
The Easy-Portable Method of Illegal Memory Access Errors Detection
for Embedded Computing Systems

Ekaterina Gorelkina
SRC Moscow, Samsung Electronics
e.gorelkina@samsung.com

Sergey Grekhov
SRC Moscow, Samsung Electronics

grekhov.s@samsung.com

Alexey Gerenkov
SRC Moscow, Samsung Electronics
a.gerenkov@samsung.com

Abstract

Nowadays applications on embedded systems become
more and more complex and require more effective fa-
cilities for debugging, particularly, for detecting mem-
ory access errors. Existing tools usually have strong de-
pendence on the architecture of processors that makes
its usage difficult due to big variety of types of CPUs. In
this paper an easy-portable solution of problem of heap
memory overflow errors detection is suggested. The
proposed technique uses substitution of standard allo-
cation functions for creating additional memory regions
(so called red zones) for detecting overflows and inter-
cepting of page faulting mechanism for tracking mem-
ory accesses. Tests have shown that this approach al-
lows detecting illegal memory access errors in heap with
sufficient precision. Besides, it has a small processor-
dependent part that makes this method easy-portable for
embedded systems which have big variety of types of
processors.

1 Introduction

Currently software programs running on modern em-
bedded computing systems have quite complicated be-
havior in sense of memory manipulation that make the
process of debugging very time consuming. In order
to simplify debugging procedure, various helper utili-
ties were designed. The most known are Valgrind [1]
and using MALLOC_CHECK_ environment variable for
GNU C library [2].

Valgrind replaces the standard C memory allocator with
a custom implementation and inserts extra instrumen-
tation code around almost all instructions, which en-
ables to detect read and write errors when a program

access memory outside of an allocated block by a small
amount. This approach has a strong dependency on the
type of processor of computing system. This makes us-
age of Valgrind on different computing systems quite
difficult due to relatively complicated porting procedure.

Recent versions of GNU C library are tunable via envi-
ronment variables. Setting variable MALLOC_CHECK_
to values 1, 2 or 3 allows detecting simple memory er-
rors like double free or overrun of a single byte. The
drawback of this approach is low precision of error de-
tection and performance degradation which is caused by
using less efficient implementations of allocating func-
tions.

In contrast to [1] and [2], the proposed method solves
the problem of memory errors detection with suffi-
cient precision and has a small processor-dependent part
which minimizes the time porting of this method on var-
ious processor architectures (that is especially valuable
for embedded systems). It also does not require program
re-compilation. As a result, this method can detect heap
object overflow problem for wide range of processors of
embedded computing systems. Testing results also have
shown the low execution overhead of suggested tech-
nique in comparison to Valgrind tool.

2 General Description on Idea

Suggested method relates to detection of typical mem-
ory errors: heap object overflow, heap object underflow,
access to un-allocated memory.

The basic idea of the method is to intercept memory al-
location requests, add special region (red zone) to each
heap object, protect allocated memory for reading and

• 101 •



102 • The Easy-Portable Method of Illegal Memory Access Errors Detection for Embedded Computing Systems

Program

Interception
library (supports
allocation API)

memory allocation

requests

Red
zone Object

Red
zone Object

Red
zone Object

protected

Figure 1: Allocation requests of considering program are in-
tercepted by a special library which allocates each object with
red zone and protect them both from reading and writing

writing and use mechanism of handling incorrect mem-
ory accesses in address space (here and after page fault-
ing mechanism) in order to track accesses to the memory
and detect the erroneous ones. The principal scheme of
two main parts of this idea - intercepting allocation func-
tions and intercepting page faulting mechanism - are il-
lustrated in Figure 1 and Figure 2 respectively.

The description of Figure 1 is following. During pro-
gram execution it requests and releases dynamically al-
located memory. The special interception library han-
dles these requests and processes them by making allo-
cations, adding a special region (red zone) and protect-
ing both of them from reading and writing. These red
zones are used for detecting typical overflow errors (as
it will be explained further in details).

