
NPTL Optimization for Lightweight Embedded Devices
2011 Linux Symposium

Geunsik Lim
Samsung Electronics

geunsik.lim@samsung.com

Hyun-Jin Choi
Samsung Electronics

hj89.choi@samsung.com

Sang-Bum Suh
Samsung Electronics

sbuk.suh@samsung.com

Abstract

One of the main changes included in the current Linux
kernel is that, Linux thread model is transferred from
LinuxThread to NPTL[10] for scalability and high per-
formance. Each thread of user-space allocates one
thread (1:1 mapping model) as a kernel for each thread’s
fast creation and termination. The management and
scheduling of each thread within a single process is to
take advantage of a multiple processor hardware. The
direct management by the kernel thread can be sched-
uled by each thread. Each thread in a multi-processor
system will be able to run simultaneously on a different
CPU. In addition, the system service while blocked will
not be delayed. In other words, even if one thread calls
blocking a system call, another thread is not blocked.

However, NPTL made features on Linux 2.6 to opti-
mize a server and a desktop against Linux 2.4 dramat-
ically. However, embedded systems are extremely lim-
ited on physical resources of the CPU and Memory such
as DTV, Mobile phone. Some absences of effective and
suitable features for embedded environments needs to
be improved to NPTL. For example, the thread’s stack
size, enforced / arbitrary thread priority manipulation in
non-preemptive kernel, thread naming to interpret their
essential role, and so on.

In this paper, a lightweight NPTL (Native POSIX
Threads Library) that runs effectively on embedded sys-
tems, for the purpose of a way to optimize is described.

1 Introduction

Generally speaking, most existing embedded environ-
ments have been designed and developed for specific
purposes, such as Mobile phone, Camcorder, DTV.
However, in order to satisfy customer’s diverse needs,

recent embedded products are required to become
smarter.

Many customers want to efficiently use embedded prod-
ucts in their life. To fulfill these needs, most embedded
products offer their own app-stores. Customers down-
load from these app-stores and install programs they
need in their daily life. With the appearance of these
app-stores, the number of applications for embedded
products is dramatically increasing.

In mobile environments, where CPU and memory[12]
resources are limited compared to desktop or server en-
vironments, the increase of applications make it more
important to design and develop an efficient system
without any resource expansion.

The higher performance hardware incurs higher cost in
manufacturing; therefore, most companies prefer lower
cost hardware solutions if they can achieve safe and rea-
sonably fast run-time execution environment through ef-
ficient supports from underlying platform itself. Com-
panies equipped with these solutions will have a big ad-
vantage in business especially in terms of cost competi-
tiveness.

The performance and degree of integration of hardware
improves every year. However, designing and develop-
ing optimized software especially for lightweight em-
bedded environments is still a hard goal to achieve.
Recently, the number of processes or threads running
in user-space of Linux-based embedded products has
reached at least 200 and sometimes exceeds 700.

For comparison, Microsoft Windows 7 running in desk-
top environment with a high performance CPU and high
capacity memory, on average has more than 700 threads
created and managed. These processes and threads have
process condition cycles such as running and waiting de-
pending on the conditions given.

• 13 •

14 • NPTL Optimization for Lightweight Embedded Devices

Considering this, we may guess that the number of
processes or threads running in embedded products
with lower hardware specification is non-negligible, i.e.
large enough to require an efficient solution using mini-
mum memory footprint and achieving optimized perfor-
mance.

The NPTL 1:1 thread mapping model, which appeared
in Linux Kernel 2.6, dramatically improved the limits
of scalability and performance as compatered with the
existing LinuxThread. NPTL[1] [3] was originally pro-
vided as an alternative option for LinuxThread for com-
patibility, but with the popularity of NPTL model, recent
Linux distribution releases only support NPTL, which
obsoletes thepierce augments on the useless of NPTL
model.

The NPTL model adapted in released versions of De-
bian/Ubuntu, Fedora/RHEL, and openSUSE need im-
provements in order to support lightweight development
environments. This paper tackles this issue and pro-
poses many ways of achieving the improvements.

