow networks and
media. It can be used by any filesystem that
wishes to use it, for example AFS, NFS, CIFS,
and ISOFS. It can support a variety of back-
ends: different types of cache that have differ-
ent trade-offs.

FS-Cache is designed to impose as little over-
head and as few restrictions as possible on the
client network filesystem using it, whilst still
providing the essential services.

The presence of a cache indirectly improves
performance of the network and the server by
reducing the need to go to the network.

1 Overview

The FS-Cache facility is intended for use with
network filesystems, permitting them to use
persistent local storage to cache data and meta-
data, but it may also be used to cache other sorts
of media such as CDs.

The basic principle is that some media are ef-
fectively slower than others—either because
they are physically slower, or because they

must be shared—and so a cache on a faster
medium can be used to improve general per-
formance by reducing the amount of traffic to
or across the slower media.

Another reason for using a cache is that the
slower media may be unreliable for some
reason—for example a laptop might lose con-
tact with a wireless network, but the working
files might still need to be available. A cache
can help with this by storing the working set
of data and thus permitting disconnected oper-
ation (offline working).

1.1 Organisation

FS-Cache is a thin layer (see Figure 1) in the
kernel that permits client filesystems (such as
NFS, AFS, CIFS, ISOFS) on one side to request
caching services without knowing what sort of
cache is attached, if any.

NFS

AFS

ISO9660

FS−Cache

CacheFS

CacheFiles

Figure 1: Cache architecture

428 • FS-Cache: A Network Filesystem Caching Facility

On the other side FS-Cache farms those re-
quests off to the available caches, be they
CacheFS, CacheFiles, or whatever (see sec-
tion 4)—or the request is gracefully denied if
there isn’t an available cache.

FS-Cache permits caches to be shared between
several different sorts of netfs1, though it does
not in any way associate two different views of
the same file obtained by two separate means.
If a file is read by both NFS and CIFS, for in-
stance, two copies of the file will end up in the
cache (see section 1.7).

It is possible to have more than one cache avail-
able at one time. In such a case, the available
caches have unique tags assigned to them, and
a netfs may use these to bind a mount to a spe-
cific cache.

1.2 Operating Principles

FS-Cache does not itself require that a netfs file
be completely loaded into the cache before that
file may be accessed through the cache. This is
because:

1. it must be practical to operate without a
cache;

2. it must be possible to open a remote file
that’s larger than the cache;

3. the combined size of all open remote
files—including mapped libraries—must
not be limited to the size of the cache; and

4. the user should not be forced to download
an entire file just to do a one-off access of
a small portion of it (such as might be done
with the file program).

1Note that the client filesystems will be referred to
generically as the netfs in this document.

FS-Cache makes no use of the i_mapping
pointer on the netfs inode as this would force
the filesystems using the cache either to be bi-
modal2 in implementation or to always require
a cache for operation, with the files completely
downloaded before use—none of which is ac-
ceptable for filesystems such as NFS.

FS-Cache is built instead around the idea that
data should be served out of the cache in pages
as and when requested by the netfs using it.
That said, the netfs may, if it chooses, down-
load the whole file and install it in the cache
before permitting the file to be used—rejecting
the file if it won’t fit. All FS-Cache would see
is a reservation (see section 1.4) followed by a
stream of pages to entirely fill out that reserva-
tion.

Furthermore, FS-Cache is built around the prin-
ciple that the netfs’s pages should belong to
the netfs’s inodes, and so FS-Cache reads and
writes data directly to or from those pages.

Lastly, files in the cache are accessed by se-
quences of keys, where keys are arbitrary blobs
of binary data. Each key in a sequence is used
to perform a lookup in an index to find the next
index to consult or, finally, the file to access.

1.3 Facilities Provided

FS-Cache provides the following facilities:

1. More than one cache can be used at once.
Caches can be selected explicitly by use of
tags.

2. Caches can be added or removed at any
time.

2Bimodality would involve having the filesystem op-
erate very differently in each case

2006 Linux Symposium, Volume One • 429

3. The netfs is provided with an interface that
allows either party to withdraw caching fa-
cilities from a file (required for point 2).
See section 5.

4. The interface to the netfs returns as few er-
rors as possible, preferring rather to let the
netfs remain oblivious. This includes I/O
errors within the cache, which are hidden
from the netfs. See section 5.8.

5. Cookies are used to represent indices, data
files and other objects to the netfs. See sec-
tions 3 and 5.1.

6. Cache absence is handled gracefully; the
netfs doesn’t really need to do anything as
the FS-Cache functions will just observe
a NULL pointer—a negative cookie—and
return immediately. See section 5.2.

7. Cache objects can be “retired” upon re-
lease. If an object is retired, FS-Cache will
mark it as obsolete, and the cache backend
will delete the object — data and all—and
recursively retire all that object’s children.
See section 5.5.

8. The netfs is allowed to propose—
dynamically—any index hierarchy it
desires, though it must be aware that the
index search function is recursive, stack
space is limited, and indices can only be
children of other indices. See section 3.2.

9. Data I/O is done on a page-by-page basis.
Only pages which have been stored in the
cache may be retrieved. Unstored pages
are passed back to the netfs for retrieval
from the server. See section 5.7.

10. Data I/O is done directly to and from the
netfs’s pages. The netfs indicates that page
A is at index B of the data-file represented
by cookie C, and that it should be read or
written. The cache backend may or may
not start I/O on that page, but if it does, a

netfs callback will be invoked to indicate
completion. The I/O may be either syn-
chronous or asynchronous.

11. A small piece of auxiliary data may be
stored with each object. The format and
usage of this data is entirely up to the netfs.
The main purpose is for coherency man-
agement.

12. The netfs provides a “match” function for
index searches. In addition to saying
whether or not a match was made, this can
also specify that an entry should be up-
dated or deleted. This should make use of
auxiliary data to maintain coherency. See
section 5.4.

1.4 Disconnected Operation

Disconnected operation (offline working) re-
quires that the set of files required for opera-
tion is fully loaded into the cache, so that the
netfs can provide their contents without having
to resort to the network. Not only that, it must
be possible for the netfs to save changes into
the cache and keep track of them for later syn-
chronisation with the server when the network
is once again available.

FS-Cache does not, of itself, provide discon-
nected operation. That facility is left up to
the netfs to implement—in particular with re-
gard to synchronisation of modifications with
the server.

That said, FS-Cache does provide three facili-
ties to make the implementation of such a facil-
ity possible: reservations, pinning and auxil-
iary data.

Reservations permit the netfs to reserve a chunk
of the cache for a file, so that file can be loaded
or expanded up to the specified limit.

430 • FS-Cache: A Network Filesystem Caching Facility

Pinning permits the netfs to prevent a file from
being discarded to make room in the cache for
other files. The offline working set must be
pinned in the cache to make sure it will be there
when it’s needed. The netfs would have to pro-
vide a way for the user to nominate the files to
be saved, since they, and not the netfs, know
what their working set will be.

