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TCPIP Network Stack Performance
In Linux Kernel 2.4 and 2.5

Vaijayanthimala Anand, Bill Hartner
IBM Linux Technology Center
manand@us.ibm.com, bhartner@us.ibm.com

Abstract We show that three or more gigabit NICs do not
scale in the hardware environment used for the

We discuss our findings on how well the Linux Workloads.

2.4 and 2.5 TCPIP stack scales with multi-

ple network interfaces and with the SMP net-1 |ntroduction

work workloads on 100/1000 Mb Ethernet net-

works. We |d.ent|f_y three hotspots in the L_|nux Linux is widely deployed in the web server
TCPIP stack: 1) inter-processor cache disrup- . , :
. : L arena and it has been claimed that Linux net-
tion on SMP environments, 2) inefficient copy

routines, and 3) poor TCPIP stack scaling a%/vorklng IS optimized to a great extent to per-
; : orm well in the server network loads such as
network bandwidth increases.

file serving and web serving, and in packet for-
Our analysis shows that the L2 cache_lines_ouvarding services such as firewalls and routers.
rate (thereby memory cycles per instruction-Linux scales well horizontally in cluster envi-
mCPI) is high in the TCPIP code path ronments which are used for web servers, file
leading to poor SMP Network Scalability. Servers etc.; however, our studies on IA32 ar-
We examine a solution that enhances datghitecture show that the TCPIP network stack
cache effectiveness and therefore improves thé the Linux Kernel 2.4 and 2.5 lack SMP net-
SMP scalability. Next the paper concen-Work scalability as more CPUs are added and
trates on is improving the “Copy_To_User” lack NIC scalability on high bandwidth net-
and “Copy_From_User” routines used by theWOfk interfaces when more NICs are added.
TCPIP stack. We propose using the “hand un-
rolled loop” instead of the “movsd” instruction 1.1 SMP Network Scalability
on the IA32 architecture and also discuss the
effects of aligning the data buffers. The gigabitCache memory behavior is a central is-
network interface scalability workload clearly sue in contemporary computer system
shows that the Linux TCPIP stack is not effi- performance[6]. Much work has been done
cient in handling high bandwidth network traf- to examine the memory reference behavior
fic. The Linux TCPIP stack needs to mimic theof application code, operating system and
“Interrupt Mitigation” that network interfaces network protocols. Most of this kind of
adopt. We explore the techniques that wouldvork on network protocols concentrates on
accomplish this effect in the TCPIP stack. Thisuniprocessor systems. This paper discusses the
paper also touches on the system hardware lindata and instruction memory reference effects
itation that affects the gigabit NIC’s scalability. of Linux TCPIP stack in a multi-processor sys-
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tem. We examine the L2_cache_line_out ratenemory reference considerably improves per-
and instructions retired rate in the receive patiformance.

of TCPIP and Ethernet driver to understand _
memory latency. In the TCPIP stack, under numerous condi-

tions, the received data is check summed in
In 1A32 Linux, interrupts from different net- the interrupt (softirq) handler and is copied
work interfaces (NICs) are routed to CPUs in ato user buffer in the process context. These
dynamic fashion. The received data, its associtwo contexts, interrupt and process, are fre-
ated structures that deal with a particular conquently executed on different processors due
nection, and its activities get processed in dif-to the dynamic interrupt routing and how pro-
ferent CPUs due to the dynamic routing, whichcesses are scheduled. We proto-typed a patch
results in non-locality of TCPIP code and datathat forces the csum and copy to happen on the
structures, which increases the memory accessaame processor for all conditions resulting in
latency leading to poor performance. This ef-performance improvement. Linux TCPIP does
fectis eliminated when the application processhave routines that fold csum into copy; how-
and the interrupt for the particular network in- ever, these routines are not used in all the code
terface are aligned to run on the same CPU. Byaths. We also show profiling data that sup-
binding the process and interrupt to a CPU, gorts the need to improve both data and instruc-
given connection and its associated activitiegion memory references in TCPIP stack.
including the data processing during the dura-
tion of that connection are guarenteed to pro4.2 Efficient Copy Routines
cess on the same CPU. This binding results in

better locality of data and instructions, and im-y ¢ only did we consider reducing the mem-
proving the cache effectiveness. Afﬁnitizing_Ory reference cycles for data in SMP environ-

process and interrupt to a CPU may be feasient hut we also considered it for uniprocessor
ble in a single service dedicated server enviyy jmnroyving temporal and spatial locality for
ronment, but may not be desirable in all situa-y5:4 copy. Copying data between user and ker-
tjons. Therefore, reducing the number qf L2 g memory takes a big chunk of network pro-
lines that bounce between the caches in thg,.,| processing time. Zero copy again is the
TCPIP stack code path is a critical factor in e chanism to reduce this processing time, and
improving the SMP scalability of the TCPIP improving the packet latency. Even with zero

stack. We use affinity as a tool to _understandcopy, the copy is eliminated only on the send
how TCPIP SMP scalability can be improved. side; improving the copy routines in TCPIP

The Inter-processor cache line bouncing probStack would help the receive side processing.

lem can be generally addressed by improv-We found that the copy routines used in IA32

ing the data memory references and instructiofy"Ux TCPIP stack can be made more efficient
memory references. Instruction cache behayRY Using “unrolied integer copy” instead of the

ior in a network protocol such as TCPIP has &5t1INg operation “movsd.” This paper presents

larger impact on performance in most scenarMéasurements to show that “movsd” is more

ios than the data cache behavior [6, 2]. InstrucEXPensive than “unrolled integer mov.” We
tion memory refereces may be solely importanf!S© 100K at the effects of alignment on Pen-

in scenarios where zero copy [1] is used or gcellum [ll systems. Measurements presented in

narios where less data is used. When zero copyection 3 show that “movsd” performs better if

is not used, reducing the time spent on the datQOth the source and the destination buffers are
' aligned.
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1.3 TCPIP Scalability on Gigabit Network 3 we discuss about efficient copy routines in
the TCPIP stack followed by section 4 that dis-

_ _ cusses TCPIP stack scalability on high band-
Finally this paper looks at the performance of

) o ) width networks and hardware limitation that
the TCPIP stack using gigabit bandwidth net-., ;ges poor gigabit NIC scalability.

work interfaces (NICs). We use NIC hereafter
in this paper to mean Network adapters. In
this paper we concentrate on receive side pro-
cessing to discuss how the TCPIP stack maKI _
be improved for handling high bandwidth traf- Netperf [10] is a well-known network bench-

fic. The techniques discussed in this papefark used in the open source community to

for receive side processing are also applica™easure network throughput and packet la-

ble to transmit side processing but we have nofency- Netperf is available at www.netperf.org.
evaluated transmit side performance. This palNetPerf3 is an experimental version of Net-
per presents analysis data to show why Tcpperf that has multi-thread and multi-process

should process packets in bunches at each lay&HPPOrt.  We extended Netperf3 to include
rather than one packet at a time. High bangMulti-adapter and synchronized multi-client

width network interface cards implement afeaturestodrive 4-way and 8-way SMP servers
technique called “interrupt mitigation” to inter- 2nd clients. Netperf3 supports streaming, re-

rupt the processor for a bunch of packets induest response, and connection request re-
stead of interrupting for each received packetSPONse functions on TCP and UDP. We used

This paper suggests that this “interrupt mitiga-1 ¢P—STREAM for our work so far.

tion” should be mimicked in higher layer pro- In this paper we evaluate SMP scalabil-

tocols as “packet mitigation.” We also look at ity and network NIC scalability using the

how the hardware that we used has IimitationTCP STREAM feature of Netperf3. We used
that leads to poor gigabit NIC scaling. multijadpater workloads between a server and

The main contribution of this paper is to bring @ client for SMP scalability study and used

to light the Linux TCPIP SMP scalability prob- Multiple clients and a server with multiple
lem caused by cache line bouncing among mulNICs for NIC scalability. The TCP_STREAM
tiple processors in the Linux 2.4.x and 2 5 ytest establishes a control socket connection and

kernels. Second this paper points out that th& data connection then sends streams of data

Linux TCPIP stack needs to be tailored to more-Sing the data connection. Atthe end of a fixed
efficient protocol processing for high band-tme period, the test ends and the total through-
width network traffic. put is reported in Mbits per second. The prin-

cipal metric we used for TCP_STREAM is the
The rest of the Introduction Section discusseshroughput and “throughput scaled to 100%
the benchmark, hardware and software enviCPU Utlization.” Vmstat is used to measure
ronments used. Each section includes théhe CPU Utlization at the server. “Throughput
benchmark results, analysis data, descriptioscaled to 100% CPU Utlization” is derived us-
of the problem if one exists, and a technique oiing the throughput and the cpu Utlization. The
a patch that could alleviate the bottleneck. Sectthroughput scaled to CPU” is the throughput
tion 2 deals with the SMP Scalability problem which would result if all CPUs could be de-
that in Linux 2.4 kernel and also shows howvoted to the throughput. We refer “throughput
the 0(1) scheduler[8] has improved this scalascaled to 100% CPU Utlization” as “through-
bility to some extent in 2.5 kernel. In section put scaled to CPU” in the rest of the paper.

BENCHMARK ENVIRONMENT
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We used isolated Ethernet 100Mbit and2 TCPIP SMP Scalability Using
1000Mbit network for our workloads. Open Ethernet 100Mb

source profiling tools such as SGI kernprof[7],

and SGI lockmeter[3] were used for analy-

sis. Where necessary, additional tools were de2 1 Netperf3 TCP_STREAM results

veloped to gather profiling data. In addition

to time based profiling of SGI Kernprof, we We measured the SMP scalability of the 2.4.17
used Kernprof’s Pentium performance-counteand 2.5.3 TCPIP stack using the Netperf3
based profiling. In performance-counter basednulti-adapter TCP_STREAM test. The server
profiling, a profile observation is set to oc- used was a 4-way 500 Mhz PIIl with four
cur after a certain number of Pentium per-100 Mb ethernet NICs operating in full duplex
formance counter events[4]. We used a fremode with a MTU size of 1500 bytes. The
qguency of 1000 for our profiling, i.e., for ev- server NICs (receive side) were connected to
ery 1000 cache_lines_out or 1000 instructionghe client NIC (send side) point-to-point. We
retired, the profile records the instruction loca-used 8-way, 4-way and 2-way clients to drive
tion. Thus the profile shows where the kerneld-way, 2-way and 1-way servers respectively.

takes most of its cache_lines_out or where the . _
kernel executes most of its instructions. A single TCP connection was created between

the server and the client on each of the net-
works for a total of four connections. A pro-

cess was created for each of the NICs for a to-

tal of (4) server processes. The test was run

using the application message sizes of 1024,

HARDWARE AND SOEFTWARE 2048, 4096, 8192, 16384, 32?68 and 65536

ENVIRONMENT bytes. The tcp socket buffer size was 65536
bytes and TCP NODELAY OPTION was set

on the socket. Both the network throughput

(Mb/sec) and CPU utilization were measured

on the server. The throughput scaled to CPU

utilization is derived from these two measure-

The 100Mb Ethernet test was run on an 8-ments. Especially for the 100 Mb Ethernet

way Profusion chipset, using 700 Mhz Pen_workload, the “throughput scaled to CPU” is

tium 11l Xeon with 4 GB memory and 1 MB the important measure since the throughput of

L2 cache as our client and a 500 Mhz pPen£ach of the 4 adapters reaches maximum media

tium 111 4-way SMP system with 2.5 GB mem- SPeed in all tests.

ory, and 2 MB L2 cache as our server. Theye ran the test with 1, 2, and 4 CPUs enabled
NIC cards used were Intel Ethernet PRO/lOQ)n the server. The 2P and 4P SMP scalablity
Server PCl adapters. For 1000Mb Ethernet, We,ctor was calculated by dividing the respective

used the same 8-way system as our Server anghoyghput scaled to CPU utilization” by the
Pentium Il 2-way clients with 1 GB memory ;p “throughput scaled to CPU utilization.”
(4 of them). The NIC cards used were Intel

Ethernet PRO 1000 XF Server PCI adaptersln Figure 1 and Figure 2, we report the 2P and
We used both 2.4.x and 2.5.x Linux kernels.4P SMP scalability factor of the 2.4.17 and the
In both cases the server and client(s) are cor2.5.3 kernel for the Netperf3 TCP_STREAM
nected point-to-point using cross over cables. test using the different Netperf3 message sizes.
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Note that the 4P scalability factor for the 2.4.17understand this problem we ran some tests.
kernel using the 65536 message size barel\We choose 4P and 4 adapter cases for our
achieves 2/4 scaling. The 4P scalability factorexperiment. First we examined the effects
of the 2.5.3 kernel is much improved reachingof IRQ and process affinity on the Netperf3
2/4 in most of the cases. The better 4P scalaFfCP_STREAM test for the 2.4.17 kernel using
bility of the 2.5.3 kernel may be attributed to the 4-way server. IRQ affinity involves binding
the 0(1) scheduler which provides better pro-each of the four network adapter IRQs to one
cess affinity to a CPU than the 2.4.17 schedeof the (4) CPUs. For example, the interrupt as-
uler. signed to NIC 1 to CPU O, NIC 2to CPU 1
etc. PROCESS affinity involves binding each
of the four Netperf server processes to one the
four CPUs. Both PROCESS and IRQ affin-

2.4.17 Network SMP Scalability ity can be combined by affinitizing the IRQ
R for NIC and netperfS server process servicing
| el 24174 Adapter SUP scalabiity the tcp connection to the same CPU. In table

1, we report the percent improvement of the

7?:— Netperf3 TCP_STREAM throughput scaled to
—— - CPU when IRQ affinity, PROCESS affinity and
e BOTH affinities were applied to the server.
e The percentage improvement is relative to the
e throughput scaled to CPU utilization when no

affinity was applied. The higher the percent-

age, better the performance.

ra
o

Scalability Factor

a oM

Figure 1: SMP Network Scalability on 2.4.17

Kernel For the case of IRQ affinity, throughput scaled
to CPU utilization improved 4 to 21% for the
various message sizes. For the case of PRO-
CESS affinity, throughput scaled to CPU uti-
lization improved 6 to 28%. For the case

2.5.3 Kernel Network SMP Scalability of both IRQ and PROCESS affinity applied,

Netperf3 Stream Test - 1 Connection/Adapter throughput scaled to CPU utilization improved
el 4 Adspler S seawlly 42 to 74%. The gain in the third case, where
both IRQ and PROCESS affinity are applied,

7:— is much greater than the sum of the results of

’ these two affinities applied separately.

