view toys/pending/xzcat.c @ 1572:da1bf31ed322 draft

Tweak the "ignoring return value" fortify workaround for readlinkat. We zero the buffer and if the link read fails that's left alone, so it's ok for the symlink not to be there. Unfortunately, typecasting the return value to (void) doesn't shut up gcc, and having an if(); with the semicolon on the same line doesn't shut up llvm. (The semicolon on a new line would, but C does not have significant whitespace and I'm not going to humor llvm if it plans to start.) So far, empty curly brackets consistently get the warning to shut up.
author Rob Landley <rob@landley.net>
date Mon, 24 Nov 2014 17:23:23 -0600
parents e922fc4e7a2e
children
line wrap: on
line source

/*
 * Simple XZ decoder command line tool
 *
 * Author: Lasse Collin <lasse.collin@tukaani.org>
 *
 * This file has been put into the public domain.
 * You can do whatever you want with this file.
 * Modified for toybox by Isaac Dunham
USE_XZCAT(NEWTOY(xzcat, NULL, TOYFLAG_USR|TOYFLAG_BIN))

config XZCAT
  bool "xzcat"
  default n
  help
    usage: xzcat [filename...]
    
    Decompress listed files to stdout. Use stdin if no files listed.

*/
#define FOR_xzcat
#include "toys.h"

// BEGIN xz.h

/**
 * enum xz_ret - Return codes
 * @XZ_OK:                  Everything is OK so far. More input or more
 *                          output space is required to continue.
 * @XZ_STREAM_END:          Operation finished successfully.
 * @XZ_UNSUPPORTED_CHECK:   Integrity check type is not supported. Decoding
 *                          is still possible in multi-call mode by simply
 *                          calling xz_dec_run() again.
 *                          Note that this return value is used only if
 *                          XZ_DEC_ANY_CHECK was defined at build time,
 *                          which is not used in the kernel. Unsupported
 *                          check types return XZ_OPTIONS_ERROR if
 *                          XZ_DEC_ANY_CHECK was not defined at build time.
 * @XZ_MEM_ERROR:           Allocating memory failed. The amount of memory 
 *                          that was tried to be allocated was no more than the
 *                          dict_max argument given to xz_dec_init().
 * @XZ_MEMLIMIT_ERROR:      A bigger LZMA2 dictionary would be needed than
 *                          allowed by the dict_max argument given to
 *                          xz_dec_init().
 * @XZ_FORMAT_ERROR:        File format was not recognized (wrong magic
 *                          bytes).
 * @XZ_OPTIONS_ERROR:       This implementation doesn't support the requested
 *                          compression options. In the decoder this means
 *                          that the header CRC32 matches, but the header
 *                          itself specifies something that we don't support.
 * @XZ_DATA_ERROR:          Compressed data is corrupt.
 * @XZ_BUF_ERROR:           Cannot make any progress. Details are slightly
 *                          different between multi-call and single-call
 *                          mode; more information below.
 *
 * XZ_BUF_ERROR is returned when two consecutive calls to XZ code cannot 
 * consume any input and cannot produce any new output. This happens when
 * there is no new input available, or the output buffer is full while at
 * least one output byte is still pending. Assuming your code is not buggy,
 * you can get this error only when decoding a compressed stream that is 
 * truncated or otherwise corrupt.
 */
enum xz_ret {
  XZ_OK,
  XZ_STREAM_END,
  XZ_UNSUPPORTED_CHECK,
  XZ_MEM_ERROR,
  XZ_MEMLIMIT_ERROR,
  XZ_FORMAT_ERROR,
  XZ_OPTIONS_ERROR,
  XZ_DATA_ERROR,
  XZ_BUF_ERROR
};

/**
 * struct xz_buf - Passing input and output buffers to XZ code
 * @in:         Beginning of the input buffer. This may be NULL if and only
 *              if in_pos is equal to in_size.
 * @in_pos:     Current position in the input buffer. This must not exceed
 *              in_size.
 * @in_size:    Size of the input buffer
 * @out:        Beginning of the output buffer. This may be NULL if and only
 *              if out_pos is equal to out_size.
 * @out_pos:    Current position in the output buffer. This must not exceed
 *              out_size.
 * @out_size:   Size of the output buffer
 *
 * Only the contents of the output buffer from out[out_pos] onward, and
 * the variables in_pos and out_pos are modified by the XZ code.
 */
struct xz_buf {
  const uint8_t *in;
  size_t in_pos;
  size_t in_size;

  uint8_t *out;
  size_t out_pos;
  size_t out_size;
};

/**
 * struct xz_dec - Opaque type to hold the XZ decoder state
 */
struct xz_dec;

/**
 * xz_dec_init() - Allocate and initialize a XZ decoder state
 * @mode:       Operation mode
 * @dict_max:   Maximum size of the LZMA2 dictionary (history buffer) for
 *              multi-call decoding. LZMA2 dictionary is always 2^n bytes
 *              or 2^n + 2^(n-1) bytes (the latter sizes are less common
 *              in practice), so other values for dict_max don't make sense.
 *              In the kernel, dictionary sizes of 64 KiB, 128 KiB, 256 KiB,
 *              512 KiB, and 1 MiB are probably the only reasonable values,
 *              except for kernel and initramfs images where a bigger
 *              dictionary can be fine and useful.
 *
 * dict_max specifies the maximum allowed dictionary size that xz_dec_run()
 * may allocate once it has parsed the dictionary size from the stream
 * headers. This way excessive allocations can be avoided while still
 * limiting the maximum memory usage to a sane value to prevent running the
 * system out of memory when decompressing streams from untrusted sources.
 *
 * On success, xz_dec_init() returns a pointer to struct xz_dec, which is
 * ready to be used with xz_dec_run(). If memory allocation fails,
 * xz_dec_init() returns NULL.
 */
struct xz_dec *xz_dec_init(uint32_t dict_max);

/**
 * xz_dec_run() - Run the XZ decoder
 * @s:          Decoder state allocated using xz_dec_init()
 * @b:          Input and output buffers
 *
 * The possible return values depend on build options and operation mode.
 * See enum xz_ret for details.
 *
 * Note that if an error occurs in single-call mode (return value is not
 * XZ_STREAM_END), b->in_pos and b->out_pos are not modified and the
 * contents of the output buffer from b->out[b->out_pos] onward are
 * undefined. This is true even after XZ_BUF_ERROR, because with some filter
 * chains, there may be a second pass over the output buffer, and this pass
 * cannot be properly done if the output buffer is truncated. Thus, you
 * cannot give the single-call decoder a too small buffer and then expect to
 * get that amount valid data from the beginning of the stream. You must use
 * the multi-call decoder if you don't want to uncompress the whole stream.
 */
enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b);

/**
 * xz_dec_reset() - Reset an already allocated decoder state
 * @s:          Decoder state allocated using xz_dec_init()
 *
 * This function can be used to reset the multi-call decoder state without
 * freeing and reallocating memory with xz_dec_end() and xz_dec_init().
 *
 * In single-call mode, xz_dec_reset() is always called in the beginning of
 * xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in
 * multi-call mode.
 */
void xz_dec_reset(struct xz_dec *s);

/**
 * xz_dec_end() - Free the memory allocated for the decoder state
 * @s:          Decoder state allocated using xz_dec_init(). If s is NULL,
 *              this function does nothing.
 */
void xz_dec_end(struct xz_dec *s);

/*
 * Update CRC32 value using the polynomial from IEEE-802.3. To start a new
 * calculation, the third argument must be zero. To continue the calculation,
 * the previously returned value is passed as the third argument.
 */
static uint32_t xz_crc32_table[256];

uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc)
{
  crc = ~crc;

  while (size != 0) {
    crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
    --size;
  }

  return ~crc;
}

static uint64_t xz_crc64_table[256];


// END xz.h

static uint8_t in[BUFSIZ];
static uint8_t out[BUFSIZ];

void do_xzcat(int fd, char *name)
{
  struct xz_buf b;
  struct xz_dec *s;
  enum xz_ret ret;
  const char *msg;

  crc_init(xz_crc32_table, 1);
  const uint64_t poly = 0xC96C5795D7870F42ULL;
  uint32_t i;
  uint32_t j;
  uint64_t r;

  /* initialize CRC64 table*/
  for (i = 0; i < 256; ++i) {
    r = i;
    for (j = 0; j < 8; ++j)
      r = (r >> 1) ^ (poly & ~((r & 1) - 1));

    xz_crc64_table[i] = r;
  }

  /*
   * Support up to 64 MiB dictionary. The actually needed memory
   * is allocated once the headers have been parsed.
   */
  s = xz_dec_init(1 << 26);
  if (s == NULL) {
    msg = "Memory allocation failed\n";
    goto error;
  }

  b.in = in;
  b.in_pos = 0;
  b.in_size = 0;
  b.out = out;
  b.out_pos = 0;
  b.out_size = BUFSIZ;

  for (;;) {
    if (b.in_pos == b.in_size) {
      b.in_size = read(fd, in, sizeof(in));
      b.in_pos = 0;
    }

    ret = xz_dec_run(s, &b);

    if (b.out_pos == sizeof(out)) {
      if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) {
        msg = "Write error\n";
        goto error;
      }

      b.out_pos = 0;
    }

    if (ret == XZ_OK)
      continue;

    if (ret == XZ_UNSUPPORTED_CHECK)
      continue;

    if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) {
      msg = "Write error\n";
      goto error;
    }

    switch (ret) {
    case XZ_STREAM_END:
      xz_dec_end(s);
      return;

    case XZ_MEM_ERROR:
      msg = "Memory allocation failed\n";
      goto error;

    case XZ_MEMLIMIT_ERROR:
      msg = "Memory usage limit reached\n";
      goto error;

    case XZ_FORMAT_ERROR:
      msg = "Not a .xz file\n";
      goto error;

    case XZ_OPTIONS_ERROR:
      msg = "Unsupported options in the .xz headers\n";
      goto error;

    case XZ_DATA_ERROR:
    case XZ_BUF_ERROR:
      msg = "File is corrupt\n";
      goto error;

    default:
      msg = "Bug!\n";
      goto error;
    }
  }

error:
  xz_dec_end(s);
  error_exit("%s", msg);
}

void xzcat_main(void)
{
  loopfiles(toys.optargs, do_xzcat);
}

// BEGIN xz_private.h


/* Uncomment as needed to enable BCJ filter decoders. 
 * These cost about 2.5 k when all are enabled; SPARC and IA64 make 0.7 k
 * */

#define XZ_DEC_X86
#define XZ_DEC_POWERPC
#define XZ_DEC_IA64
#define XZ_DEC_ARM
#define XZ_DEC_ARMTHUMB
#define XZ_DEC_SPARC


#define memeq(a, b, size) (memcmp(a, b, size) == 0)

#ifndef min
#	define min(x, y) ((x) < (y) ? (x) : (y))
#endif
#define min_t(type, x, y) min(x, y)


