
Verifications around the Linux kernel

Alexandre Lissy
Mandriva

alissy@mandriva.com

Laboratoire d’Informatique de l’Université de Tours
alexandre.lissy@etu.univ-tours.fr

Stéphane Laurière
Mandriva

slauriere@mandriva.com

Patrick Martineau
Laboratoire d’Informatique de l’Université de Tours

patrick.martineau@univ-tours.fr

Abstract

Ensuring software safety has always been needed,
whether you are designing an on-board aircraft com-
puter or next-gen mobile phone, even if the purpose
of the verification is not the same in both cases. We
propose to show the current state of the art of work
around the verification of the Linux kernel, and by ex-
tension also present what has been done on other ker-
nels. We will conclude with future needs that must be
addressed, and some way of improvements that should
be followed.

1 Introduction

The Linux kernel is an important piece of code, both
in terms of size (it is currently evaluated at 5 million
lines of code) and of role. Like any software, it needs to
be tested. Testing generally occurs through users run-
ning the kernel and reporting the bugs they identify.
Achieving good coverage of the code with this man-
ual approach is however not feasible: code analysis can
be used to ease verification and bring it to a new level.
These techniques are known as static analysis and have
been used for several years, not only for the Linux ker-
nel. Linux distributions do not use exactly the vanilla
kernel and may have patches added, so it is important to
be able to check not only upstream code but also down-
stream code. Having a clear view of what has already
been done in the field of Linux kernel checking is a first
but important step before deciding what kind of new ver-
ifications to work on. First, a more precise description
of our objectives is available in section 2, followed by
a presentation of some of the tools and related papers

starting with one of the main reference in section 3, then
presenting the SLAM initiative in section 4. The next
section 5 provides a specific look at the Linux case, pre-
senting SATURN in section 5.1, then some work around
model checking in section 5.2. Coccinelle and Under-
taker related work is presented respectively in section
5.3 and 5.4 just before presenting another way to ap-
proach the problem in section 5.5. Before concluding,
some work being done to entirely verify an OS kernel in
section 6 is presented.

2 Objectives

Our main goal is to bring more stability from a run-
time point of view to the kernel, and in fact to any soft-
ware that is packaged and available in Linux distribu-
tions in general, and in the Mandriva Linux distribution
in particular. The kernel is an interesting piece of code,
because it evolves rapidly (so that complex quality as-
surance is hard) and the codebase differs between the
vanilla one and the one used by distributions, which ap-
ply patches relating typically to hardware compatibility,
extended features, backports, etc. This part of a Linux
distribution is also a good candidate because of its aura:
is it easier to find people interested in augmenting the
quality of this kind of code than for other parts of other
critical code, even though some parts of the kernel are
less likely to bring attention. Thus the question: “can
we model-check the Linux kernel?”, which led to a first
part of the work: what is the current status of check-
ing techniques in Linux kernel and also in any other
kernel component? What is the literature on model-
checking techniques applied to the same case? What
has been already tested? What are the current known

• 37 •



38 • Verifications around the Linux kernel

limits of model-checking? What are the current known
limits of tools applying model-checking? Even “what
does model checking exactly mean in the context of the
Linux kernel?”. So the objectives of the present article
is to summarize what has been collected as part of this
digging work, trying to give a view of the current state of
the model checking techniques applied to Linux kernel
and other kernel (Windows, seL4). It is in no way com-
pletely exhaustive but a hopefully good compilation of
several “related work” section in many papers and com-
munications that have been found.

3 Foundation: From Stanford to Coverity

The ability to verify the source code of a kernel has been
studied by Engler et al., in [9] in which they present
some new way to enforce system reliability by using
rules in the compiler written by the programmers them-
selves. By “systems”, they do not only target kernel,
but also libraries or embedded systems. They intend to
check interfaces usage, i.e. whether APIs are used cor-
rectly. First, they describe why in their opinion model-
checking is not a viable option for this problem with the
following arguments:

• Specifications are costly to build, hard to write

• They may not exactly abstract what they should

• Real life shows that they often miss some points
and are over-simplifying

So the authors introduce Meta-Level Compilation (MC)
to allow checking programmer-written rules with an
extended-version of GCC, xg++ implementing the
metal language, which is high-level and state-machine
based. The technique is not new, and the authors men-
tion previous work aiming at similar objectives like
ctool and Open C++. The lack of data flow informa-
tion within these tools is however identified by the au-
thors as a key limitation which make them harder to use
and less powerful than Meta-Level Compilation. State-
machines in the metal language work by matching inter-
esting features (using C++-written patterns) in the ana-
lyzed code and then causing transitions between states.
Meta-Level Compilation can be used not only to find
bugs, but also for optimizing code: automatically detect-
ing if a shared variable is never written enables identifi-
cation of excessive locking usage; and the reverse might

be used to detect non-protected variables. Of course,
those kind of rules cannot be generic and are project-
specific. Metal-written rules are first compiled using the
mcc compiler, before being loaded into xg++. Sev-
eral checkers are proposed as usage examples: asser-
tions side-effects, compile-time assertions, correct us-
age of APIs (malloc/free, userspace pointer usage in ker-
nel code), null pointer dereference, etc.

Coverity, a widely known tool to analyze source code,
which has a partnership with the Department of Home-
land Security (USA) 1 and was used to check many
FLOSS projects, has its roots in the Stanford Checker
(which is the implementation of Engler et al. work de-
scribed in [9]). This checker is not available as free soft-
ware. Dan Carpenter committed Smatch2 to provide the
same functionality in a FLOSS compatible way. A cou-
ple of years later, the same author committed a new pa-
per, [10], which gives a feedback on both static analysis
and model checking after several experiences with both.
The paper consists mainly of real case studies in both
areas, not to incriminate one or the other technique but
to describe and compare. They first explain how they
used both approaches:

• Using classical explicit state model checkers, with
two approaches for the specifications problem: one
automating the extraction of slice of functionalities
translated into model-checking language, another
model-checking directly the C code.

• Using meta-level compilation approach, classified
as static analysis, which according to them re-
duces the work needed to find bugs. However, this
method is unsound: errors can be missed. Also,
they did not model the heap, tracked most variables
values nor do alias analysis. They did their best to
avoid the use of annotations in the code.

Regarding model-checking, they state the assumption
“model-checking will find more bugs” is false: when
checking an embedded system (FLASH), this technique
found fewer (four times) bugs than the static analy-
sis method, even though the model-checking approach
identified some bugs that the previous method was not
able to. The main reasons for the differences are: the
code needs to be executed and the environment has to

1http://scan.coverity.com/
2http://repo.or.cz/w/smatch.git

http://scan.coverity.com/
http://repo.or.cz/w/smatch.git


2011 Linux Symposium • 39

be modeled. The discussion section brings up several
interesting issues.

• They thought it would be hard to find many bugs in
a complex system, but it turned out false: a code-
base of at least one million lines of code not show-
ing bugs is more a tip that there is a bug in the bug
finder.

• It is easier to write code on how a property must be
checked than why the property was violated.

• Not being too general is easier to handle for check-
ing

• Hard to inspect errors may be left unfixed simply
because users ignore the warning and does not un-
derstand it (they give an example from commercial
PREfix tool)

• More analysis can result in useless analysis, be-
cause it will expose complex bugs.

• Another myth they destroy is that “all bugs mat-
ter”: more bugs reported does not imply more fixes
committed, regardless whether it is free software,
because no importance ordering is given.

From their point of view, model checking is less power-
ful, mainly because it needs a good model of the envi-
ronment (which is difficult, requiring weeks or months
of work), and it cannot analyze more efficiently such
large codebase than static analysis can do. However,
model-checking has several advantages over static anal-
ysis which all result in stronger correctness results.

4 Microsoft: From SLAM Project to SDV

Starting in 1999, as a result of a brainstorming in-
side the Software Productivity Tools group at Microsoft
Programmer Productivity Research Center[3], three
projects were launched aiming at improving the quality
of software, especially, but not limited to, drivers. All
these projects shared a unique goal: checking interface
usage. Only the approach to solve the problem is differ-
ent, and a brief presentation of the two that did not last
as long as SLAM is provided:

Vault A new programming language with pre/post con-
ditions on the types, thus enabling definition of

rules that the program must follow; it is now used
as part of MSIL byte-code for CLR virtual ma-
chine, and is available as a Visual Studio plugin:
[8].