Auxiliary data permits the netfs to keep track
of a certain amount of writeback control infor-
mation in the cache. The amount of primary
auxiliary data is limited, but more can be made
available by adding child objects to a data ob-
ject to hold the extra information.

To implement potential disconnected operation
for a file, the netfs must download all the miss-
ing bits of a file and load them into the cache in
advance of the network going away.

Disconnected operation could also be of use
with regard to ISOFS: the contents of a CD or
DVD could be loaded into the cache for later
retrieval without the need for the disc to be in
the drive.

1.5 File Attributes

Currently arbitrary file attributes (such as ex-
tended attributes or ACLs) can be retained in
the cache in one of two ways: either they can be
stored in the auxiliary data (which is restricted
in size - see section 1.4) or they can be attached
to objects as children of a special object type
(see section 3).

Special objects are data objects of a type that
isn’t one of the two primary types (index and
data). How special objects are used is at the
discretion of the netfs that created it, but spe-
cial objects behave otherwise exactly like data
objects.

Optimisations may be provided later to per-
mit cache file extended attributes to be used to

cache file attributes - especially with the pos-
sibility of attribute sharing on some backing
filesystems. This will improve the performance
of attribute-heavy systems such as those that
use SE Linux.

1.6 Performance Trade-Offs

The use of a local cache for remote filesystems
requires some trade-offs be made in terms of
client machine performance:

• File lookup time
This will be INCREASED by checking
the cache before resorting to the net-
work and also by making a note of
a looked-up object in the cache.
This should be DECREASED by local
caching of metadata.

• File read time
This will be INCREASED by check-
ing the cache before resorting to
the network and by copying the
data obtained back to the cache.
This should be DECREASED by local
caching of data as a local disk should be
quicker to read.

• File write time
This could be DECREASED by doing
writeback caching using the disk.
Write-through caching should be more or
less neutral since it’s possible to write to
both the network and the disk at once.

• File replacement time
This will be INCREASED by having to re-
tire an object or tree of objects from the
disk.

The performance of the network and the server
are also affected, of course, since the use of

2006 Linux Symposium, Volume One • 431

a local cache should hopefully reduce network
traffic by satisfying from local storage some of
the requests that would have otherwise been
committed to the network. This may to some
extent counter the increases in file lookup time
and file read time due to the drag of the cache.

1.7 Cache Aliasing

As previously mentioned, through the interac-
tion of two different methods of retrieving a file
(such as NFS and CIFS), it is possible to end up
with two or more copies of a remote file stored
locally. This is known as cache aliasing.

Cache aliasing is generally considered bad for
a number of reasons: it requires extra resources
to maintain multiple copies, the copies may be-
come inconsistent, and the process of main-
taining consistency may cause the data in the
copies to bounce back and forth. It’s generally
up to the user to avoid cache aliasing in such a
situation, though the netfs can help by keeping
the number of aliases down.

The current NFS client can also suffer from
cache aliasing with respect to itself. If two
mounts are made of different directories on the
same server, then two superblocks will be cre-
ated, each with its own set of inodes. Yet some
of the inodes may actually represent the same
file on the server, and would thus be aliases.
Ways to deal with this are being examined.

FS-Cache deals with the possibility of cache
aliasing by refusing multiple acquisitions of the
same object (be it an index object or a data ob-
ject). It is left up to the netfs to multiplex ob-
jects.

1.8 Direct File Access

Files opened with O_DIRECT should not go
through the cache. That is up to the netfs to im-

plement, and FS-Cache shouldn’t even see the
direct I/O operations.

If a file is opened for direct file access when
there’s data for that file in the cache, the cache
object representing that file should be retired
and a new one not created until the file is no
longer open for direct access.

1.9 System Administration

Use of the FS-Cache facility by a netfs does
not require anything special on the part of the
system administrator, unless the netfs designer
wills it. For instance, the in-kernel AFS filesys-
tem will use it automatically if it’s there, whilst
the NFS filesystem currently requires an extra
mount option to be passed to enable caching on
that particular mount.

Whilst the exact details are subject to change, it
should not be a problem to use the cache with
automounted filesystems as there should be no
need to wrap the mount call or issue a post-
mount enabler.

2 Other Caching Schemes

Some network filesystems that can be used on
Linux already have their own caching facilities
built into each individually, including Coda and
OpenAFS. In addition, other operating systems
have caching facilities, such as Sun’s CacheFS.

2.1 Coda

Coda[1] requires a cache. It fully downloads
the target file as part of the open process and
stores it in the cache. The Coda file operations
then redirect the various I/O operations to the

432 • FS-Cache: A Network Filesystem Caching Facility

equivalents on the cache file, and i_mapping
is used to handle mmap() on a Coda file (this
is required as Coda inodes do not have their
own pages). i_mapping is not required with
FS-Cache as the cache does I/O directly to the
netfs’s pages, and so mmap() can just use the
netfs inode’s pages as normal.

All the changes made to a Coda file are stored
locally, and the entire file is written back
when a file is either flushed on close() or
fsync().

All this means that Coda may not handle a set
of files that won’t fit in its cache, and Coda
can’t operate without a cache. On the other
hand, once a file has been downloaded, it oper-
ates pretty much at normal disk-file speeds. But
imagine running the file program on a file of
100MB in size... Probably all that is required
is the first page, but Coda will download all of
it—that’s fine if the file is then going to be used;
but if not, that’s a lot of bandwidth wasted.

This does, however, make Coda good for do-
ing disconnected operation: you’re guaranteed
to have to hand the entirety of any file you were
working with.

And it does potentially make Coda bad at han-
dling sparse files, since Coda must download
the whole file, holes and all, unless the Coda
server can be made to pass on information
about the gaps in a file.

2.2 OpenAFS

OpenAFS[2] can operate without a cache. It
downloads target files piecemeal as the appro-
priate bits of the file are accessed, and places
the bits in the cache if there is one.

No use is made of i_mapping, but instead
OpenAFS inodes own their own pages, and the

contents are exchanged with pages in the cache
files at appropriate times.

OpenAFS’s caching operates using the main
model assumed for FS-Cache. OpenAFS,
however, locates its cache files by invoking
iget() on the cache superblock with the in-
ode number for what it believes to be the cache
file inode number as a parameter.

2.3 Sun’s CacheFS

Modern Solaris[3] variants have their own
filesystem caching facilities available for use
with NFS (CacheFS). The mounting protocol is
such that the cache must manually be attached
to each NFS mount after the mount has been
made.

FS-Cache does things a little differently: the
netfs declares an interest in using caching facil-
ities when the netfs is mounted, and the cache
will be automatically attached either immedi-
ately if it’s already available, or at the point it
becomes available.