/* Inline functions to access unaligned unsigned 32-bit integers */
#ifndef get_unaligned_le32
static inline uint32_t get_unaligned_le32(const uint8_t *buf)
{
  return (uint32_t)buf[0]
      | ((uint32_t)buf[1] << 8)
      | ((uint32_t)buf[2] << 16)
      | ((uint32_t)buf[3] << 24);
}
#endif

#ifndef get_unaligned_be32
static inline uint32_t get_unaligned_be32(const uint8_t *buf)
{
  return (uint32_t)(buf[0] << 24)
      | ((uint32_t)buf[1] << 16)
      | ((uint32_t)buf[2] << 8)
      | (uint32_t)buf[3];
}
#endif

#ifndef put_unaligned_le32
static inline void put_unaligned_le32(uint32_t val, uint8_t *buf)
{
  buf[0] = (uint8_t)val;
  buf[1] = (uint8_t)(val >> 8);
  buf[2] = (uint8_t)(val >> 16);
  buf[3] = (uint8_t)(val >> 24);
}
#endif

#ifndef put_unaligned_be32
static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
{
  buf[0] = (uint8_t)(val >> 24);
  buf[1] = (uint8_t)(val >> 16);
  buf[2] = (uint8_t)(val >> 8);
  buf[3] = (uint8_t)val;
}
#endif

/*
 * Use get_unaligned_le32() also for aligned access for simplicity. On
 * little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr))
 * could save a few bytes in code size.
 */
#ifndef get_le32
#	define get_le32 get_unaligned_le32
#endif

/*
 * If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
 * XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
 */
#ifndef XZ_DEC_BCJ
#	if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
      || defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
      || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
      || defined(XZ_DEC_SPARC)
#		define XZ_DEC_BCJ
#	endif
#endif

/*
 * Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
 * before calling xz_dec_lzma2_run().
 */
struct xz_dec_lzma2 *xz_dec_lzma2_create(uint32_t dict_max);

/*
 * Decode the LZMA2 properties (one byte) and reset the decoder. Return
 * XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
 * big enough, and XZ_OPTIONS_ERROR if props indicates something that this
 * decoder doesn't support.
 */
enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s,
           uint8_t props);

/* Decode raw LZMA2 stream from b->in to b->out. */
enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
               struct xz_buf *b);

// END "xz_private.h"




/*
 * Branch/Call/Jump (BCJ) filter decoders
 * The rest of the code is inside this ifdef. It makes things a little more
 * convenient when building without support for any BCJ filters.
 */
#ifdef XZ_DEC_BCJ

struct xz_dec_bcj {
  /* Type of the BCJ filter being used */
  enum {
    BCJ_X86 = 4,        /* x86 or x86-64 */
    BCJ_POWERPC = 5,    /* Big endian only */
    BCJ_IA64 = 6,       /* Big or little endian */
    BCJ_ARM = 7,        /* Little endian only */
    BCJ_ARMTHUMB = 8,   /* Little endian only */
    BCJ_SPARC = 9       /* Big or little endian */
  } type;

  /*
   * Return value of the next filter in the chain. We need to preserve
   * this information across calls, because we must not call the next
   * filter anymore once it has returned XZ_STREAM_END.
   */
  enum xz_ret ret;

  /*
   * Absolute position relative to the beginning of the uncompressed
   * data (in a single .xz Block). We care only about the lowest 32
   * bits so this doesn't need to be uint64_t even with big files.
   */
  uint32_t pos;

  /* x86 filter state */
  uint32_t x86_prev_mask;

  /* Temporary space to hold the variables from struct xz_buf */
  uint8_t *out;
  size_t out_pos;
  size_t out_size;

  struct {
    /* Amount of already filtered data in the beginning of buf */
    size_t filtered;

    /* Total amount of data currently stored in buf  */
    size_t size;

    /*
     * Buffer to hold a mix of filtered and unfiltered data. This
     * needs to be big enough to hold Alignment + 2 * Look-ahead:
     *
     * Type         Alignment   Look-ahead
     * x86              1           4
     * PowerPC          4           0
     * IA-64           16           0
     * ARM              4           0
     * ARM-Thumb        2           2
     * SPARC            4           0
     */
    uint8_t buf[16];
  } temp;
};

/*
 * Decode the Filter ID of a BCJ filter. This implementation doesn't
 * support custom start offsets, so no decoding of Filter Properties
 * is needed. Returns XZ_OK if the given Filter ID is supported.
 * Otherwise XZ_OPTIONS_ERROR is returned.
 */
enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id);

/*
 * Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
 * a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
 * must be called directly.
 */
enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
             struct xz_dec_lzma2 *lzma2,
             struct xz_buf *b);

#ifdef XZ_DEC_X86
/*
 * This is used to test the most significant byte of a memory address
 * in an x86 instruction.
 */
static inline int bcj_x86_test_msbyte(uint8_t b)
{
  return b == 0x00 || b == 0xFF;
}

static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
  static const int mask_to_allowed_status[8]
    = { 1,1,1,0,1,0,0,0 };

  static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };

  size_t i;
  size_t prev_pos = (size_t)-1;
  uint32_t prev_mask = s->x86_prev_mask;
  uint32_t src;
  uint32_t dest;
  uint32_t j;
  uint8_t b;

  if (size <= 4)
    return 0;

  size -= 4;
  for (i = 0; i < size; ++i) {
    if ((buf[i] & 0xFE) != 0xE8)
      continue;

    prev_pos = i - prev_pos;
    if (prev_pos > 3) {
      prev_mask = 0;
    } else {
      prev_mask = (prev_mask << (prev_pos - 1)) & 7;
      if (prev_mask != 0) {
        b = buf[i + 4 - mask_to_bit_num[prev_mask]];
        if (!mask_to_allowed_status[prev_mask]
            || bcj_x86_test_msbyte(b)) {
          prev_pos = i;
          prev_mask = (prev_mask << 1) | 1;
          continue;
        }
      }
    }

    prev_pos = i;

    if (bcj_x86_test_msbyte(buf[i + 4])) {
      src = get_unaligned_le32(buf + i + 1);
      for (;;) {
        dest = src - (s->pos + (uint32_t)i + 5);
        if (prev_mask == 0)
          break;

        j = mask_to_bit_num[prev_mask] * 8;
        b = (uint8_t)(dest >> (24 - j));
        if (!bcj_x86_test_msbyte(b))
          break;

        src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
      }

      dest &= 0x01FFFFFF;
      dest |= (uint32_t)0 - (dest & 0x01000000);
      put_unaligned_le32(dest, buf + i + 1);
      i += 4;
    } else {
      prev_mask = (prev_mask << 1) | 1;
    }
  }

  prev_pos = i - prev_pos;
  s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
  return i;
}
#endif

#ifdef XZ_DEC_POWERPC
static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
  size_t i;
  uint32_t instr;

  for (i = 0; i + 4 <= size; i += 4) {
    instr = get_unaligned_be32(buf + i);
    if ((instr & 0xFC000003) == 0x48000001) {
      instr &= 0x03FFFFFC;
      instr -= s->pos + (uint32_t)i;
      instr &= 0x03FFFFFC;
      instr |= 0x48000001;
      put_unaligned_be32(instr, buf + i);
    }
  }

  return i;
}
#endif

#ifdef XZ_DEC_IA64
static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
  static const uint8_t branch_table[32] = {
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    4, 4, 6, 6, 0, 0, 7, 7,
    4, 4, 0, 0, 4, 4, 0, 0
  };

  /*
   * The local variables take a little bit stack space, but it's less
   * than what LZMA2 decoder takes, so it doesn't make sense to reduce
   * stack usage here without doing that for the LZMA2 decoder too.
   */

  /* Loop counters */
  size_t i;
  size_t j;

  /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
  uint32_t slot;

  /* Bitwise offset of the instruction indicated by slot */
  uint32_t bit_pos;

  /* bit_pos split into byte and bit parts */
  uint32_t byte_pos;
  uint32_t bit_res;

  /* Address part of an instruction */
  uint32_t addr;

  /* Mask used to detect which instructions to convert */
  uint32_t mask;

  /* 41-bit instruction stored somewhere in the lowest 48 bits */
  uint64_t instr;

  /* Instruction normalized with bit_res for easier manipulation */
  uint64_t norm;

  for (i = 0; i + 16 <= size; i += 16) {
    mask = branch_table[buf[i] & 0x1F];
    for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
      if (((mask >> slot) & 1) == 0)
        continue;

      byte_pos = bit_pos >> 3;
      bit_res = bit_pos & 7;
      instr = 0;
      for (j = 0; j < 6; ++j)
        instr |= (uint64_t)(buf[i + j + byte_pos])
            << (8 * j);

      norm = instr >> bit_res;

      if (((norm >> 37) & 0x0F) == 0x05
          && ((norm >> 9) & 0x07) == 0) {
        addr = (norm >> 13) & 0x0FFFFF;
        addr |= ((uint32_t)(norm >> 36) & 1) << 20;
        addr <<= 4;
        addr -= s->pos + (uint32_t)i;
        addr >>= 4;

        norm &= ~((uint64_t)0x8FFFFF << 13);
        norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
        norm |= (uint64_t)(addr & 0x100000)
            << (36 - 20);

        instr &= (1 << bit_res) - 1;
        instr |= norm << bit_res;

        for (j = 0; j < 6; j++)
          buf[i + j + byte_pos]
            = (uint8_t)(instr >> (8 * j));
      }
    }
  }

  return i;
}
#endif

#ifdef XZ_DEC_ARM
static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
  size_t i;
  uint32_t addr;

  for (i = 0; i + 4 <= size; i += 4) {
    if (buf[i + 3] == 0xEB) {
      addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
          | ((uint32_t)buf[i + 2] << 16);
      addr <<= 2;
      addr -= s->pos + (uint32_t)i + 8;
      addr >>= 2;
      buf[i] = (uint8_t)addr;
      buf[i + 1] = (uint8_t)(addr >> 8);
      buf[i + 2] = (uint8_t)(addr >> 16);
    }
  }

  return i;
}
#endif

#ifdef XZ_DEC_ARMTHUMB
static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
  size_t i;
  uint32_t addr;

  for (i = 0; i + 4 <= size; i += 2) {
    if ((buf[i + 1] & 0xF8) == 0xF0
        && (buf[i + 3] & 0xF8) == 0xF8) {
      addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
          | ((uint32_t)buf[i] << 11)
          | (((uint32_t)buf[i + 3] & 0x07) << 8)
          | (uint32_t)buf[i + 2];
      addr <<= 1;
      addr -= s->pos + (uint32_t)i + 4;
      addr >>= 1;
      buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
      buf[i] = (uint8_t)(addr >> 11);
      buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
      buf[i + 2] = (uint8_t)addr;
      i += 2;
    }
  }

  return i;
}
#endif

#ifdef XZ_DEC_SPARC
static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
  size_t i;
  uint32_t instr;