2 Thread stack size for embedded system

In implementing multi-programs through user-space
threads, the stack size of a single thread is directly pro-
portional to the maximum number of threads which a
developer can produce. When a thread is created, stacks
in shared memory region are allocated to the thread.

In general, the basic stack size in latest Linux distribu-
tions is 10 MB per thread. The stack size of a thread
has been increased from 2MB to 8MB and now 10MB
to avoid stack overflow problems at various Linux dis-
tributions such as Ubuntu, Fedora, openSUSE.

Due to low power management and cost competitive-
ness, most mobile embedded systems provide limited
physical resources. Moreover, the swap device, which
is normally used to overcome physical memory short-
age, is not supported in most embedded environments.

Therefore, in order to implement efficient applications,
developers should obey good thread programming styles
and find an optimal stack size for threaded applications.
In this way, we can implement an efficient and economic
system without additional hardware support.

Generally speaking, two main reasons of system panic
caused by user-space thread libraries are 1) OS bugs,

and 2) page segment fault error by abnormal program
operations. In application developers’ point of view, OS
bugs are difficult to control, but page segment fault er-
ror by abnormal program can be avoided through the
adjustment of stack size to the right size.

Other than memory expansion and swap space support,
there are three software approaches to solve system
problems effectively.

• Increase or decrease the available stack size with
ulimit

Check and adjust the stack size through ulimit
command in running shell. Adjustments made with
the ulimit command only affect the shell where the
ulimit command is given and its children. There-
fore, in order to alter the setting globally in the sys-
tem, the ulimit command should be executed at the
end of booting cycle (eg. /etc/rc.sysinit).

• Define individual stack size of a user-space thread
(pthread_attr_)

Thread attribute value that application developer
defined must be initialized by pthread_attr_init(),
when developer want to define a stack size using
POSIX standards for multi-thread programming.
Developers call pthread_attr_getstacksize() library
function to determine the stack size, and they can
dynamically control the stack size of a thread with
pthread_attr_setstacksize() library function. Stack
size may also be set when creating threads using
the pthread_create() library function.

• Establish appropriate stack size policy for all
threads in NPTL layer

Many application developers use
pthread_attr_getstacksize() with t_attr.__stacksize
variable which is defined differently for each
architecture internally. In the NPTL library,
t_attr.__stacksize variable takes the value assigned
to the thread’s stack size. If this value is not set, the
system set by default stack size ulimit command
brings.

Figure 1 shows the internal operation flow of user-space
thread created through any process under NPTL envi-
ronment. We have to decide the default stack size of
embedded system that want to select as a default stack
size value about all threads that are created in specified

2011 Linux Symposium • 15

pthread_attr_init

pthread_attr_setstacksize

pthread_create_1

pthread_create(tid,attr,*,*)

* Setting attribute properties of thread
before running of pthread_create function
by application programmer

pthread_create_2

allocate_stack()

create_thread()

Assign stack size

mmap system call

LWP1

do_clone()

thread structure
stack variables

ARCH_CLONE()

Task Data Structure
(Thread Data Info)

MM Data Structure
LWP3LWP2 LWP4

TID1 TID2 TID3 TID4

start_thread()

Application Interface
(POSIX Standards)

Middleware

Operating System

__clone()

CLONE_VM, CLONE_FS,
CLONE_FILE, CLONE_THREAD

atomic_increment

atomic_decrement

Ready or
Waiting

Running

Blocked

Terminated

* Get the stack size
from the attribute
if it is set

* Limitation of
stack size:
 >=16,384bytes

* Copy values from the
user-provided attributes.

* Setting of guardsize
and stacksize

Created

Figure 1: Internal operation flow of thread

embedded system. Through it, we can manage consis-
tent policy that adjust default stack size of thread at the
middleware level automatically.

Since most threads created under embedded environ-
ment run light operations, it is typical to use stack
sizes much less than the 10MB default used on servers.
Thread stack size of embedded application is less than
1MB in general. Considering the minimum memory
space of data structure for the creation of threads, Linux-
based embedded system needs the stack size of more
than 16,384 bytes per thread essentially. The stack size
of 16,384 bytes includes guard size of 4,096 bytes dur-
ing memory mapping practically. In other words, to pre-
vent stack overflow, deduction 4,096 bytes from stack
size by using pthread_attr_setstacksize() function is al-
located to memory space for guard size as below.