ESP is closer to SLAM, but does not take the same
course for the implementation and the trade-offs of
the static analysis.

Regarding our topic, only SLAM is interesting, first be-
cause this project has been successful, and also because
of the lack of information available on ESP project. The
first major contribution to the problem of checking in-
terface usage is the ability to abstract C program as
Boolean programs[6, 5]. The Boolean program is cre-
ated from the C programs by taking the Control Flow
Graph, and pruning variables with Boolean variables.
Boolean programs are interesting as reachability and
termination is decidable. Building those is done us-
ing Counter-Example Guided Abstraction Refinement
(CEGAR) [5, 7, 2]. Along with their Boolean Pro-
gram model, the author contributes a model-checking
algorithm[5] to check this model.

The authors introduce an interface description language
SLIC[7] and present the CEGAR process articulated
over three tools: C2BP which transforms C programs
to boolean programs, Bebop allows model-checking of
boolean programs and Newton which checks path fea-
sibility between C program and boolean program. Be-
bop makes uses of Context-Free Language Reachability
results [32]. As of 2002-2003, the SLAM project was
working well and could be used as a basis for “Static
Driver Verifier” [3]: the goal is to have an easy-to-use
SLAM, to be distributed for use by driver developers.
Joint work with Drivers Teams led to a lot of new check-
ing rules being written not by SLAM developers. In
[4], the authors show that over the 470 rules, only 60
were written by checking “experts”: this validates the
widespread possibility for developers of interfaces to
provide checking rules. In the same paper, they also note
that the use of SDV and rules complexity has been deci-
sive in the new driver model design for latest Windows
releases: too complex rules meant complex checking,
and thus it has been decided to re-design the interface
to ease checks. Work to improve SLAM into SLAM2
has been done as stated in [2]: less false-positives (from
19.7% to 0.4% in the worst case reported), less timeouts
(CEGAR loop unable to finish, from 6% to 3.2% in the
worst case reported).



40 • Verifications around the Linux kernel

5 Linux SDV?

The Linux kernel has also been a basis for verification
work, because it has widespread diffusion and is easily
fixable. An overview of the work that has been done
and the projects evolving around this topic is proposed.
Engler et al. [10] already started some important work
toward checking the Linux kernel, which they continue
to do with their Coverity tool.

5.1 Saturn

In [31], the authors describe a generic framework aimed
at detecting errors in large codebase. Source code is
translated into boolean constraints that can be used to
check properties thanks to SAT-solving tools. The ad-
vantages of the method as claimed by the authors are
the following:

Precision no abstraction is being done

Flexibility boolean constraints does not put any re-
quirements on the language used

Compacity boolean formulas can be simplified when
doing intra-procedural analysis. For inter-
procedural, a summary of the function is compiled
and used to process the verification. It is required
as the authors aims at large code base and SAT is
NP-complete

SATURN processing can be parallelized, the authors
claiming that an 80-processor cluster reduces the pro-
cessing from 23 hours to 50 minutes, when analyzing
the Linux kernel. They also contribute experimental re-
sults of the running against the previous codebase: more
errors found than in previous literature’s work and fewer
false positives. Another interesting contribution is the
autoslicing, allowing to limit the codebase to relevant
parts regarding the property analyzed. They contribute
two case studies:

• Checking finite state properties, also known as
temporal safety properties (as in [5, 6, 7]), with an
example on verifying locks

• Checking for memory leaks (not only on the Linux
kernel, but also on samba, openssl, postfix, openssh
and binutils)

5.2 Model Checking Concurrent Linux Device
Drivers

The authors present[30] an approach to model-check
shared memory programs, thus enabling the auto-
mated verification of Linux device drivers. Their tool,
DDVerify, uses predicate abstraction and their tech-
nique introduces concurrent software verification with
predicate abstraction. They justify their approach of
targeting shared memory because the resulting bugs are
very hard to discover and understand. They also con-
tribute a concurrent model of the needed parts of the
Linux kernel API. DDVerify generates an annotated
version of the source code to be checked with a SAT-
solver (SatAbs), using assertions given by the user.
Dealing with concurrency implies being able to deal
with threads: it has implications on the state space re-
sulting of the model. To ensure finite space (to be able
to use the SMV checker), their tool uses a static and
bounded number of threads. Further work is needed to
allow the use of infinite dynamic number of threads and
the Boppo checker. To automate the process, they im-
plement a CEGAR loop as described in [5, 7, 2]. How-
ever, they conclude with two important facts:

• In their approach, the performance of the model-
checker is critical: most of the execution time is
spent on verifying the abstracted program. They
used three tools, Cadence SMV, Boppo and Bp

• Model-Checkers performances for Concurrent De-
vice Drivers needs to be improved significantly to
be able to cope with real world drivers

They also claim to have a better (more accurate)
model for the operating system than in SLAM or
BLAST projects. They provide results of their bench-
marks in two cases: sequential and concurrent, us-
ing a small benchmark driver, machwzd (less than 500
lines of code, using locks, IO and timers), and run-
ning on Intel Xeon 3GHz, 4GB RAM. The bp model-
checker executes in about one second, while Boppo
and SMV are around 30 seconds, in the sequential case.
When going concurrent, only SMV is available, and
runs around 400 seconds on average, with peaks at
1800 seconds. Despite poor performances, their tool
found one new bug related to memory regions usage
(request_region() function).



2011 Linux Symposium • 41

5.3 Coccinelle

Coccinelle is a French word for a kind of beetle that
eats bugs. The goal of the Coccinelle project is to kill
bugs before they are introduced. It started with [14] in
which the authors describe and analyze recent collateral
evolutions and contribute requirements of a helper tool:
those evolutions are API changes that impact potentially
a huge number of files in the whole kernel. They give
three examples:

• Elimination of the check_region() function,
which started in Linux 2.4.2 (released on February
2001) and that was still not completed by Linux
2.6.10 (released on December 2004).

• Addition of an extra argument to the
usb_submit_urb() function, started in
Linux 2.5.4 (released on February 2002) and that
was still not completed by Linux 2.6.10.

• New function for copying data from userspace to
kernel space video_usercopy(). Worse than
previous examples, this new method was intro-
duced in a driver for Linux 2.6.3 but the old one
remained in place, and it resulted in the bug never
being fixed, and the new method being removed as
of Linux 2.6.8.

Thanks to this study highlighting the defects of API
changes in the whole kernel, the authors contribute se-
mantic patches (classical patches with augmented in-
formation to describe the context, and being able to go
further in the manipulation of the code), which have to
comply with three requirements:

• Identify the code to modify

• Description of the new code

• Existing context impact

A more detailed description of the collateral evolution
problem is also available in [18, 20]. This research re-
port also contributes an interesting comparative study
of the evolution of APIs in the Linux kernel, from re-
leases 2.2 to 2.6, showing the huge increase of APIs
available inside the kernel. Focusing on the Semantic
Patches notion, the authors presents a detailed overview
of their contribution in [19]. They give a motivating

example with the changes that were done to the SCSI
stack. They also justify why they chose to base their
Semantic Patches approach on classical patches: it is
human readable, which is important for the acceptation
of the tool, yet it allows to be much more general.

In [15], the authors contribute design information on the
heart of the Coccinelle tool: basically, they are using
model-checking under the hood. Source code is parsed
into a model, and semantic patches are translated to a
CTL formula which can be used in a model-checking
algorithm against the previous model. However, Coc-
cinelle is able to change the source code after successful
matching of CTL formula. They contribute experimen-
tal results of runs of their tool, showing fast processing.
Much of the modifications have been automatically ap-
plied successfully, and for the remaining ones, changes
in the Semantic Patches were needed but proved to be
successful too. In [16, 21] the authors present a more
kernel developers-oriented explanation of the Semantic
Patches approach, with many collateral evolution exam-
ples addressed by Coccinelle.

In [17], the notion of “mega collateral evolution” is in-
troduced, as a very huge evolution, touching everywhere
in the Linux sources, and they propose an analysis of 23
out of 35 identified: number of files changed, impact
(lines of code), number of maintainers involved, dura-
tion of the changes, misses and errors. And they com-
pare the same collateral evolution being processes by
hand-written Semantic Patches applied by Coccinelle,
using criterion such as Sematic Patch size (lines of
code), average execution time, misses and percent ok.
The same analysis is introduced for “error-prone evolu-
tions,” i.e. evolutions that resulted in errors (mistakes,
conflicts). In both case, the semantic patches approach
is much more reliable, even if not perfect.