It would also be possible to get a netfs to
request caching facilities after it has been
mounted, though it might be trickier from an
implementation point of view.

3 Objects and Indexing

Part of FS-Cache can be viewed as an object
storage interface. The objects it stores come
in two primary types: index objects and data
objects, but other special object types may be
defined on a per-parent-object basis as well.

Cache objects have certain properties:

2006 Linux Symposium, Volume One • 433

• All objects apart from the root index
object—which is inaccessible on the netfs
side of things—have a parent object.

• Any object may have as many child ob-
jects as it likes.

• The children of an object do not all have
to be of the same type.

• Index objects may only be the children of
other index objects.

• Non-index objects3 may carry data as well
as children.

• Non-index objects have a file size set be-
yond which pages may not be accessed.

• Index objects may not carry data.

• Each object has a key that is part of a
keyspace associated with its parent object.

• Child keyspaces from two separate ob-
jects do not overlap—so two objects with
equivalent binary blobs as their keys but
with different parent objects are different
objects.

• Each object may carry a small blob of
netfs-specific auxiliary metadata that can
be used to manage cache consistency and
coherence.

• An object may be pinned in the cache,
preventing it from being culled to make
space.

• A non-index object may have space re-
served in the cache for data, thus guaran-
teeing a minimum amount of page storage.

Note that special objects behave exactly like
data objects, except in two cases: when they’re
being looked up, the type forms part of the key;

3Data objects and special objects

and when the cache is being culled, special ob-
jects are not automatically culled, but they are
still removed upon request or when their parent
object goes away.

3.1 Indices

Index objects are very restricted objects as they
may only be the children of other indices and
they may not carry data. However, they may
exist in more than one cache if they don’t have
any non-index children, and they may be bound
to specific caches—which binds all their chil-
dren to the same cache.

Index object instantiation within any particular
cache is deferred until an index further down
the branch needs a non-index type child object
instantiating within that cache—at which point
the full path will be instantiated in one go, right
up to the root index if necessary.

Indices are used to speed up file lookup by split-
ting up the key to a file into a sequence of log-
ical sections, and can also be used to cut down
keys that are too long to use in one lump. In-
dices may also be used define a logical group
of objects so that the whole group can be inval-
idated in one go.

Records for index objects are created in the
virtual index tree in memory whether or not a
cache is available, so that cache binding infor-
mation can be stored for when a cache is finally
made available.

3.2 Virtual Indexing Tree

FS-Cache maintains a virtual indexing tree in
memory for all the active objects it knows
about. There’s an index object at the root of the
tree for FS-Cache’s own use. This is the root
index.

434 • FS-Cache: A Network Filesystem Caching Facility

The children of the root index are keyed on the
name of the netfs that wishes to use the of-
fered caching services. When a netfs requests
caching services an index object specific to that
service will be created if one does not already
exist (see Figure 2).

.fsdef

NFS AFS ISOFS

Figure 2: Primary Indices

Each of these is the primary index for the
named netfs , and each can be used by its owner
netfs in any way it desires. AFS, for example,
would store per-cell indices in its primary in-
dex, using the cell name as the key.

Each primary index is versioned. Should a
netfs request a primary index of a version other
than the one stored in the cache, the entire in-
dex subtree rooted at that primary index will
be scrapped, and a new primary index will be
made.

Note that the index hierarchy maintained by
a netfs will not normally reflect the directory
tree that that netfs will display to the VFS and
the user. Data objects generally are equiva-
lent to inodes, not directory entries, and so
hardlink and rename maintenance is not nor-
mally a problem for the cache.

For instance, with NFS the primary index might
be used to hold an index per server—keyed by
IP address—and each server index used to hold
a data object per inode—keyed by NFS filehan-
dle (see Figure 3).

The inode objects could then have child objects
of their own to represent extended attributes or
directory entries (see Figure 4).

.fsdef

NFS

Server Server Server

Inode Inode Inode

Figure 3: NFS Index Tree

xattr xattrdirdir

Inode Inode

xattr

Figure 4: NFS Inode Attributes

Note that the in-memory index hierarchy may
not be fully representative of the union of the
on-disk trees in all the active caches on a sys-
tem. FS-Cache may discard inactive objects
from memory at any time.

3.3 Data-Containing Objects

Any data object may contain quantities of pages
of data. These pages are held on behalf of the
netfs. The pages are accessed by index num-
ber rather than by file position, and the object
can be viewed as having a sparse array of pages
attached to it.

Holes in this array are considered to represent
pages as yet unfetched from the netfs server,

2006 Linux Symposium, Volume One • 435

and if FS-Cache is asked to retrieve one of
these, it will return an appropriate error rather
than just returning a block full of zeros.

Special objects may also contain data in exactly
the same was as data objects can.

4 Cache Backends

The job of actually storing and retrieving data is
the job of a cache backend. FS-Cache passes
the requests from the netfs to the appropriate
cache backend to actually deal with it.

There are currently two candidate cache back-
ends:

• CacheFS

• CacheFiles

CacheFS is a quasi-filesystem that permits a
block device to be mounted and used as a cache.
It uses the mount system call to make the cache
available, and so doesn’t require any special ac-
tivation interface. The cache can be deactivated
simply by unmounting it.

CacheFiles is a cache rooted in a directory in
an already mounted filesystem. This is more
use where an extra block device is hard to come
by, or re-partitioning is undesirable. This uses
the VFS/VM filesystem interfaces to get an-
other filesystem (such as Ext3) to do the req-
uisite I/O on its behalf.

Both of these are subject to change in the future
in their implementation details, and neither are
fully complete at the time of writing this pa-
per. See section 6 for information on the state
of these components, and section 6.1 for per-
formance data at the time of writing.

5 The Netfs Kernel Interface

The netfs kernel interface is documented in:

Documentation/filesystems/
caching/netfs-api.txt

The in-kernel client support can be obtained by
including:

linux/fscache.h

5.1 Cookies

The netfs and FS-Cache talk to each other by
means of cookies. These are elements of the
virtual indexing tree that FS-Cache maintains,
but they appear as opaque pointers to the netfs.
They are of type:

struct fscache_cookie *

A NULL pointer is considered to be a negative
cookie and represents an uncached object.

A netfs receives a cookie from FS-Cache when
it registers. This cookie represents the primary
index of this netfs. A netfs can acquire fur-
ther cookies by asking FS-Cache to perform a
lookup in an object represented by a cookie it
already has.

When a cookie is acquired by a netfs, an object
definition must be supplied. Object definitions
are described using the following structure:

struct fscache_object_def

This contains the cookie name; the object type;
and operations to retrieve the object key and
auxiliary data, to validate an object read from
disk by it auxiliary data, to select a cache, and
to manage netfs pages.