The description of Figure 2 is following. After allocat-
ing necessary memory program tries to access some of
created objects. Since all of them are protected from
reading and writing, such attempt will generate page
fault exception. It is a special event which occurs when
specified memory can not be read or written. The pa-
rameters of this event include the address of access and
the type of access (read/write). Thus, such accesses can
be classified into valid and invalid by comparing the ad-
dress of access with addresses of allocated heap objects.

After handling page fault exception the protection of the
accessed object should be annulled and the program ex-
ecution should be resumed (if memory access was valid)
or stopped (if memory access was erroneous).

Red
zone Object

Red
zone Object

Red
zone Object

Program

Interceptor
of page
faulting

mechanism

protected

Page fault
exceptions

Message: valid/
erroneous

memory access

Figure 2: Considering program accesses protected objects
or its red zone and generate page fault exception; analyzing
parameters of this exception allows detecting overflow errors

2.1 Interception of Allocation and De-allocation
Requests

As it was mentioned earlier, at run-time all memory
allocation requests are intercepted by a special library.
Herewith, it is allocated a memory region of requested
size plus additional memory region (red zone).

Figure 3 demonstrates the difference between original
and intercepted allocation request. In the first case the
allocation request is processed by allocation library and
object is created. In the second case the allocation re-
quest is processed by interception library. The result of
processing is the requested object plus red zone (a spe-
cial memory region for detecting errors). Herewith, both
allocated object and red zone are protected from reading
and writing.

If program uses, for example, malloc() and free() func-
tions from standard GNU C library for allocating mem-
ory, then invocation of these function can be substituted
in Linux by special_malloc() and special_
free() using LD_PRELOAD environment variable.
These special functions create/release heap objects with
additionally allocated red zone and protect them from
reading and writing using mprotect() function.

Since, in general case, memory can be protected only
page by page, object will be allocated within one or



2011 Linux Symposium • 103

Red
zone Object

Object

Program Allocation
library

Allocation
request

Interception
library

(supports
allocation API)

Original allocation request and its result

Program Allocation
request

Intercepted allocation request and its result

protected memory

Figure 3: The difference between original allocation request
and intercepted allocation request: in the second case the red
zones are added to allocated objects and both regions are pro-
tected from reading and writing

more virtually continuous memory pages. It can be eas-
ily seen that when size of heap object is multiple of page
size then the size of corresponding red zone will be zero
(in this situation it will be impossible to detect illegal
access). This issue can be resolved the following way.
Let’s denote the size of one memory page in computing
system as P and the size of the requested allocation as
S. Then N - the number of pages required for special
allocation - should satisfy the two following conditions:
N ∗P ≥ S + P/4 and (N− 1) ∗P < S + P/4. The addi-
tional component P/4 prevents the situation when S is a
multiple of P and red zone size is zero. Thus, the final
formula for calculating N is following:

N = (S +P/4)/P+ sign[(S +P/4)modP] (1)

where all mathematical operations are integer-value,
sign means the function which return 0 is arguments is 0
or 1 if argument is greater than 0, and modP means func-
tion which return the residue of division of argument by
P.

Another issue when processing allocation request is the
alignment of returned memory. By default, the malloc()
function from GNU C library returns the align address
of allocated memory. This is caused by specific require-
ments of returned address to be suitable for any kind

Red
zone Object

Interception
library

(supports
allocation API)

Program Allocation
request

protected memory

Red
zone

start address
is aligned

size <
required_alignment

Figure 4: Due to restrictions for malloc() return value there
can be two red zones: before and after specially allocated
heap object

of variable. Thus, in fact, the address of each specially
created heap object should be aligned (for example, to
4 bytes on ARM processor) and there will be two red
zones: before and after the heap object. The size of sec-
ond red zone (after heap object) varies on the size of
heap object and required alignment (see Figure 4).