4003b000 1127K r-x-- /lib/libc-2.12.so
40139000 8K ----- /lib/libc-2.12.so
4013b000 20K rw--- /lib/libc-2.12.so
40140000 8K r---- /lib/libc-2.12.so
40142000 8K rw--- /lib/libc-2.12.so
40144000 8K rw--- [anon]
40146000 4K ----- [anon]
40147000 12K rwx-- [anon]

402bf000 4K ----- [anon]
402c0000 12K rwx-- [anon]
402c3000 4K ----- [anon]
402c4000 12K rwx-- [anon]
..... remainder omitted

To decide default stack size in embedded system, we
have to profile the distribution map of stack size that all
threads are utilizing in embedded system. Otherwise,
Run-time error may occur when application developer
try to use stack size at run-time after reduce stack size
of thread remarkably more than default stack size for
normal operation.

When application developers compile threaded applica-
tion source, they can compile entire source without any
error problems. However, a segmentation fault error can
occur when stack usage exceeds the size defined during
running ELF binary code compiled like above.

In contrast, if the application allocates too large stack
size for new thread using pthread_attr_setstacksize()
function, then new thread creation will sometimes fail.
As a result, system will return error code (number is 12)
for the call to run pthread_create() function, and there-
after will not be able to create more threads. There-
fore, in spite of Linux system different from uCLinux
can support improved Virtual memory Management, it
needs attention to allow a large stack size thoughtlessly
under embedded environment.

3 Thread naming

It is very hard to identify the purpose of each
thread when there hundreds of them in an embed-
ded system. Optimization of user-space functions and
SQA(Software Quality Assurance) is essential process
before mass production for product competitiveness and
reliability after complete entire development process us-
ing limited hardware resources.

If it is possible to monitor the purpose of individual
thread for hundreds of threads run in embedded system
at this time, we can improve development productivity
rapidly by finding the part of thread’s abnormal running
and debugging and optimizing it. It is possible to dis-
tinguish main role of relevant child threads using the
name of thread function set as the 3rd parameter dur-
ing pthread_create() function call. Alternatively, the ap-
plication developer may obtain a unique value for each

16 • NPTL Optimization for Lightweight Embedded Devices

thread with Thread Local Storage (TLS)[11] that is sup-
ported by CPU and cross-compiler. This value is used
for the purpose of identifying which thread runs a spec-
ified function at some point.

However it is difficult to know the unique purpose of
each thread executed by this method, when there are
hundreds of threads calling the same function by us-
ing pthread_create() function. If we expand and support
the “Thread Naming” interface at middleware layer, or
user-space thread model like NPTL, it would be easy to
understand the operational purpose of all threads in the
platform.

In a large scale project, many teams participate and co-
work to develop, and often cause bad effect by cre-
ating another task to check and understand the op-
erational purpose of threads created by other teams.
When several developers in each team produce thread
using additional support like pthread_set_naming_np()
and pthread_get_naming_np() for embedded system,
the team to improve performance can analyze the
detail information of all threads produced obviously
by defining the role of additional thread by using
pthread_set_naming_np() library call.

Table 1 below shows the sample output including the
role of threads. When threaded applications using GDB
(GNU Debugger) use named threads, system program-
mers can distinguish each other. Readability can be im-
proved by understanding the detail flow of thread to an-
alyze the purpose of creating, sleeping and finishing of
each thread.

4 Thread profiling

We can find the optimal time point for booting the sys-
tem by profiling the time interval between ahead thread
and back thread and CPU share of all threads created
before the initial GUI screen of embedded platform ap-
pears.

For example, when the share of CPU for specific region
is low during the system booting, we can maximize the
CPU usage and shorten the system boot time by sep-
arating independent functions as threads, and by mov-
ing some threads. If the generation of thread occurred
long after specific thread’s execution, Analyze CPU us-
age of thread executed for long time in detail. If CPU
usage were not high, the research for system optimiza-
tion would be possible. Despite high CPU usage during

embedded system booting, if relevant scheduling work
could be possible after initial screen appears, it would
be effective to run those threads after initial screen ap-
pearance.