-

Ind
o

Scalability Factor

=
- woomN

et —— e —
1024 4096 16384 65536 . -
s s e Figure 3 shows the comparison of the
Bytes TCP_STREAM throughput scaled to CPU uti-

lization for the 2.4.17 kernel with 1) no affinity

2) IRQ affinity 3) PROCESS affinity 4) BOTH
Figure 2: SMP Network Scalability on 2.5.3 affinities, and 5) the 2.5.3 kernel with no affin-
Kernel ity applied.

The TCP_STREAM results for the 2.5.3 base
The SMP TCPIP scalability for 4P and 2P kernel and the 2.4.17 kernel with PROCESS
as shown in Figures 1 and 2 is poor. To
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Msgsize| IRQ | PROCESS BOTH Next, we analyzed the 4P TCP_STREAM test
Affinity | Affinity | Affinities |  to understand why IRQ and PROCESS affin-
(Bytes) | (%) (%) (%) ity together improves throughput and CPU uti-
1024 4.34 12.71 74.53 lization to a great extent (up to 74%). We
2048 21.45 21.43 66.56 used profiling based on Intel Performance
4096 19.01 28.73 74.68 counters [4]. We profiled the server dur-
8192 19.18 25 .25 68.03 ing the TCP_STREAM test using the 32K
16384 | 16.36 14.37 55.22 message size on 2.4.17 kernel using the
32768 | 11.38 11.38 47 .45 L2_cache_lines_out and total instructions re-

65536 | 11.31 6.34 42.09 tired events.
Table 1: Affinity Comparison using 2.4.17 By using IRQ and PROCESS affinity, each
Kernel ON 4P using 4 NICS TCPIPconnection and its activities are bound

to happen in the affinitized CPU. This binding

. ) . leads to lower L2 cache lines out as the data
affinity are comparable. Again this is IOrObablyand instructions do not float between CPUs.

attributable to the fact that the 2.5’s 0(1)sched-.|.he gain we achieved through affinity would

uler achieves better process affinity to CI:)Ureflect in this event counter. So we decided

than the 2.4.17 kernel. The best performed tes[t0 measure L2 cache lines out. Because the
run in figure 3 is the 2.4.17 kernel with both . - —

Affinities apolied throughput and throughput scaled to CPU in-
pplied. creased in the IRQ and PROCESS affinity case,

The throughput for the resu'ts presented in théve deC|d6d to measure the tO'[a| inStFUCtiOI’l re-
Figure 3 is mostly constant for most of the tired countalso.
tests, and the difference reflected in CPU idl

fime Sn Table 2 we show the results of the perfor-

mance counter profiling taken for the event
“L2_cache_lines_out” on base Kernel 2.4.17
and Kernel 2.4.17+IRQ and PROCESS affin-
ity. The kernel routines with the highest

IRQ, PROCESS AFFINITY L2 _cache_line_out are listed here. The results

e ot sesled 1o GPU in Table 2 show that using IRQ and PROCESS
500Mhz Fill'4 Adapters 100Mb Ethernet ..
g 1m Kernel 2447 affinity has reduced the number of L2 cache
q Moo e e . . . .
3 "o 24T dra st lines out in all of the listed kernel routines.
2 5 se0 g 2417 4proc afl . .
52 333% — The kernel routines tcp_v4_rcv, mod_timer,
5w Kema1 255 and tcp_data_wait are the major benefectors of
) T affinity. Overall the whole of TCPIP receive
feiee code path has less L2_cache_lines_out result-

ing in better performance.

Figure 3: IRQ and PROCESS AFFINITY This profile is taken usiqg TCP_STREAM test
on 4P server and 8P client. The test ran on 4

adapters using 4 server processes with the con-
_ N figuration of 64K socket buffer, TCP NODE-
2.2 Analysis of IRQ and PROCESS Affinity LAY ON using 32k message size on 2.4.17 ker-
nel:
L2_CACHE_LINES_OUT
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Kernel 2.4.17 Kernell IRQPROCESS
function Baseline] AFFINITIES
Frequency| Frequency
poll_idle 121743 72241
csum_partial_copy_gener|c 27951 13838
schedule 24853 9036
do_softirq 9130 3922
mod_timer 6997 1551
TCP_v4 rcv 6449 629
speedo_interrupt 6262 5066
__wake_up 6143 1779
TCP_recvmsg 5199 2154
USER 5081 2573
speedo_start_xmit 4349 1654
TCP_rcv_established 3724 1336
TCP_data_wait 3610 748

Table 2: L2 Cache Lines Outon 2.4.17

INSTRUCTIONS RETIRED case as the memory latency for instructions is
decreased. The number of instructions retired

. . .___excluding the idle-loop case has not improved
Next we measured the total instructions retlrecja

for the same workload on both baseline 2.4.1
kernel and 2.4.17+IRQ+PROCESS affinity ap-The above analysis clearly indicates that the
plied kernel. Figure 3 shows the total instruc-TCPIP stack SMP scalability can be improved
tions retired for a short period of time running by fixing the inter-processor cache line bounc-

n the affinity case.

the TCP_STREAM 4P/4adapter test. ing by reducing L2_cache_lines_oui.
Kernel Instruc. Retired 5 3 combine_csum_copy Patch to reduce the
Function Frequency cache lines out
2.4.17 Kernel base 32554892
poll_idle on base 19877569 Affinitizing both the IRQ and PROCESS to a

2417 +IRQ+PROCESS s 51607249 CPU results in better locality of data and in-
poll_idle on IRQ+PROCES$ 39326958 structions for the TCPIP send and receive path
Table 3: Instructions Retired Count on 2.4.17 and thus better performance. Because affinity
is not feasible in all situations, we analyzed

The number of instructions executed is highthe code to determine if there are code opti-
in the affinity case which also supports themizations that could provide better cache ef-
fact that lining up process/irg with a CPU fectiveness. It was observed that most of the
brings memory locality and improves instruc- time, the incoming frames were checksummed
tion memory references. We also presented thim the interrupt context and then copied to the
number of instructions retired in idle loop. The applicatoin buffer in the process context. Of-
instructions retired in the idle-loop is doubled ten, the interrupt and process context were
in the affinity case. We gained CPU in Affinity on two different CPUs. A proto-type patch,




Ottawa Linux Symposium 2002 15

csum_copy_patch, was developed to force the Kernel function Frequency
checksum and copy operations to execute more | __generic_copy_to_user: 3127
often in the process context. €1000_intr: 540
alloc_skb: 313
Figure 4 shows the results of the ’ TOTAL_SAMPLES ‘ 6001 ‘

TCP_STREAM test for 1) 2.4.0 kernel
baseline, 2) 2.4.0 +IRQ and PROCESSTable 4: Gigabit PC Sampling of 2.4.17 UNI
affinity and 3) 2.4.0+csum_copy_patch. TheKernel

csum_copy_patch improved throughput scaled ) )

to CPU utilization by up to 14%. There is 3 Copy Routines in TCPIP

additional work to be done in order to bridge

the gap between the baseline and the IRQ an8.1 One gigabit NIC's TCP_STREAM Results
PROCESS affinity case. We will continue

our work to see how we could close the gapwe measured the Netperf3 TCP_STREAM
between the non-affinity and affinity casethroughput for a single connection over a gi-
through code improvement. gabit ethernet network using a 2.4.17 UNI ker-
nel. The Netperf3 message size was 4096
bytes, MTU size was 1500 bytes, and the
server (receive side) was an 8-way processor
700 Mhz PIIl using a UNI kernel. We ob-
served that the resulting throughput did not
achieve maximum media throughput. The
CPU was 19% utilized. A time based profile
of the kernel revealed that 30-50% of the to-
tal ticks were spentin __generic_copy_to_user
routine in the receive path of the TCPIP code.
The __generic_copy_to_user routine is used to
copy data from the network buffers to the ap-

——

Linux 2.4.0
—_—
240+patch

240+irq+proc aff

& A
s
8192
4096 32768

‘é g
g3t
=]
=8
§83
> | 5235 Py »
L oa3 . plication buffers. The profiling data for the
O mé o s & TCPIP receive path is given in Table 4
° - -
j I2 11 -] a s g
0 g0 9 - . .
% S~ 8 & 2 3.2 Copy Routine Analysis
=0
W 8F s ‘ o
(@] o N O \! -
o EE ] \ - We analyzed the __generic_copy_to_user rou-
2 888 ] tine looking for ways to improve the code.
S| Fss=8s5% The copy code was using the move string

1d7 01 pajess mdybnoay |

-

(MOVSD) instruction and had no special case
code for handling mis-aligned data buffers. We
looked at some of the fast memory copy work
done previously and in particular the work
Figure 4: Combine CSUM and COPY on 2.4.0done by University of Berkeley during the P5
time frame. The Berkeley study [9] compares
three types of copies

* STRING: MOVSD string copy.
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* INTEGER: unrolled/prefetched using in- execution of the copy routine with HW inter-
teger registers. rupts disabled. A user level program was writ-

_ ten to retrieve the value of the cycle counter
* FLOATING POINT: unrolled/prefetched yring the test run several times and also after

using floating point registers. the test is completed.

According to their results on P5 machines, the! N€ results showed in Table 6 are the average

floating point copy method yielded 100% moreCYCl€S (rounded) spent to copy a buffer size

throughput when compared to the string cop)Pf 1448 with and without the patch and with

method. The integer copy method yielded 50%a|ignment. Lower the cycles better the perfor-

better throughput than the string copy methodMance of the copy routine.
We adopted both integer copy and floating

point copy methods from this technical paper | Method Used C;yclef

for improving the copy routines in the TCPIP ' . pen

stack. movsd copy routine without 7000
alignment

We developed a user level tool to test these | movsd copy routine with 8 3000
copy methods and found that the integer copy | byte alignment
performs better than the other two methods | IntegerCopyPatch  without 4000
if the source and destination buffers are not | alignment
aligned on 8-byte boundaries. As shown in Ta- _
ble 5, if the source and the destination buffersTable 6: Measurement of cycles spent in copy
are aligned on a 8-byte boundary, the stringnethods on 2.4.17 Kernel

copy performed better than the “unrolled in-_l_h data in Table 6 hat the MOVSD
teger copy.” We used a Pentium Il system) € datain Table 6 suggests that the

for this test and each test copied 1448 mil-nstruction has the best performance when the
source and the destination buffer addresses are

ligned on an 8-byte boundary. However, an 8-
yte source and destination alignment may not

be possible in the receive path of the TCPIP

stack for all general purposes and in all het-
rogenous networks. The TCPIP frame header

o . size is variable due to the TCP and IP op-
We created a copy patch using “unrolled in-jjons in the header. For our analysis purpose

teger copy” for the Linux Kernel and tested,e \were able to align this as we had a con-
further with and without alignment to further {giied and isolated homogenous network en-
understand the impact of this patch and buffeg;.onment. So we decided to implement the
alignment on our workload. We decided to test«,nrolled integer copy” replacing the “movsd”

the alignment in the receive path of the Tcplpstring copy in the copy routines used in this

stack. The gigabit driver was modified to align,,orkload as aligning the buffers is out of ques-
the receive buffer (which is the source buffersqn in the TCPIP receive path.

for the copy routine). The destination buffer

allocated by netperf3 was already aligned. Werigure 5 and Figure 6 show the baseline and
instrumented ___generic_copy_to_user to meacopyPatch throughput and “throughput scaled
sure the CPU cycles spent in this routine. Wao CPU” results on 2.4.17 and 2.5.7 kernels
read the Intel's TSC counter before and afterespectively. It is obvious that the unrolled

lion bytes. In Table 5, the MBytes copied is
the throughput and higher the number the cop
method is more efficient.

3.3 CopyPatch for Efficient Copy
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Method time MBytes dst src aligned
taken (sec) copied | address| address
MOVSD 0.609 2378 | 804c000| 804f000| YES
Integer 0.898 1613 | 8051000 8053000 YES
MOVSD 1.172 1235 | 804c000| 804f004| NO
Integer 0.851 1703 | 8051000| 8053004 NO

Table 5: Comparison of movsd, integer copy, alignment

Copy Patch on 2.4.17 Kernel Copy Patch on 2.5.7 Kemel

2.4.17 Netperf3 TCP Stream - Glgablt Adapter 2.5.7 Netperi3 TCP Stream - Gigabit Adapter
700 Mhz Plll 4 GB Mam | MB cache 8-way 700 Whz Plll 4 GB Mem 1 MB cache 3-vay

—=— Scaled CopyPatch —— Thruput CopyPatch —=— Thruput movsd
—*— Scaled movsd

1200

B 1100
s 1000
800
80D

e
[ P —
500 e

R e
400 + 2

300

= S| Sl = Tl CopyZilch =& Thpl e
Sl e

s

Megebhits per Sec

1024 2048 4096 8192 16384 327€8 G5536

Message Size Bytes Iessage Size Dutss

Figure 5: Copy Patch on 2.4.17 Kernel Figure 6: Copy Patch on 2.5.7 Kernel

integer copy routine has improved throughpution in IA32 architecture.

scaled to CPU for all the message sizes on

both kernels. On 2.4.17, the raw throughput3-4 Future Work

improved for all message sizes with the copy-

patch, however on 2.5.7 kernel, copypatch im-As part of our future work we will look in to
proved raw throughput on messages greatdMmproving the following:

than 8k.

» Extend this work to other memcopy rou-

There is other copy routines combined with tines in the kernel.

checksum in the TCPIP stack, we have not

modified those routines yet. See appendix for < Extend this work to glibc routines.
integer copy patch. Since there are other meth-

ods such_ as sendfile (on_ly for sendside) anql TCPIP GIGABIT NIC SCALA-
mmx copies that are applicable to cover some

situations, the scope of this work may look lim- BILITY

ited but this kind of string copy is used in other

places of the kernel, glibc etc., So we think this4.1  Gigabit NIC Scalability Results

work is important to improve the Linux perfor-

mance in 1A32 architecture and for the futureThe gigabit Ethernet NIC scalability test mea-
“string copy instruction - movsd” implementa- sures how well multiple gigabit Ethernet NICs
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perform on an 8-way server. We mea-
sured Gigabit Ethernet NIC scalability on the
2.4.7 kernel using the Netperf3 multi-adapter
TCP_STREAM test. The server used was ar
8-way 700 Mhz Pentium Il Xeon CPUs with

up to seven Gigabit Ethernet NICs operating
in full duplex mode with a MTU size of 1500

bytes. Four 2-way 900 Mhz clients (send side)
with two Gigabit Ethernet NICs on each con-

Gigabit NICs Scalability

Netperf3 TCP Stream - Gigabit Adapter - Total Throughput

700 Mhz Pll 4 GB Mem 1 MB cache 8-way Server
Intel 32544 PR0OJ/1000 XF adapters (default options)

800

i .