  for (i = 0; i + 4 <= size; i += 4) {
    instr = get_unaligned_be32(buf + i);
    if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
      instr <<= 2;
      instr -= s->pos + (uint32_t)i;
      instr >>= 2;
      instr = ((uint32_t)0x40000000 - (instr & 0x400000))
          | 0x40000000 | (instr & 0x3FFFFF);
      put_unaligned_be32(instr, buf + i);
    }
  }

  return i;
}
#endif

/*
 * Apply the selected BCJ filter. Update *pos and s->pos to match the amount
 * of data that got filtered.
 *
 * NOTE: This is implemented as a switch statement to avoid using function
 * pointers, which could be problematic in the kernel boot code, which must
 * avoid pointers to static data (at least on x86).
 */
static void bcj_apply(struct xz_dec_bcj *s,
          uint8_t *buf, size_t *pos, size_t size)
{
  size_t filtered;

  buf += *pos;
  size -= *pos;

  switch (s->type) {
#ifdef XZ_DEC_X86
  case BCJ_X86:
    filtered = bcj_x86(s, buf, size);
    break;
#endif
#ifdef XZ_DEC_POWERPC
  case BCJ_POWERPC:
    filtered = bcj_powerpc(s, buf, size);
    break;
#endif
#ifdef XZ_DEC_IA64
  case BCJ_IA64:
    filtered = bcj_ia64(s, buf, size);
    break;
#endif
#ifdef XZ_DEC_ARM
  case BCJ_ARM:
    filtered = bcj_arm(s, buf, size);
    break;
#endif
#ifdef XZ_DEC_ARMTHUMB
  case BCJ_ARMTHUMB:
    filtered = bcj_armthumb(s, buf, size);
    break;
#endif
#ifdef XZ_DEC_SPARC
  case BCJ_SPARC:
    filtered = bcj_sparc(s, buf, size);
    break;
#endif
  default:
    /* Never reached but silence compiler warnings. */
    filtered = 0;
    break;
  }

  *pos += filtered;
  s->pos += filtered;
}

/*
 * Flush pending filtered data from temp to the output buffer.
 * Move the remaining mixture of possibly filtered and unfiltered
 * data to the beginning of temp.
 */
static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
{
  size_t copy_size;

  copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
  memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
  b->out_pos += copy_size;

  s->temp.filtered -= copy_size;
  s->temp.size -= copy_size;
  memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
}

/*
 * The BCJ filter functions are primitive in sense that they process the
 * data in chunks of 1-16 bytes. To hide this issue, this function does
 * some buffering.
 */
enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
             struct xz_dec_lzma2 *lzma2,
             struct xz_buf *b)
{
  size_t out_start;

  /*
   * Flush pending already filtered data to the output buffer. Return
   * immediatelly if we couldn't flush everything, or if the next
   * filter in the chain had already returned XZ_STREAM_END.
   */
  if (s->temp.filtered > 0) {
    bcj_flush(s, b);
    if (s->temp.filtered > 0)
      return XZ_OK;

    if (s->ret == XZ_STREAM_END)
      return XZ_STREAM_END;
  }

  /*
   * If we have more output space than what is currently pending in
   * temp, copy the unfiltered data from temp to the output buffer
   * and try to fill the output buffer by decoding more data from the
   * next filter in the chain. Apply the BCJ filter on the new data
   * in the output buffer. If everything cannot be filtered, copy it
   * to temp and rewind the output buffer position accordingly.
   *
   * This needs to be always run when temp.size == 0 to handle a special
   * case where the output buffer is full and the next filter has no
   * more output coming but hasn't returned XZ_STREAM_END yet.
   */
  if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) {
    out_start = b->out_pos;
    memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
    b->out_pos += s->temp.size;

    s->ret = xz_dec_lzma2_run(lzma2, b);
    if (s->ret != XZ_STREAM_END
        && (s->ret != XZ_OK ))
      return s->ret;

    bcj_apply(s, b->out, &out_start, b->out_pos);

    /*
     * As an exception, if the next filter returned XZ_STREAM_END,
     * we can do that too, since the last few bytes that remain
     * unfiltered are meant to remain unfiltered.
     */
    if (s->ret == XZ_STREAM_END)
      return XZ_STREAM_END;

    s->temp.size = b->out_pos - out_start;
    b->out_pos -= s->temp.size;
    memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);

    /*
     * If there wasn't enough input to the next filter to fill
     * the output buffer with unfiltered data, there's no point
     * to try decoding more data to temp.
     */
    if (b->out_pos + s->temp.size < b->out_size)
      return XZ_OK;
  }

  /*
   * We have unfiltered data in temp. If the output buffer isn't full
   * yet, try to fill the temp buffer by decoding more data from the
   * next filter. Apply the BCJ filter on temp. Then we hopefully can
   * fill the actual output buffer by copying filtered data from temp.
   * A mix of filtered and unfiltered data may be left in temp; it will
   * be taken care on the next call to this function.
   */
  if (b->out_pos < b->out_size) {
    /* Make b->out{,_pos,_size} temporarily point to s->temp. */
    s->out = b->out;
    s->out_pos = b->out_pos;
    s->out_size = b->out_size;
    b->out = s->temp.buf;
    b->out_pos = s->temp.size;
    b->out_size = sizeof(s->temp.buf);

    s->ret = xz_dec_lzma2_run(lzma2, b);

    s->temp.size = b->out_pos;
    b->out = s->out;
    b->out_pos = s->out_pos;
    b->out_size = s->out_size;

    if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
      return s->ret;

    bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);

    /*
     * If the next filter returned XZ_STREAM_END, we mark that
     * everything is filtered, since the last unfiltered bytes
     * of the stream are meant to be left as is.
     */
    if (s->ret == XZ_STREAM_END)
      s->temp.filtered = s->temp.size;

    bcj_flush(s, b);
    if (s->temp.filtered > 0)
      return XZ_OK;
  }

  return s->ret;
}

enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
{
  switch (id) {
#ifdef XZ_DEC_X86
  case BCJ_X86:
#endif
#ifdef XZ_DEC_POWERPC
  case BCJ_POWERPC:
#endif
#ifdef XZ_DEC_IA64
  case BCJ_IA64:
#endif
#ifdef XZ_DEC_ARM
  case BCJ_ARM:
#endif
#ifdef XZ_DEC_ARMTHUMB
  case BCJ_ARMTHUMB:
#endif
#ifdef XZ_DEC_SPARC
  case BCJ_SPARC:
#endif
    break;

  default:
    /* Unsupported Filter ID */
    return XZ_OPTIONS_ERROR;
  }

  s->type = id;
  s->ret = XZ_OK;
  s->pos = 0;
  s->x86_prev_mask = 0;
  s->temp.filtered = 0;
  s->temp.size = 0;

  return XZ_OK;
}

#endif
/*
 * LZMA2 decoder
 */


// BEGIN xz_lzma2.h
/*
 * LZMA2 definitions
 *
 */


/* Range coder constants */
#define RC_SHIFT_BITS 8
#define RC_TOP_BITS 24
#define RC_TOP_VALUE (1 << RC_TOP_BITS)
#define RC_BIT_MODEL_TOTAL_BITS 11
#define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
#define RC_MOVE_BITS 5

/*
 * Maximum number of position states. A position state is the lowest pb
 * number of bits of the current uncompressed offset. In some places there
 * are different sets of probabilities for different position states.
 */
#define POS_STATES_MAX (1 << 4)

/*
 * This enum is used to track which LZMA symbols have occurred most recently
 * and in which order. This information is used to predict the next symbol.
 *
 * Symbols:
 *  - Literal: One 8-bit byte
 *  - Match: Repeat a chunk of data at some distance
 *  - Long repeat: Multi-byte match at a recently seen distance
 *  - Short repeat: One-byte repeat at a recently seen distance
 *
 * The symbol names are in from STATE_oldest_older_previous. REP means
 * either short or long repeated match, and NONLIT means any non-literal.
 */
enum lzma_state {
  STATE_LIT_LIT,
  STATE_MATCH_LIT_LIT,
  STATE_REP_LIT_LIT,
  STATE_SHORTREP_LIT_LIT,
  STATE_MATCH_LIT,
  STATE_REP_LIT,
  STATE_SHORTREP_LIT,
  STATE_LIT_MATCH,
  STATE_LIT_LONGREP,
  STATE_LIT_SHORTREP,
  STATE_NONLIT_MATCH,
  STATE_NONLIT_REP
};

/* Total number of states */
#define STATES 12

/* The lowest 7 states indicate that the previous state was a literal. */
#define LIT_STATES 7

/* Indicate that the latest symbol was a literal. */
static inline void lzma_state_literal(enum lzma_state *state)
{
  if (*state <= STATE_SHORTREP_LIT_LIT)
    *state = STATE_LIT_LIT;
  else if (*state <= STATE_LIT_SHORTREP)
    *state -= 3;
  else
    *state -= 6;
}

/* Indicate that the latest symbol was a match. */
static inline void lzma_state_match(enum lzma_state *state)
{
  *state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
}

/* Indicate that the latest state was a long repeated match. */
static inline void lzma_state_long_rep(enum lzma_state *state)
{
  *state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
}

/* Indicate that the latest symbol was a short match. */
static inline void lzma_state_short_rep(enum lzma_state *state)
{
  *state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
}

/* Test if the previous symbol was a literal. */
static inline int lzma_state_is_literal(enum lzma_state state)
{
  return state < LIT_STATES;
}

/* Each literal coder is divided in three sections:
 *   - 0x001-0x0FF: Without match byte
 *   - 0x101-0x1FF: With match byte; match bit is 0
 *   - 0x201-0x2FF: With match byte; match bit is 1
 *
 * Match byte is used when the previous LZMA symbol was something else than
 * a literal (that is, it was some kind of match).
 */
#define LITERAL_CODER_SIZE 0x300

/* Maximum number of literal coders */
#define LITERAL_CODERS_MAX (1 << 4)

/* Minimum length of a match is two bytes. */
#define MATCH_LEN_MIN 2

/* Match length is encoded with 4, 5, or 10 bits.
 *
 * Length   Bits
 *  2-9      4 = Choice=0 + 3 bits
 * 10-17     5 = Choice=1 + Choice2=0 + 3 bits
 * 18-273   10 = Choice=1 + Choice2=1 + 8 bits
 */
#define LEN_LOW_BITS 3
#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
#define LEN_MID_BITS 3
#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
#define LEN_HIGH_BITS 8
#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)

/*
 * Maximum length of a match is 273 which is a result of the encoding
 * described above.
 */
#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)

/*
 * Different sets of probabilities are used for match distances that have
 * very short match length: Lengths of 2, 3, and 4 bytes have a separate
 * set of probabilities for each length. The matches with longer length
 * use a shared set of probabilities.
 */
#define DIST_STATES 4