Table 2 shows information like Stack Size, Guard Size,
Priority Value, Start Time, Time Gap which can be used
to optimize system boot time. Performance optimiza-
tion is possible by debugging internal operation infor-
mation of user-space functions and identifying naming
information of relevant threads because thread number
168 is executed almost for 1 second in the table below.

5 Extension of pthread_{set|get}_priority_np
interface

When Linux kernel based on 2.6 version uses system
call and library call, it consists of total 140 priorities
with normal priority level using nice value from -20 to
19 and real-time priority level from 0 ∼ 99. Low num-
ber have high priority in Linux kernel-space.

Normal priority is defined in the file of kernel/
sched.c and Linux kernel schedule this tasks with
O(1) scheduler or CFS scheduler (since 2.6.23)[4]. De-
pending on Linux kernel version, after allocate one nor-
mal priority between bitmap 100 and bitmap 139 about a
nice value between -20 and 19 by user-space application
developers.

User-space real-time support and a few challenges for
100% POSIX compliance was written in the section “8.
Remaining Challenges” in Native POSIX Threads Li-
brary for Linux[10] paper by Ulrich Drepper.

Infrastructure for POSIX compatible real-time support
for user-space was improved by adding features such
as Priority Queuing, Robust Mutex (RT_MUTEX)[8] and
Priority Inheritance[5] [7] [9] to Linux and Glibc.
This means application developer can realize real-time
threaded programming in user-space. Table 3 shows the
system call and library call for setting scheduling prior-
ity against the process/thread with normal priority and
the process/thread with real-time priority.

The scheduling priority of an already-running normal
priority thread can be changed by a system call like set-
priority(), nice().

In case of tasks having real-time priority value, there
are possible values for scheduling policy like SCHED_RR

2011 Linux Symposium • 17

STACK-ADDR PID TID Thread Naming Stack Size Memory(RSS)
(hex) (process) (thread) (thread’s role) (kbytes) (kbytes)

[0x40a1b460] [339] [342] Files Copy Extension 64 910
[0x40a2b460] [339] [343] LifeCycle Controller 64 4,211
[0x40a3b460] [339] [344] Micom Task 64 200
[0x40a4b460] [339] [345] Event Dispatcher 64 355
[0x40a5b460] [339] [346] Device Node Manager 64 305
[0x40a6b460] [339] [347] Micom Task Extension #1 64 200
[0x40aeb460] [339] [348] Media API 512 5,442
[0x412a8460] [339] [350] Message Event Handler 64 34
[0x41328460] [339] [351] Drawing Process 512 204
[0x41338460] [339] [352] FlashTimerTask 64 382
[0x41ac5460] [339] [353] UI Manager 512 566
[0x41ad5460] [339] [354] Multi IPI Recovery 64 705
[0x41267460] [339] [355] System Process 64 9,376
[0x41cbc460] [339] [356] MediaCaptureComponent 64 202
[0x41ccc460] [339] [357] MP4 MediaPlayer 512 7,109
[0x41cdc460] [339] [358] JPEG Component 64 153
[0x41cec460] [339] [359] Media Component 64 776
[0x41cfc460] [339] [360] Async I/O 64 371
[0x41cdc460] [339] [361] Video Output Component 64 2,221
[0x41cec460] [339] [362] Service Manager 64 460

- - ... below omission ... -

Table 1: Thread naming information of each user-space thread

(real-time round-robin policy), SCHED_FIFO (real-time
FIFO policy), SCHED_OTHER (for regular non-real-time
scheduling) and so on. The scheduling priority in user-
space can be set from 1 to 99 for real-time scheduling
policy. Therefore, the priority of normal non-real-time
threads is counted as 0.

Considered real-time property under embedded environ-
ment SCHED_RR seems ideal, SCHED_FIFO is more use-
ful to take advantage of performance practically because
simple policy is good for performance and effective for
management.

struct sched_param {
.
int sched_priority;
.

};

Table 4 shows number of gettid() system call according
to architecture.

Because the use of gettid() is CPU-architecture depen-
dent in Linux kernel 2.6, system call number varies dif-
ferent among CPU architectures. You may utilize get-
tid() system call with the following definition because
of non-implementation of gettid() in Linux system.