Note that a netfs’s primary index is defined by
FS-Cache, and is not subject to change.

436 • FS-Cache: A Network Filesystem Caching Facility

5.2 Negative Cookies

A negative cookie is a NULL cookie pointer.
Negative cookies can be used anywhere that
non-negative cookies can, but with the effect
that the FS-Cache header file wrapper functions
return an appropriate error as fast as possible.

Note that attempting to acquire a new cookie
from a negative cookie will simply result in an-
other negative cookie. Attempting to store or
retrieve a page using a negative cookie as the
object specifier will simply result in ENOBUFS
being issued.

FS-Cache will also issue a negative cookie if
an error such as ENOMEM or EIO occurred, a
non-index object’s parent has no backing cache,
the backing cache is being withdrawn from the
system, or the backing cache is stopped due to
an earlier fatal error.

5.3 Registering The Netfs

Before the netfs may access any of the caching
facilities, it must register itself by calling:

fscache_register_netfs()

This is passed a pointer to the netfs definition.

The netfs definition doesn’t contain a lot at the
moment: just the netfs’s name and index struc-
ture version number, and a pointer to a table of
per-netfs operations which is currently empty.

After a successful registration, the primary in-
dex pointer in the netfs definition will have been
filled in with a pointer to the primary index ob-
ject of the netfs.

The registration will fail if it runs out of mem-
ory or if there’s another netfs of the same name
already registered.

When a netfs has finished with the caching fa-
cilities, it should unregister itself by calling:

fscache_unregister_netfs()

This is also passed a pointer to the netfs defini-
tion. It will relinquish the primary index cookie
automatically.

5.4 Acquiring Cookies

A netfs can acquire further cookies by passing
a cookie it already has along with an object def-
inition and a private datum to:

fscache_acquire_cookie()

The cookie passed in represents the object that
will be the parent of the new one.

The private datum will be recorded in the
cookie (if one is returned) and passed to the
various callback operations listed in the object
definition.

The cache will invoke those operations in the
cookie definition to retrieve the key and the
auxiliary data, and to validate the auxiliary data
associated with an object stored on disk.

If the object requested is of non-index type, this
function will search the cache to which the par-
ent object is bound to see if the object is already
present. If a match is found, the owning netfs
will be asked to validate the object. The valida-
tion routine may request that the object be used,
updated or discarded.

If a match is not found, an object will be cre-
ated if sufficient disk space and memory are
available, otherwise a negative cookie will be
returned.

If the parent object is not bound to a cache, then
a negative cookie will be returned.

2006 Linux Symposium, Volume One • 437

Cookies may not be acquired twice without be-
ing relinquished in between. A netfs must it-
self deal with potential cookie multiplexing and
aliasing—such as might happen with multiple
mounts off the same NFS server.

5.5 Relinquishing Cookies

When a netfs no longer needs the object at-
tached to a cookie, it should relinquish the
cookie:

fscache_relinquish_cookie()

When this is called, the caller may also in-
dicate that they wish the object to be retired
permanently—in which case the object and all
its children, its children’s children, etc. will be
deleted from the cache.

Prior to relinquishing a cookie, a netfs must
have uncached all the pages read or allocated
to that cookie, and all the child objects acquired
on that cookie must have been themselves relin-
quished.

The primary index should not be relinquished
directly. This will be taken care of when the
netfs definition is unregistered.

5.6 Control Operations

There are a number of FS-Cache operations
that can be used to control the object attached
to a cookie.

fscache_set_i_size()
This is used to set the maximum file size
on a non-index object. Error ENOBUFS will be
obtained if an attempt is made to access a page
beyond this size. This is provided to allow the
cache backend to optimise the on-disk cache to
store an object of this size; it does not imply
that any storage will be set aside.

fscache_update_cookie()
This can be used to demand that the aux-
iliary data attached to an object be updated
from a netfs’s own records. The auxiliary data
may also be updated at other times, but there’s
no guarantee of when.

fscache_pin_cookie()
fscache_unpin_cookie()
These can be used to request that an ob-
ject be pinned in the cache it currently resides
and to unpin a previously pinned cache.

fscache_reserve_space()
This can be used to reserve a certain amount of
disk space in the cache for a data object to store
data in. The reservation will be extended to
include for any metadata required to store the
reserved data. A reservation may be cancelled
by reducing the reservation size to zero.

The pinning and reservation operations may
both issue error ENOBUFS to indicate that an
object is unbacked, and error ENOSPC to indi-
cate that there’s not enough disk space to set
aside some for pinning and reservation.

Both reservation and pinning persist beyond the
cookie being released unless the cookie or one
of its ancestors in the tree is also retired.

5.7 Data Operations

There are a number of FS-Cache operations
that can be used to store data in the object at-
tached to a cookie and then to retrieve it again.
Note that FS-Cache must be informed of the
maximum data size of a non-index object be-
fore an attempt is made to access pages in that
object.

fscache_alloc_page()
This is used to indicate to the cache that
a netfs page will be committed to the cache

438 • FS-Cache: A Network Filesystem Caching Facility

at some point, and that any previous contents
may be discarded without being read.

fscache_read_or_alloc_page()
This is used to request the cache attempt
to read the specified page from disk, and
otherwise allocate space for it if not present as
it will be fetched shortly from the server.

fscache_read_or_alloc_pages()
This is used to read or allocate several pages in
one go. This is intended to be used from the
readpages address space operation.

fscache_write_page()
This is used to store a netfs page to a
previously read or allocated cache page.

fscache_uncache_page()
fscache_uncache_pagevec()
These are used to release the reference
put on a cache page or a set of cache pages by
a read or allocate operation.

The allocate, read, and write operations will is-
sue error ENOBUFS if the cookie given is nega-
tive or if there’s no space on disk in the cache to
honour the operation. The read operation will
issue error ENODATA if asked to retrieve data it
doesn’t have but that it can reserve space for.

The read and write operations may complete
asynchronously, and will make use of the sup-
plied callback in all cases where I/O is started
to indicate to the netfs the success or failure of
the operation. If a read operation failed on a
page, then the netfs will need to go back to the
server.

5.8 Error Handling

FS-Cache handles many errors as it can inter-
nally and never lets the netfs see them, prefer-
ring to translate them into negative cookies or
ENOBUFS as appropriate to the context.

Out-of-memory errors are normally passed
back to the netfs , which is then expected to deal
with them appropriately, possibly by aborting
the operation it was trying to do.

I/O errors in a cache are more complex to deal
with. If an I/O error happens in a cache, then
the cache will be stopped. No more cache trans-
actions will take place, and all further attempts
to do cache I/O will be gracefully failed.

If the I/O error happens during cookie acqui-
sition, then a negative cookie will be returned,
and all caching operations based on that cookie
will simply give further negative cookies or
ENOBUFS.