/*
 * Get the index of the appropriate probability array for decoding
 * the distance slot.
 */
static inline uint32_t lzma_get_dist_state(uint32_t len)
{
  return len < DIST_STATES + MATCH_LEN_MIN
      ? len - MATCH_LEN_MIN : DIST_STATES - 1;
}

/*
 * The highest two bits of a 32-bit match distance are encoded using six bits.
 * This six-bit value is called a distance slot. This way encoding a 32-bit
 * value takes 6-36 bits, larger values taking more bits.
 */
#define DIST_SLOT_BITS 6
#define DIST_SLOTS (1 << DIST_SLOT_BITS)

/* Match distances up to 127 are fully encoded using probabilities. Since
 * the highest two bits (distance slot) are always encoded using six bits,
 * the distances 0-3 don't need any additional bits to encode, since the
 * distance slot itself is the same as the actual distance. DIST_MODEL_START
 * indicates the first distance slot where at least one additional bit is
 * needed.
 */
#define DIST_MODEL_START 4

/*
 * Match distances greater than 127 are encoded in three pieces:
 *   - distance slot: the highest two bits
 *   - direct bits: 2-26 bits below the highest two bits
 *   - alignment bits: four lowest bits
 *
 * Direct bits don't use any probabilities.
 *
 * The distance slot value of 14 is for distances 128-191.
 */
#define DIST_MODEL_END 14

/* Distance slots that indicate a distance <= 127. */
#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)

/*
 * For match distances greater than 127, only the highest two bits and the
 * lowest four bits (alignment) is encoded using probabilities.
 */
#define ALIGN_BITS 4
#define ALIGN_SIZE (1 << ALIGN_BITS)
#define ALIGN_MASK (ALIGN_SIZE - 1)

/* Total number of all probability variables */
#define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE)

/*
 * LZMA remembers the four most recent match distances. Reusing these
 * distances tends to take less space than re-encoding the actual
 * distance value.
 */
#define REPS 4


// END xz_lzma2.h

/*
 * Range decoder initialization eats the first five bytes of each LZMA chunk.
 */
#define RC_INIT_BYTES 5

/*
 * Minimum number of usable input buffer to safely decode one LZMA symbol.
 * The worst case is that we decode 22 bits using probabilities and 26
 * direct bits. This may decode at maximum of 20 bytes of input. However,
 * lzma_main() does an extra normalization before returning, thus we
 * need to put 21 here.
 */
#define LZMA_IN_REQUIRED 21

/*
 * Dictionary (history buffer)
 *
 * These are always true:
 *    start <= pos <= full <= end
 *    pos <= limit <= end
 *    end == size
 *    size <= size_max
 *    allocated <= size
 *
 * Most of these variables are size_t as a relic of single-call mode,
 * in which the dictionary variables address the actual output
 * buffer directly.
 */
struct dictionary {
  /* Beginning of the history buffer */
  uint8_t *buf;

  /* Old position in buf (before decoding more data) */
  size_t start;

  /* Position in buf */
  size_t pos;

  /*
   * How full dictionary is. This is used to detect corrupt input that
   * would read beyond the beginning of the uncompressed stream.
   */
  size_t full;

  /* Write limit; we don't write to buf[limit] or later bytes. */
  size_t limit;

  /* End of the dictionary buffer. This is the same as the dictionary size. */
  size_t end;

  /*
   * Size of the dictionary as specified in Block Header. This is used
   * together with "full" to detect corrupt input that would make us
   * read beyond the beginning of the uncompressed stream.
   */
  uint32_t size;

  /*
   * Maximum allowed dictionary size.
   */
  uint32_t size_max;

  /*
   * Amount of memory currently allocated for the dictionary.
   */
  uint32_t allocated;
};

/* Range decoder */
struct rc_dec {
  uint32_t range;
  uint32_t code;

  /*
   * Number of initializing bytes remaining to be read
   * by rc_read_init().
   */
  uint32_t init_bytes_left;

  /*
   * Buffer from which we read our input. It can be either
   * temp.buf or the caller-provided input buffer.
   */
  const uint8_t *in;
  size_t in_pos;
  size_t in_limit;
};

/* Probabilities for a length decoder. */
struct lzma_len_dec {
  /* Probability of match length being at least 10 */
  uint16_t choice;

  /* Probability of match length being at least 18 */
  uint16_t choice2;

  /* Probabilities for match lengths 2-9 */
  uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];

  /* Probabilities for match lengths 10-17 */
  uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];

  /* Probabilities for match lengths 18-273 */
  uint16_t high[LEN_HIGH_SYMBOLS];
};

struct lzma_dec {
  /* Distances of latest four matches */
  uint32_t rep0;
  uint32_t rep1;
  uint32_t rep2;
  uint32_t rep3;

  /* Types of the most recently seen LZMA symbols */
  enum lzma_state state;

  /*
   * Length of a match. This is updated so that dict_repeat can
   * be called again to finish repeating the whole match.
   */
  uint32_t len;

  /*
   * LZMA properties or related bit masks (number of literal
   * context bits, a mask dervied from the number of literal
   * position bits, and a mask dervied from the number
   * position bits)
   */
  uint32_t lc;
  uint32_t literal_pos_mask; /* (1 << lp) - 1 */
  uint32_t pos_mask;         /* (1 << pb) - 1 */

  /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
  uint16_t is_match[STATES][POS_STATES_MAX];

  /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
  uint16_t is_rep[STATES];

  /*
   * If 0, distance of a repeated match is rep0.
   * Otherwise check is_rep1.
   */
  uint16_t is_rep0[STATES];

  /*
   * If 0, distance of a repeated match is rep1.
   * Otherwise check is_rep2.
   */
  uint16_t is_rep1[STATES];

  /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
  uint16_t is_rep2[STATES];

  /*
   * If 1, the repeated match has length of one byte. Otherwise
   * the length is decoded from rep_len_decoder.
   */
  uint16_t is_rep0_long[STATES][POS_STATES_MAX];

  /*
   * Probability tree for the highest two bits of the match
   * distance. There is a separate probability tree for match
   * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
   */
  uint16_t dist_slot[DIST_STATES][DIST_SLOTS];

  /*
   * Probility trees for additional bits for match distance
   * when the distance is in the range [4, 127].
   */
  uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];

  /*
   * Probability tree for the lowest four bits of a match
   * distance that is equal to or greater than 128.
   */
  uint16_t dist_align[ALIGN_SIZE];

  /* Length of a normal match */
  struct lzma_len_dec match_len_dec;

  /* Length of a repeated match */
  struct lzma_len_dec rep_len_dec;

  /* Probabilities of literals */
  uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
};

struct lzma2_dec {
  /* Position in xz_dec_lzma2_run(). */
  enum lzma2_seq {
    SEQ_CONTROL,
    SEQ_UNCOMPRESSED_1,
    SEQ_UNCOMPRESSED_2,
    SEQ_COMPRESSED_0,
    SEQ_COMPRESSED_1,
    SEQ_PROPERTIES,
    SEQ_LZMA_PREPARE,
    SEQ_LZMA_RUN,
    SEQ_COPY
  } sequence;

  /* Next position after decoding the compressed size of the chunk. */
  enum lzma2_seq next_sequence;

  /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
  uint32_t uncompressed;

  /*
   * Compressed size of LZMA chunk or compressed/uncompressed
   * size of uncompressed chunk (64 KiB at maximum)
   */
  uint32_t compressed;

  /*
   * True if dictionary reset is needed. This is false before
   * the first chunk (LZMA or uncompressed).
   */
  int need_dict_reset;

  /*
   * True if new LZMA properties are needed. This is false
   * before the first LZMA chunk.
   */
  int need_props;
};

struct xz_dec_lzma2 {
  /*
   * The order below is important on x86 to reduce code size and
   * it shouldn't hurt on other platforms. Everything up to and
   * including lzma.pos_mask are in the first 128 bytes on x86-32,
   * which allows using smaller instructions to access those
   * variables. On x86-64, fewer variables fit into the first 128
   * bytes, but this is still the best order without sacrificing
   * the readability by splitting the structures.
   */
  struct rc_dec rc;
  struct dictionary dict;
  struct lzma2_dec lzma2;
  struct lzma_dec lzma;

  /*
   * Temporary buffer which holds small number of input bytes between
   * decoder calls. See lzma2_lzma() for details.
   */
  struct {
    uint32_t size;
    uint8_t buf[3 * LZMA_IN_REQUIRED];
  } temp;
};

/**************
 * Dictionary *
 **************/

/* Reset the dictionary state. */
static void dict_reset(struct dictionary *dict)
{
  dict->start = 0;
  dict->pos = 0;
  dict->limit = 0;
  dict->full = 0;
}

/* Set dictionary write limit */
static void dict_limit(struct dictionary *dict, size_t out_max)
{
  if (dict->end - dict->pos <= out_max)
    dict->limit = dict->end;
  else
    dict->limit = dict->pos + out_max;
}

/* Return true if at least one byte can be written into the dictionary. */
static inline int dict_has_space(const struct dictionary *dict)
{
  return dict->pos < dict->limit;
}

/*
 * Get a byte from the dictionary at the given distance. The distance is
 * assumed to valid, or as a special case, zero when the dictionary is
 * still empty. This special case is needed for single-call decoding to
 * avoid writing a '\0' to the end of the destination buffer.
 */
static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
{
  size_t offset = dict->pos - dist - 1;

  if (dist >= dict->pos)
    offset += dict->end;

  return dict->full > 0 ? dict->buf[offset] : 0;
}

/*
 * Put one byte into the dictionary. It is assumed that there is space for it.
 */
static inline void dict_put(struct dictionary *dict, uint8_t byte)
{
  dict->buf[dict->pos++] = byte;

  if (dict->full < dict->pos)
    dict->full = dict->pos;
}

/*
 * Repeat given number of bytes from the given distance. If the distance is
 * invalid, false is returned. On success, true is returned and *len is
 * updated to indicate how many bytes were left to be repeated.
 */
static int dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
{
  size_t back;
  uint32_t left;

  if (dist >= dict->full || dist >= dict->size) return 0;

  left = min_t(size_t, dict->limit - dict->pos, *len);
  *len -= left;

  back = dict->pos - dist - 1;
  if (dist >= dict->pos)
    back += dict->end;

  do {
    dict->buf[dict->pos++] = dict->buf[back++];
    if (back == dict->end)
      back = 0;
  } while (--left > 0);

  if (dict->full < dict->pos)
    dict->full = dict->pos;

  return 1;
}

/* Copy uncompressed data as is from input to dictionary and output buffers. */
static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
            uint32_t *left)
{
  size_t copy_size;

  while (*left > 0 && b->in_pos < b->in_size
      && b->out_pos < b->out_size) {
    copy_size = min(b->in_size - b->in_pos,
        b->out_size - b->out_pos);
    if (copy_size > dict->end - dict->pos)
      copy_size = dict->end - dict->pos;
    if (copy_size > *left)
      copy_size = *left;