700

Thru'put

MbittSec
a2 o0 @
3 8 o
3 3 3

w
=3
=3

1024 4096 16384
2048 21902

18

3
MsgSize (bytes) £ oy et C Ceteul ez ars

nected to the server (receive side) Etherne
NICs.

The test was first run with only one gigabit

NIC, then two NICs, and so on, up to a total Figure 7: Gigabit NIC Scalability on 2.4.7 Ker-

of seven gigabit Ethernet NICs. A single TCPnel

connection was created between the server and

the client on each of the Ethernet NICs. The

test was run with application message sizes of

1024, 2048, 4096, 8196, 16384, 32768 andyabit NICs Scalability. From the TCPIP stack

65536. The TCP socket buffer size was set t@nd kernel perspective, our analysis points out

64K with TCP NODELAY ON. The Ethernet that the network stack does not efficiently han-

NICs default options are used for the configu-dle the high rate of incoming frames. One of

ration parameters; although, tuning these opthe main problems we noticed was that the high

tions did not yield any better results on ourrate of incoming frames was being processed at

hardware. We used SMP kernels enabling 8he protocol level one at a time even though the

processors on the server and 2 processors ddlC mitigates interrupts and causes interrupt

each of the client. once per configurable interrupt delay. There-
__ fore the NIC causes interrupts for a bunch of

The throughput results of the NIC scalability frames instead of interrupting the processor for

test are found in Figure 7. A single Ether-gach frame. This interrupt mitigation is not

net NIC achieved only 604 Mb per second.mimicked in higher layer protocol processing.
Furthermore, adding a second Ethernet NIC

achieved only a total of 699Mb per second forKernprof time based annotated call graph pro-
the pair of NICs (yielding a scaling factor of filing taken with MTU=1500 and MTU=9000
only 58% = 699/604*2). Adding successive _ ) _
Ethernet NIC added minimal throughput. TheBY Sétting the MTU=9000 (jumbo size), on
results of the gigabit Ethernet NIC scalability @ 919abit adapter/TCP_STREAM, we could

test inidcates that the gigabit Ethernet NiCcs'®ach the max media limit, whereas with MTU
tests do not scale on this 8-way system. set to 1500, we did not reach the maximum

media limit on our hardware. We used profil-

ing tools to see the difference. Tables 7 and
8 show the annotated call graph for a three
adapter case using 1500 and 9000 MTU sizes.
In MTU=1500 case we received less interrupts
We profiled the kernel to understand whataround 275543 times. But the softirq handler
could be done in the software to improve the gi-was invoked around 2 million times. There-

4.2 Analysis of TCPIP Scalability on Gigabit
Network
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|

Kernel function

| Times Invoked

€1000 _intr

840790

. ProcessReceivelnterrupt

951848

(2]

.. netif_rx

758774

. . get_fast_time

758774

. .. do_gettimeofday

758774

. . get_sample_stats

758774

. . Cpu_raise_softirq

758774

. eth_type_trans

758774

. RxChecksum

758774

. _tasklet_schedule

12339

. . wake_up_process

3

.. .. reschedule_idle

3367

. ProcessTransmitinterrup

[s 951848

. . Cpu_raise_softirq

368286

Table 8: 2.4.7 Kernel Kernprof’s Annotated callgraph for MTU 9000

] Kernel Function

| Times invoked|

jumbo size frame. Therefore, we suspect that

€1000 _intr 275543| the higher layer protocol processing latency is
. ProcessReceivelnterrupts 312522| causing the throughput to go down in the case
.. netif_rx 2291591 of MTU=1500 as each layer of the protocol is
... get_fast_time 2291591| processing one frame at a time. We propose
.. .. do_gettimeofday 2201591| using a mechanism such as “gather-receive”
... get_sample_stats 2291591| Where the bunch of the frames received are
... cpu_raise_softirq 2291591 Oathered and sent to upper layer protocol for
.. eth_type_trans 2291591| Processing. We have not done any proto-type
~ RxChecksum 2201591| Yetto prove that this will help.
. _tasklet_schedule 32369 : _ _
. ProcessTransmitinterrupts 312507 L Kemel Function | Times invoked
.. cpu_raise_softirq 189394 ReceiveBufferFill 32369
= = . alloc_skb 2291645
Table 7: 2.4.7 Kernel Annotated Callgraph for| . . kmalloc 2481043
MTU 1500 .. . kmem_cache_alloc_batch 63866
.. kmem_cache_alloc 1178633
... kmem_cache_alloc_batch 7110

fore, we received around 8 frames per inter-

rupt in an average. Whereas in the MTU=9000Table 9: 2.4.7 Kernel's Kernprof Annotated
case, we received 860970 time interrupts an€allgraph for MTU 1500

softirg handler was invoked for 758774 times.

We received one frame per interrupt on an av\We also found a similar problem with the allo-
erage. Therefore, the upper layer protocols areation and deallocation of skbs (socket buffers)
not invoked more than the interrupts and theand data frame buffers in the receive path. The
protocol processing latency was less so we rekinux gigabit network device driver has a re-
ceived 3X more interrupts/frames in case ofceive pool of buffers called “receive ring.” Gi-
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| Kernel function | Times Invoked|
ReceiveBufferFill 12339
. alloc_skb 758748
. . kmalloc 1127037
... kmem_cache_alloc_batch 170
.. kmem_cache_alloc 178716
... kmem_cache_alloc_batch 792

Table 10: 2.4.7 Kernel Kernprof's Annotated callgraph for MTU 9000

Table 11: Two NIC using separate PCl buses  Table 12: Two NIC sharing the PCI bus

Bus Throughput Bus Throughput
NIC 1 | Bus A (66 MHz) | 385 Mb/sec NIC 1 | Bus A (66 MHz) | 355 Mb/sec
NIC 2 | Bus B (66 MHz) | 387 Mb/sec NIC 2 | Bus A (66 MHz) | 342 Mb/sec
Total 782 Mb/sec Total 697 Mb/sec

gabit driver replenishes this pool by allocat-Table 13: Three Adapters, Separate vs. Shared
ing skb one at a time. Tables 9 and 10 show | Three adapters using separate PCI bus
that alloc_skb is called 2 million times when NIC | Bus Throughput
ReceiveBufferFill is called only 32 thousand 1 Bus A (66 MHz) | 266 Mb/sec
times in the case where MTU was set to 1500. | 2 Bus B (66 MHz) | 257 Mb/sec
ReceiveBufferFill is the routine that replen- 3 Bus C (33 MHz)| 259 Mb/sec
ishes the receive buffer pool. TCPIP stack Total 782 Mb/sec
should provide a way to allocate these skbs
bunch at a time. To take this one step fur-
ther, we think that the allocated buffers (receive
ring in the driver) should be recycled instead of 3
freeing and reallocating them again. We have
started looking into creating a proto-type patch
and this is our on-going effort.

Three adapters sharing PCI bus
Bus A (66 MHz) | 197 Mb/sec
Bus A (66 MHz) | 197 Mb/sec
Bus B (66 MHz) | 356 Mb/sec

Total 750 Mb/sec

[EEN

N

bit Ethernet NICs are used, placing one on bus
4.3 Analysis of Hardware for Gigabit NIC A and the other on bus B improved throughput
Scalability by 10% compared to having both adapters on

bus A.

We performed additional tests in order to un- ] .
derstand why multiple NICs do not scale well Running three adapters on three different buses

on this 8-way system. We first investigated theYi€!ds almost the same throughput as the case
PCl bus. The 8-way server has two 66 Mhz gawhere 3 NICs share the same 66 Mhz bus. The
bit PCI buses (A and B) and two 33 Mhz 64-bit PC! bus capacity is 532 MByte per second on
PCI buses (C and D). We used gigabit Ethernef® Mz and 266 MByte/sec on 33 Mhz [S] But

NICs on different combinations of PCI busses'V€ are not even getting 800 Mbits/sec total in
and reran the tests. the above cases. We are far from hitting the

PCI bus capacity; therefore, we concluded that
Tables 4.3 and 4.3 indicate that when two gigathe PCI bus is not the bottleneck.
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Next we looked at the effects of IRQ and Pro-
cess affinity on the workload. We tested affin-
ity on 2 NICs. Since we have 8 CPUs on our
server system we chose different combination:
of CPUs to see if selecting one CPU from eact
side of the Profusion chip set would make a
difference. (The 8-way is composed of two 4-
ways with independent 800 MBytes/sec front
side buses, connected by the Profusion chip t
2 memory cards providing 1600 MBytes/sec
and to the PCI buses via a 800 MByte/sec con
nection.) We affinitize Netperf3 server pro-

cesses to a combination of CPU sets and the

Netperf3 Bandwidth with Two NICs
Affinitized to CPUO and Another CPU

other cpu
opul

ME/s

Other CPU Numbar

Ethernet NIC's IRQs to a combination of CPU Figure 8: Results of IRQ and Process Affinity
sets. The system is not rebooted between thwith 2 NICs

tests, so the numbers assigned to CPUs by

the operating system stayed intact between the
tests. The server process was restarted befotger. However, we have shown that the PCI bus

each test and the IRQs for the NICs were reiS not the limiting factor, and IRQ and PRO-
set after each test. Both the NICs were place@ESS affinity do not help improve the through-
in Bus A (a 66 Mhz/64 bit bus) and interrupts Put and scalability. It is not acceptable that
23 and 24 were assigned to these two NICsEvVen one adapter does not achieve close to me-
Interrupt 23 was bounded to CPUO for all thedia speed using MTU 1500 size and that adding
tests and interrupt 24 was affinitized to CPU1 NICs do not scale well. Gigabit NIC scalability
CPU2 etc. Netperf's server process 1 is alway4Vill be a focus of our future investigation.

affinitized to CPUO and process 2 is bound to

CPU 1, CPU 2 and so on. The results of thes Concluding Remarks

IRQ and PROCESS affinity test are in Figure
8. The throughput has not improved that much

compared to the baseline. The max through!n this paper we have highlighted a few poten-

put that we get with both affinity is around 73

o tial areas for improvement in the Linux TCPIP

Mbits/sec and our baseline is 699 Mbits/sec. Protocol.

4.4 Future Work

Neither the IRQ and PROCESS affinity nor se-
lecting CPUs from different sides of the bus
improved the throughput much. These 2 and

3 adapter cases are neither CPU bound nor net-

work media limited. So we must contnue our
analysis to find the bottleneck. We also did
some preliminary investigation using Intel Per-
formance counter profiling; but, found no con-
clusive leads. We will continue this work fur-

» SMP Network Scalability: We presented
results showing the SMP network scala-
bility problem and provided analysis to
associate the poor scalability to inter-
processor cache line bouncing due to high
L2 cache_lines_out problem. We believe
that this SMP network scalability is one
of the areas where TCPIP stack needs
to be fixed to improve scalability. We
also showed a proto-type to improve the
data cache reference in the TCPIP stack.
Additionally we examined efficient copy
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routines for the 1A32 Linux TCPIP stack NICs scalability test results. This helped us to
and expressed the belief that this mayverify our results.

be a potential area to further investigate
to gain performance improvement in the

IA32 kernel itself and glibc routines. 7 About the authors

e TCPIP Scalability on Gigabit: We ex- Vaijayanthimala (Mala) K Anand works in the
amined the effects of using gigabit net-IBM Linux Technology center as a member
work on the LINUX TCPIP stack. We of the Linux Performance team. Mala has
presented various test results and analyworked on the design and development of net-
sis data to show that the hardware that wevork protocols, network device drivers and
used is not good enough to handle morghin clients. Mala is currently working on
than 2 NICs. We also emphasized thatLinux TCPIP stack performance analysis. She
the implementation of the Linux TCPIP can be reached at manand@us.ibm.com.
stack itself needs modifications to handle_ _ _
high bandwidth network traffic. As we B.|II Hartner is the technical lead for IBM’s
move to other types of high bandwidth LI.nUX Technology Center performance team.
networks such as InfiniBand, we need toBill has worked in software development for
keep in mind that the software network _18 years. For the past 8 years, Bill has worked
stack should also need to scale to utilizel" k€rnel development and performance. For
fully the high network bandwidth. We the past 3 years Bill has worked on Linux ker-

conclude that both the system hardwar@el performance. Bill can be reached at bhart-

and the software need improvement toner@us.lbm.com.
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8 Appendix
8.1 COPY Patch

This patch changes the copy routines used in tcpip stack.

diff -Naur linux-417/arch/i386/lib/usercopy.c \
linux-417a/arch/i386/lib/usercopy.c
--- linux-417/arch/i386/lib/usercopy.c Tue Jan 22 21:29:05 2002
+++ linux-417a/arch/i386/lib/usercopy.c Fri Jan 18 12:50:38 2002
@@ -44,7 +446 @@
unsigned long
__generic_copy_to_user(void *to, const void *from, unsigned long n)
{
- prefetch(from);
if (access_ok(VERIFY_WRITE, to, n))
__copy_user(to,from,n);
return n;
diff -Naur linux-417/include/asm-i386/string.h \
linux-417a/include/asm-i386/string.h
--- linux-417/include/asm-i386/string.h Tue Jan 22 21:29:48 2002
+++ linux-417a/include/asm-i386/string.h Wed Jan 23 00:11:29 2002
@@ -196,21 +196,65 @@
return __res;

}

-static inline void * __memcpy(void * to, const void * from, size_t n)
+static inline void * __memcpy(void * to, const void * from, size t size)

{

-int dO, di, d2;

+ int _ dO, _ di;
__asm__ _ volatile__ (

- "rep ; movsi\n\t"

- "testb $2,%b4\n\t"

- "je 1fin\t"

- "movsw\n"

- "1:\ttestb $1,%b4\n\t"
- "je 2fin\t"

- "movsb\n”

- "2

- . "=&c" (d0), "=&D" (d1), "=&S" (d2)

