diff lib/bunzip.c @ 694:786841fdb1e0

Reindent to two spaces per level. Remove vi: directives that haven't worked right in years (ubuntu broke its' vim implementation). Remove trailing spaces. Add/remove blank lines. Re-wordwrap in places. Update documentation with new coding style. The actual code should be the same afterward, this is just cosmetic refactoring.
author Rob Landley <rob@landley.net>
date Tue, 13 Nov 2012 17:14:08 -0600
parents aaafa1ceaa91
children 2945e3cbebf2
line wrap: on
line diff
--- a/lib/bunzip.c	Tue Nov 13 16:13:45 2012 -0600
+++ b/lib/bunzip.c	Tue Nov 13 17:14:08 2012 -0600
@@ -1,14 +1,13 @@
-/* vi: set sw=4 ts=4: */
 /* micro-bunzip, a small, simple bzip2 decompression implementation.
-
-   Copyright 2003, 2006 by Rob Landley (rob@landley.net).
-
-   Based on a close reading (but not the actual code) of the original bzip2
-   decompression code by Julian R Seward (jseward@acm.org), which also
-   acknowledges contributions by Mike Burrows, David Wheeler, Peter Fenwick,
-   Alistair Moffat, Radford Neal, Ian H. Witten, Robert Sedgewick, and
-   Jon L. Bentley.
-*/
+ *
+ * Copyright 2003, 2006 by Rob Landley (rob@landley.net).
+ *
+ * Based on a close reading (but not the actual code) of the original bzip2
+ * decompression code by Julian R Seward (jseward@acm.org), which also
+ * acknowledges contributions by Mike Burrows, David Wheeler, Peter Fenwick,
+ * Alistair Moffat, Radford Neal, Ian H. Witten, Robert Sedgewick, and
+ * Jon L. Bentley.
+ */
 
 #include "toys.h"
 
@@ -32,93 +31,92 @@
 #define RETVAL_OBSOLETE_INPUT    (-3)
 
 char *bunzip_errors[]={
-	NULL,
-	"Not bzip data",
-	"Data error",
-	"Obsolete (pre 0.9.5) bzip format not supported."
+  NULL,
+  "Not bzip data",
+  "Data error",
+  "Obsolete (pre 0.9.5) bzip format not supported."
 };
 
 // This is what we know about each huffman coding group
 struct group_data {
-	int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS];
-	char minLen, maxLen;
+  int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS];
+  char minLen, maxLen;
 };
 
 // Data for burrows wheeler transform
 
 struct bwdata {
-	unsigned int origPtr;
-	int byteCount[256];
-	// State saved when interrupting output
-	int writePos, writeRun, writeCount, writeCurrent;
-	unsigned int dataCRC, headerCRC;
-	unsigned int *dbuf;
+  unsigned int origPtr;
+  int byteCount[256];
+  // State saved when interrupting output
+  int writePos, writeRun, writeCount, writeCurrent;
+  unsigned int dataCRC, headerCRC;
+  unsigned int *dbuf;
 };
 
 // Structure holding all the housekeeping data, including IO buffers and
 // memory that persists between calls to bunzip
 struct bunzip_data {
-
-	// Input stream, input buffer, input bit buffer
-	int in_fd, inbufCount, inbufPos;
-	char *inbuf;
-	unsigned int inbufBitCount, inbufBits;
+  // Input stream, input buffer, input bit buffer
+  int in_fd, inbufCount, inbufPos;
+  char *inbuf;
+  unsigned int inbufBitCount, inbufBits;
 
-	// Output buffer
-	char outbuf[IOBUF_SIZE];
-	int outbufPos;
+  // Output buffer
+  char outbuf[IOBUF_SIZE];
+  int outbufPos;
 
-	unsigned int totalCRC;
+  unsigned int totalCRC;
 
-	// First pass decompression data (Huffman and MTF decoding)
-	char selectors[32768];                  // nSelectors=15 bits
-	struct group_data groups[MAX_GROUPS];   // huffman coding tables
-	int symTotal, groupCount, nSelectors;
-	unsigned char symToByte[256], mtfSymbol[256];
+  // First pass decompression data (Huffman and MTF decoding)
+  char selectors[32768];                  // nSelectors=15 bits
+  struct group_data groups[MAX_GROUPS];   // huffman coding tables
+  int symTotal, groupCount, nSelectors;
+  unsigned char symToByte[256], mtfSymbol[256];
 
-	// The CRC values stored in the block header and calculated from the data
-	unsigned int crc32Table[256];
+  // The CRC values stored in the block header and calculated from the data
+  unsigned int crc32Table[256];
 
-	// Second pass decompression data (burrows-wheeler transform)
-	unsigned int dbufSize;
-	struct bwdata bwdata[THREADS];
+  // Second pass decompression data (burrows-wheeler transform)
+  unsigned int dbufSize;
+  struct bwdata bwdata[THREADS];
 };
 
 // Return the next nnn bits of input.  All reads from the compressed input
 // are done through this function.  All reads are big endian.
 static unsigned int get_bits(struct bunzip_data *bd, char bits_wanted)
 {
-	unsigned int bits = 0;
+  unsigned int bits = 0;
 
-	// If we need to get more data from the byte buffer, do so.  (Loop getting
-	// one byte at a time to enforce endianness and avoid unaligned access.)
-	while (bd->inbufBitCount < bits_wanted) {
+  // If we need to get more data from the byte buffer, do so.  (Loop getting
+  // one byte at a time to enforce endianness and avoid unaligned access.)
+  while (bd->inbufBitCount < bits_wanted) {
 