    *left -= copy_size;

    memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
    dict->pos += copy_size;

    if (dict->full < dict->pos)
      dict->full = dict->pos;

    if (dict->pos == dict->end)
      dict->pos = 0;

    memcpy(b->out + b->out_pos, b->in + b->in_pos,
        copy_size);

    dict->start = dict->pos;

    b->out_pos += copy_size;
    b->in_pos += copy_size;
  }
}

/*
 * Flush pending data from dictionary to b->out. It is assumed that there is
 * enough space in b->out. This is guaranteed because caller uses dict_limit()
 * before decoding data into the dictionary.
 */
static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
{
  size_t copy_size = dict->pos - dict->start;

  if (dict->pos == dict->end)
    dict->pos = 0;

  memcpy(b->out + b->out_pos, dict->buf + dict->start,
      copy_size);

  dict->start = dict->pos;
  b->out_pos += copy_size;
  return copy_size;
}

/*****************
 * Range decoder *
 *****************/

/* Reset the range decoder. */
static void rc_reset(struct rc_dec *rc)
{
  rc->range = (uint32_t)-1;
  rc->code = 0;
  rc->init_bytes_left = RC_INIT_BYTES;
}

/*
 * Read the first five initial bytes into rc->code if they haven't been
 * read already. (Yes, the first byte gets completely ignored.)
 */
static int rc_read_init(struct rc_dec *rc, struct xz_buf *b)
{
  while (rc->init_bytes_left > 0) {
    if (b->in_pos == b->in_size) return 0;

    rc->code = (rc->code << 8) + b->in[b->in_pos++];
    --rc->init_bytes_left;
  }

  return 1;
}

/* Return true if there may not be enough input for the next decoding loop. */
static inline int rc_limit_exceeded(const struct rc_dec *rc)
{
  return rc->in_pos > rc->in_limit;
}

/*
 * Return true if it is possible (from point of view of range decoder) that
 * we have reached the end of the LZMA chunk.
 */
static inline int rc_is_finished(const struct rc_dec *rc)
{
  return rc->code == 0;
}

/* Read the next input byte if needed. */
static inline void rc_normalize(struct rc_dec *rc)
{
  if (rc->range < RC_TOP_VALUE) {
    rc->range <<= RC_SHIFT_BITS;
    rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
  }
}

/*
 * Decode one bit. In some versions, this function has been splitted in three
 * functions so that the compiler is supposed to be able to more easily avoid
 * an extra branch. In this particular version of the LZMA decoder, this
 * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
 * on x86). Using a non-splitted version results in nicer looking code too.
 *
 * NOTE: This must return an int. Do not make it return a bool or the speed
 * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
 * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
 */
static inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
{
  uint32_t bound;
  int bit;

  rc_normalize(rc);
  bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
  if (rc->code < bound) {
    rc->range = bound;
    *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
    bit = 0;
  } else {
    rc->range -= bound;
    rc->code -= bound;
    *prob -= *prob >> RC_MOVE_BITS;
    bit = 1;
  }

  return bit;
}

/* Decode a bittree starting from the most significant bit. */
static inline uint32_t rc_bittree(struct rc_dec *rc,
             uint16_t *probs, uint32_t limit)
{
  uint32_t symbol = 1;

  do {
    if (rc_bit(rc, &probs[symbol]))
      symbol = (symbol << 1) + 1;
    else
      symbol <<= 1;
  } while (symbol < limit);

  return symbol;
}

/* Decode a bittree starting from the least significant bit. */
static inline void rc_bittree_reverse(struct rc_dec *rc,
                 uint16_t *probs,
                 uint32_t *dest, uint32_t limit)
{
  uint32_t symbol = 1;
  uint32_t i = 0;

  do {
    if (rc_bit(rc, &probs[symbol])) {
      symbol = (symbol << 1) + 1;
      *dest += 1 << i;
    } else {
      symbol <<= 1;
    }
  } while (++i < limit);
}

/* Decode direct bits (fixed fifty-fifty probability) */
static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
{
  uint32_t mask;

  do {
    rc_normalize(rc);
    rc->range >>= 1;
    rc->code -= rc->range;
    mask = (uint32_t)0 - (rc->code >> 31);
    rc->code += rc->range & mask;
    *dest = (*dest << 1) + (mask + 1);
  } while (--limit > 0);
}

/********
 * LZMA *
 ********/

/* Get pointer to literal coder probability array. */
static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
{
  uint32_t prev_byte = dict_get(&s->dict, 0);
  uint32_t low = prev_byte >> (8 - s->lzma.lc);
  uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
  return s->lzma.literal[low + high];
}

/* Decode a literal (one 8-bit byte) */
static void lzma_literal(struct xz_dec_lzma2 *s)
{
  uint16_t *probs;
  uint32_t symbol;
  uint32_t match_byte;
  uint32_t match_bit;
  uint32_t offset;
  uint32_t i;

  probs = lzma_literal_probs(s);

  if (lzma_state_is_literal(s->lzma.state)) {
    symbol = rc_bittree(&s->rc, probs, 0x100);
  } else {
    symbol = 1;
    match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
    offset = 0x100;

    do {
      match_bit = match_byte & offset;
      match_byte <<= 1;
      i = offset + match_bit + symbol;

      if (rc_bit(&s->rc, &probs[i])) {
        symbol = (symbol << 1) + 1;
        offset &= match_bit;
      } else {
        symbol <<= 1;
        offset &= ~match_bit;
      }
    } while (symbol < 0x100);
  }

  dict_put(&s->dict, (uint8_t)symbol);
  lzma_state_literal(&s->lzma.state);
}

/* Decode the length of the match into s->lzma.len. */
static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
         uint32_t pos_state)
{
  uint16_t *probs;
  uint32_t limit;

  if (!rc_bit(&s->rc, &l->choice)) {
    probs = l->low[pos_state];
    limit = LEN_LOW_SYMBOLS;
    s->lzma.len = MATCH_LEN_MIN;
  } else {
    if (!rc_bit(&s->rc, &l->choice2)) {
      probs = l->mid[pos_state];
      limit = LEN_MID_SYMBOLS;
      s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
    } else {
      probs = l->high;
      limit = LEN_HIGH_SYMBOLS;
      s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
          + LEN_MID_SYMBOLS;
    }
  }

  s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
}

/* Decode a match. The distance will be stored in s->lzma.rep0. */
static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
{
  uint16_t *probs;
  uint32_t dist_slot;
  uint32_t limit;

  lzma_state_match(&s->lzma.state);

  s->lzma.rep3 = s->lzma.rep2;
  s->lzma.rep2 = s->lzma.rep1;
  s->lzma.rep1 = s->lzma.rep0;

  lzma_len(s, &s->lzma.match_len_dec, pos_state);

  probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
  dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;

  if (dist_slot < DIST_MODEL_START) {
    s->lzma.rep0 = dist_slot;
  } else {
    limit = (dist_slot >> 1) - 1;
    s->lzma.rep0 = 2 + (dist_slot & 1);

    if (dist_slot < DIST_MODEL_END) {
      s->lzma.rep0 <<= limit;
      probs = s->lzma.dist_special + s->lzma.rep0
          - dist_slot - 1;
      rc_bittree_reverse(&s->rc, probs,
          &s->lzma.rep0, limit);
    } else {
      rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
      s->lzma.rep0 <<= ALIGN_BITS;
      rc_bittree_reverse(&s->rc, s->lzma.dist_align,
          &s->lzma.rep0, ALIGN_BITS);
    }
  }
}

/*
 * Decode a repeated match. The distance is one of the four most recently
 * seen matches. The distance will be stored in s->lzma.rep0.
 */
static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
{
  uint32_t tmp;

  if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
    if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
        s->lzma.state][pos_state])) {
      lzma_state_short_rep(&s->lzma.state);
      s->lzma.len = 1;
      return;
    }
  } else {
    if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
      tmp = s->lzma.rep1;
    } else {
      if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
        tmp = s->lzma.rep2;
      } else {
        tmp = s->lzma.rep3;
        s->lzma.rep3 = s->lzma.rep2;
      }

      s->lzma.rep2 = s->lzma.rep1;
    }

    s->lzma.rep1 = s->lzma.rep0;
    s->lzma.rep0 = tmp;
  }

  lzma_state_long_rep(&s->lzma.state);
  lzma_len(s, &s->lzma.rep_len_dec, pos_state);
}

/* LZMA decoder core */
static int lzma_main(struct xz_dec_lzma2 *s)
{
  uint32_t pos_state;

  /*
   * If the dictionary was reached during the previous call, try to
   * finish the possibly pending repeat in the dictionary.
   */
  if (dict_has_space(&s->dict) && s->lzma.len > 0)
    dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);

  /*
   * Decode more LZMA symbols. One iteration may consume up to
   * LZMA_IN_REQUIRED - 1 bytes.
   */
  while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
    pos_state = s->dict.pos & s->lzma.pos_mask;

    if (!rc_bit(&s->rc, &s->lzma.is_match[
        s->lzma.state][pos_state])) {
      lzma_literal(s);
    } else {
      if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
        lzma_rep_match(s, pos_state);
      else
        lzma_match(s, pos_state);

      if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
        return 0;
    }
  }

  /*
   * Having the range decoder always normalized when we are outside
   * this function makes it easier to correctly handle end of the chunk.
   */
  rc_normalize(&s->rc);

  return 1;
}

/*
 * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
 * here, because LZMA state may be reset without resetting the dictionary.
 */
static void lzma_reset(struct xz_dec_lzma2 *s)
{
  uint16_t *probs;
  size_t i;

  s->lzma.state = STATE_LIT_LIT;
  s->lzma.rep0 = 0;
  s->lzma.rep1 = 0;
  s->lzma.rep2 = 0;
  s->lzma.rep3 = 0;