As it was mentioned in chapter II, heap object is unpro-
tected after processing page fault exception and detect-
ing a valid memory access. Moreover, the application
execution is resumed. Thus, if application accessed un-
protected red zone, then it is impossible to detect mem-
ory access by intercepting page faulting mechanism.
The solution of this problem is following. After the al-
location of red zones, they should be filled with identi-
cal values - stamps - which are used for detecting write
accesses. If application wrote to red zone then most
probably the stamps are changed. Checking the consis-
tency of stamp before freeing the memory enhances the
precision of overflow detection. This procedure can be
implemented during the processing of intercepted of de-
allocation requests. Let us note that this solution can not
detect read accesses to unprotected memory. This issue
is unresolved within the scope of proposed method.

2.2 About Interception of Page Faulting Mecha-
nism

Page faulting mechanism is a part of operating sys-
tem. The typical approach for intercepting of its func-
tions is using dynamic instrumentation tools. Well-
known Systemtap dynamic instrumentation tool based



104 • The Easy-Portable Method of Illegal Memory Access Errors Detection for Embedded Computing Systems

on Kprobe [3] allows creating handlers for intercepted
kernel functions, however it can not track the calls of
do_page_fault() function because of restrictions
of Kprobe. Another well-known tool LTTng [4] uses
static instrumentation and, thus, requires kernel recom-
pilation that can be quite inconvenient in case of em-
bedded systems. Therefore authors used dynamic in-
strumentation tool SWAP [5] developed in Samsung Re-
search Center in Moscow.

This tool allows at runtime obtaining arguments of in-
terception kernel functions and performing custom ac-
tions before executing the body of intercepted func-
tion. Particularly, it is possible to intercept do_page_
fault() function and obtain the address of accessed
memory and the type of access (read o write).

Let us note that page fault exceptions occur in normal
situations and are needed for valid system functioning.
Therefore, the procedure of processing of accesses to
protected heap objects should not damage the original
handling of page faults in kernel.

The interception mechanism can be implemented as a
kernel module. The information about allocated heap
objects can be transferred from the interception library
via /proc or /dev filesystem.

2.3 Handling Accesses to Protected Heap Objects

According to the general idea of the method, the page
faulting mechanism should be intercepted for detecting
access to allocated and protected heap objects, obtain-
ing the parameters of this access (address and type) and
classifying this access as valid or erroneous. As it was
written in previous chapter, the do_page_fault()
function can be intercepted and custom actions can be
performed before executing its body. These actions re-
lates to classifying of detected memory access and re-
suming or stopping execution of considering application
depending on the classification results.

The algorithm of classification is following.

Step 1. If address of accessed memory is inside allo-
cated heap object, then: previously unprotected object
is protected (if it exists); protection of this object is an-
nulled; program execution is resumed (see Figure ??);
otherwise go to step Step 2

Step 2. If address of accessed memory is inside red zone
of allocated heap object, then protection of this object

Program

Red
zone Object

Red
zone

Object

Red
zone Object

Red
zone

Object

protected unprotected

unprotected protected

memory access

Figure 5: Step 1 of Algorithm 1: if address of accessed mem-
ory is inside a valid heap object then unprotect it and its red
zones

and unprotected remains unchanged, message about in-
correct memory access is reported, and program execu-
tion is stopped (see Figure 6); otherwise go to step Step
3.

Step 3. If address of accessed memory is outside of any
allocated heap object and red zones but inside a valid
allocated memory region (for example, stack, read-only
data or executable code) then protection of heap objects
remains the same and program execution is resumed
(see Figure 7); otherwise go to step Step 4.

Step 4. If address of accessed memory is outside of any
allocated heap object and corresponding red zone and
any valid memory region, then error message about ac-
cess to unallocated memory is created, and program ex-
ecution is stopped (see Figure 8)

The error message created on Steps 2 and 4 of Al-
gorithm 1 consists of the address of illegally accessed
memory and the type of access, the title of the binary
object that made illegal access, the address of instruc-
tion which caused the error (within the binary). This in-
formation can be used for creating a user-friendly report
about occurred memory access problem: debug infor-
mation together with mentioned content of error mes-
sage allows displaying the line of the source code which
produced error.