The major contribution at this point is real-life proof
of the effectiveness of Coccinelle. With [28], the au-
thors make another use of their code matcher and trans-
former, targeting at finding bugs using semantic patches.
The contribution not only finds bugs, but also, with ex-
amples, shows how to automatically workaround them
when it is possible. In [13] and in a more detailed ver-
sion of this work available in [12], three case studies are
presented: consistency of errors checking (with func-
tions returning NULL or ERR_PTR), detection of alloca-
tion and deallocation protocols, and bad interaction with
freeing memory. The authors also contribute a “proto-
col finding”, which allows to automatically discover the



42 • Verifications around the Linux kernel

correct usage of an API.

Another use of the bug finding aspect, but not limited
to the Linux kernel source code is given in [25] where
several open source software projects are analyzed with
Coccinelle. More recent contributions in [1] aim at help-
ing the creation of semantic patches: the idea is to let
the developer fix one driver as an example, and then in-
fer a semantic patch that will be applicable on all the
other drivers. The main contribution at this level is the
SPFIND algorithm, that is the heart of the tool.

Another use of the Coccinelle tool and its companion
is described in [22, 23], where Herodotos is introduced.
This contribution aims at following bugs found in soft-
ware over several versions, and the authors are able to
show life cycle of classes of bugs. An interesting ex-
ample is the notand class: misuse of boolean and bit
operators. As of post 2008 kernel, a large number of
these defects were dropped: this has been a target of the
authors since Linux version 2.6.24, showing that their
patches have improved the situation.

5.4 Undertaker

With Undertaker, the authors aim at another kind of
verification around the Linux kernel: configurability.
In [27], the authors introduce the LIFE (LInux Fea-
ture Explorer), and provide a much more detailed de-
scription of their work in [29]. In the first paper, they
contribute a first important element: variability model
and variability implementation. The model consists of
the Kconfig part of the Linux kernel, i.e. where con-
figurations options are defined and can be enabled or
disabled. The implementation concerns the usage of
those options inside the sourcecode. Contributions of
the LIFE are mainly on three parts: source2rsf, a tool
used to extract compilation information; kconfigextrac-
tor, a tool to generate a boolean formula-based model
of the configuration options defined by Kconfig; and
undertaker, a tool which analyzes the RSF files pre-
viously extracted. Once everything is setup, satisfiabil-
ity between variability model and variability implemen-
tation is checked, and thus consistency between both.
Later, in [29], the authors give more details about logic
behind all steps of the analysis. Also, they explain
why the current grep-based tool that checks for con-
figurability defects is not enough: it is obvious that
the checkkconfigsymbols.sh script is not being

used by kernel maintainers; running this tool exposes
issues which have been not fixed for several months.

The given example deals with CPU Hotplug capabili-
ties: a typo between Kconfig and usage in source code
lead to hotplug missing, for more than six months. Spec-
ulative reasons why maintainers do not use the script
are: too many false positives, huge processing time,
false negatives. To cope with the huge number of con-
figurable functionalities in the Linux kernel (8000 in
the first paper, 10000 in the second), the authors con-
tribute a model-slicing algorithm for Kconfig, otherwise
the boolean formulas become too complex and cannot
be treated. Detected defects can either be dead code
or undead code. Another contribution in this paper is
the study of introduced/fixed defects among several ker-
nel releases: they studied versions between 2.6.30 (rc1
and stable) and 2.6.36 (rc1 and stable). A huge peak
of “fixed defects” can be seen on the 2.6.36-rc1 release,
which the authors explain by the merge of the patches
they sent to maintainers to fix the issues they found.

5.5 Integrated Static Analysis for Linux Device
Driver

In this paper [24], the authors aim at porting the ver-
ifications techniques developed by Microsoft for SDV
(Static Driver Verifier) [2] to the Linux kernel project.
They come up with several contributions. First, they
propose an extension of the SLIC language [7] from Mi-
crosoft: SLICx. This is both needed because of the lack
of available SLIC tool and to fit their needs better:

• Reducing the set of possible types for state fields

• No more parallel assignments

• Allowing any C statement and expressions

For the same reason, lacking source code, they use
the CBMC model-checker. A second contribution is a
model for Linux, implementing life cycle for a device
driver, i.e. module_init() and module_exit().
As another contribution, they give an example of check-
ing with the RCU API. In their tool, the authors are
able to get further than previous tools such as CBMC or
SDV: absence of memory leaks, simulating preemption,
deadlocks, race conditions. Testing occurs by annotat-
ing drivers. They also propose some experimental re-
sults over their solution. A first result is that they argue



2011 Linux Symposium • 43

about modular analysis being faulty when dealing with
functions calls specifications. It is the classical issue
of modeling the whole environment in model-checking.
The verification process given is not automated, many
steps being manual.