0" (n/4), "g" (n),"1" ((long) to),"2" ((long) from)
. "memory");

cmpl $63, %0\n\t"

jpe  2f\n\t"

.align 2, 0x90\n\t"

"0: movl 32(%5), %%eax\n\t"
cmpl $67, %0\n\t"
jbe 1fin\t"
movl 64(%5), %%eax\n\t"
.align 2, 0x90\n\t"

"1: movl 0(%5), %%eax\n\t"

+ 4+ + + o+ 4+
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" movl 4(%5), %%edx\n\t"
" movl %%eax, 0(%4)\n\t"
" movl %%edx, 4(%4)\n\t"

" movl 8(%5), %%eax\n\t"

" movl 12(%5),%%edx\n\t"

" movl %%eax, 8(%4)\n\t"

" movl %%edx, 12(%4)\n\t"
" movl 16(%5), %%eax\n\t"
movl 20(%5), %%edx\n\t"
" movl %%eax, 16(%4)\n\t"
" movl %%edx, 20(%4)\n\t"
" movl 24(%5), %%eax\n\t"
" movl 28(%5), %%edx\n\t"
" movl %%eax, 24(%4)\n\t"
" movl %%edx, 28(%4)\n\t"
movl 32(%5), %%eax\n\t"
" movl 36(%5), %%edx\n\t"
" movl %%eax, 32(%4)\n\t"
movl %%edx, 36(%4)\n\t"
" movl 40(%5), %%eax\n\t"
" movl 44(%5), %%edx\n\t"
" movl %%eax, 40(%4)\n\t"
" movl %%edx, 44(%4)\n\t"
movl 48(%5), %%eax\n\t"
" movl 52(%5), %%edx\n\t"
" movl %%eax, 48(%4)\n\t"
" movl %%edx, 52(%4)\n\t"
" movl 56(%5), %%eax\n\t"
" movl 60(%5), %%edx\n\t"
" movl %%eax, 56(%4)\n\t"
" movl %%edx, 60(%4)\n\t"
" addl $-64, %0\n\t"

" addl $64, %5\n\t"

" addl $64, %4\n\t"

" cmpl $63, %0\n\t"

" ja Ob\n\t"

"2: movl %0, %%eax\n\t"

" shrl  $2, %0\n\t"

" andl  $3, %%eax\n\t"

" cld\n\t"

rep; movsl\n\t"

" movl %%eax, %0\n\t"
rep; movsb\n\t"

: "=&c"(size), "=&D" (__d0), "=&S" (__d1)
"0"(size), "1"(to), "2"(from)

eax", "edx","memory");

R T T T T T S S S S S S RS T T T T T T T i S T T s S T S S S S S S SR

return (to);

}

diff -Naur linux-417/include/asm-i386/uaccess.h \
linux-417a/include/asm-i386/uaccess.h

--- linux-417/include/asm-i386/uaccess.h Tue Jan 22 21:29:43 2002

+++ linux-417al/include/asm-i386/uaccess.h Tue Jan 22 21:58:11 2002

@@ -256,50 +256,186 @@
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do {

int _do, _ di;

__asm__ _ volatile_ ( \
- "0: rep; movshn" \
- " movl %3,%0\n"
- "1 rep; movsb\n" \
- "2:\n"
- ".section .fixup\"ax\"\n" \
- "3: lea 0(%3,%0,4),%0\n" \
- " jmp 2b\n"
- ".previous\n" \
- ".section __ex_table\"a\"\n" \
- " .align 4\n"
- " .long 0b,3b\n" \
- " Jong 1b,2b\n" \
- ".previous" \
- . "=&c"(size), "=&D" (__d0), "=&S" (__d1) \
- : "r'(size & 3), "0"(size / 4), "1"(to), "2"(from) \
- : "memory");
+ " cmpl $63, %0\n" \
+ " jpe  5f\n" \
+ " .align 2,0x90\n" \
+ "0: movl 32(%4), %%eax\n" \
+ " cmpl $67, %0\n" \
+ " jbe 1fAn" \
+ " movl 64(%4), %%eax\n" \
+ " .align 2,0x90\n" \
+ "1 movl 0(%4), %%eax\n" \
+ " movl 4(%4), %%edx\n" \
+ "2: movl %%eax, 0(%3)\n" \
+ "21: movl %%edx, 4(%3)\n" \
+ " movl 8(%4), %%eax\n" \
+ " movl 12(%4),%%edx\n" \
+ "3: movl %%eax, 8(%3)\n"
+ "31: movl %%edx, 12(%3)\n" \
+ " movl 16(%4), %%eax\n" \
+ " movl 20(%4), %%edx\n" \
+ "4: movl %%eax, 16(%3)\n"
+ "41: movl %%edx, 20(%3)\n" \
+ " movl 24(%4), %%eax\n" \
+ " movl 28(%4), %%edx\n" \
+ "10: movl %%eax, 24(%3)\n" \
+ "51: movl %%edx, 28(%3)\n" \
+ " movl 32(%4), %%eax\n" \
+ " movl 36(%4), %%edx\n" \
+ "11: movl %%eax, 32(%3)\n" \
+ "61: movl %%edx, 36(%3)\n" \
+ " movl 40(%4), %%eax\n" \
+ " movl 44(%4), %%edx\n" \
+ "12: movl %%eax, 40(%3)\n" \
+ "T1: movl %%edx, 44(%3)\n" \
+ " movl 48(%4), %%eax\n" \
+ " movl 52(%4), %%edx\n" \
+ "13: movl %%eax, 48(%3)\n" \
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"81: movl %%edx, 52(%3)\n"
" movl 56(%4), %%eax\n"
movl 60(%4), %%edx\n"
"14: movl %%eax, 56(%3)\n"
"91: movl %%edx, 60(%3)\n"
" addl $-64, %0\n"
addl $64, %4\n"
addl $64, %3\n"
cmpl $63, %0\n"
ja 0b\n"
"5: movl %0, %%eax\n"
" shrl  $2, %0\n"
andl  $3, %%eax\n"
cld\n”
"6: rep; movshn"
" movl %%eax, %0\n"
"7 rep; movsb\n"
"8:\n"
".section .fixup,\"ax\"\n"
"O: lea 0(%%eax,%0,4),%0\n"
" jmp 8b\n"
"15: movl %6, %0\n"
jmp 8b\n"
".previous\n"
".section __ ex_table\"a\"\n"
" .align 4\n"
Jdong 2b,15b\n"
Jdong 21b,15b\n"
Jdong 3b,15b\n"
Jdong 31b,15b\n"
Jdong 4b,15b\n"
" Jdong 41b,15b\n"
" Jong 10b,15b\n"
Jdong 51b,15b\n"
Jdong 11b,15b\n"
Jdong 61b,15b\n"
" Jong 12b,15b\n"
" Jdong 71b,15b\n"
Jdong 13b,15b\n"
Jdong 81b,15b\n"
Jdong 14b,15b\n"
Jdong 91b,15b\n"
Jdong 6b,9b\n"
long 7b,8b\n"
".previous"
: "=&c"(size), "=&D" (__d0), "=&S" (__d1)
;. "1"(to), "2"(from), "0"(size),"iI"(-EFAULT)

eax’,

T T T S S S S S S S S e S T T T i T i s s S S e S e S S . T T T T e

edx", "memory");

} while (0)

#define __copy_user_zeroing(to,from,size)
do {

int _ do, _ di;

_asm__ _ volatile_ (

—

i e e e
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"0:

rep; movshn"

movl %3,%0\n"

"1 rep; movsb\n"

- "2:\n"

- ".section .fixup\"ax\"\n" \

- "3: lea 0(%3,%0,4),%0\n" \

- "4. pushl %0\n" \

- pushl %%eax\n"

- xorl %%eax,%%eax\n"

- rep; stosb\n" \
- popl %%eax\n"

- popl %0\n"

- jmp 2b\n"

- ".previous\n" \
- ".section __ ex_ table,\"a\"\n" \

- " .align 4\n"

- " .long Ob,3b\n" \
- " long 1b,4b\n" \
- ".previous" \
- : "=&c"(size), "=&D" (__d0), "=&S" (__d1) \

- D "r'(size & 3), "0"(size / 4), "1"(to), "2"(from) \

: "memory");

jpe 5fn" \
" .align 2,0x90\n" \
"0: movl 32(%4), %%eax\n" \
" cmpl $67, %0\n" \
" jbe 2f\n" \
"1 movl 64(%4), %%eax\n" \
" .align 2,0x90\n" \
"2: movl 0(%4), %%eax\n" \
"21: movl 4(%4), %%edx\n" \

" movl %%edx, 4(%3)\n" \

"3: movl 8(%4), %%eax\n"

"31: movl 12(%4),%%edx\n" \

" movl %%eax, 8(%3)\n" \

" movl %%edx, 12(%3)\n" \

"4 movl 16(%4), %%eax\n"

"41: movl 20(%4), %%edx\n" \
" movl %%eax, 16(%3)\n" \
" movl %%edx, 20(%3)\n" \
"10: movl 24(%4), %%eax\n" \
"51: movl 28(%4), %%edx\n" \
" movl %%eax, 24(%3)\n" \
" movl %%edx, 28(%3)\n" \
"11: movl 32(%4), %%eax\n" \
"61: movl 36(%4), %%edx\n" \
" movl %%eax, 32(%3)\n" \
" movl %%edx, 36(%3)\n" \
"12: movl 40(%4), %%eax\n" \
"71: movl 44(%4), %%edx\n" \
" movl %%eax, 40(%3)\n" \
" movl %%edx, 44(%3)\n" \

S Tt T S T S S S S A S A S I T T T T T i T S e S S R S S

" cmpl $63, %0\n" \

" movl %%eax, 0(%3)\n" \

28
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"13:
"81:

"14:
"O1:

"6:

"7:

"8:\n"
".section
"9:

"16:

"15:

movl 48(%4), %%eax\n"
movl 52(%4), %%edx\n"

movl %%eax, 48(%3)\n"
movl %%edx, 52(%3)\n"

movl 56(%4), %%eax\n"
movl 60(%4), %%edx\n"

movl %%eax, 56(%3)\n"
movl %%edx, 60(%3)\n"

addl $-64, %0\n"
addl $64, %4\n"
addl $64, %3\n"
cmpl $63, %0\n"
ja 0b\n"

movl %0, %%eax\n"
shrl  $2, %0\n"
andl $3, %%eax\n"
cld\n"

rep; movshn"

movl %%eax,%0\n"

rep; movsb\n"

Sfixup,\"ax\"\n"

lea 0(%%eax,%0,4),%0\n"

pushl %0\n"
pushl %%eax\n"
xorl %%eax,%%eax\n"
rep; stosb\n"
popl %%eax\n"
popl %0\n"
jmp 8b\n"
movl %6, %0\n"
jmp 8b\n"

".previous\n"

".section

__ex_table\"a\"\n"
.align 4\n"

Jdong Ob,16b\n"
Jong 1b,16b\n"
Jdong 2b,16b\n"
dong 21b,16b\n"
Jdong 3b,16b\n"
Jdong 31b,16b\n"
Jdong 4b,16b\n"
Jdong 41b,16b\n"
long 10b,16b\n"
Jdong 51b,16b\n"
Jdong 11b,16b\n"
Jdong 61b,16b\n"
Jong 12b,16b\n"
Jdong 71b,16b\n"
Jdong 13b,16b\n"
Jdong 81b,16b\n"
Jdong 14b,16b\n"
Jdong 91b,16b\n"
Jdong 6b,9b\n"

—

B i e
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Jdong 7b,16b\n"
".previous"
. "=&c"(size), "=&D" (__d0), "=&S" (__d1) \
"1"(to), "2"(from), "0"(size),"i"(-EFAULT) \

eax", " "memory");

+ + + + +

edx",
} while (0)

/* We let the __ versions of copy from/to_user inline, because they're often
@@ -577,24 +713,16 @@
}

#define copy_to_user(to,from,n) \
- (__builtin_constant_p(n) ? \

- __constant_copy_to_user((to),(from),(n)) : \

- __generic_copy_to_user((to),(from),(n)))

+ __generic_copy_to_user((to),(from),(n))

#define copy_from_user(to,from,n) \
- (__builtin_constant_p(n) ? \
- __constant_copy_from_user((to),(from),(n)) : \

- __generic_copy_from_user((to),(from),(n)))

+ __generic_copy_from_user((to),(from),(n))

#define __ copy_to_user(to,from,n) \

- (__builtin_constant_p(n) ? \

- __constant_copy_to_user_nocheck((to),(from),(n)) : \
- __generic_copy_to_user_nocheck((to),(from),(n)))

+ __generic_copy_to_user_nocheck((to),(from),(n))

#define _ copy_from_user(to,from,n) \

- (__builtin_constant_p(n) ? \

- __constant_copy_from_user_nocheck((to),(from),(n)) : \
- __generic_copy_from_user_nocheck((to),(from),(n)))

+ __generic_copy_from_user_nocheck((to),(from),(n))

long strncpy_from_user(char *dst, const char *src, long count);
long __ strncpy_from_user(char *dst, const char *src, long count);
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Abstract present connections. This behaviour may be
useful in building a clustered environment con-

Clusters play a major role in scientific comput—S!StIng of mobile agen'fs in which a moblle de-
vice (cellphones, PDAS, etc.) submits a com-

ing. They eliminate the need of supercomput- \
ers. Communication protocols for cluster com-Putation reque_st to be performed on some local
puting define efficiency and performance meaCluster accessible by the Internet. The uses for
sures for overall system design. m_ot_)lle cluster computing (MQC) can pe deter-
mining a person’s geographical location, mo-
Using IPv6 as a protocol for cluster computingbile business operations (shopping via a cell-
gives benefits such as phone), handling a distributed robot by some
mobile device, observing weather information

. Network load balancing can make use ofby means of mobile nodes and sending the data

IPV6 Congestion/Non-Congestion traffic to the cluster for future weather prediction (like

mechanisms (e.g. for handlin real-timeprediCting tornadoes), etc. Issues like timeli-
data requests o.ngc.:lusters) 9 ness could be better solved by using Mobile

IPV6.

» Geographically distributed cluster SyStemThis paper covers IPv6, its extension header

can make use of embedded IPv6 route op- ) , .
ST mechanism, QoS, security, existing network
timizations.

transition, use of IPv6 for cluster computing

« IP Anycast service has the ability to @nd mobile cluster computing using IPv6 and
choose the topologically closest serverits possible *nix" implementations.
available for handling the request. So it
can be used to effectively load balance thel

_ Introduction
network traffic.