  /*
   * All probabilities are initialized to the same value. This hack
   * makes the code smaller by avoiding a separate loop for each
   * probability array.
   *
   * This could be optimized so that only that part of literal
   * probabilities that are actually required. In the common case
   * we would write 12 KiB less.
   */
  probs = s->lzma.is_match[0];
  for (i = 0; i < PROBS_TOTAL; ++i)
    probs[i] = RC_BIT_MODEL_TOTAL / 2;

  rc_reset(&s->rc);
}

/*
 * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
 * from the decoded lp and pb values. On success, the LZMA decoder state is
 * reset and true is returned.
 */
static int lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
{
  if (props > (4 * 5 + 4) * 9 + 8)
    return 0;

  s->lzma.pos_mask = 0;
  while (props >= 9 * 5) {
    props -= 9 * 5;
    ++s->lzma.pos_mask;
  }

  s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;

  s->lzma.literal_pos_mask = 0;
  while (props >= 9) {
    props -= 9;
    ++s->lzma.literal_pos_mask;
  }

  s->lzma.lc = props;

  if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
    return 0;

  s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;

  lzma_reset(s);

  return 1;
}

/*********
 * LZMA2 *
 *********/

/*
 * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
 * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
 * wrapper function takes care of making the LZMA decoder's assumption safe.
 *
 * As long as there is plenty of input left to be decoded in the current LZMA
 * chunk, we decode directly from the caller-supplied input buffer until
 * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
 * s->temp.buf, which (hopefully) gets filled on the next call to this
 * function. We decode a few bytes from the temporary buffer so that we can
 * continue decoding from the caller-supplied input buffer again.
 */
static int lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
{
  size_t in_avail;
  uint32_t tmp;

  in_avail = b->in_size - b->in_pos;
  if (s->temp.size > 0 || s->lzma2.compressed == 0) {
    tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
    if (tmp > s->lzma2.compressed - s->temp.size)
      tmp = s->lzma2.compressed - s->temp.size;
    if (tmp > in_avail)
      tmp = in_avail;

    memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);

    if (s->temp.size + tmp == s->lzma2.compressed) {
      memset(s->temp.buf + s->temp.size + tmp, 0,
          sizeof(s->temp.buf)
            - s->temp.size - tmp);
      s->rc.in_limit = s->temp.size + tmp;
    } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
      s->temp.size += tmp;
      b->in_pos += tmp;
      return 1;
    } else {
      s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
    }

    s->rc.in = s->temp.buf;
    s->rc.in_pos = 0;

    if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
      return 0;

    s->lzma2.compressed -= s->rc.in_pos;

    if (s->rc.in_pos < s->temp.size) {
      s->temp.size -= s->rc.in_pos;
      memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
          s->temp.size);
      return 1;
    }

    b->in_pos += s->rc.in_pos - s->temp.size;
    s->temp.size = 0;
  }

  in_avail = b->in_size - b->in_pos;
  if (in_avail >= LZMA_IN_REQUIRED) {
    s->rc.in = b->in;
    s->rc.in_pos = b->in_pos;

    if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
      s->rc.in_limit = b->in_pos + s->lzma2.compressed;
    else
      s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;

    if (!lzma_main(s))
      return 0;

    in_avail = s->rc.in_pos - b->in_pos;
    if (in_avail > s->lzma2.compressed) return 0;

    s->lzma2.compressed -= in_avail;
    b->in_pos = s->rc.in_pos;
  }

  in_avail = b->in_size - b->in_pos;
  if (in_avail < LZMA_IN_REQUIRED) {
    if (in_avail > s->lzma2.compressed)
      in_avail = s->lzma2.compressed;

    memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
    s->temp.size = in_avail;
    b->in_pos += in_avail;
  }

  return 1;
}

/*
 * Take care of the LZMA2 control layer, and forward the job of actual LZMA
 * decoding or copying of uncompressed chunks to other functions.
 */
enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
               struct xz_buf *b)
{
  uint32_t tmp;

  while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
    switch (s->lzma2.sequence) {
    case SEQ_CONTROL:
      /*
       * LZMA2 control byte
       *
       * Exact values:
       *   0x00   End marker
       *   0x01   Dictionary reset followed by
       *          an uncompressed chunk
       *   0x02   Uncompressed chunk (no dictionary reset)
       *
       * Highest three bits (s->control & 0xE0):
       *   0xE0   Dictionary reset, new properties and state
       *          reset, followed by LZMA compressed chunk
       *   0xC0   New properties and state reset, followed
       *          by LZMA compressed chunk (no dictionary
       *          reset)
       *   0xA0   State reset using old properties,
       *          followed by LZMA compressed chunk (no
       *          dictionary reset)
       *   0x80   LZMA chunk (no dictionary or state reset)
       *
       * For LZMA compressed chunks, the lowest five bits
       * (s->control & 1F) are the highest bits of the
       * uncompressed size (bits 16-20).
       *
       * A new LZMA2 stream must begin with a dictionary
       * reset. The first LZMA chunk must set new
       * properties and reset the LZMA state.
       *
       * Values that don't match anything described above
       * are invalid and we return XZ_DATA_ERROR.
       */
      tmp = b->in[b->in_pos++];

      if (tmp == 0x00)
        return XZ_STREAM_END;

      if (tmp >= 0xE0 || tmp == 0x01) {
        s->lzma2.need_props = 1;
        s->lzma2.need_dict_reset = 0;
        dict_reset(&s->dict);
      } else if (s->lzma2.need_dict_reset) {
        return XZ_DATA_ERROR;
      }

      if (tmp >= 0x80) {
        s->lzma2.uncompressed = (tmp & 0x1F) << 16;
        s->lzma2.sequence = SEQ_UNCOMPRESSED_1;

        if (tmp >= 0xC0) {
          /*
           * When there are new properties,
           * state reset is done at
           * SEQ_PROPERTIES.
           */
          s->lzma2.need_props = 0;
          s->lzma2.next_sequence
              = SEQ_PROPERTIES;

        } else if (s->lzma2.need_props) {
          return XZ_DATA_ERROR;

        } else {
          s->lzma2.next_sequence
              = SEQ_LZMA_PREPARE;
          if (tmp >= 0xA0)
            lzma_reset(s);
        }
      } else {
        if (tmp > 0x02)
          return XZ_DATA_ERROR;

        s->lzma2.sequence = SEQ_COMPRESSED_0;
        s->lzma2.next_sequence = SEQ_COPY;
      }

      break;

    case SEQ_UNCOMPRESSED_1:
      s->lzma2.uncompressed
          += (uint32_t)b->in[b->in_pos++] << 8;
      s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
      break;

    case SEQ_UNCOMPRESSED_2:
      s->lzma2.uncompressed
          += (uint32_t)b->in[b->in_pos++] + 1;
      s->lzma2.sequence = SEQ_COMPRESSED_0;
      break;

    case SEQ_COMPRESSED_0:
      s->lzma2.compressed
          = (uint32_t)b->in[b->in_pos++] << 8;
      s->lzma2.sequence = SEQ_COMPRESSED_1;
      break;

    case SEQ_COMPRESSED_1:
      s->lzma2.compressed
          += (uint32_t)b->in[b->in_pos++] + 1;
      s->lzma2.sequence = s->lzma2.next_sequence;
      break;

    case SEQ_PROPERTIES:
      if (!lzma_props(s, b->in[b->in_pos++]))
        return XZ_DATA_ERROR;

      s->lzma2.sequence = SEQ_LZMA_PREPARE;

    case SEQ_LZMA_PREPARE:
      if (s->lzma2.compressed < RC_INIT_BYTES)
        return XZ_DATA_ERROR;

      if (!rc_read_init(&s->rc, b))
        return XZ_OK;

      s->lzma2.compressed -= RC_INIT_BYTES;
      s->lzma2.sequence = SEQ_LZMA_RUN;

    case SEQ_LZMA_RUN:
      /*
       * Set dictionary limit to indicate how much we want
       * to be encoded at maximum. Decode new data into the
       * dictionary. Flush the new data from dictionary to
       * b->out. Check if we finished decoding this chunk.
       * In case the dictionary got full but we didn't fill
       * the output buffer yet, we may run this loop
       * multiple times without changing s->lzma2.sequence.
       */
      dict_limit(&s->dict, min_t(size_t,
          b->out_size - b->out_pos,
          s->lzma2.uncompressed));
      if (!lzma2_lzma(s, b))
        return XZ_DATA_ERROR;

      s->lzma2.uncompressed -= dict_flush(&s->dict, b);

      if (s->lzma2.uncompressed == 0) {
        if (s->lzma2.compressed > 0 || s->lzma.len > 0
            || !rc_is_finished(&s->rc))
          return XZ_DATA_ERROR;

        rc_reset(&s->rc);
        s->lzma2.sequence = SEQ_CONTROL;

      } else if (b->out_pos == b->out_size
          || (b->in_pos == b->in_size
            && s->temp.size
            < s->lzma2.compressed)) {
        return XZ_OK;
      }

      break;

    case SEQ_COPY:
      dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
      if (s->lzma2.compressed > 0)
        return XZ_OK;

      s->lzma2.sequence = SEQ_CONTROL;
      break;
    }
  }

  return XZ_OK;
}

struct xz_dec_lzma2 *xz_dec_lzma2_create(uint32_t dict_max)
{
  struct xz_dec_lzma2 *s = malloc(sizeof(*s));
  if (s == NULL)
    return NULL;

  s->dict.size_max = dict_max;
  s->dict.buf = NULL;
  s->dict.allocated = 0;

  return s;
}

enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
{
  /* This limits dictionary size to 3 GiB to keep parsing simpler. */
  if (props > 39)
    return XZ_OPTIONS_ERROR;

  s->dict.size = 2 + (props & 1);
  s->dict.size <<= (props >> 1) + 11;

  if (s->dict.size > s->dict.size_max)
    return XZ_MEMLIMIT_ERROR;

  s->dict.end = s->dict.size;

  if (s->dict.allocated < s->dict.size) {
    free(s->dict.buf);
    s->dict.buf = malloc(s->dict.size);
    if (s->dict.buf == NULL) {
      s->dict.allocated = 0;
      return XZ_MEM_ERROR;
    }
  }

  s->lzma.len = 0;

  s->lzma2.sequence = SEQ_CONTROL;
  s->lzma2.need_dict_reset = 1;

  s->temp.size = 0;

  return XZ_OK;
}

/*
 * .xz Stream decoder
 */


// BEGIN xz_stream.h
/*
 * Definitions for handling the .xz file format
 */

/*
 * See the .xz file format specification at
 * http://tukaani.org/xz/xz-file-format.txt
 * to understand the container format.
 */

#define STREAM_HEADER_SIZE 12

#define HEADER_MAGIC "\3757zXZ"
#define HEADER_MAGIC_SIZE 6

#define FOOTER_MAGIC "YZ"
#define FOOTER_MAGIC_SIZE 2

/*
 * Variable-length integer can hold a 63-bit unsigned integer or a special
 * value indicating that the value is unknown.
 *
 * Experimental: vli_type can be defined to uint32_t to save a few bytes
 * in code size (no effect on speed). Doing so limits the uncompressed and
 * compressed size of the file to less than 256 MiB and may also weaken
 * error detection slightly.
 */
typedef uint64_t vli_type;

#define VLI_MAX ((vli_type)-1 / 2)
#define VLI_UNKNOWN ((vli_type)-1)

/* Maximum encoded size of a VLI */
#define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)

/* Integrity Check types */
enum xz_check {
  XZ_CHECK_NONE = 0,
  XZ_CHECK_CRC32 = 1,
  XZ_CHECK_CRC64 = 4,
  XZ_CHECK_SHA256 = 10
};

/* Maximum possible Check ID */
#define XZ_CHECK_MAX 15
// END xz_stream.h

#define IS_CRC64(check_type) ((check_type) == XZ_CHECK_CRC64)