6 Verification of a kernel: seL4

Work has been done to verify a (almost) full kernel:
seL4[11]. It is a secure version of the L4 micro-kernel.
They present pretty robust results with a formal proof
of a very large part of the micro-kernel, only the boot
code is not yet proven. Regarding our goal, this must be
looked scarcely: the codebase is “just” 8700 lines of C
and 600 lines of assembly language, and both are veri-
fied. However, the authors states that performance im-
pact is null or low enough to be discarded. The proof is
machine-assisted and machine-checked, but it requires
human intervention: implementation is strictly proven
against the specifications.

One contribution is a rapid kernel design and imple-
mentation, that helps designers balance between for-
mal methods and high performance, through a Haskell
prototyping phase that helps to prove the final C im-
plementation. Proof is contributed thanks to the Is-
abelle/HOL theorem prover, which requires human in-
teraction. The specification part is important: abstract
specifications (describing functionalities of the system),
and executable specifications (describing how the sys-
tem works from a low-level point of view). The C im-
plementation is included in the verification toolchain,
meaning the authors had to describe C semantics in a
model: in fact, they modeled a subset of the C lan-
guage (C99: types, memory model, structure padding,
unsafe pointer handling, pointer arithmetic); limitations
towards the full C99 language are: no use of & operator,
avoiding as much as possible references (to comply with
absence of ordering in expressions evaluation), func-
tions pointers are not allowed, nor goto or switch.

The authors consider, in their goal to prove security
properties, that both the compiler (GCC) and the hard-
ware (ARMv6-based) can be trusted; however GCC is
not trusted for predictable bit field compilation and op-
timization. The authors also contribute a model for the
machine, which is needed because assembly code has
to be handled and proved. Codebase size and proof
size are interesting figures: in Haskell/C, the number

of lines of code (LOC) is 8700, once translated in Is-
abelle’s language, it gives 15,000 LOC. And then the
proof is 5500 LOC long. The authors also contributes a
project-management view of their work, and one inter-
esting point is that their approach is not that bad: in fact,
they claim it is better than EAL6 Certification and that
it provides stronger guarantee.

7 Conclusion

In this paper we presented an overview of the state of the
art in the field of checking the Linux kernel and beyond.
We presented work that has been initiated by Engler et
al. on verifying Linux, OpenBSD and the FLASH em-
bedded system, and a comparative study of static analy-
sis versus model checking. We presented the work that
has been done and published by Microsoft around the
automated verification of the usage of APIs by device
drivers, which led to a powerful static analyzer tool be-
ing available in the latest Driver Development Kit. We
presented work done on the Linux kernel that shares
some aspects with the Microsoft approach, and also sev-
eral projects (Coccinelle, Undertaker) that are quite ma-
ture. We also presented a fully proven micro-kernel
analysis showing some methodology for complete cor-
rectness, but which would not scale to the size of the
Linux kernel (which is on the order of 500 times big-
ger). The “verification” topic toward Linux kernel is not
a new field, but we can observe that all the approaches in
the literature are static analysis. Critical analysis made
by Engler et al. [10] on Static Analysis versus Model-
Checking gives some enlightenment on the reasons.

However, an interesting way to handle the model-
checking approach would be to slice the Linux kernel
source code into several sub-parts that can be checked
independently: thus, the state explosion issue related to
model-checking could be avoided. Autoslicing as de-
scribed in [29] could be a good starting point. A first
step might be accomplished with the Atomic API avail-
able in the kernel: it is concise, critical for some parts
of the kernel, it mixes C and assembly language, and it
has strict usage rules. Plus, it lives inside the arch di-
rectory, which according to [22] is now the more error-
prone directory, before the drivers. Generally speak-
ing, this last paper shows that the effort should be em-
phasized on arch. Following the Engler’s Meta-Level
Compilation idea expressed in [9], it would also be in-
teresting to work inside GCC thanks to the recent avail-
ability of plugins: the MELT plugin[26] allows easier



44 • Verifications around the Linux kernel

manipulation of the GCC internals especially for pattern
matching operations.