-		// If we need to read more data from file into byte buffer, do so
-		if (bd->inbufPos == bd->inbufCount) {
-			if (0 >= (bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE)))
-				error_exit("Unexpected input EOF");
-			bd->inbufPos = 0;
-		}
+    // If we need to read more data from file into byte buffer, do so
+    if (bd->inbufPos == bd->inbufCount) {
+      if (0 >= (bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE)))
+        error_exit("Unexpected input EOF");
+      bd->inbufPos = 0;
+    }
 
-		// Avoid 32-bit overflow (dump bit buffer to top of output)
-		if (bd->inbufBitCount>=24) {
-			bits = bd->inbufBits&((1<<bd->inbufBitCount)-1);
-			bits_wanted -= bd->inbufBitCount;
-			bits <<= bits_wanted;
-			bd->inbufBitCount = 0;
-		}
+    // Avoid 32-bit overflow (dump bit buffer to top of output)
+    if (bd->inbufBitCount>=24) {
+      bits = bd->inbufBits&((1<<bd->inbufBitCount)-1);
+      bits_wanted -= bd->inbufBitCount;
+      bits <<= bits_wanted;
+      bd->inbufBitCount = 0;
+    }
 
-		// Grab next 8 bits of input from buffer.
-		bd->inbufBits = (bd->inbufBits<<8) | bd->inbuf[bd->inbufPos++];
-		bd->inbufBitCount += 8;
-	}
+    // Grab next 8 bits of input from buffer.
+    bd->inbufBits = (bd->inbufBits<<8) | bd->inbuf[bd->inbufPos++];
+    bd->inbufBitCount += 8;
+  }
 
-	// Calculate result
-	bd->inbufBitCount -= bits_wanted;
-	bits |= (bd->inbufBits>>bd->inbufBitCount) & ((1<<bits_wanted)-1);
+  // Calculate result
+  bd->inbufBitCount -= bits_wanted;
+  bits |= (bd->inbufBits>>bd->inbufBitCount) & ((1<<bits_wanted)-1);
 
-	return bits;
+  return bits;
 }
 
 /* Read block header at start of a new compressed data block.  Consists of:
@@ -139,156 +137,153 @@
 
 static int read_block_header(struct bunzip_data *bd, struct bwdata *bw)
 {
-	struct group_data *hufGroup;
-	int hh, ii, jj, kk, symCount, *base, *limit;
-	unsigned char uc;
+  struct group_data *hufGroup;
+  int hh, ii, jj, kk, symCount, *base, *limit;
+  unsigned char uc;
 
-	// Read in header signature and CRC (which is stored big endian)
-	ii = get_bits(bd, 24);
-	jj = get_bits(bd, 24);
-	bw->headerCRC = get_bits(bd,32);
+  // Read in header signature and CRC (which is stored big endian)
+  ii = get_bits(bd, 24);
+  jj = get_bits(bd, 24);
+  bw->headerCRC = get_bits(bd,32);
 
-	// Is this the EOF block with CRC for whole file?  (Constant is "e")
-	if (ii==0x177245 && jj==0x385090) return RETVAL_LAST_BLOCK;
+  // Is this the EOF block with CRC for whole file?  (Constant is "e")
+  if (ii==0x177245 && jj==0x385090) return RETVAL_LAST_BLOCK;
 
-	// Is this a valid data block?  (Constant is "pi".)
-	if (ii!=0x314159 || jj!=0x265359) return RETVAL_NOT_BZIP_DATA;
+  // Is this a valid data block?  (Constant is "pi".)
+  if (ii!=0x314159 || jj!=0x265359) return RETVAL_NOT_BZIP_DATA;
 
-	// We can add support for blockRandomised if anybody complains.
-	if (get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT;
-	if ((bw->origPtr = get_bits(bd,24)) > bd->dbufSize)
-		return RETVAL_DATA_ERROR;
+  // We can add support for blockRandomised if anybody complains.
+  if (get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT;
+  if ((bw->origPtr = get_bits(bd,24)) > bd->dbufSize) return RETVAL_DATA_ERROR;
 
-	// mapping table: if some byte values are never used (encoding things
-	// like ascii text), the compression code removes the gaps to have fewer
-	// symbols to deal with, and writes a sparse bitfield indicating which
-	// values were present.  We make a translation table to convert the symbols
-	// back to the corresponding bytes.
-	hh = get_bits(bd, 16);
-	bd->symTotal = 0;
-	for (ii=0; ii<16; ii++) {
-		if (hh & (1 << (15 - ii))) {
-			kk = get_bits(bd, 16);
-			for (jj=0; jj<16; jj++)
-				if (kk & (1 << (15 - jj)))
-					bd->symToByte[bd->symTotal++] = (16 * ii) + jj;
-		}
-	}
+  // mapping table: if some byte values are never used (encoding things
+  // like ascii text), the compression code removes the gaps to have fewer
+  // symbols to deal with, and writes a sparse bitfield indicating which
+  // values were present.  We make a translation table to convert the symbols
+  // back to the corresponding bytes.
+  hh = get_bits(bd, 16);
+  bd->symTotal = 0;
+  for (ii=0; ii<16; ii++) {
+    if (hh & (1 << (15 - ii))) {
+      kk = get_bits(bd, 16);
+      for (jj=0; jj<16; jj++)
+        if (kk & (1 << (15 - jj)))
+          bd->symToByte[bd->symTotal++] = (16 * ii) + jj;
+    }
+  }
 
-	// How many different huffman coding groups does this block use?
-	bd->groupCount = get_bits(bd,3);
-	if (bd->groupCount<2 || bd->groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR;
+  // How many different huffman coding groups does this block use?
+  bd->groupCount = get_bits(bd,3);
+  if (bd->groupCount<2 || bd->groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR;
 