/* Using gettid syscall in user-space */
#define gettid() syscall(__NR_gettid)

We use gettid() instead of getpid() in NPTL thread
model to find out the unique number of thread executed
in the related function region to apply normal priority to
threads are created as nice value. The gettid() function
has to be made using syscall(__NR_gettid). And then,
the use of gettid() function is available to utilize gettid()
function by syscall(__NR_gettid) in the function of rel-
evant thread.

Above _syscall() function returns kernel-space thread id
that mapped about user-space thread id that is running
by calling include/asm-arm/unistd.h header
file. The gettid() system call is defined as follows in
the file kernel/timer.c.

18 • NPTL Optimization for Lightweight Embedded Devices

PID TID StackSZ GuardSZ Priority StartTime Time Gap
(process) (thread) (byte) (byte) (nice) (msec)

160 162 262,144 4,096 5 1792015420 195
160 163 262,144 4,096 0 1792015423 3
160 164 262,144 4,096 0 1792015551 128
160 165 262,144 4,096 5 1792015666 115
160 166 262,144 4,096 5 1792015668 2
160 167 262,144 4,096 5 1792015670 2
160 168 262,144 4,096 5 1792016634 977
160 169 262,144 4,096 10 1792016637 3
160 170 262,144 4,096 5 1792016781 144
160 171 262,144 4,096 5 1792016783 2
160 172 262,144 4,096 5 1792016786 3
160 173 262,144 4,096 5 1792016788 2
160 174 262,144 4,096 -5 1792016873 85
160 175 262,144 4,096 -5 1792016874 1
160 176 262,144 4,096 5 1792016876 2
160 177 262,144 4,096 5 1792016878 2
160 178 262,144 4,096 5 1792016880 2
160 179 262,144 4,096 5 1792016917 37
160 180 262,144 4,096 5 1792016920 3
160 181 262,144 4,096 5 1792016922 2
160 182 262,144 4,096 -15 1792016925 3
160 183 262,144 4,096 5 1792017258 333
160 184 262,144 4,096 5 1792017260 2
160 185 262,144 4,096 5 1792017262 2
160 186 262,144 4,096 0 1792017264 2
160 187 262,144 4,096 0 1792017266 2
160 188 262,144 4,096 5 1792017284 18

- - ... below omission ... - -

Table 2: Thread profiling result

/* gettid syscall details in Linux */
asmlinkage long sys_gettid(void){

return current->pid;
}

When you try to utilize gettid() system call using above
method, it is recommended to add thread library func-
tion including system calls after considering the im-
pact of embedded system’s performance because of
the cost of system calls. It is very useful to mea-
sure execution time, calls and errors for system calls of
thread library function to be added to know the cost of
CPU usage. The file arch/arm/kernel/call.S of
the ARM Architecture defines sys_set_thread_aread()
as sys_ni_syscall (224) and sys_get_thread_area as

sys_ni_syscall (225).

Maintenance of source code of large scale project can
be simplified by avoiding having many different func-
tions preferred by developer in embedded platform. In-
stead a uniform common interface can be obtained by
extending thread function of pthread_set_priority_np()
or pthread_get_priority_np() additionally for the appli-
cation developer to get ID value of a thread easily.

POSIX compatibility is very important in the view of
standardization, but considering the characteristics of
embedded platform, when we need additional thread
API, application developers are able to know the ex-
tended thread API by making the name of function with
the format of _np() to express "Non Portable" meaning

2011 Linux Symposium • 19

Scheduling PID/TID Function Name Call Interface LinuxThread NPTL
Priority (API) (classification) (interface) (interface)

Normal priority
Process

setpriority()
System call getpid() gettid()

nice()
(from -20 to 19)

Thread
setpriority()

System call getpid() gettid()
nice()

real-time priority
Process

sched_setscheduler()
System call getpid() gettid()

sched_setparam()
(from 1 to 99)

Thread
pthread_setschedprio()

Library call getpid() gettid()
pthread_setschedparam()

Table 3: LinuxThread VS. NPTL scheduling system call comparison

Architecture File name gettid()
syscall number

i386
./arch/i386/kernel/entry.S

224
./arch/x86/kernel/syscall_table_32.S

ARM ./arch/arm/kernel/call.S 224

MIPS
./arch/mips/kernel/scall32-o32.S

4,222
./arch/mips/kernel/scall64-932.S

PPC ./arch/ppc/kernel/misc.S 207
SH ./arch/sh/kernel/entry.S 224

Table 4: The number of gettid() per CPU architecture

in the end of function.

