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Abstract

Tools have been designed to detect for faults in the
Linux Kernel, such as Coccinelle, Sparse, or Under-
taker, and studies of their results over the vanilla tree
have been published. We are interested in a specific
point: since Linux distributions patch the kernel (as
other software) and since those patches might target less
common use cases, it may result in a lower quality assur-
ance level and fewer bugs found. So, we ask ourselves:
is there any difference between upstream and distribu-
tions’ kernel from a faults point of view ? We present
an existing tool, Undertaker, and detail a methodology
for reliably counting bugs in patched and non-patched
kernel source code, applied to vanilla and distributions’
kernels (Debian, Mandriva, openSUSE). We show that
the difference is negligible but in favor of patched ker-
nels.

1 Introduction

A survey of the number of “faults” in the Linux kernel
has been conducted in 2001 by [1]. In this paper, authors
showed the relatively large number of bugs in drivers
of the kernel: the drivers subdirectory of the kernel
accounts for 7 times the number of bugs found in source
files compared to the other directories. And this is not
a matter of code length, as the figure is given by the
following ratio:

r =
err_ratedrivers

err_ratenon−drivers

Ten years later, an updated version of the survey on
more recent kernels was contributed in [4]. One of the

major outcomes of this second paper is that it shows
drivers are less prone to errors: the first paper pointed
out methods of improvement in the kernel, and a large
effort has been conducted in this area to make things
better indeed. Now, the arch subdirectory is the one
where faults are most concentrated! No reason other
than “people and institutions focus on drivers quality” is
given to explain the improvement. This result also em-
phasizes the need to periodically check and follow the
status of bugs: basically, actions need a continuous as-
sessment of their usefulness. So the community (be it
either researchers, companies, etc.) needs feedback to
know where the effort is needed. Some effort in this
area is already proposed by Phoronix.com1: the web-
site regularly checks the status of the current versions
of the kernel using its Phoronix Test Suite, checking
mainly for regressions (performance, power consump-
tion, etc.). It should also be noted that the authors of [4]
have a tool, Heorodotos [3], which they use for track-
ing detected bugs life cycle: this is already a first step
towards the tracking of “where we need to work”. Our
motivations are further detailed in section 2, then the
tool used in section 3. The methodology is presented
and explained in section 4 and we present then discuss
results in section 5.

2 Motivations

As we just exposed, there have been several studies of
the fault density in the kernel, with several tools. Chou
et al. [1] used xgcc, itself introduced by [2], which
is able to find 12 types of errors in the source code of
Linux (and OpenBSD). The output has been inspected

1http://www.phoronix.com
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by hand to check for false positives, etc., and the kind
of errors checked for are: deadlock of spinlock, NULL
pointer dereference, large stack variable, NULL pointer
assumptions, array boundary checking, lock release and
no double-lock, use of already-free’d memory, no floats,
memory leak, user pointer dereference and correct size
allocation.

As stated in [4], the Linux kernel has evolved a lot since
this first study, and thus the authors propose to update
the results: one first work was to reuse the same check-
ers, by re-implementing them after explaining how they
understood what the original authors meant. To find the
faults corresponding to those checks, they used a tool
of their own, Coccinelle. They also used Herodotos to
track the faults among the versions of the kernel. One
common point of those two studies is that they only fol-
low the upstream Linux kernel, they have no interest in
forks or derivatives. This is the case of kernel used by
distributions: they backport features, they fix bugs, etc.,
and in our opinion, it is interesting to study whether,
from a faults point of view, there is a difference between
distribution’s kernels and the upstream one.

Another motivation is to study another type of faults,
those measured by Undertaker: a tool that checks for
configurations faults. Of course, in their papers [6, 5],
the authors show results but once again, only on up-
stream kernel. Following the same idea as previous au-
thors, we would like to have a clear point of view of the
status of our distribution’s kernel and where it needs fo-
cus for improvements: there is no obvious reasons that
it will be the same than upstream.