-	// nSelectors: Every GROUP_SIZE many symbols we switch huffman coding
-	// tables.  Each group has a selector, which is an index into the huffman
-	// coding table arrays.
-	//
-	// Read in the group selector array, which is stored as MTF encoded
-	// bit runs.  (MTF = Move To Front.  Every time a symbol occurs it's moved
-	// to the front of the table, so it has a shorter encoding next time.)
-	if (!(bd->nSelectors = get_bits(bd, 15))) return RETVAL_DATA_ERROR;
-	for (ii=0; ii<bd->groupCount; ii++) bd->mtfSymbol[ii] = ii;
-	for (ii=0; ii<bd->nSelectors; ii++) {
+  // nSelectors: Every GROUP_SIZE many symbols we switch huffman coding
+  // tables.  Each group has a selector, which is an index into the huffman
+  // coding table arrays.
+  //
+  // Read in the group selector array, which is stored as MTF encoded
+  // bit runs.  (MTF = Move To Front.  Every time a symbol occurs it's moved
+  // to the front of the table, so it has a shorter encoding next time.)
+  if (!(bd->nSelectors = get_bits(bd, 15))) return RETVAL_DATA_ERROR;
+  for (ii=0; ii<bd->groupCount; ii++) bd->mtfSymbol[ii] = ii;
+  for (ii=0; ii<bd->nSelectors; ii++) {
 
-		// Get next value
-		for(jj=0;get_bits(bd,1);jj++)
-			if (jj>=bd->groupCount) return RETVAL_DATA_ERROR;
+    // Get next value
+    for(jj=0;get_bits(bd,1);jj++)
+      if (jj>=bd->groupCount) return RETVAL_DATA_ERROR;
 
-		// Decode MTF to get the next selector, and move it to the front.
-		uc = bd->mtfSymbol[jj];
-		memmove(bd->mtfSymbol+1, bd->mtfSymbol, jj);
-		bd->mtfSymbol[0] = bd->selectors[ii] = uc;
-	}
+    // Decode MTF to get the next selector, and move it to the front.
+    uc = bd->mtfSymbol[jj];
+    memmove(bd->mtfSymbol+1, bd->mtfSymbol, jj);
+    bd->mtfSymbol[0] = bd->selectors[ii] = uc;
+  }
 
-	// Read the huffman coding tables for each group, which code for symTotal
-	// literal symbols, plus two run symbols (RUNA, RUNB)
-	symCount = bd->symTotal+2;
-	for (jj=0; jj<bd->groupCount; jj++) {
-		unsigned char length[MAX_SYMBOLS];
-		unsigned temp[MAX_HUFCODE_BITS+1];
-		int minLen, maxLen, pp;
+  // Read the huffman coding tables for each group, which code for symTotal
+  // literal symbols, plus two run symbols (RUNA, RUNB)
+  symCount = bd->symTotal+2;
+  for (jj=0; jj<bd->groupCount; jj++) {
+    unsigned char length[MAX_SYMBOLS];
+    unsigned temp[MAX_HUFCODE_BITS+1];
+    int minLen, maxLen, pp;
 
-		// Read lengths
-		hh = get_bits(bd, 5);
-		for (ii = 0; ii < symCount; ii++) {
-			for(;;) {
-				// !hh || hh > MAX_HUFCODE_BITS in one test.
-				if (MAX_HUFCODE_BITS-1 < (unsigned)hh-1)
-					return RETVAL_DATA_ERROR;
-				// Grab 2 bits instead of 1 (slightly smaller/faster).  Stop if
-				// first bit is 0, otherwise second bit says whether to
-				// increment or decrement.
-				kk = get_bits(bd, 2);
-				if (kk & 2) hh += 1 - ((kk&1)<<1);
-				else {
-					bd->inbufBitCount++;
-					break;
-				}
-			}
-			length[ii] = hh;
-		}
+    // Read lengths
+    hh = get_bits(bd, 5);
+    for (ii = 0; ii < symCount; ii++) {
+      for(;;) {
+        // !hh || hh > MAX_HUFCODE_BITS in one test.
+        if (MAX_HUFCODE_BITS-1 < (unsigned)hh-1) return RETVAL_DATA_ERROR;
+        // Grab 2 bits instead of 1 (slightly smaller/faster).  Stop if
+        // first bit is 0, otherwise second bit says whether to
+        // increment or decrement.
+        kk = get_bits(bd, 2);
+        if (kk & 2) hh += 1 - ((kk&1)<<1);
+        else {
+          bd->inbufBitCount++;
+          break;
+        }
+      }
+      length[ii] = hh;
+    }
 
-		// Find largest and smallest lengths in this group
-		minLen = maxLen = length[0];
-		for (ii = 1; ii < symCount; ii++) {
-			if(length[ii] > maxLen) maxLen = length[ii];
-			else if(length[ii] < minLen) minLen = length[ii];
-		}
+    // Find largest and smallest lengths in this group
+    minLen = maxLen = length[0];
+    for (ii = 1; ii < symCount; ii++) {
+      if(length[ii] > maxLen) maxLen = length[ii];
+      else if(length[ii] < minLen) minLen = length[ii];
+    }
 
-		/* Calculate permute[], base[], and limit[] tables from length[].
-		 *
-		 * permute[] is the lookup table for converting huffman coded symbols
-		 * into decoded symbols.  It contains symbol values sorted by length.
-		 *
-		 * base[] is the amount to subtract from the value of a huffman symbol
-		 * of a given length when using permute[].
-		 *
-		 * limit[] indicates the largest numerical value a symbol with a given
-		 * number of bits can have.  It lets us know when to stop reading.
-		 *
-		 * To use these, keep reading bits until value <= limit[bitcount] or
-		 * you've read over 20 bits (error).  Then the decoded symbol
-		 * equals permute[hufcode_value - base[hufcode_bitcount]].
-		 */
-		hufGroup = bd->groups+jj;
-		hufGroup->minLen = minLen;
-		hufGroup->maxLen = maxLen;
+    /* Calculate permute[], base[], and limit[] tables from length[].
+     *
+     * permute[] is the lookup table for converting huffman coded symbols
+     * into decoded symbols.  It contains symbol values sorted by length.
+     *
+     * base[] is the amount to subtract from the value of a huffman symbol
+     * of a given length when using permute[].
+     *
+     * limit[] indicates the largest numerical value a symbol with a given
+     * number of bits can have.  It lets us know when to stop reading.
+     *
+     * To use these, keep reading bits until value <= limit[bitcount] or
+     * you've read over 20 bits (error).  Then the decoded symbol
+     * equals permute[hufcode_value - base[hufcode_bitcount]].
+     */
+    hufGroup = bd->groups+jj;
+    hufGroup->minLen = minLen;
+    hufGroup->maxLen = maxLen;
 