In addition, the extension of these additional common
interface and unified programming specification main-
tain consistently application interface management of
embedded system that is extended the scale of platform
more and more. We can continue software update easily
and rapidly for new features while preserving without
modifying existing code.

6 Controlling CPU scheduling of
{self|another} thread

By increasing the speed of user’s application under em-
bedded system environment at specific time, users often
want to get shorten application’s waiting time. The sup-
port of these mechanisms raise the flexibility of schedul-
ing priority for CPU usage when threads need higher
CPU usage at specific time. Effective throughput of ap-
plications are possible by grouping thread applications
based on the importance of processing speed and re-
sponse speed in embedded system having limited CPU
performance.

When new threads according to Task scheduling impor-
tance hierarchy are created, we need the thread dealing
mechanism to realize the way to give suitable schedul-
ing priority value of thread. Table 5 shows explanation
about task classification and task meaning according to
the Task scheduling importance hierarchy table.

We can minimize user’s waiting time for embed-
ded devices by self-adjusting a thread’s scheduling
priority at specific time, or by changing another
thread’s normal priority at run-time dynamically with
pthread_setschedparam() library call in Linux 2.6 based
NPTL environment.

Improvement is important, keeping POSIX compatibil-
ity with additional thread APIs to give different priority
to many threads produced in one process. This means
that reuse of the existing source is possible continually.

The pseudo code below shows the implementation of
NPTL Library to control scheduling priority arbitrarily
or by force for user-space threads based on normal pri-
ority that are created on non-preemptive Linux kernel
2.6.

20 • NPTL Optimization for Lightweight Embedded Devices

Hierarchy of
Description

scheduling priority
Busy Task Busy task means the threads in the top of screen
(Urgent) which interact with user

or which occupy CPU usage under processing CPU.
Foreground Task Foreground task is thread that appear in the screen

(Normal) of user’s embedded device but doesn’t have activity
to be processed immediately.

Service Task Service task is middleware level component which supply
(Support) important functions for processing of application and

thread that occupies service of system.
Background Task Background task is thread that occupies activity not

(Hidden) visible to user.
Idle Task Idle task is thread that doesn’t occupy component of

(Unlimited) any active application in embedded system.

Table 5: Task scheduling importance hierarchy

int __pthread_setschedparam(tid,
policy, param)

pthread_t tid;
int policy;
const struct sched_param *param;

{
/* To support priority,if use SCHED_FIFO,

* SCHED_RR,display notification message

* (@/usr/include/linux/sched.h) */

/* Default value is a normal priority */
struct pthread *pd=(struct pthread *)tid;

if (policy == SCHED_OTHER){
/* Scheduling priority of thread */
int which = PRIO_PROCESS ;

/* Handling of SCHED_OTHER priority */
if (param->sched_priority < -20 &&

param->sched_priority > 19){
printf("ERR! Nice range:-20~19\n");
return errno;

}
/* Getting LWP(thread id of kernel) to

* change scheduling priority about

* assigned thread id.

*/
if (setpriority(which,unique_kernel_tid(),

param->sched_priority)){
perror("setpriority() Error.\n");
result = errno;

}

Mentioned above, after improving scheduling-related

thread function of NPTL library, the way described be-
low can control thread application’s scheduling actively
to apply different scheduling priority to many threads
which are created in one process in embedded system.

/*
* @Description: arbitrarily & by force

* thread scheduling for urgent threads

* @thread variables:(pthread_t thread[max])

* If you want to affect priority about each

* thread in a process in Linux 2.6 + NPTL,

* We recommend that you use SCHED_OTHER

* policy based on priority scheduling.

* Or,If you need time critical performance

* about threads, use real-time SCHED_RR

* using pthread_setschedparam() syscall.