3 Undertaker: Finding Configurations Defects

Software configurability in the Linux kernel is a giant
and growing space: currently, more than 10000 features
are available. A vast majority of software allows for
compile-time configuration, which in the case of Linux
is handled as preprocessor macros. Many of the op-
tions have dependencies between themselves, and tools
(Kconfig) allow the user to manipulate the variability
model. These macros are then used in the C code to en-
able/disable some features. In [6, 5] the authors present
Undertaker, a tool that is able to analyze and check
for consistency between configurations models and their
use in the source code; not only because it can leave
dead code blocks, but also because of incorrect selec-
tion of code. Imagine a code path that must not be

followed in case of CONFIG_NOT_FOLLOW is set, but
source code uses #ifdef CONFIG_FOLLOW_NOT, this
will lead to inconsistencies. The authors link a real-life
case with CPU hotplug: this leads to the feature, hot-
plug of CPU, which has been broken for more than six
months before being fixed. Undertaker makes uses of
LIFE (LInux Feature Explorer) to extract configurations
options as a model from Kconfig files, making re-use of
Sparse (static analysis tool for Linux). Both configura-
tion and implementation models are then transformed to
Boolean formulas which can be checked thanks to SAT
solvers (Undertaker use PicoSAT). Thanks to this, they
identified, reported and fixed several issues: 14 were ac-
cepted and waiting to be applied to 2.6.34 and a total of
90 have been identified. Please note that we have not
been able to work with kernel prior to 2.6.30 due to a
bug in Undertaker.

4 Methodology

As stated before, our goal is to be able to check whether
quality hypothesis that are considered for upstream ker-
nel versions are also applicable to kernel source code
used to create a distribution’s package: it can differ in
a non-insignificant way. For example, Mandriva pack-
ages the Kerrighed kernel (Kerrighed is a SSI system
on top of Linux), so basically, it is a giant patch over
the upstream kernel. Several distributions also pack-
age XEN (which allows efficient virtualisation and para-
virtualisation) which is also itself a big patch over the
kernel. To measure the faults, we decided to use Under-
taker for several reasons:

• It is easy to use, so we can have results rapidly

• It aims at an interesting and newer problem com-
pared with other tools

However, as explained in the section 3, Undertaker only
treats the problem of configurability. Although the ker-
nel has a lot of configurable features, configurability is
not the only ground for errors, and so we would like to
continue and extend this study by integrating other tools
to have a better view of the error status for the whole
kernel. Using Undertaker is a preliminary step towards
wider experiments. Several kernel sources from dif-
ferent distributions (Mandriva, openSUSE and Debian)
were used to run the tool over as similar as possible ver-
sions. When it analyzes the kernel, Undertaker identifies
several kinds of issues:
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• Dead code: no configuration item can enable this
code

• Undead code: no configuration item can dis-
able this code. Of course, only code between
#if. . .#endif is considered

The resulting issues can have different scopes: code is
either dead or undead globally, i.e. on all architectures,
or it can be dead or undead on several architectures but
good on at least one.

In our case, the dead or undead differentiation is not
very interesting, as it is a fault in both cases. How-
ever, the architecture scope becomes interesting: dis-
tributions often target several architectures so we limit
ourselves to globally dead or undead code. As in previ-
ous papers [1, 4, 6, 5] we consider the number of faults
per subdirectories, e.g., kernel/, drivers/, mm/, etc.
However, since we are interested in non-upstream ker-
nel, there is one more thing to consider: when analyz-
ing a patched kernel, how can we take into account the
differences brought by patches? We do not wish to ana-
lyze each kernel patch by hand. The number of lines of
ANSI C code present in each subdirectory analyzed by
Undertaker is counted, thanks to the sloccount tool, and
we consider the number of faults in a directory divided
by the number of ANSI C lines of code:

f aultRatedir =
Faultsindir

ANSI C LOCindir

This provides a fault rate per single line of code, which
gives an idea of the “quality” status (limiting ourselves
to what Undertaker is able to diagnose) in the kernel,
independent of the size of the code base. This allow us
to compare the impact quality of patches.