« IPv6 Authentication Headers (AH) can be High performance distributed computing is al-
used to define what workstations are al-ways an interesting topic for researchers. Dur-
lowed to join the cluster. ing the past decade personal computers have

become increasingly powerful, and the com-

Moreover, Mobile IPv6 [5] allows transpar- munication bandwidth between them is in-

ent geographic mobility without affecting the  The next generation UNIX
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lection of interconnected computers working
together as a single system formerly known as
‘cluster.” A cluster provides similar (or some-
times better) performance and fault tolerance
as the traditional mainframes or supercomput-
ers.

creasing day by day so researchers made a col- A

Wireless Network
consists of mobile
IPv6 enabled Internet

The Internet is growing rapidly since almost 7
years, its continuous growth introduced many
problems like IP address space shortage, IP
mobility etc. A new protocol named ‘IPng = =
— IP next generation’ was introduced in 1994 % = %
to solve problems in the existing Internet in- %
frastructure. IPng is termed as ‘IPv6 — IP
version 6’ in 1998 [3], IPv6 is expected to
replace current IPv4 protocol in year 2005. Figure 1: Mobile cluster network

IPv6 offers many new features like exten-
sion header mechanism, IP mobility, IP Any-

cast, IP route optimization, etc. It pro- \ETg standardized mobile IP to handle Inter-
vides a very large IP address space Up Q¢ mopility. However, there exist two stan-
340,282,366,920,938,463,374,607 431,770,000 12 4c for mobile P, they are referred as “Mo-
addresses [4] bile IPv4’ and ‘Mobile IPv6. The Mobile

Many research-oriented IPv6 backbones likdPV6 Protocol offers many benefits over Mobile
6BONE, 6TAP, and 6REN are fully opera- IPv4 pr(_)tocol like prowdmg ‘Dynamic home
tional. IPv6 protocol is designed in such a@9ent discovery’ mechanism, IP Anycast ser-
way that existing networks running IPv4 can ViC€ route optimization, etc [7, €]. In this pa-
natively migrate to IPv6 or they can use IPv6Per, We use Mobile IPV6 as a working protocol
without fully migrating to it. IPv6 simplifies N our definition of ‘mobile cluster computing.’

the header format resulting in less bandwidthy opile network typically consists of desk-

usage. IPv6 has embedded support for mog,, pcs, wireless devices (such as cellphones,
bility, priority-based data handling (e.g. video ¢y ppas, server farms, cluster applications,

streaming), and security. etc. as shown in Figure 1.

High speed ethernet or fibre link

Local cluster server farm

According to our definition, mobile cluster

computing (MCC) refers to a new paradigm,1-1 Mobile and local clusters

in which mobile clusters or traditional clusters

work together with a set of mobile nodes toA mobile clusterrefers to a set of intercon-

carry out a specific task. Mobile cluster com-nected mobile nodes by means of wireless net-

puting refers to an environment that offers flex-work while alocal clusterrefers to a set of

ibility in terms of mobility and extendibility, interconnected workstations by means of high

cluster security and a robust mobile networkspeed Ethernet or fibre link. Any cluster node

for handling geographically independent highis allowed to migrate from a mobile cluster to a

performance computing requests. local cluster or from a local cluster to a mobile
cluster if this migration is allowed by &-node
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. . . . 0 1 2 3
or Switching node A S-node is any node in 4 ,34567890123456789012345678901

a cluster that handles the operation oOf Cluster =+ —#—#—t—ttmtmtmbtmtmd bt bt bttt

. | Next Header | Payload Len | RESERVED |
transltlon +—+—+-+-+—+-+—-+-+-+—-+—+-+—+—+—+—+—+—-+—+—+—+—+—+—+—+—+—+
| Security Parameters Index (SPI) |
Multiple S-nodes can exist either in local or | Sequence Number Field o
mobile clusters. S-nodes maintain a security =TT EE—————=—
map. This security map defines how many + Authentication Data (variable) |

nodes are allowed to join a particular ClUSter + s+ttt bbbttt s st
at some time. The security map can either be

static or dynamic. Static security map is de- Figure 2: IP Authentication Header
fined initially by the local cluster administrator

or by the default policy. The nodes in the secu-

rity map will grow dynamically if some node For example, a noded, wants to join a clus-
can be authenticated by a S-node properly. Aer, C,. Both the noded and the S-node for
S-node performs the network level authentica(;1 speak IPv6. Whenever the nodewants
tion. A S-node can make use of the AH headegfy pe authenticated by, it creates an IP

of IPv6 packet for authenticating cluster nodes gxtension header along with IPv6 packet and
S-nodes exchange their security map periodisends to the S-node. Upon receiving the packet
cally. An IP Authentication Header is shown that contains an IP AH header, the S-node de-
in Figure 2. termines the appropriate Security Association
(SA) based on the destination IP address, secu-
rity protocol in AH and the Security Parame-
ters Index (SPI). A Security Association is a se-
curity object shared between two nodes, which
contains the data mutually agreed upon for op-
eration on the designated cryptographic algo-

1.2 S-Node cluster authentication mechanism

ThelP Security(IPSeg is designed to provide

high quality cryptography-based security for™ . . ,
IPv4 and IPv6. The IPv6 protocol has IPSecrlthm (typically including a key).

embedded in it and provides a separate fearne s-node will fetch the source IP address and
ture different from IPv4. The objectives for mpaich it in the specified security map. If this IP

using IPSec are to provide integrity, repudia-matches, the S-node will check authentication
tion, confidentiality, encryption, etc_. for_lF_’ a_nd data, perform security checking and appropri-
upper-level layers. Use of IPSec will minimize ately grant or deny a ticket to a cluster node

the need of security for different applications, according to the designated algorithm. Once
such as ssh. IPSec provides two traffic securityhe node gets a ticket, it can join that particu-

protocols: AH and Encryption Security Pay- |5y cluster. Each ticket has its own pre-defined
load (ESP). IPSec provides security services gffetime.

the IP layer. It can select required security pro-
tocols, determine the algorithms used for the

service, and choose cryptographic keys. 2 S-node selection algorithm

A S-node will act as a ‘security gateway’ for

some particular cluster. A security gatewayThe question arises that how to select an appro-
refers to an intermediate system that implepriate S-node when a cluster fires up and stars
ments IPSec. S-node can use AH to providavorking. To solve this problem, we propose
authentication of the sender of data. the following election mechanism.
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1. The local cluster administrator specify aoriginal specification IPv6 splits traffic into
password/key in the security map if the two categories [2]:
default security policy is not employed.

2. Whenever a cluster is made operational, 1. Congestion controlled trafficnay be ar-
every node in this cluster computes aran-  bitrarily delayed under conditions of con-
dom number using the password in the gestion.
security map and multicasts this random

number to all nodes in this cluster. 2. Non-congestion controlled traffisvould
be discarded under conditions of conges-
3. Every node will receive the multicast from tion

other nodes withiren time wheren is a

random time to wait. . . . :
In our design we keep the notation defined in

4. Every node compares each random numthe original specification until the new speci-
ber it receive with the local random num- fication has been finalized. In that document
ber. If no random number from other congestion controlled traffic can be further cat-
nodes is larger than the local one, then thiggorized as shown in the following table where
node will multicast a packet telling other larger priority value indicates higher priority:
nodes that it is selected as the S-node for
a designated cluster.

Pri. | Description Example
5. The elected S-node can further delegate O | Uncharacterised traffic Custom use

access control handling functions to other| 1 | Filler traffic netnews
nodes. The receiving nodes will be syn- | 2 | Unattended data traffic email
chronized with the security map of the pri- | 3 | Reserved
mary S-node. IP AH headers should be| 4 | Attended data traffic | FTP, NFS
used to detect spoofed packets. 5 | Reserved

6 | Interactive traffic telnet, X

7 | Internet control traffic | routing, ICMP

3 Dynamic clustering based on

type of network traffic , ,
Table 1: Congestion-controlled Traffic

Dynamic clusteringrefers to the fact that a Non-congestion controlled traffic is the type of
cluster can distinguish between different typedraffic for which constant data rate and con-
of network traffic. This behaviour is useful in stant delay is required such as real-time audio
performing network-based load balancing forand video transmission. The priority values 8
different types of network data, such as perthrough 15 are used to specify this type of traf-
forming network level load balancing based onfic.
traffic class.

3.2 Using flow labels to perform priority level
3.1 Types of traffic traffic handling

Traffic class is specified in the IPv6 headerPriority level traffic handling in IPv6 is based
to identify and distinguish between differenton flow label mechanism where flow refers
classes or priorities of IPv6 packets. In theto a sequence of packets transmitted by some
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L—node be responsible for flow control handling. There
can be one or more L-nodes for a particular
cluster. L-nodes can form a hierarchy to bal-
ance load from a set of cluster nodes as shown

in Figure 3.
L-node L—node o )
3.3 Communication mechanism between L-
\ / \ nodes
L=node L-node L-node Every L-node upon receipt of some packet

will forward the packet (workload) to its cor-
Figure 3: Hierarchal view of load balancing responding L-node or balance the traffic load
nodes if it is connected to some network (that is pres-

ence of a single L-node for balancing). L-node

will balance the traffic either among different

L-nodes or among different cluster-nodes ac-
transmission protocol from source to destinacording to following schemes:

tion with some QoS requirements. It can en-
able a cluster to either handle different data on
different clusters or be optimized for a specific

type of data such as video streaming [8, 1]. Us-
ing flow labels, we can route different network

traffic through a different route. Previously in . RR (Round Robbin) — Each request gets a
IPv4, TOS (Type of service) field offers little quantum time to run.

control over network traffic.

* FCFS (First-Come First-Served) — The re-
quest that comes first is allocated to L-
node first.

* Priority based — Service is based on their
IPv6 specifications state that every IPv6 header  priority. The one with higher priority gets

contains a 24-bit flow label field and a 4-bit served first.

traffic class field. A flow label is basically a

unique identifier between 1 and FFFFFF when * IP Anycast — The L-node uses IP Any-
it is combined with the source IP address. Flow  cast IPv6 service to distribute network re-
label O indicates that no flow label exists and quests to any nearby available node or
this packet doesn’t need any special treatment.  cluster.

Real-time network flow always has some flow

label. Possible failures can be minimized by suggest-

A router associates a flow with some state. 1f"9 that the network requests don’t need to
the router doesn'’t contain any state associateg®Me through the top-level L-node, the net-
with flow, it may either drop the packet or for- WOrk request can hit any L-node in L-node hi-
ward it setting flow label to zero (0). All pack- €rarchy and the request will be processed fur-
ets pertaining to the same flow must be origi-ther down in hierarchy. So in the case if top

nated from same source address, same destinfgY€! L-node fails, this will not cause the whole
tion address and same flow label. network to be down. In other case, if a child of

a L-node fails, the request coming through par-
A L-noderefers to doad balance noderload ent L-node will be timed out. This won'’t af-
balancerfor a particular cluster. L-node will fecta computing too much. The request can be
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gueued when the parent detects a failure nod®ur primitive observation is that due to sim-
When the parent detect a timeout, the parent eplified header mechanism in IPv6 (simplified
ther carry that computation or forward to otherheaders mean that some fields in header are

L-nodes.

made optional or eliminated) it gives perfor-

mance increase over IPv4. Since wireless me-

4 Benefits of IPv6 for roaming clus-
ter nodes

dia has a low bandwidth, this saves bandwidth.
So IPv6 is more feasible than IPv4 for mobile
only clustering.

A roaming cluster nodesually refers to amo- 4.2 Local to mobile cluster node migration

bile device patrticipating in a cluster. A local
node can become a mobile node at any time,
but that should not affect local network con-
nections. The transition of a local node to a
mobile node should be transparent for cluster
operations. They should keep processing with-
out any interruption. One of the facts is that in
IPv4 we don’t have much global IP addresses
left to assign to each mobile node. However,
this problem is solved in IPv6 because we can
uniquely identify the mobile device with at
least one global IP from a very great IP address
space provided by IPv6. Moreover, if we tran-
sit a local node to a mobile node in IPv4, that
will definitely cause a service interruption be-

cause possible IP address change occurs when*

moving from one network subnet to another in
IPv4. On the contrary, in IPv6, Mobile IP of-
fers a way so that this node transition won't in-
terrupt the cluster operation. Figure 4 shows
basic communication between a mobile node
and a cluster.

4.1 Mobile cluster

A mobile cluster is introduced as a set of mo-
bile nodes that participate in a cluster comput-
ing. A mobile node can migrate to a local clus-
ter and a local node can become mobile at any
time.

We have to consider if we purely use mo-
bile clusters. For example, one PDA sends
request to another PDA for performing some
task. How can IPv6 be useful in this scenario?

mechanism

* A local node detects that it has moved by

discovering a new default router.

A local node becomes mobile node now,
it performs a stateless or stateful address
auto-configuration mechanism to obtain a
new COA (Care of Address) for the new
location. All packets destined to this COA
will redirect to the mobile node through
the current link. If the current link also
serves some other cluster, then this node
can decide to participate in both clusters
(old and newly joined cluster).

The mobile node then performs a bind-
ing update with the home agent of the old
cluster.

The home agent of the old cluster regis-
ters this binding and then sends back the
binding acknowledgement.

The home agent of the old cluster will
now intercept the packets for migration
by using ‘proxy neighborhood discovery’
protocol. Proxy neighborhood discov-
ery means that the home agent multi-
casts a neighborhood advertisement onto
the home link (cluster link) on behalf of
the mobile node. The home agent itself
also replies to neighbor solicitation on be-
half of the mobile node. Each intercepted
packet is then tunneled to the new COA
address of the migrated node using IPv6
encapsulation.
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77 Submits datato get result

 This triangular routing can be avoided by

means of foute optimizatiohin which a
mobile/migrated node can send binding \
update to any correspondent node. So the gives back computed
correspondent node can later send packet st to mobile device

directly to the new COA of migrated node
instead to the cluster home agent. But in
this way the cluster/newly migrated node
can not participate in two clusters at one

time. If the mobile node sends packet to
any other node, it sends packet directly
to its destination (not to home agent), it
sets the source address of this packet to

the COA, it also includes ‘home address’ /
destination option.