If the I/O error happens during the reading of
pages from the cache, then if any pages as yet
unprocessed will be returned to the caller if the
fscache reader function is still in progress; and
any pages already committed to the I/O process
will either complete normally, or will have their
callbacks invoked with an error indication. In
the latter case, the netfs should fetch the page
from the server again.

If the I/O error happens during the writing of
pages to the cache, then either the fscache write
will fail with ENOBUFS or the callback will be
invoked with an error. In either case, it can be
assumed that the page is not safely written into
the cache.

5.9 Data Invalidation And Truncation

FS-Cache does not provide data invalidation
and truncation operations per-se. Instead the
object should be retired (by relinquishing it
with the retirement option set) and acquired
anew. Merely shrinking the maximum file size
down is not sufficient, especially as represen-
tations of extended attributes and suchlike may
not be expunged by truncation.

2006 Linux Symposium, Volume One • 439

6 Current State

The FS-Cache facility and its associated cache
backends and netfs interfaces are not, at the
time of writing, upstream. They are under de-
velopment at Red Hat at this time. The states
of the individual components are as follows:

• FS-Cache
At this time FS-Cache is stable. New
features may be added, but none are
planned.

• CacheFS
CacheFS is currently stalled. Although
the performance numbers obtained are
initially good, after a cache has been
used for a while read-back performance
degrades badly due to fragmentation.
There are ways planned to ameliorate this,
but they require implementation.

• CacheFiles
CacheFiles has been prototyped and
is under development at the moment
in preference to CacheFS as it doesn’t
require a separate block device to be
made available, but can instead run on an
already mounted filesystem. Currently
only Ext3 is being used with it.

• NFS
The NFS interface is sufficiently complete
to give read/write access through the
cache. It does, however, suffer from local
cache aliasing problems that need sorting
out.

• AFS
The AFS interfaces is complete as far
as the in-kernel AFS filesystem is cur-
rently able to go. AFS does not suffer from
cache aliasing locally, but the filesystem
itself does not yet have write support.

6.1 Current Performance

The caches have been tested with NFS to get
some idea of the performance. CacheFiles was
benchmarked on Ext3 with 1K and 4K block
sizes and on also CacheFS. The two caches and
the block device raw tests were run on the same
partition on the client’s disk.

The client test machine contains a pair of
200MHz PentiumPro CPUs, 128MB of mem-
ory, an Ethernet Pro 100 NIC, and a Fujitsu
MPG3204AT 20GB 5400rpm hard disk drive
running in MDMA2 mode.

The server machine contains an Athlon64-
FX51 with 5GB of RAM, an Ethernet Pro 100
NIC, and a pair of RAID1’d WDC WD2000JD
7200rpm SATA hard disk drives running in
UDMA6 mode.

The client is connected through a pair of
100Mbps switches to the server, and the NFS
connection was NFS3 over TCP. Before doing
each test the files on the server were pulled
into the server’s pagecache by copying them to
/dev/null. Each test was run several times,
rebooting the client between iterations. The
lowest number for each case was taken.

Reading a 100MB file:

Cache CacheFiles CacheFS
state 1K Ext3 4K Ext3
None 26s 26s 26s
Cold 44s 35s 27s
Warm 19s 14s 11s

Reading 100MB of raw data from the same
block device used to host the caches can be
done in 11s.

And reading a 200MB file:

440 • FS-Cache: A Network Filesystem Caching Facility

Cache CacheFiles CacheFS
state 1K Ext3 4K Ext3
None 46s 46s 46s
Cold 79s 62s 47s
Warm 37s 29s 23s

Reading 200MB of raw data from the same
block device used to host the caches can be
done in 22s.

As can be seen, a freshly prepared CacheFS
gives excellent performance figures, but these
numbers don’t show the degradation over time
for large files.

The performance of CacheFiles will degrade
over time as the backing filesystem does, if it
does—but CacheFiles’s biggest problem is that
it currently has to bounce the data between the
netfs pages and the backing filesystems’s pages.
This means it does a lot of page-sized memory
to memory copies. It also has to use bmap to
probe for holes when retrieving pages, some-
thing that can be improved by implementing
hole detection in the backing filesystem.

The performance of CacheFiles could possibly
be improved by using direct I/O as well—that
way the backing filesystem really would read
and write directly from/to the netfs’s pages.
That would obviate the need for backing pages
and would reduce the large memory copies.

Note that CacheFiles is still being imple-
mented, so these numbers are very preliminary.

7 Further Information

There’s a mailing list available for FS-Cache
specific discussions:

mailto:linux-cachefs@redhat.com

Patches may be obtained from:

http://people.redhat.com/

~dhowells/cachefs/

and:

http://people.redhat.com/~steved/

cachefs/

The FS-Cache patches add documentation into
the kernel sources here:

Documentation/filesystems/caching/

References

[1] Information about Coda can be found at:

http://www.coda.cs.cmu.edu/

[2] Information about OpenAFS can be
found at:

http://www.openafs.org/

[3] Information about Sun’s CacheFS facility
can be found in their online
documentation:

http://docs.sun.com/

Solaris 9 12/02 System Administrator
Collection » System Administration Guide:
Basic Administration » Chapter 40 Using
The CacheFS File System (Tasks)

http://docs.sun.com/app/docs/

doc/816-4552/6maoo3121?a=view

Why Userspace Sucks—Or 101 Really Dumb Things
Your App Shouldn’t Do

Dave Jones
Red Hat

<davej@redhat.com>

Abstract

During the development of Fedora Core 5 I
found myself asking the same questions day af-
ter day:

• Why does it take so long to boot?

• Why does it take so long to start X?

• Why do I get the opportunity to go fetch
a drink after starting various applications
and waiting for them to load?

• Why does idling at the desktop draw so
much power?

• Why does it take longer to shut down than
it does to boot up?

I initially set out to discover if there was some-
thing the kernel could do better to speed up
booting. A number of suggestions have been
made in the past ranging from better read-
ahead, to improved VM caching strategies, or
better on-disk block layout. I did not get that
far however, because what I found in my initial
profiling was disturbing.

We have an enormous problem with applica-
tions doing unnecessary work, causing wasted
time, and more power-drain than necessary.

This talk will cover a number of examples of
common applications doing incredibly waste-
ful things, and will also detail what can be, and
what has been done to improve the situation.

I intend to show by example numerous applica-
tions doing incredibly dumb things, from silli-
ness such as reloading and re-parsing XML
files 50 times each run, to applications that
wake up every few seconds to ask the kernel
to change the value of something that has not
changed since it last woke up.

I created my tests using patches [1] to the Linux
kernel, but experimented with other approaches
using available tools like strace and systemtap.
I will briefly discuss the use of these tools, as
they apply to the provided examples, in later
sections of this paper.