When two kernel versions are compared, for each direc-
tory, it is simply the difference between the first kernel’s
values and the second one. So, for a chart comparing
2.6.33.7 and 2.6.33.7-mdv1 (Figure 4), the computed
difference is as follows:

di f f = f aultrate2.6.33.7− f aultrate2.6.33.7−mdv1

Hence a positive difference means an improvement in
Mandriva’s kernel, whereas a negative difference sug-
gests new bugs introduced. Also, it should be noted
that the naming of kernel versions follows some dis-
tinct conventions for openSUSE and Mandriva: in the
first case, it uses the pattern rpm-kver where kver is

the version of the kernel; for Mandriva the pattern is
vkver-mdvX where kver is the version of the kernel
and X is the release number of the kernel package.

5 Results and discussion

Some preliminary results are now presented and dis-
cussed regarding our objectives. In section 5.1 a first run
of some “verification against upstream and literature”
is done, to check that the methodology gives compara-
ble results to what has already been done, especially in
[4, 6, 5]. Then some specific cases are studied: Debian
kernel in section 5.2, Mandriva kernel in section 5.3 and
openSUSE 11.2 kernel in section 5.4.

5.1 Verification with Upstream

First, the goal is to verify that the approach gives com-
parable results with [4], not because exact figures are
necessary (since measurements are not done over ex-
actly the same things and in the same way, it is mean-
ingless compare directly), but to check that it “reflects”
the same tendencies. Our results are present in Figure 1
and target kernel from 2.6.32 to 2.6.38. Similar data is
visible in [4, p. 13, Figure 9] where “fault rate per direc-
tory” is plotted for kernel 2.6.5 to 2.6.33. It is possible
to estimate the fault rate of the drivers directory at
0.3, and the fault rate of arch at 0.4, compared with [4,
p. 13, Figure 9]. In our results, values are respectively
of 0.57 and 0.76. This leads to the following ratios:

ratiococcinelle =
0.3
0.4

= 0.75

and
ratioundertaker =

0.57
0.76

= 0.75

Even if the values are not the same, what they indicate
is similar. Also, they lead to convergent interpretations:

• The overall fault rate is decreasing

• arch directory shows a higher fault rate than
drivers

5.2 Debian’s kernel

Starting with the Debian kernel, we focus on two 2.6.37
releases provided within the distribution: 2.6.37-1 and
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Figure 1: Evolution of the fault rate in the Vanilla kernel, from 2.6.32 to 2.6.38

2.6.37-2. A first look at the chart given in Figure 2
shows that both releases do not present the same fault
rate: 2.6.37-2 has a higher fault rate in kernel direc-
tory than the 2.6.37-1 release. Taking a look at the dif-
ference between 2.6.37-1 and 2.6.37 from upstream, we
can see in Figure 3 that there is a general improvement.

5.3 Mandriva’s Kernel

For the Mandriva case, we have made a direct compari-
son of fault rate for each directory on only one version of
the kernel, 2.6.33.7, whose results are available in Fig-
ure 4. As stated before, this is computed by doing the
difference of fault rate between upstream and the distri-
bution’s kernel. From this chart, we can get two inter-
esting points: the number of faults is generally lower in
the patched kernel, and the fault rate is generally lower
too. But the differences in fault rate are very tight, and
even if they are in favor of patched versions, it can be
considered as negligible.