HIGH PERFORMANCE CLUSTER

4.3 Stateless vs. stateful address auto- ) o
configuration for mobile nodes Figure 4: Basic communication between a mo-

bile node and a cluster

In stateless address auto-configuration, no cen-

tral server is configured for a host to obtain its

interface address (COA in our case) and or conebtains interface address and or configura-
figuration information such as DNS servers,tion parameters by contacting a central server
gateways, etc. The stateless mechanism a(e.g. DHCPVG6 server). The server maintains a
lows a host to generate its own address usingatabase that keeps track of assigned COA (IP
a combination of locally available information address).

advertised by routers. Routers advertise pre-

fixes (like /64) that identify the subnet(s) as-4 4 availability of a computing node

sociated with this link, whereas the host gen-

erates an identifier that uniquely identifies the S

host on some subnet (usually it uses MAC 4gWireless communication is thought to be an
bit address for first 48-bits). The final addresstnreliable one because of occasional omission
is computed by combining the two. In the ap-and arbitrary fallurles cau;ed by t.he intrinsic
sence of router advertisements, the host wilP"oPerty of non-uniform wireless signal. 1Pv6
only generate link local address. With only could alleviate this situation. For example, if

link-local addresg, the host can only commu- & COmputing node is beyond the range of the
nicates with other hosts on the same link. cluster, this node is thought to leave the clus-

ter in IPv4. But in IPv6 the node outside of
In stateful address auto-configuration, a hosthe range of the cluster can be detected if it is
adopted by the remote network via Mobile IP.

2A link-local address refers to a non-routable addres . . -
that is unique and valid only on the local network. ThesrhIS could guarantee the computing capability.

link-local address has a prefix of fe80::/64 and it is usectNe can use the followina scheme to seamless|
for contacting hosts and routers on the same networ g y

only. The addresses are not visible or reachable fronfiChieve a cluster computing task in respect to
different subnets. leaving and joining nodes:
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1. If a node leaves the current cluster, then a way that it can either fully or partially mi-
task assigned to it will be queued in thegrate from a node to another or from a node to

requesting agent.

. The requesting agent continue to carry out
its computation in the cluster and wait
for some pre-defined time for the leaving
node to join the cluster through the For-
eign Agent (FA).

If the leaving node is detected within the
pre-defined time, the queued task will be
carried out by the rejoining node. Oth-
erwise, the task will be carried by other
available nodes.

This scheme won't be so feasible in IPv4.

4.5 Timeliness Issues

In the previous section we discuss availabil-
ity of mobile nodes. The situation will be-
come complex when time constraint is im-
posed. Timeliness issues happen when mobile
nodes within a computing cluster migrate from
one subnet to another subnet in a wireless net-
work and when time constraint is imposed [9].
To meet the QoS requirement timeliness issue
needs to be considered.

In [9] it is proposed that the route optimiza-
tion is delayed to a certain period and the mes-
sage from the home network to a new foreign
network is tunneled. Several approaches also
presented in that paper. In IPv4, this problem
is difficult to solve. In IPv6, we can combine
their approaches and the scheme we propose
for availability of a node to alleviate timeliness
issue.

4.6 Mobile process migration

A mobile processefers to a process running in
either a local or mobile node in some cluster.
A mobile process differs from a local process

multiple nodes.

Full process migratiorrefers to the fact
that a process running on some node de-
taches itself from that node and injects it-
self in some other node.

Partial process migratiomefers to the fact
that a part of process migrates itself to
some other node.

Partial and full process migration can be
bi-directional. That is from a mobile node
to a local node or vice versa.

* Inthe case of full process migration, some

level of transparency should be addressed
so that the local process should not pos-
sess dangling references to the mobile
process. The full migration of a mobile
process may cause possible memory leaks
because the process is not running inside
the same machine. Hence, possible mem-
ory references should be updated. One of
the proposed solution is to employweM-
node(Memory-manager node The pur-
pose of this MM-node is to provide &
map (virtual map to map physical mem-
ory to distributed memory. Each mobile
process takes references to some memory
location provided by means of V-map.

In the case of partial process migration,

only a part of process or a thread of a pro-

cess migrates. The parent process main-
tains the state for each migrated thread.
If a migrated thread further spawns some
thread, then this thread can not be mi-

grated.

Several threads of a mobile process can
migrate to different nodes.

One mobile process can only fully migrate
to a node at a time.
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Abstract patched into the kernel table and the ker-
nel recompiled before it does the correct

This paper tackles two issues in the current  thing, and

SCSI subsystem: init time probing using the
new hotplug infrastructure and improvements
to the current error handler. We also include an
appendix sketching the operation of the SCSI
subsystem and another one listing other out-
standing problems not covered in this paper.

2. The exception table is cumbersome and
does not cover all cases. For example,
how certain devices are probed can de-
pend on the SCSI host adaptor they are
attached to (mercifully, this is becoming
extremely rare).

1 Introduction _ . :
It is the thesis of this paper that such complex

, o rules based logic should be abstracted entirely
Obviously, the scope of potential incrementalg,m, the kernel and placed in user land, where
improvements to the SCSI subsystem is enof 4 easily be altered and extended without
mous. In order to narrow the field quite a bit, oo rehooting: and furthermore, that such a
we will concentrate on just two particular ex- system can be grafted on to the existing code
amples. fairly easily.

1.1 Device Scanning and Inquiry 1.2 Fixing the Error Handler

The first addresses the current weaknesses
the device probing and inquiry code. As things . .
stand today, the SCSI subsystem will scan e several bio related errors in the 2.5 se-

targets (up to 15) and, depending on compiléies kernel_ that make error handling especially
and run time variables, try to scan all LUNs onproblematlc (see appendix B). However, the

those targets. There is also a compiled in ex-ObJeCt here is to concentrate on the SCSI spe-

ception table stored iacsi_scan.c  which cific reglfhn totfhcolgeklnsl,csélﬁe[)rp f-c ¢ an.(ljl b
can cope with the idiosyncrasies of certain gedssumethat In€ kinks In the o System will be

vices. The principle disadvantages of this sysyv orked out as the kernel evolves.

tem are The essential problem in
scsi_unjam_host() is that it tends
1. It is extremely inflexible and rigid. New to execute on one command at once, and
devices that need exceptions have to bdéave limited facilities for understanding that

LFlhis topic is also broad, particularly as there
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error recovery on one command may affect ahe problem of adding a device to a running
large numbers of others. This is particularlysystem is substantially similar to that of config-
acute when drives start misbehaving becausering a device at boot up, except that the oper-
they usually have the maximum numberating system may not be completely initialised
of commands queued when error recoveryand thus the hotplug system may not be avail-
begins. Our presentation will be essentiallyable) when boot probing is done. For this rea-
to clean up the error handler actions and teson, the boot probe issue is called “coldplug-
restart command execution slowly and gentlyging”.
(throttling) instead of slamming an entire set
of outstanding commands down again.

2.1 Avoiding Coldplug

1.3 A Historical Context

Years ago, when the first monolithic UNIx " general, the coldplug problem is similar to
kernels were emerging into the light of day it MOSt bootstrap problems. However, there is

was recognised that you could draw a neat liné@ fairly neat way to avoid the difficulty for
around most of the code used to boot the sys3€veral subsystems (SCSI being among them,
tem and configure its devices. Further, that thidortunately): by using an initial ramdisk. As

code was never used again in the entirety of th#?Nd as the hotplug system is built into the
operation of the kernel. initial ramdisk, the coldplug bootstrap prob-

lem is completely eliminated for any subsys-
Back in the mists of time, Linux began to sepa-tem which can be inserted entirely as modules,
rate this initialisation code into a different com- since it would be handled as a genuine hotplug
piler section and release it after the system hadvent by the initial ramdisk hotplug system.
completed booting. This worked well for a
while but as modular drivers came along, less
of the core kernel code which was used by2.2 Hotplug and Device Scanning
the boot process could be discarded because it
might be used by a module to initialise its de-

vices. A number of the devices that can be hot
Much later, the concept of hotplugging devicesplqgge?].a;e alsko effectl\éely brldges ' thathls
came along, and the Linux hotplug [1] projectunItS WhICh ake onward Connectlons to other
was started busses which may contain other devices. SCSI
' Host Bus Adaptor (HBA) cards are a classic
example of this, since all they really do is

2 Hotplug bridge the computer bus (often PCI) to an ex-

ternal or internal SCSI bus.

The essence of the hotplug system and its utilvwwhenever any type of bus bridge is added to
ity has been described elsewhere [2]. Hotplughe system, logic must be invoked to scan the
is primarily intended for computers whose con-devices beyond the bridge and add them into
figurations change on the fly, obvious exam-the system. Usually, all this scanning is per-
ples of which are the laptop PCMCIA system,formed inside the kernel; however, for this pa-
a USB daisy chain, firewire and so on. It wasper we investigate transferring they scanning
recognised fairly early on in this project that logic to the user level hotplug system.
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2.3 Bridge Insertion Events pable of storing this information in a usefully
abstracted form. However, for the time be-

In general, hotplug events are designed to alld, We opted for a completely opaque bridge
low the system to configure the particular de-Programming model so that the bridge hotplug
vice which has just been inserted and the inter€Vent handler needs exact bridge programming
action between the programs executed duringnowledge. Basically, we elected to place the
the hotplug event processing are designed t C_SI bus parameters in a SCSI specific field
perform this configuration. Scanning and con-Which can be queried bigctl  s.

figuration of devices beyond the bridge device

sho_uld _obviously not be_ begun until the bridge3 Replacing SCSI Scan/Inquiry
device is properly configured and fully func-

tional. It therefore makes sense to fire a sepa-

rate “bridge scan” hotplug event after bridge This project essentially builds on top of the
configuration and bus sanitisation to triggerideéas and code provided by the scsimon [4]

probing on the actual bus beyond the bridge. Project. Although scsimon was designed to
provide notifications for device insertions, the

Following the initiation of scanning beyond the code it supplies and the design basics are es-
bridge, the job of the scanning routine shouldsentially reusable in the scan/inquiry replace-
be to notify the kernel of the existence of thement.

new devices, but allow the kernel to config-

ure them, or better yet trigger another hotplugz 1 \Whatscsi scan.c  does now

event to configure them. -

One of the issues in bridge/device Conﬁgura_'l'_his entire file of code_is dedicateo_l to scan-
tion that require the bridge to be configuredNing busses and detecting and configuring de-
before the scan are the setting or collecting oFiCes. It is driven entirely from a static ta-
intrinsic bus properties: things like bus speedble (calleddevice_list ) which contains
width and configuration, all of which must be inquiry strings matching devices for which spe-
known before the devices on the bus may p&ial actions are taken. Most of the actions are
probed. For instance, the SCSI bus can be corgéared to LUN scanning. Here is an example
figured for various widths (wide or narrow). Of some of the flags:

The width is usually governed by the HBA,

but nothing prevents a wide device being con- BLIST FORCELUN scan for LUNS
ngcted tq a narrow only HBA. Thus, the de- even if kernel is compiled not to.

vice configuration is dependent on the parame-

ter rage of the bus, which are controlled by the « BLIST NOLUN Never scan LUNS on
bridge (the HBA). this device.

one LUN at a time.

We need a mechanism for making available to . g |ST NOTQ Device claims to support
both the user and kernel the parameters de-  Tag Command Queueing but in reality
tected and set during the prior bridge hotplug  cannot.

event. There is an evolving infrastructure in the

new driver model[3] that may ultimately be ca- =« ...
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Other flags deal with device type mis-is thus easily customised) which matches in-
identification and so forth. All of which can quiry strings and triggers the appropriate ac-
easily be accommodated in user land, with theions. Since we now have more powerful tools
addition of two extra ioctls: one to set or clearat our disposal, the matching can be much
the tag bit fagged_supported )andoneto more finely controlled using regular expres-

alter the device type. sions. The actions may also be much more
dynamic than simply sending parameters down
3.2 Adding the Bridge Insertion Hook to the kernel: indeed, the system may now be

designed to be completely extensible so that
we could execute a vendor supplied script, in-
stalled in the system, whenever that vendor’s
device is detected.

In the SCSI subsystem, the easiest way to ad
the bus insertion hook is right at the end of

scsi_register_host() . We eliminate
the code inscan_scsis  except for the hard There has been recent concern [5] about cer-
coded entry used bydd-single-device . tain devices not respecting the SCSI standards

with regard to inquiry parameter lengths. This

The Bus insertion hook is now used to begin : :
scanning the targets (at LUN zero) using thecould probably be handled either by allowing

) : . the maximum inquiry length to be a bus pa-
add-single-device command (the scsi . . :
: rameter set by the bridge insertion event, or by
and channel numbers being passed up from thﬁ : A .
hotplug event) aving the initial inquiry only be the minimum
' length and allowing the device hotplug event to
It is certainly open to debate whether it isUse thesg device to formulate a second inquiry
worthwhile moving this functionality into user to get all the parameters it needs. The counter
land. However, in principle we could also setargument: that the low level drivers need to
up bus transfer parameters or actually opt t$noop the inquiry data to set up their param-
use the SCSI-3 report LUNs command insteadters could be avoided by allowing the device
for the scanning, so it still provides an arguablyinsertion hotplug to communicate the relevant
much more flexible system. This will become Parameters to the bridge.
particularly important as newer standards are
adopted and the process of scanning for de3.4 Device and Bridge Interaction
vices changes.

If we managed to create the correct abstraction
of the SCSI bus, there would be no need for
special ioctls to be sent to inform the bridge
Just as the majority of the work is done inof device bus characteristics, nor would the
scsis_scan_single() , SO most of the bridge need to snoop data (like inquiry returns)
work will be done in the code running after being passed over the bus to obtain this infor-
the device insertion hotplug event. The correctnation.

place for this is after the initial inquiry com-

mand, so that when the hotplug event is callediowever, until such an ideal state of affairs is
we know the inquiry parameters and can pasgeached, it is possible that the bridge will need

3.3 Adding Device Insertion Hooks

them as event parameters. to be made aware of extra parameters in the de-
vice. For this reason, we permit a “bridge call-
The internaldevice_list table may now out” to be done at the end of the device hot-

be laced into a flat configuration file (which plug event script (essentially the hotplug en-
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gine checks to see if the bridge wishes to bdirmware to determine command execution or-
informed of device insertion events and exe-der. In theory, the device firmware has a mode
cutes the script provided by the bridge if it page which lays out guarantees about the maxi-
does). This should allow for arbitrary setting mum times it will take for the device to process
of bridge/device parameters to suit the bus enany given tag. However in practise, most (par-
vironment. ticularly older) devices govern tag execution by

. . o closest head stepping times and thus some 1/Os
In the current implementation, it is the re- gitterent parts of the disc surface can find

sponsibility of the device/bridge script 10 hemgselves ignored—a phenomenon called tag
scan for additional LUNs (if necessary). giarvation.