Our userspace sucks. Only through better edu-
cation of developers of “really dumb things not
to do” can we expect to resolve these issues.

1 Overview

A large number of strange things are happen-
ing behind the scenes in a lot of userspace pro-
grams. When their authors are quizzed about
these discoveries, the responses range from “I
had no idea it was doing that,” to “It didn’t

442 • Why Userspace Sucks—Or 101 Really Dumb Things Your App Shouldn’t Do

do that on my machine.” This paper hopes
to address the former by shedding light on
several tools (some old, some new) that en-
able userspace programmers to gain some in-
sight into what is really going on. It addresses
the latter by means of showing examples that
may shock, scare, and embarrass their authors
into writing code with better thought out algo-
rithms.

2 Learning from read-ahead

Improving boot up time has been a targeted
goal of many distributions in recent years, with
each vendor resorting to a multitude of differ-
ent tricks in order to shave off a few more sec-
onds between boot and login. One such trick
employed by Fedora is the use of a read-ahead
tool, which, given a list of files, simply reads
them into the page cache, and then exits. Dur-
ing the boot process there are periods of time
when the system is blocked on some non-disk
I/O event such as waiting for a DHCP lease.
Read-ahead uses this time to read in files that
are used further along in the boot process. By
seeding the page cache, the start-up of sub-
sequent boot services will take less time pro-
vided that there is sufficient memory to prevent
it from being purged by other programs starting
up during the time between the read-ahead ap-
plication preloaded it, and the real consumer of
the data starting up.

The read-ahead approach is a primitive solu-
tion, but it works. By amortising the cost
of disk IO during otherwise idle periods, we
shave off a significant amount of time dur-
ing boot/login. The bootchart [2] project pro-
duced a number of graphs that helped visualise
progress during the early development of this
tool, and later went on to provide a rewritten
version for Fedora Core 5 which improved on
the bootup performance even further.

The only remaining questions are, what files do
we want to prefetch, and how do we generate
a list of them? When the read-ahead service
was first added to Fedora, the file list was cre-
ated using a kernel patch that simply printk’d
the filename of every file open()’d during the
first five minutes of uptime. (It was necessary to
capture the results over a serial console, due to
the huge volume of data overflowing the dmesg
ring buffer very quickly.)

This patch had an additional use however,
which was to get some idea of just what IO pat-
terns userspace was creating.

During Fedora Core 5 development, I decided
to investigate these patterns. The hope was that
instead of the usual approach of ’how do we
make the IO scheduler better’, we could make
userspace be more intelligent about the sort of
IO patterns it creates.

I started by extending the kernel patch to log
all file IO, not just open()s. With this new
patch, the kernel reports every stat(), delete(),
and path_lookup(), too.

The results were mind-boggling.

• During boot-up, 79576 files were stat()’d.
26769 were open()’d, 1382 commands
were exec’d.

• During shutdown, 23246 files were
stat()’d, 8724 files were open()’d.

2.1 Results from profiling

Picking through a 155234 line log took some
time, but some of the things found were truly
spectacular.

Some of the highlights included:

• HAL Daemon.

2006 Linux Symposium, Volume One • 443

– Reread and reparsed dozens of XML
files during startup. (In some cases,
it did this 54 times per XML file).

– Read a bunch of files for devices that
were not even present.

– Accounted for a total of 1918
open()’s, and 7106 stat()’s.

• CUPS

– Read in ppd files describing every
printer known to man. (Even though
there was not even a printer con-
nected.)

– Responsible for around 2500 stat()’s,
and around 500 open()’s.

• Xorg

A great example of how not to do PCI bus
scanning.

– Scans through /proc/bus/pci/ in or-
der.

– Guesses at random bus numbers,
and tries to open those devices in
/proc/bus/pci/.

– Sequentially probes for devices on
busses 0xf6 through 0xfb (even
though they may not exist).

– Retries entries that it has already
attempted to scan regardless of
whether they succeeded or not.

Aside from this, when it is not busy scan-
ning non-existent PCI busses, X really
likes to stat and reopen lot of files it has al-
ready opened, like libGLcore.so. A weak-
ness of its dynamic loader perhaps?

• XFS

– Was rebuilding the font cache every
time it booted, even if no changes
had occurred in the fonts directories.

• gdm / gnome-session.

– Tried to open a bunch of non-
existent files with odd-looking
names like /usr/share/

pixmaps/Bluecurve/cursors/

00000000000000000000000000

– Suffers from font madness (See be-
low).

2.2 Desktop profiling

Going further, removing the “first 5 minutes”
check of the patch allowed me to profile what
was going on at an otherwise idle desktop.

• irqbalance.

– Wakes up every 10 seconds to re-
balance interrupts in a round-robin
manner. Made a silly mistake where
it was re-balancing interrupts where
no IRQs had ever occurred. A
three line change saved a few dozen
syscalls.

– Was also re-balancing interrupts
where an IRQ had not occurred in
some time every 10 seconds.

– Did an open/write/close of each
/proc/irq/n/smp_affinity file
each time it rebalanced, instead of
keeping the fd’s open, and doing
1/3rd of syscalls.

Whilst working with /proc files does not
incur any I/O, it does trigger a transition
to-and-from kernel space for each system
call, adding up to a lot of unneeded work
on an otherwise ‘idle’ system.

• gamin

– Was stat()’ing a bunch of gnome
menu files every few seconds for no
apparent reason.

444 • Why Userspace Sucks—Or 101 Really Dumb Things Your App Shouldn’t Do

% time seconds usecs/call calls errors syscall
32.98 0.003376 844 4 clone
27.87 0.002853 4 699 1 read
23.50 0.002405 32 76 getdents
10.88 0.001114 0 7288 10 stat
1.38 0.000141 0 292 munmap
1.31 0.000134 0 785 382 open

Figure 1: strace -c output of gnome-terminal with lots of fonts.

• nautilus

– Was stat’ing $HOME/Templates,
/usr/share/applications,
and $HOME/.local/share/

applications every few seconds
even though they had not changed.

• More from the unexplained department. . .

– mixer_applet2 did a real_lookup on
libgstffmpegcolorspace.so for some
bizarre reason.

– Does trashapplet really need to stat
the svg for every size icon when it is
rarely resized?

2.3 Madness with fonts

I had noticed through reviewing the log, that
a lot of applications were stat()’ing (and oc-
casionally open()’ing) a bunch of fonts, and
then never actually using them. To try to make
problems stand out a little more, I copied 6000
TTF’s to $HOME/.fonts, and reran the tests.
The log file almost doubled in size.

Lots of bizarre things stood out.

• gnome-session stat()’d 2473 and open()’d
2434 ttfs.

• metacity open()’d another 238.

• Just to be on the safe side, wnck-applet
open()’d another 349 too.

• Nautilus decided it does not want to be left
out of the fun, and open()’d another 301.