2011 Linux Symposium • 105

Program

Red
zone Object

Red
zone

Object

Red
zone Object

Red
zone

Object

protectedunprotected

unprotected protected

ERROR MSG

memory access

Figure 6: Step 2 of Algorithm 1: if address of accessed mem-
ory is inside a red zone then keep current objects’ protection,
report about error and stop execution of the program

Program

Red
zone Object

Red
zone

Object

Red
zone Object

Red
zone

Object

protectedunprotected

unprotected protected

memory access
Stack

Stack

Figure 7: Step 3 of Algorithm 1: if address of accessed mem-
ory is outside of heap, but inside a valid memory region (e.g.
stack) then keep current heap objects’ protection and resume
program execution

Program

Red
zone Object

Red
zone

Object

Red
zone Object

Red
zone

Object

protectedunprotected

unprotected protected

memory
access

Unallocated
memory

Unallocated
memory

ERROR MSG

Figure 8: Step 4 of Algorithm 1: if address of accessed mem-
ory is outside of heap and any valid memory region then keep
current heap objects’ protection, report about error and stop
program execution

3 Method Advantages and Drawbacks

The first main advantages of suggested method of mem-
ory overflow errors detection is its fast portability to var-
ious processor architectures. As it can be seen from
previous chapters, the processor-dependent part of the
method includes only obtaining of address of accessed
memory by interception of page faulting mechanism.
Thus, in comparison to the methods which use inter-
preting of binary instructions, the suggested technique
can be easily moved across various processors. This is
especially valuable for developer of embedded systems.

Since the suggested method uses dynamic instrumen-
tation engine SWAP, the two following advantages are
obtained:

• developer should not recompile erroneous applica-
tion before starting the search of memory errors

• suggested method does not need debug information
for the program running on embedded system.

As it can be seen from the method description, the pro-
gram which produces memory errors runs on embedded



106 • The Easy-Portable Method of Illegal Memory Access Errors Detection for Embedded Computing Systems

system and is not changed during memory errors detec-
tion.

However, there exist several drawbacks. Firstly, method
can not track accesses to the unprotected red zone with
help of page faulting mechanism. Thus, read operation
which accesses the unprotected red zone will be never
detected. The write operation which accesses the un-
protected red zone can be partially detected by using
stamps. At the same time, this disadvantage has a pos-
itive aspect. Since memory accesses made within the
unprotected object are not tracked, the execution of the
program is going faster. This is also valuable for em-
bedded systems.

Two more drawbacks are common for most of tools of
overflow detection:

• it is impossible to detect the out-of-bounds situa-
tion when application accesses a valid memory re-
gion.

• it is impossible to detect the out-of-bounds situa-
tion within the allocated structure or class

4 Testing Results

The environment of all tests was following:

• Nvidia Tegra board, ARM-based, kernel 2.6.29

• Beagle board, ARM-based, kernel 2.6.33

During testing it was discovered that both target boards
have similar behavior and produce identical results for
test applications. Thus, authors provide testing results
without specifying the particular environment implying
that they are equal for both embedded devices.

The proposed method was tested on artificial test ap-
plications. The test applications have similar structure:
three heap objects of size 4092, 4096 and 4100 respec-
tively are allocated. During each separate test some par-
ticular out-of-bounds situations are created. For exam-
ple, access the first object, and after that access the red
zone of the next object. The following Table 1 provides
the results of testing in comparison to Valgrind.

As it can be seen, the accuracy of suggested method is
worse in comparison to Valgrind. However, it is still
quite high and method can be used for debugging.