5.4 openSUSE’s Kernel

Looking in the openSUSE release gives another insight.
Figure 5 shows the status over all RPM released kernels
of the openSUSE 11.2 distribution, going from 2.6.30

2.6.33.7 2.6.33.7-mdv1
Directory Faults Rate Faults Rate
Documentation 2 0.213493 2 0.213061
arch 1240 0.772214 1241 0.772731
block 2 0.178380 2 0.178380
drivers 2558 0.570437 2552 0.567989
fs 50 0.078163 52 0.080378
include 92 0.371393 92 0.370956
kernel 9 0.089347 9 0.089326
mm 18 0.397263 18 0.396922
net 23 0.055458 23 0.055406
scripts 1 0.031829 1 0.031809
sound 115 0.272438 115 0.271721

Table 1: Mandriva Kernel 2.6.33.7 versus Upstream
2.6.33.7
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Figure 2: Fault rate differences between Debian 2.6.37-1 and 2.6.37-2
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Figure 3: Vanilla 2.6.37 and Debian 2.6.37-2
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Figure 4: Mandriva versus Vanilla, 2.6.33.7
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Figure 5: openSUSE Kernel, from 2.6.30 to 2.6.37
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rpm-2.6.37-20 2.6.37
Directory Faults Rate Faults Rate
Documentation 2 0.179308 2 0.179308
arch 1145 0.633151 1133 0.637841
block 2 0.148566 2 0.148865
drivers 2261 0.432644 2256 0.436499
fs 36 0.052706 36 0.053648
include 81 0.292085 79 0.291239
kernel 11 0.096745 11 0.099146
mm 16 0.313535 16 0.321970
net 23 0.050789 22 0.048632
scripts 1 0.027578 1 0.027952
sound 118 0.245929 118 0.245929

Table 2: openSUSE 2.6.36-20 versus Vanilla 2.6.37

to 2.6.37 releases: thus, we can compare it roughly to
Figure 1 targeting upstream releases between 2.6.32 and
2.6.38. It can be seen that the evolution is quite similar
once again. Figure 2 show that the number of added
fault is similar to what has been observed in previous
cases, and that the fault rate is also lower.

5.5 Overall analysis

A general tendency can be drawn from these results:
distributions’ kernels, even if patched, shows a slightly
lower fault rate. It is interesting, not because it shows
that the packaged kernels are somewhat “better” than
upstream, but because it shows that they are not worse
and that patches do not have a real impact, regarding the
configurability faults measured by Undertaker. It should
be noted that the difference in fault rate is not important,
so there is an impact of patches in those distributions,
but it is negligible if considering its importance. As
shown in [4], the faults in Linux are decreasing over the
time thanks to the efforts being put on producing tools
to identify as much as possible of these faults, allowing
to fix them.

6 Conclusion

Our initial objective was to study whether, regarding the
Undertaker analyzing tool and its target, there were dif-
ferences between a distribution-patched kernel source
code and its upstream counterpart. We presented the
way Undertaker works, and we also explained how we
used it to measure fault rates. The methodology given
also explains the notion of fault rate we used. After

checking that we obtain comparable results with previ-
ous studies, confirming that Undertaker’s specifics can
be avoided and that the fault rate it computes gives a
similar idea of the quality status of the code base as Coc-
cinelle [4], we ran the process over some kernels from
different distributions: Debian, Mandriva and open-
SUSE. We have been able to show that, whatever distri-
bution we consider, there is a constant pattern: the com-
puted fault rate is often lower on distribution-patched
kernels, while the number of faults is often higher. How-
ever, the figures also give an important detail: if we look
at the deltas, the differences are always very low; for ex-
ample, in the arch directory of openSUSE’s 11.2 ker-
nel release 2.6.37-20, we have 1145 faults were iden-
tified, while 1133 were in the corresponding upstream
version, as illustrated by Table 2. Figures presented in
Table 1 are roughly the same for Mandriva’s 2.6.33.7
versus Vanilla 2.6.33.7. And regarding the number of
faults, the deltas are negligible.

Further work should target a more precise analysis of the
faults: it would be interesting to check whether the faults
identified and which are more present in distributions’
kernels are evenly distributed or whether they concen-
trate around hot spots. Another improvement would
be to integrate other detailed measures such as what is
done from Coccinelle in [4]: that would allow us to per-
form the same checks, i.e. whether there are hot spots
in patched-code, not limiting ourselves to the study of
configurability.
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