• mixer_applet rounded things off by
open()ing 860 ttfs.

gnome-terminal was another oddball. It
open()’ed 764 fonts and stat()’d another 770
including re-stat()’ing many of them multi-
ple times. The vast majority of those fonts
were not in the system-wide fonts prefer-
ences, nor in gnome-terminals private pref-
erences. strace -c shows that gnome-
terminal spends a not-insignificant amount of
its startup time, stat()’ing a bunch of fonts that
it never uses. (See Figure 1.)

Another really useful tool for parsing huge
strace logs is Morten Wellinders strace-
account [3] which takes away a lot of the te-
dious parsing, and points out some obvious
problem areas in a nice easy-to-read summary.

Whilst having thousands of fonts is a somewhat
pathological case, it is not uncommon for users
to install a few dozen (or in the case of arty
types, a few hundred). The impact of this de-
fect will be less for most users, but it is still
doing a lot more work than it needs to.

After my initial experiments were over, Dan
Berrange wrote a set of systemtap scripts [4]

2006 Linux Symposium, Volume One • 445

to provide similar functionality to my tracing
kernel patch, without the need to actually patch
and rebuild the kernel.

3 Learn to use tools at your dis-
posal

Some other profiling techniques are not as in-
trusive as to require kernel modifications, yet
remarkably, they remain under-utilised.

3.1 valgrind

For some unexplained reason, there are devel-
opers that still have not tried (or in many cases,
have not heard of) valgrind [5]. This is evident
from the number of applications that still output
lots of scary warnings during runtime.

Valgrind can find several different types of
problems, ranging from memory leaks, to the
use of uninitialised memory. Figure 2 shows an
example of mutt running under valgrind.

The use of uninitialised memory can be de-
tected without valgrind, by setting the envi-
ronment variable _MALLOC_PERTURB_ [6] to
a value that will cause glibc to poison memory
allocated with malloc() to the value the variable
is set to, without any need to recompile the pro-
gram.

Since Fedora Core 5 development, I run with
this flag set to %RANDOM in my .bashrc. It
adds some overhead to some programs which
call malloc() a lot, but it has also found a num-
ber of bugs in an assortment of packages. A
gdb backtrace is usually sufficient to spot the
area of code that the author intended to use a
calloc() instead of a malloc(), or in some cases,
had an incorrect memset call after the malloc
returns.

3.2 oprofile

Perceived by many as complicated, oprofile is
actually remarkably trivial to use. In a majority
of cases, simply running

opcontrol --start
(do application to
be profiled)
opcontrol --shutdown
opreport -l

is sufficient to discover the functions where
time is being spent. Should you be using a
distribution which strips symbols out to sep-
arate packages (for example, Fedora/RHEL’s
-debuginfos), you will need to install the rel-
evant -debuginfo packages for the applications
and libraries being profiled in order to get sym-
bols attributed to the data collected.

3.3 Heed the warnings

A lot of developers ignore, or even suppress
warnings emitted by the compiler, proclaiming
“They are just warnings.” On an average day,
the Red Hat package-build system emits around
40–50,000 warnings as part of its daily use giv-
ing some idea of the scale of this problem.

Whilst many warnings are benign, there are
several classes of warnings that can have un-
desirable effects. For example, an implicit dec-
laration warning may still compile and run just
fine on your 32-bit machine, but if the compiler
assumes the undeclared function has int argu-
ments when it actually has long arguments, un-
usual results may occur when the code is run
on a 64-bit machine. Leaving warnings un-
fixed makes it easier for real problems to hide
amongst the noise of the less important warn-
ings.

446 • Why Userspace Sucks—Or 101 Really Dumb Things Your App Shouldn’t Do

==20900== Conditional jump or move depends on uninitialised value(s)
==20900== at 0x3CDE59E76D: re_compile_fastmap_iter (in /lib64/libc-2.4.so)
==20900== by 0x3CDE59EBFA: re_compile_fastmap (in /lib64/libc-2.4.so)
==20900== by 0x3CDE5B1D23: regcomp (in /lib64/libc-2.4.so)
==20900== by 0x40D978: ??? (color.c:511)
==20900== by 0x40DF79: ??? (color.c:724)
==20900== by 0x420C75: ??? (init.c:1335)
==20900== by 0x420D8F: ??? (init.c:1253)
==20900== by 0x422769: ??? (init.c:1941)
==20900== by 0x42D631: ??? (main.c:608)
==20900== by 0x3CDE51D083: __libc_start_main (in /lib64/libc-2.4.so)

Figure 2: Mutt under valgrind

Bonus warnings can be enabled with com-
piler options -Wall and -Wextra (this op-
tion used to be -W in older gcc releases)

For the truly anal, static analysis tools such as
splint [7], and sparse [8] may turn up additional
problems.

In March 2006, a security hole was found in
Xorg [9] by the Coverity Prevent scanner [10].
The code looked like this.

if (getuid() == 0 || geteuid != 0)

No gcc warnings are emitted during this compi-
lation, as it is valid code, yet it does completely
the wrong thing. Splint on the other hand in-
dicates that something is amiss here with the
warning:

Operands of != have incompatible types
([function (void) returns
__uid_t], int): geteuid != 0
Types are incompatible.
(Use -type to inhibit warning)

Recent versions of gcc also allow programs to
be compiled with the -D_FORTIFY_SOURCE=

2 which enables various security checks in var-
ious C library functions. If the size of memory
passed to functions such as memcpy is known
at compile time, warnings will be emitted if the
len argument overruns the buffer being passed.

Additionally, use of certain functions without
checking their return code will also result in a
warning. Some 30-40 or so C runtime functions
have had such checks added to them.

It also traps a far-too-common1 bug: mem-
set with size and value arguments transposed.
Code that does this:

memset(ptr, sizeof(foo), 0);

now gets a compile time warning which looks
like this:

warning: memset used with

constant zero length parameter;

this could be due to transposed

parameters

Even the simpler (and deprecated) bzero func-
tion is not immune from screwups of the size
parameter it seems, as this example shows:

bzero(pages + npagesmax, npagesmax

- npagesmax);

Another useful gcc feature that was deployed in
Fedora Core 5 was the addition of a stack over-
flow detector. With all applications compiled
with the flags

1Across 1282 packages in the Fedora tree, 50 of them
had a variant of this bug.

2006 Linux Symposium, Volume One • 447

-fstack-protector --param=

ssp-buffer-size=4

any attempt at overwriting an on-stack buffer
results in the program being killed with the fol-
lowing message:

*** stack smashing detected ***:

./a.out terminated

Aborted (core dumped)

This turned up a number of problems during de-
velopment, which were usually trivial to fix up.