References

[1] Jesper Andersen and Julia L. Lawall. Generic
patch inference. In 23rd IEEE/ACM International
Conference on Automated Software Engineering,
pages 337–346, L’Aquila, Italy, 2008.

[2] T. Ball, E. Bounimova, V. Levin, R. Kumar, and
J. Lichtenberg. The static driver verifier research
platform. In International Conference on Com-
puter Aided Verification, 2010.

[3] T. Ball, B. Cook, V. Levin, and S.K. Rajamani.
Slam and static driver verifier: Technology transfer
of formal methods inside microsoft. In Integrated
Formal Methods, pages 1–20. Springer, 2004.

[4] T. Ball, V. Levin, and S.K. Rajamani. A decade of
software model checking with slam. 2010.

[5] Thomas Ball and Sriram K. Rajamani. Boolean
programs: A model and process for software anal-
ysis. Technical report, Microsoft Research, Febru-
ary 2000.

[6] Thomas Ball and Sriram K. Rajamani. Checking
temporal properties of software with boolean pro-
grams. In In Proceedings of the Workshop on Ad-
vances in Verification, 2000.

[7] Thomas Ball and Sriram K. Rajamani. Automati-
cally validating temporal safety properties of inter-
faces. In SPIN ’01: Proceedings of the 8th interna-
tional SPIN workshop on Model checking of soft-
ware, pages 103–122, New York, NY, USA, 2001.
Springer-Verlag New York, Inc.

[8] Robert DeLine and Manuel FÃd’hndrich. The
fugue protocol checker: Is your software baroque?
Technical report, 2003.

[9] Dawson Engler, Benjamin Chelf, Andy Chou, and
Seth Hallem. Checking system rules using system-
specific, programmer-written compiler extensions.
pages 1–16, 2000.

[10] Dawson Engler and Madanlal Musuvathi. Static
analysis versus software model checking for bug
finding. In Bernhard Steffen and Giorgio Levi, ed-
itors, Verification, Model Checking, and Abstract

Interpretation, volume 2937 of Lecture Notes
in Computer Science, pages 405–427. Springer
Berlin / Heidelberg, 2004.

[11] Gerwin Klein, Kevin Elphinstone, Gernot Heiser,
June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Har-
vey Tuch, and Simon Winwood. sel4: formal ver-
ification of an os kernel. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating sys-
tems principles, SOSP ’09, pages 207–220, New
York, NY, USA, 2009. ACM.

[12] Julia L. Lawall, Julien Brunel, René Rydhof
Hansen, Henrik Stuart, and Gilles Muller. WYSI-
WIB: A declarative approach to finding proto-
cols and bugs in Linux code. Technical Report
08/1/INFO, Ecole des Mines de Nantes, Nantes,
France, 2008.

[13] Julia L. Lawall, Julien Brunel, Nicolas Palix,
René Rydhof Hansen, Henrik Stuart, and Gilles
Muller. WYSIWIB: A declarative approach to
finding protocols and bugs in Linux code. In The
39th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 43–
52, Estoril, Portugal, 2009.

[14] Julia L. Lawall, Gilles Muller, and Richard
Urunuela. Tarantula: Killing driver bugs before
they hatch. In The 4th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Soft-
ware (ACP4IS), pages 13–18, Chicago, IL, 2005.

[15] Yoann Padioleau, René Rydhof Hansen, Julia L.
Lawall, and Gilles Muller. Semantic patches for
documenting and automating collateral evolutions
in linux device drivers. In PLOS 2006: Linguistic
Support for Modern Operating Systems, San Jose,
CA, 2006.

[16] Yoann Padioleau, René Rydhof Hansen, Julia L.
Lawall, and Gilles Muller. Towards documenting
and automating collateral evolutions in linux de-
vice drivers. Research Report 6090, INRIA, 01
2007.

[17] Yoann Padioleau, Julia L. Lawall, René Rydhof
Hansen, and Gilles Muller. Documenting and
automating collateral evolutions in linux device
drivers. In EuroSys 2008, pages 247–260, Glas-
gow, Scotland, 2008.