/* Hash used to validate the Index field */
struct xz_dec_hash {
  vli_type unpadded;
  vli_type uncompressed;
  uint32_t crc32;
};

struct xz_dec {
  /* Position in dec_main() */
  enum {
    SEQ_STREAM_HEADER,
    SEQ_BLOCK_START,
    SEQ_BLOCK_HEADER,
    SEQ_BLOCK_UNCOMPRESS,
    SEQ_BLOCK_PADDING,
    SEQ_BLOCK_CHECK,
    SEQ_INDEX,
    SEQ_INDEX_PADDING,
    SEQ_INDEX_CRC32,
    SEQ_STREAM_FOOTER
  } sequence;

  /* Position in variable-length integers and Check fields */
  uint32_t pos;

  /* Variable-length integer decoded by dec_vli() */
  vli_type vli;

  /* Saved in_pos and out_pos */
  size_t in_start;
  size_t out_start;

  /* CRC32 or CRC64 value in Block or CRC32 value in Index */
  uint64_t crc;

  /* Type of the integrity check calculated from uncompressed data */
  enum xz_check check_type;

  /*
   * True if the next call to xz_dec_run() is allowed to return
   * XZ_BUF_ERROR.
   */
  int allow_buf_error;

  /* Information stored in Block Header */
  struct {
    /*
     * Value stored in the Compressed Size field, or
     * VLI_UNKNOWN if Compressed Size is not present.
     */
    vli_type compressed;

    /*
     * Value stored in the Uncompressed Size field, or
     * VLI_UNKNOWN if Uncompressed Size is not present.
     */
    vli_type uncompressed;

    /* Size of the Block Header field */
    uint32_t size;
  } block_header;

  /* Information collected when decoding Blocks */
  struct {
    /* Observed compressed size of the current Block */
    vli_type compressed;

    /* Observed uncompressed size of the current Block */
    vli_type uncompressed;

    /* Number of Blocks decoded so far */
    vli_type count;

    /*
     * Hash calculated from the Block sizes. This is used to
     * validate the Index field.
     */
    struct xz_dec_hash hash;
  } block;

  /* Variables needed when verifying the Index field */
  struct {
    /* Position in dec_index() */
    enum {
      SEQ_INDEX_COUNT,
      SEQ_INDEX_UNPADDED,
      SEQ_INDEX_UNCOMPRESSED
    } sequence;

    /* Size of the Index in bytes */
    vli_type size;

    /* Number of Records (matches block.count in valid files) */
    vli_type count;

    /*
     * Hash calculated from the Records (matches block.hash in
     * valid files).
     */
    struct xz_dec_hash hash;
  } index;

  /*
   * Temporary buffer needed to hold Stream Header, Block Header,
   * and Stream Footer. The Block Header is the biggest (1 KiB)
   * so we reserve space according to that. buf[] has to be aligned
   * to a multiple of four bytes; the size_t variables before it
   * should guarantee this.
   */
  struct {
    size_t pos;
    size_t size;
    uint8_t buf[1024];
  } temp;

  struct xz_dec_lzma2 *lzma2;

#ifdef XZ_DEC_BCJ
  struct xz_dec_bcj *bcj;
  int bcj_active;
#endif
};

/* Sizes of the Check field with different Check IDs */
static const uint8_t check_sizes[16] = {
  0,
  4, 4, 4,
  8, 8, 8,
  16, 16, 16,
  32, 32, 32,
  64, 64, 64
};

/*
 * Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
 * must have set s->temp.pos to indicate how much data we are supposed
 * to copy into s->temp.buf. Return true once s->temp.pos has reached
 * s->temp.size.
 */
static int fill_temp(struct xz_dec *s, struct xz_buf *b)
{
  size_t copy_size = min_t(size_t,
      b->in_size - b->in_pos, s->temp.size - s->temp.pos);

  memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
  b->in_pos += copy_size;
  s->temp.pos += copy_size;

  if (s->temp.pos == s->temp.size) {
    s->temp.pos = 0;
    return 1;
  }

  return 0;
}

/* Decode a variable-length integer (little-endian base-128 encoding) */
static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in,
         size_t *in_pos, size_t in_size)
{
  uint8_t byte;

  if (s->pos == 0)
    s->vli = 0;

  while (*in_pos < in_size) {
    byte = in[*in_pos];
    ++*in_pos;

    s->vli |= (vli_type)(byte & 0x7F) << s->pos;

    if ((byte & 0x80) == 0) {
      /* Don't allow non-minimal encodings. */
      if (byte == 0 && s->pos != 0)
        return XZ_DATA_ERROR;

      s->pos = 0;
      return XZ_STREAM_END;
    }

    s->pos += 7;
    if (s->pos == 7 * VLI_BYTES_MAX)
      return XZ_DATA_ERROR;
  }

  return XZ_OK;
}

/*
 * Decode the Compressed Data field from a Block. Update and validate
 * the observed compressed and uncompressed sizes of the Block so that
 * they don't exceed the values possibly stored in the Block Header
 * (validation assumes that no integer overflow occurs, since vli_type
 * is normally uint64_t). Update the CRC32 or CRC64 value if presence of
 * the CRC32 or CRC64 field was indicated in Stream Header.
 *
 * Once the decoding is finished, validate that the observed sizes match
 * the sizes possibly stored in the Block Header. Update the hash and
 * Block count, which are later used to validate the Index field.
 */
static enum xz_ret dec_block(struct xz_dec *s, struct xz_buf *b)
{
  enum xz_ret ret;

  s->in_start = b->in_pos;
  s->out_start = b->out_pos;

#ifdef XZ_DEC_BCJ
  if (s->bcj_active)
    ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
  else
#endif
    ret = xz_dec_lzma2_run(s->lzma2, b);

  s->block.compressed += b->in_pos - s->in_start;
  s->block.uncompressed += b->out_pos - s->out_start;

  /*
   * There is no need to separately check for VLI_UNKNOWN, since
   * the observed sizes are always smaller than VLI_UNKNOWN.
   */
  if (s->block.compressed > s->block_header.compressed
      || s->block.uncompressed
        > s->block_header.uncompressed)
    return XZ_DATA_ERROR;

  if (s->check_type == XZ_CHECK_CRC32)
    s->crc = xz_crc32(b->out + s->out_start,
        b->out_pos - s->out_start, s->crc);
  else if (s->check_type == XZ_CHECK_CRC64)
    s->crc = ~(s->crc);
    size_t size = b->out_pos - s->out_start;
    uint8_t *buf = b->out + s->out_start;
    while (size) {
      s->crc = xz_crc64_table[*buf++ ^ (s->crc & 0xFF)] ^ (s->crc >> 8);
      --size;
    }
    s->crc=~(s->crc);

  if (ret == XZ_STREAM_END) {
    if (s->block_header.compressed != VLI_UNKNOWN
        && s->block_header.compressed
          != s->block.compressed)
      return XZ_DATA_ERROR;

    if (s->block_header.uncompressed != VLI_UNKNOWN
        && s->block_header.uncompressed
          != s->block.uncompressed)
      return XZ_DATA_ERROR;

    s->block.hash.unpadded += s->block_header.size
        + s->block.compressed;

    s->block.hash.unpadded += check_sizes[s->check_type];

    s->block.hash.uncompressed += s->block.uncompressed;
    s->block.hash.crc32 = xz_crc32(
        (const uint8_t *)&s->block.hash,
        sizeof(s->block.hash), s->block.hash.crc32);

    ++s->block.count;
  }

  return ret;
}

/* Update the Index size and the CRC32 value. */
static void index_update(struct xz_dec *s, const struct xz_buf *b)
{
  size_t in_used = b->in_pos - s->in_start;
  s->index.size += in_used;
  s->crc = xz_crc32(b->in + s->in_start, in_used, s->crc);
}

/*
 * Decode the Number of Records, Unpadded Size, and Uncompressed Size
 * fields from the Index field. That is, Index Padding and CRC32 are not
 * decoded by this function.
 *
 * This can return XZ_OK (more input needed), XZ_STREAM_END (everything
 * successfully decoded), or XZ_DATA_ERROR (input is corrupt).
 */
static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b)
{
  enum xz_ret ret;

  do {
    ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
    if (ret != XZ_STREAM_END) {
      index_update(s, b);
      return ret;
    }

    switch (s->index.sequence) {
    case SEQ_INDEX_COUNT:
      s->index.count = s->vli;

      /*
       * Validate that the Number of Records field
       * indicates the same number of Records as
       * there were Blocks in the Stream.
       */
      if (s->index.count != s->block.count)
        return XZ_DATA_ERROR;

      s->index.sequence = SEQ_INDEX_UNPADDED;
      break;

    case SEQ_INDEX_UNPADDED:
      s->index.hash.unpadded += s->vli;
      s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
      break;

    case SEQ_INDEX_UNCOMPRESSED:
      s->index.hash.uncompressed += s->vli;
      s->index.hash.crc32 = xz_crc32(
          (const uint8_t *)&s->index.hash,
          sizeof(s->index.hash),
          s->index.hash.crc32);
      --s->index.count;
      s->index.sequence = SEQ_INDEX_UNPADDED;
      break;
    }
  } while (s->index.count > 0);

  return XZ_STREAM_END;
}

/*
 * Validate that the next four or eight input bytes match the value
 * of s->crc. s->pos must be zero when starting to validate the first byte.
 * The "bits" argument allows using the same code for both CRC32 and CRC64.
 */
static enum xz_ret crc_validate(struct xz_dec *s, struct xz_buf *b,
        uint32_t bits)
{
  do {
    if (b->in_pos == b->in_size)
      return XZ_OK;

    if (((s->crc >> s->pos) & 0xFF) != b->in[b->in_pos++])
      return XZ_DATA_ERROR;

    s->pos += 8;

  } while (s->pos < bits);

  s->crc = 0;
  s->pos = 0;

  return XZ_STREAM_END;
}

/*
 * Skip over the Check field when the Check ID is not supported.
 * Returns true once the whole Check field has been skipped over.
 */
static int check_skip(struct xz_dec *s, struct xz_buf *b)
{
  while (s->pos < check_sizes[s->check_type]) {
    if (b->in_pos == b->in_size) return 0;

    ++b->in_pos;
    ++s->pos;
  }

  s->pos = 0;

  return 1;
}

/* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
static enum xz_ret dec_stream_header(struct xz_dec *s)
{
  if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
    return XZ_FORMAT_ERROR;

  if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
      != get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
    return XZ_DATA_ERROR;

  if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
    return XZ_OPTIONS_ERROR;

  /*
   * Of integrity checks, we support none (Check ID = 0),
   * CRC32 (Check ID = 1), and optionally CRC64 (Check ID = 4).
   * However, if XZ_DEC_ANY_CHECK is defined, we will accept other
   * check types too, but then the check won't be verified and
   * a warning (XZ_UNSUPPORTED_CHECK) will be given.
   */
  s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];

  if (s->check_type > XZ_CHECK_MAX)
    return XZ_OPTIONS_ERROR;

  if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
    return XZ_UNSUPPORTED_CHECK;

  return XZ_OK;
}

/* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
static enum xz_ret dec_stream_footer(struct xz_dec *s)
{
  if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
    return XZ_DATA_ERROR;

  if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
    return XZ_DATA_ERROR;