4 Power measurement

The focus of power management has tradition-
ally been aimed at mobile devices; lower power
consumption leads to longer battery life. Over
the past few years, we have seen increased in-
terest in power management from data centers,
too. There, lowering power consumption has a
direct affect on the cost of power and cooling.
The utility of power savings is not restricted to
costs though, as it will positively affect up-time
during power outages, too.

We did some research into power usage dur-
ing Fedora Core 5 development, to find out ex-
actly how good/bad a job we were doing at
being idle. To this end, I bought a ‘kill-a-
watt’ [11] device (and later borrowed a ‘Watts-
up’ [12] which allowed serial logging). The
results showed that a completely idle EM64T
box (Dell Precision 470) sucked a whopping
153 Watts of power. At its peak, doing a ker-
nel compile, it pulled 258W, over five times
as much power as its LCD display. By com-
parison, a VIA C3 Nehemiah system pulled 48
Watts whilst idle. The lowest power usage I
measured on modern hardware was 21W idle
on a mobile-Athlon-based Compaq laptop.

Whilst vastly lower than the more heavyweight
systems, it was still higher than I had antici-
pated, so I investigated further as to where the
power was being used. For some time, peo-
ple have been proclaiming the usefulness of the
‘dynamic tick’ patch for the kernel, which stops
the kernel waking up at a regular interval to
check if any timers have expired, instead idling
until the next timer in the system expires.

Without the patch, the Athlon XP laptop idled
at around 21W. With dynticks, after settling
down for about a minute, the idle routine
auto-calibrates itself and starts putting off
delays. Suddenly, the power meter started reg-
istering. . . 20,21,19,20,19,20,18,21,19,20,22
changing about once a second. Given the
overall average power use went down below
its regular idle power use, the patch does seem
like a win. (For reference, Windows XP does
not do any tricks similar to the results of the
dynticks patch, and idles at 20W on the same
hardware). Clearly the goal is to spend longer
in the lower states, by not waking up so often.

Another useful side-effect of the dyntick patch
was that it provides a /proc file that allows you
to monitor which timers are firing, and their fre-
quency. Watching this revealed a number of
surprises. Figure 3 shows the output of this
file (The actual output is slightly different, I
munged it to include the symbol name of the
timer function being called.)

• Kernel problems Whilst this paper focuses
on userspace issues, for completeness, I
will also enumerate the kernel issues that
this profiling highlighted.

– USB. Every 256ms, a timer was fir-
ing in the USB code. Apparently the
USB 2.0 spec mandates this timer,
but if there are no USB devices con-
nected (as was the case when I mea-
sured), it does call into the question

448 • Why Userspace Sucks—Or 101 Really Dumb Things Your App Shouldn’t Do

peer_check_expire 181 crond
dst_run_gc 194 syslogd
rt_check_expire 251 auditd
process_timeout 334 hald
it_real_fn 410 automount
process_timeout 437 kjournald
process_timeout 1260
it_real_fn 1564 rpc.idmapd
commit_timeout 1574
wb_timer_fn 1615 init
process_timeout 1652 sendmail
process_timeout 1653
process_timeout 1833
neigh_periodic_timer 1931
process_timeout 2218 hald-addon-stor
process_timeout 3492 cpuspeed
delayed_work_timer_fn 4447
process_timeout 7620 watchdog/0
it_real_fn 7965 Xorg
process_timeout 13269 gdmgreeter
process_timeout 15607 python
cursor_timer_handler 34096
i8042_timer_func 35437
rh_timer_func 52912

Figure 3: /proc/timertop

what exactly it is doing. For the pur-
poses of testing, I worked around this
with a big hammer, and rmmod’d the
USB drivers.

– keyboard controller. At HZ/20, the
i8042 code polls the keyboard con-
troller to see if someone has hot-
plugged a keyboard/mouse or not.

– Cursor blinking. Hilariously, at HZ/5
we wake up to blink the cursor.
(Even if we are running X, and not
sat at a VT)

• gdm

– For some reason, gdm keeps getting
scheduled to do work, even when it
is not the active tty.

• Xorg

– X is hitting it_real_fn a lot
even if it is not the currently active
VT. Ironically, this is due to X us-
ing its ’smart scheduler’, which hits
SIGALRM regularly, to punish X
clients that are hogging the server.
Running X with -dumbsched made
this completely disappear. At the
time it was implemented, itimer was
considered the fastest way of getting
a timer out of the kernel. With ad-
vances from recent years speeding
up gettimeofday() through the use of
vsyscalls, this may no longer be the
most optimal way for it to go about
things.

• python

– The python process that kept wak-
ing up belonged to hpssd.py, a part
of hplip. As I do not have a printer,

2006 Linux Symposium, Volume One • 449

this was completely unnecessary.

By removing the unneeded services and kernel
modules, power usage dropped another watt.
Not a huge amount, but significant enough to
be measured.

Work is continuing in this area for Fedora
Core 6 development, including providing bet-
ter tools to understand the huge amount of data
available. Current gnome-power-manager CVS
even has features to monitor /proc/acpi
files over time to produce easy-to-parse graphs.

5 Conclusions.

The performance issues discussed in this paper
are not typically reported by users. Or, if they
are, the reports lack sufficient information to
root-cause the problem. That is why it is impor-
tant to continue to develop tools such as those
outlined in this paper, and to run these tools
against the code base moving forward. The
work is far from over; rather, it is a continual
effort that should be engaged in by all involved
parties.

With increased interest in power management,
not only for mobile devices, but for desktops
and servers too, a lot more attention needs to
be paid to applications to ensure they are “op-
timised for power.” Further development of
monitoring tools such as the current gnome-
power-manager work is key to understanding
where the problem areas are.

Whilst this paper pointed out a number of spe-
cific problems, the key message to be conveyed
is that the underlying problem does not lie with
any specific package. The problem is that de-
velopers need to be aware of the tools that are
available, and be informed of the new tools be-
ing developed. It is through the use of these
tools that we can make Linux not suck.

References

[1] http://people.redhat.com/
davej/filemon

[2] http://www.bootchart.org

[3] http:
//www.gnome.org/~mortenw/
files/strace-account

[4] http://people.redhat.com/
berrange/systemtap/
bootprobe

[5] http://valgrind.org

[6] http://people.redhat.com/
drepper/defprogramming.pdf

[7] http://www.splint.org

[8] http://www.codemonkey.org.
uk/projects/git-snapshots/
sparse

[9] http://lists.freedesktop.
org/archives/xorg/
2006-March/013992.html
http://blogs.sun.com/
roller/page/alanc?entry=
security_hole_in_xorg_6

[10] http://www.coverity.com

[11] kill-a-watt:
http://www.thinkgeek.com/
gadgets/electronic/7657

[12] watts-up:
http://www.powermeterstore.
com/plug/wattsup.php

450 • Why Userspace Sucks—Or 101 Really Dumb Things Your App Shouldn’t Do