-		// Note that minLen can't be smaller than 1, so we adjust the base
-		// and limit array pointers so we're not always wasting the first
-		// entry.  We do this again when using them (during symbol decoding).
-		base = hufGroup->base-1;
-		limit = hufGroup->limit-1;
+    // Note that minLen can't be smaller than 1, so we adjust the base
+    // and limit array pointers so we're not always wasting the first
+    // entry.  We do this again when using them (during symbol decoding).
+    base = hufGroup->base-1;
+    limit = hufGroup->limit-1;
 
-		// zero temp[] and limit[], and calculate permute[]
-		pp = 0;
-		for (ii = minLen; ii <= maxLen; ii++) {
-			temp[ii] = limit[ii] = 0;
-			for (hh = 0; hh < symCount; hh++)
-				if (length[hh] == ii)
-					hufGroup->permute[pp++] = hh;
-		}
+    // zero temp[] and limit[], and calculate permute[]
+    pp = 0;
+    for (ii = minLen; ii <= maxLen; ii++) {
+      temp[ii] = limit[ii] = 0;
+      for (hh = 0; hh < symCount; hh++)
+        if (length[hh] == ii) hufGroup->permute[pp++] = hh;
+    }
 
-		// Count symbols coded for at each bit length
-		for (ii = 0; ii < symCount; ii++) temp[length[ii]]++;
+    // Count symbols coded for at each bit length
+    for (ii = 0; ii < symCount; ii++) temp[length[ii]]++;
 
-		/* Calculate limit[] (the largest symbol-coding value at each bit
-		 * length, which is (previous limit<<1)+symbols at this level), and
-		 * base[] (number of symbols to ignore at each bit length, which is
-		 * limit minus the cumulative count of symbols coded for already). */
-		pp = hh = 0;
-		for (ii = minLen; ii < maxLen; ii++) {
-			pp += temp[ii];
-			limit[ii] = pp-1;
-			pp <<= 1;
-			base[ii+1] = pp-(hh+=temp[ii]);
-		}
-		limit[maxLen] = pp+temp[maxLen]-1;
-		limit[maxLen+1] = INT_MAX;
-		base[minLen] = 0;
-	}
+    /* Calculate limit[] (the largest symbol-coding value at each bit
+     * length, which is (previous limit<<1)+symbols at this level), and
+     * base[] (number of symbols to ignore at each bit length, which is
+     * limit minus the cumulative count of symbols coded for already). */
+    pp = hh = 0;
+    for (ii = minLen; ii < maxLen; ii++) {
+      pp += temp[ii];
+      limit[ii] = pp-1;
+      pp <<= 1;
+      base[ii+1] = pp-(hh+=temp[ii]);
+    }
+    limit[maxLen] = pp+temp[maxLen]-1;
+    limit[maxLen+1] = INT_MAX;
+    base[minLen] = 0;
+  }
 
-	return 0;
+  return 0;
 }
 
 /* First pass, read block's symbols into dbuf[dbufCount].
@@ -300,191 +295,188 @@
 
 static int read_huffman_data(struct bunzip_data *bd, struct bwdata *bw)
 {
-	struct group_data *hufGroup;
-	int hh, ii, jj, kk, runPos, dbufCount, symCount, selector, nextSym,
-		*byteCount, *base, *limit;
-	unsigned int *dbuf = bw->dbuf;
-	unsigned char uc;
+  struct group_data *hufGroup;
+  int hh, ii, jj, kk, runPos, dbufCount, symCount, selector, nextSym,
+    *byteCount, *base, *limit;
+  unsigned int *dbuf = bw->dbuf;
+  unsigned char uc;
 
-	// We've finished reading and digesting the block header.  Now read this
-	// block's huffman coded symbols from the file and undo the huffman coding
-	// and run length encoding, saving the result into dbuf[dbufCount++] = uc
+  // We've finished reading and digesting the block header.  Now read this
+  // block's huffman coded symbols from the file and undo the huffman coding
+  // and run length encoding, saving the result into dbuf[dbufCount++] = uc
 
-	// Initialize symbol occurrence counters and symbol mtf table
-	byteCount = bw->byteCount;
-	for(ii=0; ii<256; ii++) {
-		byteCount[ii] = 0;
-		bd->mtfSymbol[ii] = ii;
-	}
+  // Initialize symbol occurrence counters and symbol mtf table
+  byteCount = bw->byteCount;
+  for(ii=0; ii<256; ii++) {
+    byteCount[ii] = 0;
+    bd->mtfSymbol[ii] = ii;
+  }
 
-	// Loop through compressed symbols.  This is the first "tight inner loop"
-	// that needs to be micro-optimized for speed.  (This one fills out dbuf[]
-	// linearly, staying in cache more, so isn't as limited by DRAM access.)
-	runPos = dbufCount = symCount = selector = 0;
-	// Some unnecessary initializations to shut gcc up.
-	base = limit = 0;
-	hufGroup = 0;
-	hh = 0;
-
-	for (;;) {
+  // Loop through compressed symbols.  This is the first "tight inner loop"
+  // that needs to be micro-optimized for speed.  (This one fills out dbuf[]
+  // linearly, staying in cache more, so isn't as limited by DRAM access.)
+  runPos = dbufCount = symCount = selector = 0;
+  // Some unnecessary initializations to shut gcc up.
+  base = limit = 0;
+  hufGroup = 0;
+  hh = 0;
 