  /*
   * Validate Backward Size. Note that we never added the size of the
   * Index CRC32 field to s->index.size, thus we use s->index.size / 4
   * instead of s->index.size / 4 - 1.
   */
  if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
    return XZ_DATA_ERROR;

  if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
    return XZ_DATA_ERROR;

  /*
   * Use XZ_STREAM_END instead of XZ_OK to be more convenient
   * for the caller.
   */
  return XZ_STREAM_END;
}

/* Decode the Block Header and initialize the filter chain. */
static enum xz_ret dec_block_header(struct xz_dec *s)
{
  enum xz_ret ret;

  /*
   * Validate the CRC32. We know that the temp buffer is at least
   * eight bytes so this is safe.
   */
  s->temp.size -= 4;
  if (xz_crc32(s->temp.buf, s->temp.size, 0)
      != get_le32(s->temp.buf + s->temp.size))
    return XZ_DATA_ERROR;

  s->temp.pos = 2;

  /*
   * Catch unsupported Block Flags. We support only one or two filters
   * in the chain, so we catch that with the same test.
   */
#ifdef XZ_DEC_BCJ
  if (s->temp.buf[1] & 0x3E)
#else
  if (s->temp.buf[1] & 0x3F)
#endif
    return XZ_OPTIONS_ERROR;

  /* Compressed Size */
  if (s->temp.buf[1] & 0x40) {
    if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
          != XZ_STREAM_END)
      return XZ_DATA_ERROR;

    s->block_header.compressed = s->vli;
  } else {
    s->block_header.compressed = VLI_UNKNOWN;
  }

  /* Uncompressed Size */
  if (s->temp.buf[1] & 0x80) {
    if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
        != XZ_STREAM_END)
      return XZ_DATA_ERROR;

    s->block_header.uncompressed = s->vli;
  } else {
    s->block_header.uncompressed = VLI_UNKNOWN;
  }

#ifdef XZ_DEC_BCJ
  /* If there are two filters, the first one must be a BCJ filter. */
  s->bcj_active = s->temp.buf[1] & 0x01;
  if (s->bcj_active) {
    if (s->temp.size - s->temp.pos < 2)
      return XZ_OPTIONS_ERROR;

    ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
    if (ret != XZ_OK)
      return ret;

    /*
     * We don't support custom start offset,
     * so Size of Properties must be zero.
     */
    if (s->temp.buf[s->temp.pos++] != 0x00)
      return XZ_OPTIONS_ERROR;
  }
#endif

  /* Valid Filter Flags always take at least two bytes. */
  if (s->temp.size - s->temp.pos < 2)
    return XZ_DATA_ERROR;

  /* Filter ID = LZMA2 */
  if (s->temp.buf[s->temp.pos++] != 0x21)
    return XZ_OPTIONS_ERROR;

  /* Size of Properties = 1-byte Filter Properties */
  if (s->temp.buf[s->temp.pos++] != 0x01)
    return XZ_OPTIONS_ERROR;

  /* Filter Properties contains LZMA2 dictionary size. */
  if (s->temp.size - s->temp.pos < 1)
    return XZ_DATA_ERROR;

  ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
  if (ret != XZ_OK)
    return ret;

  /* The rest must be Header Padding. */
  while (s->temp.pos < s->temp.size)
    if (s->temp.buf[s->temp.pos++] != 0x00)
      return XZ_OPTIONS_ERROR;

  s->temp.pos = 0;
  s->block.compressed = 0;
  s->block.uncompressed = 0;

  return XZ_OK;
}

static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b)
{
  enum xz_ret ret;

  /*
   * Store the start position for the case when we are in the middle
   * of the Index field.
   */
  s->in_start = b->in_pos;

  for (;;) {
    switch (s->sequence) {
    case SEQ_STREAM_HEADER:
      /*
       * Stream Header is copied to s->temp, and then
       * decoded from there. This way if the caller
       * gives us only little input at a time, we can
       * still keep the Stream Header decoding code
       * simple. Similar approach is used in many places
       * in this file.
       */
      if (!fill_temp(s, b))
        return XZ_OK;

      /*
       * If dec_stream_header() returns
       * XZ_UNSUPPORTED_CHECK, it is still possible
       * to continue decoding if working in multi-call
       * mode. Thus, update s->sequence before calling
       * dec_stream_header().
       */
      s->sequence = SEQ_BLOCK_START;

      ret = dec_stream_header(s);
      if (ret != XZ_OK)
        return ret;

    case SEQ_BLOCK_START:
      /* We need one byte of input to continue. */
      if (b->in_pos == b->in_size)
        return XZ_OK;

      /* See if this is the beginning of the Index field. */
      if (b->in[b->in_pos] == 0) {
        s->in_start = b->in_pos++;
        s->sequence = SEQ_INDEX;
        break;
      }

      /*
       * Calculate the size of the Block Header and
       * prepare to decode it.
       */
      s->block_header.size
        = ((uint32_t)b->in[b->in_pos] + 1) * 4;

      s->temp.size = s->block_header.size;
      s->temp.pos = 0;
      s->sequence = SEQ_BLOCK_HEADER;

    case SEQ_BLOCK_HEADER:
      if (!fill_temp(s, b))
        return XZ_OK;

      ret = dec_block_header(s);
      if (ret != XZ_OK)
        return ret;

      s->sequence = SEQ_BLOCK_UNCOMPRESS;

    case SEQ_BLOCK_UNCOMPRESS:
      ret = dec_block(s, b);
      if (ret != XZ_STREAM_END)
        return ret;

      s->sequence = SEQ_BLOCK_PADDING;

    case SEQ_BLOCK_PADDING:
      /*
       * Size of Compressed Data + Block Padding
       * must be a multiple of four. We don't need
       * s->block.compressed for anything else
       * anymore, so we use it here to test the size
       * of the Block Padding field.
       */
      while (s->block.compressed & 3) {
        if (b->in_pos == b->in_size)
          return XZ_OK;

        if (b->in[b->in_pos++] != 0)
          return XZ_DATA_ERROR;

        ++s->block.compressed;
      }

      s->sequence = SEQ_BLOCK_CHECK;

    case SEQ_BLOCK_CHECK:
      if (s->check_type == XZ_CHECK_CRC32) {
        ret = crc_validate(s, b, 32);
        if (ret != XZ_STREAM_END)
          return ret;
      }
      else if (IS_CRC64(s->check_type)) {
        ret = crc_validate(s, b, 64);
        if (ret != XZ_STREAM_END)
          return ret;
      }
      else if (!check_skip(s, b)) {
        return XZ_OK;
      }

      s->sequence = SEQ_BLOCK_START;
      break;

    case SEQ_INDEX:
      ret = dec_index(s, b);
      if (ret != XZ_STREAM_END)
        return ret;

      s->sequence = SEQ_INDEX_PADDING;

    case SEQ_INDEX_PADDING:
      while ((s->index.size + (b->in_pos - s->in_start))
          & 3) {
        if (b->in_pos == b->in_size) {
          index_update(s, b);
          return XZ_OK;
        }

        if (b->in[b->in_pos++] != 0)
          return XZ_DATA_ERROR;
      }

      /* Finish the CRC32 value and Index size. */
      index_update(s, b);

      /* Compare the hashes to validate the Index field. */
      if (!memeq(&s->block.hash, &s->index.hash,
          sizeof(s->block.hash)))
        return XZ_DATA_ERROR;

      s->sequence = SEQ_INDEX_CRC32;

    case SEQ_INDEX_CRC32:
      ret = crc_validate(s, b, 32);
      if (ret != XZ_STREAM_END)
        return ret;

      s->temp.size = STREAM_HEADER_SIZE;
      s->sequence = SEQ_STREAM_FOOTER;

    case SEQ_STREAM_FOOTER:
      if (!fill_temp(s, b))
        return XZ_OK;

      return dec_stream_footer(s);
    }
  }

  /* Never reached */
}

/*
 * xz_dec_run() is a wrapper for dec_main() to handle some special cases in
 * multi-call and single-call decoding.
 *
 * In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we
 * are not going to make any progress anymore. This is to prevent the caller
 * from calling us infinitely when the input file is truncated or otherwise
 * corrupt. Since zlib-style API allows that the caller fills the input buffer
 * only when the decoder doesn't produce any new output, we have to be careful
 * to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only
 * after the second consecutive call to xz_dec_run() that makes no progress.
 *
 * In single-call mode, if we couldn't decode everything and no error
 * occurred, either the input is truncated or the output buffer is too small.
 * Since we know that the last input byte never produces any output, we know
 * that if all the input was consumed and decoding wasn't finished, the file
 * must be corrupt. Otherwise the output buffer has to be too small or the
 * file is corrupt in a way that decoding it produces too big output.
 *
 * If single-call decoding fails, we reset b->in_pos and b->out_pos back to
 * their original values. This is because with some filter chains there won't
 * be any valid uncompressed data in the output buffer unless the decoding
 * actually succeeds (that's the price to pay of using the output buffer as
 * the workspace).
 */
enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b)
{
  size_t in_start;
  size_t out_start;
  enum xz_ret ret;

  in_start = b->in_pos;
  out_start = b->out_pos;
  ret = dec_main(s, b);

  if (ret == XZ_OK && in_start == b->in_pos && out_start == b->out_pos) {
    if (s->allow_buf_error)
      ret = XZ_BUF_ERROR;

    s->allow_buf_error = 1;
  } else {
    s->allow_buf_error = 0;
  }

  return ret;
}

struct xz_dec *xz_dec_init(uint32_t dict_max)
{
  struct xz_dec *s = malloc(sizeof(*s));
  if (!s)
    return NULL;

#ifdef XZ_DEC_BCJ
  s->bcj = malloc(sizeof(*s->bcj));
  if (!s->bcj)
    goto error_bcj;
#endif

  s->lzma2 = xz_dec_lzma2_create(dict_max);
  if (s->lzma2 == NULL)
    goto error_lzma2;

  xz_dec_reset(s);
  return s;

error_lzma2:
#ifdef XZ_DEC_BCJ
  free(s->bcj);
error_bcj:
#endif
  free(s);
  return NULL;
}

void xz_dec_reset(struct xz_dec *s)
{
  s->sequence = SEQ_STREAM_HEADER;
  s->allow_buf_error = 0;
  s->pos = 0;
  s->crc = 0;
  memset(&s->block, 0, sizeof(s->block));
  memset(&s->index, 0, sizeof(s->index));
  s->temp.pos = 0;
  s->temp.size = STREAM_HEADER_SIZE;
}

void xz_dec_end(struct xz_dec *s)
{
  if (s != NULL) {
    free((s->lzma2)->dict.buf);
    free(s->lzma2);

#ifdef XZ_DEC_BCJ
    free(s->bcj);
#endif
    free(s);
  }
}