This leads to the unwanted side effect that

add-single-device for LUN O will now  Since the problem can occur on almost every
trigger a complete LUN scan, which may notparallel SCSI card, every driver that does TCQ
be what was intended. This can be solved byas to be aware of it and evolve a strategy to
making “have scanned for LUNS” a property cope. Therefore, the tag starvation problem is
of the device and passing it up on the deviceretty much owned by the low level drivers,
insertion event. which is a pity, since it means code duplication

and lots of extra testing.

3.5 EventFlo . .
v W The two most general ways tag starvation is

handled are: sending an ordered tag with the
The flow of events described above is shown imext command, or not sending down any more
figure 1 with time moving from left to rightin - commands until the starved tag is processed.
the diagram. These are both extremely easy to implement
inside the mid-layer and would relieve the low
4  Error Handling Iéa(;/gédrivers of a sizable amount of duplicated
The current error handler thread begips when, 5 \what Kinds of Errors Occur?
a fatal error is detected (see Appendix A for
an operational sketch) it then quiesces the de-
vice and proceeds, one command at a timelhe SCSI operation model is essentially a
through its abort and reset sequence. It checkgiant state machine. ~ There are a wide
the progress of error recovery at most pointg/ariety of error conditions which can oc-
by sending down a test unit ready (TUR) com-cur but which are recognised as particular
mand. However, there are common SCSktates in the model. The SCSI mid-layer
driver problems that the mid-layer ignores andiranslates these model states into actions in

others that cause it to malfunction. scsi_decide_disposition() . How-
ever, anything that gets into this code is pretty

4.1 Who Owns the Tag Starvation Problem? much part of the state model, since it is invoked
using a SCSI return code. Pretty much every-

. ] thing other than an unrecognised return code
When Tag Command Queueing (TCQ) is eN+qr 5 command still in progress will be handled

abled on a device, we pretty much (althoughithout troubling the error recovery thread.
not always) use “unordered” tags. This leaves

it entirely within the province of the device The point is that the error handler thread is
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Figure 1: Time line for Hotplug Insertion Events

usually only invoked when the state model hasof it. Following this logic, the abort sequence
failed! or a command has timed out (which isand its associated driver hook may simply be
pretty much the same thing, since it means weemoved (or at least deprecated) in the SCSI
sent a command to the device and it got lost)driver model.

so the remedies it applies have usually got to

be a drastic kick to get the device back into &, 4  Flavours of Reset

state the model recognises and can resume pro-

cessing from.

The next courses of actions, if abort failed, will
be to begin a series of resets culminating in the
complete reset of the HBA. The SCSI protocols
actually support three levels of reset: LUN, de-

“Vice and bus. The former is a message addition

4.3 Why Abort?

The first action the error handler thread trie

is to issue an abort to the problem command
Abort is a SCSI message that informs the de
vice to discard a particular tag at whateve
point it has reached in processing it. It is
a command designed to fit inside the SCS
state model and has several uses, particular
for stopping linked commands which have en
countered errors. However, its use as the fir
port of call for the error handler thread try-

r

2

S

from SCSI-3 and is only relevant for devices
with multiple LUNs. It does everything that

a device reset does, but operates only on a sin-
ple LUN—a device reset operates on all LUNS.
device reset only operates on a single target
ut all of its LUNS) and a bus reset operates

?n every device on a physical bus.

Resets are designedly very intrusive to device

ing to recover a device is worse than uselesspperation. A reset basically causes the device

since it is applying a course of action within

to drop everything on the floor and re-initialise

the state model to something already outsidgself; it is allowed to spend quite a bit of time
1Here remember that the SCSI state model definecgmeasured in seconds) on this re-initialisation

by the standards is much larger than the amgle-
mentedn the mid-layer.

and is entitled to respond “not ready” to any
command received during this period.
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The error handler, meanwhile, should be awar@ore some of the most useful aspects of the
of the extent of the potential disruption re- bus reset (i.e. dropping everything and starting
sets cause to the device in question, particuever from a clean state). The mid layer picks
larly with regard to losing all outstanding com- the flag indicating soft reset alternative out of
mands. It should pull all commands affectedthe inquiry data and sets tkeft reset  de-

by the reset from both the pending and errowice flag in this case. We have never come
gueues, cancelling the timers on the pendingcross one of these devices, but if we did it
commands and place them all in abeyance urwould certainly cause huge problems for low
til the error handling completes (it might make level drivers that rely solely on bus resets.
sense at this point to push them back into the

bio queues so that they can be merged if necz g pevice Offlining

essary, but hang on to the command we were

initially trying to recover).
yving ) The last response of the error handler, if it fails

After a reset has been sent, it should keep thto get the device to accept commands once
device quiesced and back off for a while (prob-more is to place it offline. All outstanding com-
ably a second) before probing with a TUR—wemands should be immediately failed with 1/0
should also loop in this mode, probing everyerrors. However, the mid layer should continue
second or so, until the TUR comes back as noto accept commands for this device, but should
“not ready”. justimmediately fail them with I/O errors. This
o should break out of the unfortunate condition
Once we know the device is ready to accepiyhere offlining a device with a huge outstand-

commands again, we should feed the first comyg pig queue can leave lots of processes stuck
mand from the error thread, wait for it to com- ;, p \yait (see appendix B.2).

plete and remove the device quiesce if it re-
turns successfully. We should probably also - .
lower the tag queue depth (if it had one) on the4'7 Multi-Initiator Scenarios
assumption that the error may have been trig-

gered by over feeding. Previously, multi-initiator (where more than
one initiator, or HBA, is connected to the same
bus, so multiple machines may be talking to
the same devices) was a fairly esoteric config-
uration primarily limited to clustering environ-
Often, the simplest reset for any device drivemrments. With the advent of Fibre Channel, this
writer to use is the bus reset. This is be-all changed and shared busses are becoming
cause all the other resets are actually phrasesiuch more prevalent.

as SCSI messages and thus need special pro- . o )

cessing. The bus reset is activated simply by the classic multi-initator scenario, a re-
pulling the reset line on the SCSI bus low for Set from another initiator, that you don't see,

25ms and is usually triggerable using a simplgf@uses all of your outstanding commands to
chip register flip. be lost without trace. This can be particularly

nasty in the case where LUN reset is not im-
In choosing bus reset, one thing to beware oplemented, because you could be quietly pro-
is the SCSI standard soft reset alternative (seeessing exclusively on LUN15 of an array only
section 6.2.2 of the SCSI-2 standard [6]). Whato be reset because another initator was having
this does is allow the device to essentially ig-issues with LUN3.

4.5 Choosing a Reset
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About the best way to handle this is to takeA A Sketch of How the Current
special action whenever the signature forare-  SCS| Subsystem Works

set occurs (which is a check condition followed
by unit attention sense on the next command to
be sent down to the device). On detecting this
condition, we should immediately proceed as | bevis Operations Request Operatons
though we were the ones resetting the device as \

Kernel Buffer/Page Cache and device input

SCSI Device Layer

part of error recovery: collect all the outstand-
ing commands, cancel the timers probe with a
TUR and start feeding them back down again (o J (0o J (s ] (% )
when the device is ready to accept them.

Mid Layer Interface
(functional)

4.8 Testing Error Handler Changes Mid Layer

Notin 2.5

Once changes are made to error handling, one

of the main problems is actually testing them. ——————— " e ane

Most modern SCSI devices really don't ac- / \ Low Layer
tually ever cause the error handler to be in- ow evel diver Ti———
voked. Even transmission line conditions or n | oo sesitofbe |

other problems which cause the SCSI busto go _ _

marginal aren’t exactly very useful since there':Igure 2: Block Diagram of the SCSI subsys-

is little chance of correct recovery from them. €M

Wha.t is needed is a method for S|mulqt|ng er-, complete block diagram of the SCSI sub-

rors in the SCSI subsystem and gauging what ) o
system is shown in figure 2. The error han-

happens next.

dler comprises a very small portion of the mid-

One particularly useful tool is the debug driverlayer (shown as new EH—although for 2.5,
of the Linux SCSI subsystem [7]. Although it this is the only error handler). It's code is
currently only comes with the ability to sim- entirely inscsi_error.c and it is invoked
ulate a medium error, persuading it to dropfrom the bottom half handler routine activated
a SCSI command silently (and thus trigger aby scsi_done()

timeout and error handling) isn’t that much of

a difficult problem. Once this enhancement isA.1 1/Oin

made, it is comparatively easy to trigger a re-

coverable error an watch how the system bep| requests come in from the upper layer de-
haves. vice drivers througtscsi_request_fn()

For those people with access to genuinely maI‘-NhICh loops over all pending requests. If the

functioning devices (my favourite being an '([juer\rlllsce ISIn_recovery or plugged, it re-
old HP C3255 device which seems just to '

stop working occasionally with high tag queuegtherwise, it proceeds as follows:

depths), it is extremely nice to be able to plug

them in an watch the system cope (or not, as

the case may be). 1. Dequeue the request.
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2. Copy the request into a scsi request strucA.3 1/O Error
ture and release the bio request.

3. Call scsi_init_io() to set up the Once the error handler thread is awo-

scatter/gather list on the request structurek€n. it calls the templatesh_strategy
_handler()  if it exists, otherwise goes into

4. Call the device specific init command to scsi_unjam_host

set up the appropriate SCSI command.
scsi_unjam_host() loops over all pend-

5. Initialise the error handler componentsing commands and looks at theitate  field.
(mainly zero out sense and set up the timereg|ly, it is only interested in thEAILED or
out). TIMEOUTstates.

6. Callscsi_dispatch_command() 0 Essentially, it loops over every failed or timed
begln._ This sets up the serial numberout command and runs through first abort, then
and pid, adds the tmer_ and calls the hosElevice reset, then bus reset and finally host re-
queuegommand() if it can_queue set, sending a TUR to test the device if one of
otherwise callcommand() . these succeeded. If it gets all the way to the

end and still has failed commands, it offlines

A.2 1/Oout the device.

All finished commands come in from the low

layer throughscsi_done()  with the queue B Unresolved Issues in the Mid-
lock held. They are then added to the bottom | ayer

half (BH) queue and the BH is notified.

The BH handler gcsi_bottom_half This section is really a collection of issues on
_handler() ) runs later picking work off the my todo list, but obviously as | haven't got
SCSI BH queue until none remains. It callsaround to doing them yet, if anyone else wants

scsi_device_disposition() which  to step into the crease, they’re more than wel-
returns four possibilities: come.
* SUCCESS immediately com- B.1 queuecommand busy failure
plete the command by calling
scsi_finish_commandy() : The template hooklueuecommand() is al-

NEEDS RETRYsend the command to lowed to return 1 if the command has not been
scsi retr_y commandy() which will gueued. This can be for a variety of reasons,
send it irrTmediater down to the lower but_most com_monly because of el_ther tag stgr-
layer unless the retry count has been exvation or static resource exhaustion. What is
ceeded. supposed to happen is that the unqueued com-

mand goes back into the bio elevator and is re-

« ADD TO MLQUEUE call scsi submitted at a later time.

_mlqueue_insert() to send the ' '
command back to its elevator queue. It looks like the scsi_miqueue
_ _insert() function or the bio is fail-
 FAILED: setin_recovery , plug the jng somehow, because on most 2.5.x, as soon

elevator qgueue and wake the error hand'eras queuecommando returns 1, the buffer
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hangs forever in D wait. Gilbert
http://www.torque.net/sg
B.2 Device Offline Failure /sdebug.html

After an initial complete failure of the error
handler, leading to a device being taken offline,
processes trying to use buffers on the device
often end hung in D wait. This is indicating
that the code which returns 1/O errors on all
the outstanding I/O requests is missing some. |
suspect there may be a problem prizing the rest
of the I/O out of the bio, since it seems that the
code in the error handler to fail the I/O that has
reached the mid-layer is fairly bullet proof.
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Lustre: The intergalactic file system
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LDAP Kerberos/GSSAPI

l I ntrOd u Cti O n Failover Cluster Resource

Database (RDB)

Metadata Servers (MDS)
(10’s of nodes)

This is a short overview of Lustre, a new open.use ciens | |

(10,000's) Melladala Transactic;ns

source cluster file system. The name Lus; —L ;
H H ” 13 ” Ot‘JI\l{a aeen:{NO:/Sit:mS & o Pa'r;li o
tre embodies “Linux” and “Cluster.” Lustre Ejs‘ os Hetnering fopeetio
focusses scalability for use on large comput

clusters, but can equally well serve smaller |rceeopors: Lo oyt store

commercial environments. Lustre runs over (include attached storage)
different networks, including at present Ether- )

net and Quadrics. C )

SCsi

[

Lustre originated from research done in the
Coda project at Carnegie Mellon. It has seen

interest from several companies in the stor- LusweloAP! solton
age industry that contributed to the design
and funded some implementation. Soon af-
ter the original ideas came out, the USA Na-
tionaL Laboratories and the DOD started to
explore Lustre as a potential next generatior? |Luystre Components
file system. During this stage of the project

we received a lot of help and insight from

Los Alamos and Sandia National Laboratories!" Lustre clusters there are three major types
most significantly from Lee Ward. of systems, the Clients, the object storage tar-

gets (OST’s) and metadata server MDS sys-
Lustre provides many new features and embodtems. Each of the systems internally has a very
ies significant complexity. In order to reach modular layout. Many modules, such as lock-
a usable intermediate target soon, Mark Seaing, the request processing and message pass-
ger from Lawrence Livermore pushed forwarding layers are shared between all systems. Oth-
with Lustre Lite. We are hopeful that Lustre ers are unique, such as the Lustre Lite client
Lite will be the shared file system on the newmodule on the client systems. Figure 1 gives
800 node MCR Linux cluster during 2002. a first impression of the interactions that are to

) ) ) _ be expected.
This paper provides a high level overview of

Lustre. Lustre (see http://www.lustre.org) provides a

Q00000

Figure 1: A Lustre Cluster
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SYSTEM & -