-		// Have we reached the end of this huffman group?
-		if (!(symCount--)) {
-			// Determine which huffman coding group to use.
-			symCount = GROUP_SIZE-1;
-			if (selector >= bd->nSelectors) return RETVAL_DATA_ERROR;
-			hufGroup = bd->groups + bd->selectors[selector++];
-			base = hufGroup->base-1;
-			limit = hufGroup->limit-1;
-		}
+  for (;;) {
+    // Have we reached the end of this huffman group?
+    if (!(symCount--)) {
+      // Determine which huffman coding group to use.
+      symCount = GROUP_SIZE-1;
+      if (selector >= bd->nSelectors) return RETVAL_DATA_ERROR;
+      hufGroup = bd->groups + bd->selectors[selector++];
+      base = hufGroup->base-1;
+      limit = hufGroup->limit-1;
+    }
 
-		// Read next huffman-coded symbol (into jj).
-		ii = hufGroup->minLen;
-		jj = get_bits(bd, ii);
-		while (jj > limit[ii]) {
-			// if (ii > hufGroup->maxLen) return RETVAL_DATA_ERROR;
-			ii++;
+    // Read next huffman-coded symbol (into jj).
+    ii = hufGroup->minLen;
+    jj = get_bits(bd, ii);
+    while (jj > limit[ii]) {
+      // if (ii > hufGroup->maxLen) return RETVAL_DATA_ERROR;
+      ii++;
 
-			// Unroll get_bits() to avoid a function call when the data's in
-			// the buffer already.
-			kk = bd->inbufBitCount
-			   	? (bd->inbufBits >> --(bd->inbufBitCount)) & 1
-				: get_bits(bd, 1);
-			jj = (jj << 1) | kk;
-		}
-		// Huffman decode jj into nextSym (with bounds checking)
-		jj-=base[ii];
+      // Unroll get_bits() to avoid a function call when the data's in
+      // the buffer already.
+      kk = bd->inbufBitCount
+        ? (bd->inbufBits >> --(bd->inbufBitCount)) & 1 : get_bits(bd, 1);
+      jj = (jj << 1) | kk;
+    }
+    // Huffman decode jj into nextSym (with bounds checking)
+    jj-=base[ii];
 
-		if (ii > hufGroup->maxLen || (unsigned)jj >= MAX_SYMBOLS)
-			return RETVAL_DATA_ERROR;
-		nextSym = hufGroup->permute[jj];
+    if (ii > hufGroup->maxLen || (unsigned)jj >= MAX_SYMBOLS)
+      return RETVAL_DATA_ERROR;
+    nextSym = hufGroup->permute[jj];
 
-		// If this is a repeated run, loop collecting data
-		if ((unsigned)nextSym <= SYMBOL_RUNB) {
-
-			// If this is the start of a new run, zero out counter
-			if(!runPos) {
-				runPos = 1;
-				hh = 0;
-			}
+    // If this is a repeated run, loop collecting data
+    if ((unsigned)nextSym <= SYMBOL_RUNB) {
+      // If this is the start of a new run, zero out counter
+      if(!runPos) {
+        runPos = 1;
+        hh = 0;
+      }
 
-			/* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
-			   each bit position, add 1 or 2 instead.  For example,
-			   1011 is 1<<0 + 1<<1 + 2<<2.  1010 is 2<<0 + 2<<1 + 1<<2.
-			   You can make any bit pattern that way using 1 less symbol than
-			   the basic or 0/1 method (except all bits 0, which would use no
-			   symbols, but a run of length 0 doesn't mean anything in this
-			   context).  Thus space is saved. */
-			hh += (runPos << nextSym); // +runPos if RUNA; +2*runPos if RUNB
-			runPos <<= 1;
-			continue;
-		}
+      /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
+         each bit position, add 1 or 2 instead. For example,
+         1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
+         You can make any bit pattern that way using 1 less symbol than
+         the basic or 0/1 method (except all bits 0, which would use no
+         symbols, but a run of length 0 doesn't mean anything in this
+         context). Thus space is saved. */
+      hh += (runPos << nextSym); // +runPos if RUNA; +2*runPos if RUNB
+      runPos <<= 1;
+      continue;
+    }
 
-		/* When we hit the first non-run symbol after a run, we now know
-		   how many times to repeat the last literal, so append that many
-		   copies to our buffer of decoded symbols (dbuf) now.  (The last
-		   literal used is the one at the head of the mtfSymbol array.) */
-		if (runPos) {
-			runPos = 0;
-			if (dbufCount+hh >= bd->dbufSize) return RETVAL_DATA_ERROR;
+    /* When we hit the first non-run symbol after a run, we now know
+       how many times to repeat the last literal, so append that many
+       copies to our buffer of decoded symbols (dbuf) now. (The last
+       literal used is the one at the head of the mtfSymbol array.) */
+    if (runPos) {
+      runPos = 0;
+      if (dbufCount+hh >= bd->dbufSize) return RETVAL_DATA_ERROR;
 
-			uc = bd->symToByte[bd->mtfSymbol[0]];
-			byteCount[uc] += hh;
-			while (hh--) dbuf[dbufCount++] = uc;
-		}
+      uc = bd->symToByte[bd->mtfSymbol[0]];
+      byteCount[uc] += hh;
+      while (hh--) dbuf[dbufCount++] = uc;
+    }
 