*/

struct sched_param schedp;
/* priority number of between -20~19. */
int priority = -20 ;
memset(&schedp, 0, sizeof(schedp));
schedp.sched_priority = priority;

/* for controlling self thread */
pthread_setschedparam(pthread_self(),
SCHED_OTHER, &schedp)

/* for controlling another thread */
pthread_setschedparam(thread[i],
SCHED_OTHER, &schedp)

2011 Linux Symposium • 21

7 Optimization: configurability and building
with -Os

Glibc library[6] including NPTL has a lot of features.
However embedded system do not need all features of
glibc library. For this reason, it takes compilation time
of more than 40 minutes to build the entire glibc source
on average at the high-end Linux development computer
(e.g: Intel Core2 Quad 9400, RAM 2GB).

We can consider how to compile entire glibc source with
same configuration structure and build process like the
compilation of Linux kernel. By doing so, we can com-
pile only the necessary software components among a
lot of components of glibc source for embedded sys-
tem. How to compile this method can be modular as
a functional unit reduce a long compilation time at soft-
ware development step. Through this method, we do not
select a unnecessary shared object libraries (e.g: NSS,
NIS, DNS, CIDN, Locales, Segfault, Crypt, NSS, Re-
solv, etc) for lightweight rootFS. As a result, hard disk
space and memory footprint can be minimized through
configurable build method.

If you try to compile glibc sources with -Os option
without -O2 through gcc compiler’s optimization option
interface[2] at the configurable build system menu of
NPTL library, shared object binary files can be mini-
mized to fit in the embedded system environment.

Without any optimization option, the compiler’s goal is
to reduce the cost of compilation and to make debugging
produce the expected results. Turning on optimization
flags makes the compiler attempt to improve the perfor-
mance and/or code size at the expense of compilation
time and possibly the ability to debug the program.

• -Os: Optimize for size. -Os enables all -O2 opti-
mization that do not typically increase code size. It
also performs further optimization designed to re-
duce code size.

• -O0: Reduce compilation time and make debug-
ging produce the expected results. This is the de-
fault.

• -O1: Optimize. Optimizing compilation takes
somewhat more time, and a lot more memory for
a large function. With -O, the compiler tries to
reduce code size and execution time, without per-
forming any optimization that take a great deal of
compilation time.

• -O2: Optimize even more. GCC performs nearly
all supported optimization that do not involve a
space-speed trade-off. As compared to -O, this op-
tion increases both compilation time and the per-
formance of the generated code.

• -O3: Optimize yet more. -O3 turns on all opti-
mization specified by -O2 and also turns on the
-finline-functions, -funswitch-loops, -fpredictive-
commoning, -fgcse-after-reload, -ftree-vectorize
and -fipa-cp-clone options.

8 Further work

Two issues of the current approach need to be addressed
for future research direction. First, the performance gain
issues of the CFS scheduler-based embedded Linux sys-
tem, and second, the performance trade off issues when
there are tasks with real-time priorities.

At latest version of the Linux kernel, the existing O(1)
scheduler was replaced by the CFS scheduler[4] in or-
der to maximize fairness of running tasks. This replace-
ment was applied after 2.6.23 version. Our proposed
approach shows some performance issues in evaluating
application responsiveness at the CFS scheduler-based
embedded Linux system.

For example, the time slot gap generated by our ap-
proach in the CFS scheduler is usually smaller than that
of O(1) scheduler. This results not much performance
gain in the CFS scheduler. CFS scheduler merged in
Linux 2.6.23 by Ingo Molnar is that nice value entered
by the application developer was replaced from time
slice table to weight table. This is possible through
vruntime (virtual run-time) which schedules tasks fairly.
If two nice values produce a small gap like 0, instead of
a large gap like 10, it is not easy to produce any perfor-
mance gain. Therefore, we need a new approach for task
scheduling policy which produces a wide gap for better
performance gain even in the CFS scheduler-based em-
bedded Linux system.

Second, the proposed approach doesn’t consider cases
when some tasks have real-time priorities. Any task
with real-time priority share CPU time with others, so
we need to find a preemptive way to replace these tasks
with more emergent tasks.