2011 Linux Symposium • 45

[18] Yoann Padioleau, Julia L. Lawall, and Gilles
Muller. Understanding collateral evolution in linux
device drivers (long version). Research report
5769, INRIA, Rennes, France, 2005.

[19] Yoann Padioleau, Julia L. Lawall, and Gilles
Muller. SmPL: A domain-specific language for
specifying collateral evolutions in Linux device
drivers. In International ERCIM Workshop on
Software Evolution (2006), Lille, France, 2006.

[20] Yoann Padioleau, Julia L. Lawall, and Gilles
Muller. Understanding collateral evolution in
Linux device drivers. In The first ACM SIGOPS
EuroSys conference (EuroSys 2006), pages 59–71,
Leuven, Belgium, 2006.

[21] Yoann Padioleau, Julia L. Lawall, and Gilles
Muller. Semantic patches, documenting and au-
tomating collateral evolutions in Linux device
drivers. In Ottawa Linux Symposium (OLS 2007),
Ottawa, Canada, 2007.

[22] Nicolas Palix, Julia Lawall, and Gilles Muller.
Herodotos: A Tool to Expose Bugs’ Lives. Re-
search Report RR-6984, INRIA, 2009.

[23] Nicolas Palix, Julia Lawall, and Gilles Muller.
Tracking code patterns over multiple software ver-
sions with herodotos. In AOSD ’10: Proceedings
of the 9th International Conference on Aspect-
Oriented Software Development, pages 169–180,
New York, NY, USA, 2010. ACM.

[24] H. Post and W. Küchlin. Integrated static analysis
for linux device driver verification. In Integrated
Formal Methods, pages 518–537. Springer, 2007.

[25] Sune Rievers. Finding bugs in open source soft-
ware using coccinelle, jan 2010.

[26] Basile Sarynkévitch. Extending the gcc compiler
with melt to suit your needs. In RMLL 2010, 2010.

[27] Julio Sincero, Reinhard Tartler, Christoph Eg-
ger, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. Facing the Linux 8000 Feature Night-
mare. In ACM SIGOPS, editor, Proceedings of
ACM European Conference on Computer Systems
(EuroSys 2010), Best Posters and Demos Session,
2010.

[28] Henrik Stuart, René Rydhof Hansen, Julia L.
Lawall, Jesper Andersen, Yoann Padioleau, and
Gilles Muller. Towards easing the diagnosis of
bugs in OS code. In 4th Workshop on Program-
ming Languages and Operating Systems, pages 1–
5, Stevenson, Washington, 2007.

[29] Reinhard Tartler, Daniel Lohmann, Julio Sincero,
and Wolfgang Schröder-Preikschat. Feature Con-
sistency in Compile-Time Configurable System
Software. In European Chapter of ACM SIGOPS,
editor, Proceedings of the EuroSys 2011 Confer-
ence (EuroSys ’11), 2011.

[30] T. Witkowski, N. Blanc, D. Kroening, and
G. Weissenbacher. Model checking concurrent
linux device drivers. In Proceedings of the twenty-
second IEEE/ACM international conference on
Automated software engineering, pages 501–504.
ACM, 2007.

[31] Yichen Xie and Alex Aiken. Saturn: A scal-
able framework for error detection using boolean
satisfiability. ACM Trans. Program. Lang. Syst.,
29(3):16, 2007.

[32] Hao Yuan and Patrick Eugster. An efficient algo-
rithm for solving the dyck-cfl reachability prob-
lem on trees. In ESOP ’09: Proceedings of the
18th European Symposium on Programming Lan-
guages and Systems, pages 175–189, Berlin, Hei-
delberg, 2009. Springer-Verlag.



46 • Verifications around the Linux kernel


	Verifications around the Linux kernel
	A. Lissy, S. Laurière & P. Martineau
	Introduction
	Objectives
	Foundation: From Stanford to Coverity
	Microsoft: From SLAM Project to SDV
	Linux SDV?
	Saturn
	Model Checking Concurrent Linux Device Drivers
	Coccinelle
	Undertaker
	Integrated Static Analysis for Linux Device Driver

	Verification of a kernel: seL4
	Conclusion