-		// Is this the terminating symbol?
-		if (nextSym>bd->symTotal) break;
+    // Is this the terminating symbol?
+    if (nextSym>bd->symTotal) break;
 
-		/* At this point, the symbol we just decoded indicates a new literal
-		   character.  Subtract one to get the position in the MTF array
-		   at which this literal is currently to be found.  (Note that the
-		   result can't be -1 or 0, because 0 and 1 are RUNA and RUNB.
-		   Another instance of the first symbol in the mtf array, position 0,
-		   would have been handled as part of a run.) */
-		if (dbufCount>=bd->dbufSize) return RETVAL_DATA_ERROR;
-		ii = nextSym - 1;
-		uc = bd->mtfSymbol[ii];
-		// On my laptop, unrolling this memmove() into a loop shaves 3.5% off
-		// the total running time.
-		while(ii--) bd->mtfSymbol[ii+1] = bd->mtfSymbol[ii];
-		bd->mtfSymbol[0] = uc;
-		uc = bd->symToByte[uc];
+    /* At this point, the symbol we just decoded indicates a new literal
+       character. Subtract one to get the position in the MTF array
+       at which this literal is currently to be found. (Note that the
+       result can't be -1 or 0, because 0 and 1 are RUNA and RUNB.
+       Another instance of the first symbol in the mtf array, position 0,
+       would have been handled as part of a run.) */
+    if (dbufCount>=bd->dbufSize) return RETVAL_DATA_ERROR;
+    ii = nextSym - 1;
+    uc = bd->mtfSymbol[ii];
+    // On my laptop, unrolling this memmove() into a loop shaves 3.5% off
+    // the total running time.
+    while(ii--) bd->mtfSymbol[ii+1] = bd->mtfSymbol[ii];
+    bd->mtfSymbol[0] = uc;
+    uc = bd->symToByte[uc];
 
-		// We have our literal byte.  Save it into dbuf.
-		byteCount[uc]++;
-		dbuf[dbufCount++] = (unsigned int)uc;
-	}
+    // We have our literal byte.  Save it into dbuf.
+    byteCount[uc]++;
+    dbuf[dbufCount++] = (unsigned int)uc;
+  }
 
-	// Now we know what dbufCount is, do a better sanity check on origPtr.
-	if (bw->origPtr >= (bw->writeCount = dbufCount)) return RETVAL_DATA_ERROR;
+  // Now we know what dbufCount is, do a better sanity check on origPtr.
+  if (bw->origPtr >= (bw->writeCount = dbufCount)) return RETVAL_DATA_ERROR;
 
-	return 0;
+  return 0;
 }
 
 // Flush output buffer to disk
 void flush_bunzip_outbuf(struct bunzip_data *bd, int out_fd)
 {
-	if (bd->outbufPos) {
-		if (write(out_fd, bd->outbuf, bd->outbufPos) != bd->outbufPos)
-			error_exit("Unexpected output EOF");
-		bd->outbufPos = 0;
-	}
+  if (bd->outbufPos) {
+    if (write(out_fd, bd->outbuf, bd->outbufPos) != bd->outbufPos)
+      error_exit("Unexpected output EOF");
+    bd->outbufPos = 0;
+  }
 }
 
 void burrows_wheeler_prep(struct bunzip_data *bd, struct bwdata *bw)
 {
-	int ii, jj;
-	unsigned int *dbuf = bw->dbuf;
-	int *byteCount = bw->byteCount;
+  int ii, jj;
+  unsigned int *dbuf = bw->dbuf;
+  int *byteCount = bw->byteCount;
 
-	// Technically this part is preparation for the burrows-wheeler
-	// transform, but it's quick and convenient to do here.
+  // Technically this part is preparation for the burrows-wheeler
+  // transform, but it's quick and convenient to do here.
 
-	// Turn byteCount into cumulative occurrence counts of 0 to n-1.
-	jj = 0;
-	for (ii=0; ii<256; ii++) {
-		int kk = jj + byteCount[ii];
-		byteCount[ii] = jj;
-		jj = kk;
-	}
+  // Turn byteCount into cumulative occurrence counts of 0 to n-1.
+  jj = 0;
+  for (ii=0; ii<256; ii++) {
+    int kk = jj + byteCount[ii];
+    byteCount[ii] = jj;
+    jj = kk;
+  }
 
-	// Use occurrence counts to quickly figure out what order dbuf would be in
-	// if we sorted it.
-	for (ii=0; ii < bw->writeCount; ii++) {
-		unsigned char uc = dbuf[ii];
-		dbuf[byteCount[uc]] |= (ii << 8);
-		byteCount[uc]++;
-	}
+  // Use occurrence counts to quickly figure out what order dbuf would be in
+  // if we sorted it.
+  for (ii=0; ii < bw->writeCount; ii++) {
+    unsigned char uc = dbuf[ii];
+    dbuf[byteCount[uc]] |= (ii << 8);
+    byteCount[uc]++;
+  }
 
-	// blockRandomised support would go here.
+  // blockRandomised support would go here.
 