22 • NPTL Optimization for Lightweight Embedded Devices

9 Conclusions

We have shown through examples that current NPTL
thread model, which was introduced in Linux 2.6 for im-
provements of performance and scalability, has several
limitations. These limitations sometimes cause users to
wait several seconds tediously after they launch an ap-
plication downloaded from app-stores.

In general, the nature of embedded system environment
has physical conditions with limited CPU and memory.
Therefore, the existing embedded systems using NPTL
are needed to improve by operating lightly and speedily
with the best technical methods.

We introduced several approaches of improving the cur-
rent NPTL thread model: a suitable thread stack size for
embedded environments, thread naming interface ex-
pansion for optimization, supports of thread profiling
and debugging components to minimize the boot time
of embedded platform, a thread priority management
method according to scheduling importance of thread
application, an arbitrary or enforced thread scheduling
control policy to speed up user application processing,
selective source compile methods using modular config-
uration structure for minimizing memory footprint, etc.

We also have shown that the improved NPTL thread
model has better performance and fewer memory foot-
print compared to the current model.

Our results confirm that the existing NPTL thread model
in Linux can be utilized in embedded system through the
several improvement features. This provides cost effec-
tive development opportunity for embedded developers
to start developing thread models for embedded systems
through existing open source like Linux.

10 Acknowledgments

We would like to thank Wonsuk Lee for his valuable
reviews and comments. We would like to thank my
Samsung colleagues KyungIm Jung and Jae-Min Ryu
for some suggestions and review of the article. We’d
also like to thank all those members of the Linux kernel
development community who have contributed patches.

References

[1] Sebastien DECUGIS. Nptl stabilization
project(nptl tests and trace). In Ottawa Linux
Symposium, 2005.

[2] Free Software Foundation(FSF). GCC Online
Manual(Options that control optimization).
http://gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html#
Optimize-Options.

[3] Steven J. Hill. Native posix threads library (nptl)
support for uclibc. In Ottawa Linux Symposium,
2006.

[4] Ingo Molnar. CFS Scheduler Design.
http://people.redhat.com/mingo/
cfs-scheduler/sched-design-CFS.
txt.

[5] Ingo Molnar. PI-futex.
http://lwn.net/Articles/102216/.

[6] Roland McGrath. GNU C Library(Glibc).
http://www.gnu.org/software/libc/.

[7] Rusty Russell. Fast userlevel locking in linux. In
Ottawa Linux Symposium, 2002.

[8] Steven Rostedt. RT-mutex subsystem with PI
support. Linux kernel documentation:
kernel/Documentation/{rt-mutex.
txt|rt-mutex-design.txt}.

[9] Ulrich Drepper. Futexes Are Tricky. http://
www.akkadia.org/drepper/futex.pdf.

[10] Ulrich Drepper. Native Posix Thread Library for
Linux. http://people.redhat.com/
drepper/nptl-design.pdf.

[11] Ulrich Drepper. [TLS]ELF Handler For
Thread-Local Storage. http://people.
redhat.com/drepper/tls.pdf.

[12] Ulrich Drepper. What Every Programmer Should
Know About Memory. http://www.
akkadia.org/drepper/cpumemory.pdf.

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
http://lwn.net/Articles/102216/
http://www.gnu.org/software/libc/
kernel/Documentation/{rt-mutex.txt|rt-mutex-design.txt}
kernel/Documentation/{rt-mutex.txt|rt-mutex-design.txt}
http://www.akkadia.org/drepper/futex.pdf
http://www.akkadia.org/drepper/futex.pdf
http://people.redhat.com/drepper/nptl-design.pdf
http://people.redhat.com/drepper/nptl-design.pdf
http://people.redhat.com/drepper/tls.pdf
http://people.redhat.com/drepper/tls.pdf
http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/cpumemory.pdf

	NPTL Optimization for Lightweight Embedded Devices
	Geunsik Lim, Hyun-Jin Choi & Sang-Bum Suh
	Introduction
	Thread stack size for embedded system
	Thread naming
	Thread profiling
	Extension of pthread_{set|get}_priority_np interface
	Controlling CPU scheduling of {self|another} thread
	Optimization: configurability and building with -Os
	Further work
	Conclusions
	Acknowledgments