Tool Total
number
of tests

Passed tests
(accuracy)

Valgrind 192 144 (75%)
Proposed method 192 114 (59%)

Table 1: The accuracy of detecting errors for artificial test
applications

Test environment Time of execution
(seconds/degradation
degree)

Test application without
memory checking tool

0.0025 / Not available

Test application with
memory checking tool
based on proposed
method

0.466 / 186.4

Test application with
memory checking tool
Valgrind

2.1283 / 851.32

Table 2: Time of execution of test application with and with-
out memory checking tools

The goal of the next test was to measure the overall
degradation in performance when executing test appli-
cation with memory checking tools. The test application
allocates 5 arrays of 256 bytes and accesses sequentially
each of them in the cycle. The average degradation of
performance of test application is shown in Table 2.

It can be seen from the table, the method proposed in
this article shows better performance. This advantage
compensates the worse accuracy of error detection.

The following Table 3 provides information about
architecture-dependent code of implementation of pro-
posed method in comparison to Valgrind.

Tool Total number
of lines
of code

Total number
of architecture-
dependent
code (fraction)

Valgrind > 900000 > 170000 (19 %)
Proposed
method

> 180000 > 5000 (3 %)

Table 3: The amount of code dependent on the architecture
of CPU.



2011 Linux Symposium • 107

Tool Result of detection
Valgrind Detected, up to specifying the line of

source code which produced the error
Proposed
method

Detected, up to specifying the line of
source code which produced the error

Table 4: Detecting memory access error for bug in glib-2.15

It can be seen that Valgrind has bigger processor-
dependent part that makes the procedure of its porting
more difficult. In comparison the method proposed in
the article has smaller part which depends on type of
CPU, thus it is easier to be ported on embedded systems
with different processors.

The last test consisted of detecting an error for the bug
from glib-2.15 library bug tracking system (see [6] for
more details). The erroneous behavior of library was
produced when insufficient amount of memory was al-
located for saving binary data encoded to base64 text
form. As a result, accessing beyond the end of array
caused segmentation fault exception. The error was
fully detected by the proposed method with indication
the line of the source code which produced the error.
Table 4 shows the results of testing for Valgrind and pro-
posed method.

Both tools produced identical results by detecting the
error and specifying the line of code which produced
this error.

5 Conclusion

In this paper authors proposed a method for heap over-
flow memory errors detection which is easy-portable on
various processors’ architectures of computing systems.
The method shows sufficiently good results in memory
overflow errors detection. Despite of some of its draw-
backs, it can be efficiently used on embedded systems.

6 Acknowledgments

Authors would like to thank Jaehoon Jeong, senior en-
gineer of System S/W Group in Samsung Electronics,
and Hyunju Ahn, senior engineer of System S/W Group
in Samsung Electronics, for fruitful and extensive dis-
cussion on the proposed approach and Mikhail P. Levin,
the head of Advanced Software Group of Samsung Re-
search Center in Moscow, for assistance in preparation
of the article.

References

[1] Valgrind project (http://valgrind.org/)

[2] Malloc manual page (http:
//www.kernel.org/doc/man-pages/
online/pages/man3/malloc.3.html)

[3] Systemtap tool
(http://sourceware.org/systemtap/)

[4] Alexey A. Gerenkov, Ekaterina A. Gorelkina,
Sergey S. Grekhov, Sergey Yu. Dianov, Jaehoon
Jeong, Oleksiy Kokachev, Leonid V. Komkov,
Sang Bae Lee, Mikhail P. Levin, System-wide
analyzer of performance: Performance analysis of
multi-core computing systems with limited
resources, IEEE EUROCON 2009, pp. 1299-1304

[5] Mathieu Desnoyers, Michel R. Dagenais, LTTng:
Filling the Gap Between Kernel Instrumentation
and a Widely Usable Kernel Tracer, LFCS’2009

[6] Red Hat bug tracking system
(https://bugzilla.redhat.com/
show_bug.cgi?id=474770)



108 • The Easy-Portable Method of Illegal Memory Access Errors Detection for Embedded Computing Systems