-	// Using ii as position, jj as previous character, hh as current character,
-	// and uc as run count.
-	bw->dataCRC = 0xffffffffL;
+  // Using ii as position, jj as previous character, hh as current character,
+  // and uc as run count.
+  bw->dataCRC = 0xffffffffL;
 
-	/* Decode first byte by hand to initialize "previous" byte.  Note that it
-	   doesn't get output, and if the first three characters are identical
-	   it doesn't qualify as a run (hence uc=255, which will either wrap
-	   to 1 or get reset). */
-	if (bw->writeCount) {
-		bw->writePos = dbuf[bw->origPtr];
-	    bw->writeCurrent = (unsigned char)bw->writePos;
-		bw->writePos >>= 8;
-		bw->writeRun = -1;
-	}
+  /* Decode first byte by hand to initialize "previous" byte. Note that it
+     doesn't get output, and if the first three characters are identical
+     it doesn't qualify as a run (hence uc=255, which will either wrap
+     to 1 or get reset). */
+  if (bw->writeCount) {
+    bw->writePos = dbuf[bw->origPtr];
+    bw->writeCurrent = (unsigned char)bw->writePos;
+    bw->writePos >>= 8;
+    bw->writeRun = -1;
+  }
 }
 
 // Decompress a block of text to intermediate buffer
 int read_bunzip_data(struct bunzip_data *bd)
 {
-	int rc = read_block_header(bd, bd->bwdata);
-	if (!rc) rc=read_huffman_data(bd, bd->bwdata);
+  int rc = read_block_header(bd, bd->bwdata);
+  if (!rc) rc=read_huffman_data(bd, bd->bwdata);
 
-	// First thing that can be done by a background thread.
-	burrows_wheeler_prep(bd, bd->bwdata);
+  // First thing that can be done by a background thread.
+  burrows_wheeler_prep(bd, bd->bwdata);
 
-	return rc;
+  return rc;
 }
 
 // Undo burrows-wheeler transform on intermediate buffer to produce output.
@@ -497,149 +489,144 @@
 
 int write_bunzip_data(struct bunzip_data *bd, struct bwdata *bw, int out_fd, char *outbuf, int len)
 {
-	unsigned int *dbuf = bw->dbuf;
-	int count, pos, current, run, copies, outbyte, previous, gotcount = 0;
+  unsigned int *dbuf = bw->dbuf;
+  int count, pos, current, run, copies, outbyte, previous, gotcount = 0;
+
+  for (;;) {
+    // If last read was short due to end of file, return last block now
+    if (bw->writeCount < 0) return bw->writeCount;
 
-	for (;;) {
-
-		// If last read was short due to end of file, return last block now
-		if (bw->writeCount < 0) return bw->writeCount;
+    // If we need to refill dbuf, do it.
+    if (!bw->writeCount) {
+      int i = read_bunzip_data(bd);
+      if (i) {
+        if (i == RETVAL_LAST_BLOCK) {
+          bw->writeCount = i;
+          return gotcount;
+        } else return i;
+      }
+    }
 
-		// If we need to refill dbuf, do it.
-		if (!bw->writeCount) {
-			int i = read_bunzip_data(bd);
-			if (i) {
-				if (i == RETVAL_LAST_BLOCK) {
-					bw->writeCount = i;
-					return gotcount;
-				} else return i;
-			}
-		}
+    // loop generating output
+    count = bw->writeCount;
+    pos = bw->writePos;
+    current = bw->writeCurrent;
+    run = bw->writeRun;
+    while (count) {
 
-		// loop generating output
-		count = bw->writeCount;
-		pos = bw->writePos;
-		current = bw->writeCurrent;
-		run = bw->writeRun;
-		while (count) {
+      // If somebody (like tar) wants a certain number of bytes of
+      // data from memory instead of written to a file, humor them.
+      if (len && bd->outbufPos>=len) goto dataus_interruptus;
+      count--;
 
-			// If somebody (like tar) wants a certain number of bytes of
-			// data from memory instead of written to a file, humor them.
-			if (len && bd->outbufPos>=len) goto dataus_interruptus;
-			count--;
-
-			// Follow sequence vector to undo Burrows-Wheeler transform.
-			previous = current;
-			pos = dbuf[pos];
-			current = pos&0xff;
-			pos >>= 8;
+      // Follow sequence vector to undo Burrows-Wheeler transform.
+      previous = current;
+      pos = dbuf[pos];
+      current = pos&0xff;
+      pos >>= 8;
 
-			// Whenever we see 3 consecutive copies of the same byte,
-			// the 4th is a repeat count
-			if (run++ == 3) {
-				copies = current;
-				outbyte = previous;
-				current = -1;
-			} else {
-				copies = 1;
-				outbyte = current;
-			}
+      // Whenever we see 3 consecutive copies of the same byte,
+      // the 4th is a repeat count
+      if (run++ == 3) {
+        copies = current;
+        outbyte = previous;
+        current = -1;
+      } else {
+        copies = 1;
+        outbyte = current;
+      }
 
-			// Output bytes to buffer, flushing to file if necessary
-			while (copies--) {
-				if (bd->outbufPos == IOBUF_SIZE) flush_bunzip_outbuf(bd,out_fd);
-				bd->outbuf[bd->outbufPos++] = outbyte;
-				bw->dataCRC = (bw->dataCRC << 8)
-								^ bd->crc32Table[(bw->dataCRC >> 24) ^ outbyte];
-			}
-			if (current!=previous) run=0;
-		}
+      // Output bytes to buffer, flushing to file if necessary
+      while (copies--) {
+        if (bd->outbufPos == IOBUF_SIZE) flush_bunzip_outbuf(bd,out_fd);
+        bd->outbuf[bd->outbufPos++] = outbyte;
+        bw->dataCRC = (bw->dataCRC << 8)
+                ^ bd->crc32Table[(bw->dataCRC >> 24) ^ outbyte];
+      }
+      if (current!=previous) run=0;
+    }
 
-		// decompression of this block completed successfully
-		bw->dataCRC = ~(bw->dataCRC);
-		bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31))
-			^ bw->dataCRC;
+    // decompression of this block completed successfully
+    bw->dataCRC = ~(bw->dataCRC);
+    bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ bw->dataCRC;
 
-		// if this block had a crc error, force file level crc error.
-		if (bw->dataCRC != bw->headerCRC) {
-			bd->totalCRC = bw->headerCRC+1;
+    // if this block had a crc error, force file level crc error.
+    if (bw->dataCRC != bw->headerCRC) {
+      bd->totalCRC = bw->headerCRC+1;
 