PARALLEL FILE ( Device (Elan, TCP, ))
1/0, FILE CLIENT

LOCKING ( Portal NAL’s )

( Portal Library )

DIRECTORY
METADATA & ( NIO API )
CONCURRENCY

( Request Processing )

\[ — =

RECOVERY, ( Networking )
FILE STATUS, -
FILE CREATION Object-Based Disk Lock g
Server (OBD Server) Server 9
Figure 2: outline of interactions between sys- i
tems [ Object-Based Disk (OBD)
Arnativk
clustered file system which combines features (Lextzosp ) (__oBDFitter )
from scalable distributed file systems such [ File System ]
as AFS [1], Coda [2] and InterMezzo (see XES, JFS X3, ..

www.inter-mezzo.org), and Locus CFS [3], ( Fiber Channel )

with ideas derived from traditional shared stor-

age cluster file systems like Zebra [4], Berke-  Figure 3: Object Storage Targets (OST)

ley XFS, which evolved to Frangipani Petal

[5], GPFS [6], Calypso [7], InfiniFile [8] and

GFS [9]. Lustre clients run the Lustre file

system and interact with object storage tar<ial devices in which case the associated data
gets (OST's) for file data 1/0 and with meta- and metadata is stored on the metadata servers.
data servers (MDS) for namespace operationd/Vhen a Lustre inode represents afile, the meta-
When client, OST and MDS systems are sepadata merely holds references to the file data ob-

rate, Lustre appears similar to a cluster file sysjects stored on the OST's.

tem with a file manager, but these subsystems _ , .

can also all run on the same system, leadin undamental in Lustre’s design is that the

to a symmetric layout. The main protocols are ST’s perform the block allocation for data ob-
described in figure 2 jects, leading to distributed and scalable alloca-

tion metadata. The OST’s also enforce security
regarding client access to objects. The client -
3 Object Storage Targets OST protocol bears some similarity to systems
like DAFS in that it combines request process-

_ _ing with remote DMA. The software modules
At the root of Lustre is the concept of object i the OST’s are indicated in figure 3.

storage see [10]. Objects can be thought of as

inodes and are used to store file data. Access tObject storage targets provide a networked in-
these objects is furnished by OST’s which pro-terface to other object storage. This second
vide the file I/O service in a Lustre cluster. Thelayer of object storage, so-called direct object
name space is managed by metadata servicetorage drivers, consists of drivers that man-
which manages the Lustre inodes. Such inage objects, which can be thought of as files,
odes can be directories, symbolic links or speon persistent storage devices. There are many
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choices for direct drivers which are often in- ( Networking ) )
terchangeable. Objects can be stored as raw ( — )
ext2 inodes by thebdext2driver, or as files : g
in many journal file systems by the filtering [ MDS ][ Lock ][ Lock ] 3
driver, which is now the standard driver for Server Server Client *
Lustre Lite. More exotic compositions of sub-

. . . ( MDS Backend )
systems are possible. For example, in some sit- ~
uations an OBD Filter dl_rect driver can run on A{ﬂh
an NFS file system (a single NFS client is all
thatis Supported). |CIGsDt'e;r§d| Clustered

. File System MD

In the OST figure we have expanded the net- XFS, JFS, os7 ) |patabase
working into its subcomponents. Lustre re- B3

. . . . Single Failover Clustered load balanced
guest processing is built on a thin API, called MDS MDS
the Portals APl which developed at Sandia. ( Fiber Channel )
Portals interoperates with a variety of network
transports through Network Abstraction Lay- Figure 4: Meta Data Servers (MDS)

ers (NAL). This API provides for the delivery

and event generation in connection with net-

work messages and provides advanced cap#ant complexity related to the concurrent ac-
bilities such as using remote DMA (RDMA) cess to persistent metadata.

if the underlying network transport layer sup-

e _ :
ports this 5 The client file system

4 Metadata Service The client metadata protocols are transaction-

based and derive from the AFS, Coda and In-
The metadata servers are perhaps the mot#rMezzo file systems. The protocol features
complex subsystem. The provide backend storauthenticated access, and write-behind caching
age for the metadata service and update thifor all metadata updates. The client again has
transactionally over a network interface. Thismultiple software modules as shown in figure
storage presently uses a journal file system, bii.

other options such as shared object storage will ) . _
be considered as well. Lustre can provide UNIX semantics for file up-

dates. Lock management in Lustre supports
The MDS contains locking modules and heav-coarse granularity locks for entire files and sub-
ily exercise the existing features of journaltrees, when contention is low, as well as finer
filesystems, such as ext3 or XFS. In Lustregranularity locks. Finer granularity locks ap-
Lite the complexity is limited as just one sin- pear for extents in files and as pathname locks
gle metadata server is present. The systerto enable scalable access to the root directory
still avoids single points of failure by offering of the file system. All subsystems running
failover metadata services, based on existingn Lustre clients can transparently fail over to
solutions such as Kimberlite. other services.

In the full Lustre system metadata processingrhe Lustre and Lustre Lite file system provide
will be load balanced, which leads to signif- explicit mechanisms for advanced capabilities
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)
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Lustre Client Metadata >
File System WB cache 3
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OBD MDS Lock
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( Networking ) (U

Figure 5: client software modules

System Interface ADIO
user
kernel system intejface | ps bypass
operation based lookup
v
betanr create lookup readdir permission open read
mkdir statfs close write
mknod . | dirbody readlink
link "1 API

symlink
unlink -
rmdir (into cache)
rename. prepare_page
commit_page
write_page
i open

- — close
prgalloc lock readdir getcapability create
reintegrate lookup statfs

fsetstatus getattr

read
write

RPC LAYER lock
< 4 | tomps 4 | ToosT
<
to Client to Client i

Figure 6: client file system internals

Before...
/dev/obd0

During... After...
/dev/obd0

/dev/obd0

Logical Migrator

/dev/hdal /dev/hdal /dev/hdb2 /dev/hdb2

Key Principle: dynamically switch object device types

Figure 7. Hot Data Migration using Logical
Object Volumes

such as scalable allocation algorithms, security
and metadata control. In traditional cluster file
systems, such as IBM’'s GPFS many similar
mechanisms are found, but are not independent
abstractions, but instead part of a large mono-
lithic file system.

6 Storage Management

Lustre provides numerous ways of handling
storage management functions, such as data
migration, snapshots, enhanced security and
gquite advanced functions such as active disk
components for data mining. Such storage
management is achieved through stacks of ob-
ject modules, interacting with each other. A
general framework is provided for managing
and dynamically changing the driver stacks.

An example of stacking object modules is
shown in figure 7 for the case of hot data mi-
gration from one storage target to another.

7 Conclusions

Lustre provides a novel approach to storage. |
heavily leverages existing techniques and soft-
ware, yet breaks many patterns with new pro-
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tocols, heavy modularization.

54

years will show if Lustre will establish itself

as a mainstream element of the storage indus-

try or will remain an exciting exploration in file
system design.
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Cebolla: Pragmatic IP Anonymity
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Abstract envelope, opens as many layers of envelopes
as there were intermediate agents to find the

Cebolla is an intersection of cryptographic mix ©riginal response.

networks and the environment of the public In-.l.hiS anonymizing theory can easily be applied

te_rnet. Most pf t_he hlstory_of cryptographic to networks when forwarding instructions are
mix networks lies in academic attempts to pro-;

id ity of vari s to th TJncluded with each datagram. The included in-
vide anonymity ot various sorts 10 th€ US€Ts Olgy \+tions increase the size of the datagrams
the network. While based on strong crypto-

: o : nd verifying the instructions can be very ex-
graphic principles, most attempts have falled;l

) : ensive. The common solution to these prob-
to address properties of the public networkI

nd the r nabl tations of most of tems is to negotiate and verify the instructions
a € reasonaple expectations of most ot 13,y require that datagrams reference this exist-
users. Cebolla attempts to address this guli

. : g negotiated state. In Cebolla, this negotiated
between the interesting research aspects of IE’;

level it d th tional ¢ ate is asymmetrical. The initiating sender of
cevel anonymily and the operational expectay e messages negotiates individual instruc-
tions of most uses of the IP network.

tions with all the forwarding agents. Each for-
warding agent only negotiates state with its im-
1 Introduction mediate neighbours in the path.

. _ Cebolla builds on many previous implementa-
The core concept of providing anonymity of tions of anonymizing mix networks:
commendations through intermediary relays

dates back to the early days of the public net\Wei Dai describes an asymmetric anonymizing
work. As initially described by Chaum for network, dubbed PipeNet [2]. While very re-
email [1], anonymity of the sender can besilient to attack, it is infeasible to run over the
achieved by sending the message to an ageptblic network. Constant cover traffic makes
who encapsulates the email and relays it to dink usage inefficient and prohibitively expen-
second agent, who relays it to a third, whosive. Random path selection punishes users
finally delivers the message. Imagining thewith moderate threat expectations that could
communication as a conventional paper lettetolerate narrowing their traffic to topologically
would conjure an image of each agent openelose networks. Finally, rampant frame re-
ing their letter to discover another letter des-ordering would confuse popular networking
tined for the next agent. The final agent seegprotocols. It has never been publicly imple-
the proper letter destined to the recipient. Thenented.

response travels in the reverse direction, with

each agent putting the incoming letter into aP- Goldschlag and company at the Navy Re-
new envelope and addressing it to the previou§éarch Lab have done much work on Onion
agent. The sender, upon receiving this largdtouting [3].  While providing much of the
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ground work in the field, the implementation peers connecting together builds an overlay
is not publicly available, and is covered by USnetwork. Through these UDP connections,
patents. called links, peers are able to exchange mes-

) _ sages which maintain crypto state, discover
Zero Knowledge productized a mix network ihe topology of the network, negotiate tunnels

with their Freedom product line. The pro- 5 pehalf of nodes, and transit encapsulated
ductized nature of the network motivated Zerof o mes through these tunnels.

Knowledge to remain some amount of cen-

tralized control of the network, which turned Tunnels are the construct that allow messages
off some potential users. It was never pub-to be forwarded in a way that masks the iden-
licly documented fully, nor were comprehen- tity of the sender. A tunnel is a set of forward-
sive sources made available, which preventethg rules that a client gives to nodes that make
any third-party implementations of the proto- up the path of the tunnel. The client also shares
cols to conceivably increase the user-base. keys with each node in the path of the tunnel.
has since been discontinued. Clients and servers run the same software; it is

. initiating the tunnel that makes us call a node a
Mike Freedman and company push the envegjiant.

lope by introducing a very scalable peer-to-

peer anonymizing network with Tarzan [4]. As Like other IP tunnels, Cebolla tunnels have net-
it happened, Cebolla and Tarzan were develworking devices on the nodes at either end of
oped at about the same time, with different obthe tunnel. When a frame is routed into a de-
jectives. vice, the frame is encapsulated and sent down

the tunnel. At the other end, frames exit the

Xor-Trees [5] take the concept t0 an exiremenne| and are received by the device at the end
by describing a network with a fully utilized ¢ the tunnel.

mesh of dedicated links and synchronized key

material generators that can be used to maskhe steps performed by a client in a typical Ce-
both the source and destination of messagédsolla session might look something like:
between command and control centers. The re-

quirements for fully utilized links and synchro-

nized key material make it infeasible for use on  * A node in the network is discovered.
the public network. From this node, the client receives a list

of all the nodes in the network.
Cebolla is an attempt to gel these efforts into
an implementation that can be readily used by ¢ The clientdecides on nodes in the network
a group of people on the Internet to efficiently ~ that a tunnel should include.
protect their communications. The remainder
of the paper will focus on defining the envi-
ronment that Cebolla considers reasonable, and
the methodology behind the implementation.

* The client establishes a UDP link with the
first node in the tunnel.

» With this first node, the client negotiates
the first part of a tunnel.

2 Overview * Through the first part of the tunnel, the

client negotiates the second part of the
Cebolla is a unix daemon that maintains UDP tunnel with the second hop. And so on,
connections to a set of peers. Many of these  until the client only has one hop left.
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Through the tunnel, the client finalizes the With these participants in mind, Cebolla at-

tunnel.

By routing through a local device, the
client sends frames down the tunnel.

Headers on the encapsulated frame tell
each hop which tunnel to go down, and
the headers are re-written at each hop.
Crypto may be performed at each hop, if
the client so desired.

As the frame reaches the final hop, it exits
the tunnel and is forwarded out the Inter-
net as a normal IP frame.

Threat Model

When describing the threats that Cebolla tries
to address, we'll adopt some names for rolegepglia also makes the following explicit ad-

that are played out on the network:

tempts to make the following guarantees:

Alice should be able to determine that she
is actually communicating with Bob.

A Neville working alone should not be
able to determine the identities of both Al-
ice and Bob.

Only Alice and Bob should have access to
the actual contents of messages.

Kiddie should not be allowed to degrade
Alice and Bob’s communication through
trivial a expenditure of resources.

missions about its lack of privacy guarantees,

as well:

Alice — the initiator of the communica-
tion, who wishes to remand anonymous.

Bob —the intended recipient of the Alice’s
communication.

Neville — A corrupt node in the Cebolla
path who has honestly participated in the
protocol with Alice, but who is trying to
leverage that to monitor communications.

Patrick — An attacker who controls the
flow of encapsulated frames between Al-
ice and Bob, who can conceivably alter
them as they pass.

Kiddie — An attacker with connectivity to
the same network as the mesh, but with
no control of the path that messages take
between Alice and Bob.

Smith — An attacker who is able to mon-
itor communications in the mesh at mul-
tiple points and perform deep analysis in
real-time.

Two or more Nevilles at the right points in
the path may collude, with the help of traf-
fic analysis, to discover many things — the
identity of both Alice and Bob, the path
that their communication takes, and in
unbelievably specific circumstances, even
the contents of their communication.

Patrick may sever communication be-
tween Alice and Bob at any time.

Neville can associate frames that probe
the edge with streams he transits, possibly
giving rise to the ability to find the node at
the edge that terminates a particular com-
munication.

Smith must to be assumed to be the super-
set of all possible Nevilles — always know-
ing which Bobs all Alices are currently in
communication with.
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4 Secret Negotiation « configuration request The initiator val-
idates the responder’s authentication and
prepares a packet containing the IDs that
identify the exchange. The initiator ap-
pends its half of the shared-secret negoti-
ation to the packet, then combines its half
with the responder’s half in the incom-
ing packet to calculate the shared-secret.
From this secret it deriv