-			return RETVAL_LAST_BLOCK;
-		}
+      return RETVAL_LAST_BLOCK;
+    }
 dataus_interruptus:
-		bw->writeCount = count;
-		if (len) {
-			gotcount += bd->outbufPos;
-			memcpy(outbuf, bd->outbuf, len);
+    bw->writeCount = count;
+    if (len) {
+      gotcount += bd->outbufPos;
+      memcpy(outbuf, bd->outbuf, len);
 
-			// If we got enough data, checkpoint loop state and return
-			if ((len-=bd->outbufPos)<1) {
-				bd->outbufPos -= len;
-				if (bd->outbufPos)
-					memmove(bd->outbuf, bd->outbuf+len, bd->outbufPos);
-				bw->writePos = pos;
-				bw->writeCurrent = current;
-				bw->writeRun = run;
+      // If we got enough data, checkpoint loop state and return
+      if ((len-=bd->outbufPos)<1) {
+        bd->outbufPos -= len;
+        if (bd->outbufPos) memmove(bd->outbuf, bd->outbuf+len, bd->outbufPos);
+        bw->writePos = pos;
+        bw->writeCurrent = current;
+        bw->writeRun = run;
 
-				return gotcount;
-			}
-		}
-	}
+        return gotcount;
+      }
+    }
+  }
 }
 
-// Allocate the structure, read file header.  If !len, src_fd contains
-// filehandle to read from.  Else inbuf contains data.
+// Allocate the structure, read file header. If !len, src_fd contains
+// filehandle to read from. Else inbuf contains data.
 int start_bunzip(struct bunzip_data **bdp, int src_fd, char *inbuf, int len)
 {
-	struct bunzip_data *bd;
-	unsigned int i;
+  struct bunzip_data *bd;
+  unsigned int i;
 
-	// Figure out how much data to allocate.
-	i = sizeof(struct bunzip_data);
-	if (!len) i += IOBUF_SIZE;
+  // Figure out how much data to allocate.
+  i = sizeof(struct bunzip_data);
+  if (!len) i += IOBUF_SIZE;
 
-	// Allocate bunzip_data.  Most fields initialize to zero.
-	bd = *bdp = xzalloc(i);
-	if (len) {
-		bd->inbuf = inbuf;
-		bd->inbufCount = len;
-		bd->in_fd = -1;
-	} else {
-		bd->inbuf = (char *)(bd+1);
-		bd->in_fd = src_fd;
-	}
+  // Allocate bunzip_data. Most fields initialize to zero.
+  bd = *bdp = xzalloc(i);
+  if (len) {
+    bd->inbuf = inbuf;
+    bd->inbufCount = len;
+    bd->in_fd = -1;
+  } else {
+    bd->inbuf = (char *)(bd+1);
+    bd->in_fd = src_fd;
+  }
 
-	crc_init(bd->crc32Table, 0);
+  crc_init(bd->crc32Table, 0);
 
-	// Ensure that file starts with "BZh".
-    for (i=0;i<3;i++)
-		if (get_bits(bd,8)!="BZh"[i]) return RETVAL_NOT_BZIP_DATA;
+  // Ensure that file starts with "BZh".
+  for (i=0;i<3;i++) if (get_bits(bd,8)!="BZh"[i]) return RETVAL_NOT_BZIP_DATA;
 
-	// Next byte ascii '1'-'9', indicates block size in units of 100k of
-	// uncompressed data.  Allocate intermediate buffer for block.
-	i = get_bits(bd, 8);
-	if (i<'1' || i>'9') return RETVAL_NOT_BZIP_DATA;
-	bd->dbufSize = 100000*(i-'0')*THREADS;
-	for (i=0; i<THREADS; i++)
-		bd->bwdata[i].dbuf = xmalloc(bd->dbufSize * sizeof(int));
+  // Next byte ascii '1'-'9', indicates block size in units of 100k of
+  // uncompressed data. Allocate intermediate buffer for block.
+  i = get_bits(bd, 8);
+  if (i<'1' || i>'9') return RETVAL_NOT_BZIP_DATA;
+  bd->dbufSize = 100000*(i-'0')*THREADS;
+  for (i=0; i<THREADS; i++)
+    bd->bwdata[i].dbuf = xmalloc(bd->dbufSize * sizeof(int));
 
-	return 0;
+  return 0;
 }
 
-// Example usage: decompress src_fd to dst_fd.  (Stops at end of bzip data,
+// Example usage: decompress src_fd to dst_fd. (Stops at end of bzip data,
 // not end of file.)
 void bunzipStream(int src_fd, int dst_fd)
 {
-	struct bunzip_data *bd;
-	int i, j;
+  struct bunzip_data *bd;
+  int i, j;
 
-	if (!(i = start_bunzip(&bd,src_fd,0,0))) {
-		i = write_bunzip_data(bd,bd->bwdata,dst_fd,0,0);
-		if (i==RETVAL_LAST_BLOCK && bd->bwdata[0].headerCRC==bd->totalCRC)
-			i = 0;
-	}
-	flush_bunzip_outbuf(bd,dst_fd);
-	for (j=0; j<THREADS; j++) free(bd->bwdata[j].dbuf);
-	free(bd);
-	if (i) error_exit(bunzip_errors[-i]);
+  if (!(i = start_bunzip(&bd,src_fd,0,0))) {
+    i = write_bunzip_data(bd,bd->bwdata,dst_fd,0,0);
+    if (i==RETVAL_LAST_BLOCK && bd->bwdata[0].headerCRC==bd->totalCRC) i = 0;
+  }
+  flush_bunzip_outbuf(bd,dst_fd);
+  for (j=0; j<THREADS; j++) free(bd->bwdata[j].dbuf);
+  free(bd);
+  if (i) error_exit(bunzip_errors[-i]);
 }