
X-XEN : Huge Page Support in Xen

Aditya Sanjay Gadre
Pune Institute of Computer Technology

adivb2003@gmail.com

Kaustubh Kabra
Pune Institute of Computer Technology

kabrakaustubh@gmail.com

Ashwin Vasani
Pune Institute of Computer Technology

vasani.ashwin@gmail.com

Keshav Darak
Pune Institute of Computer Technology

keshav.darak@gmail.com

Abstract

Huge pages are the memory pages of size 2MB (x86-
PAE and x86_64). The number of page walks required
for translation from a virtual address to physical 2MB
page are reduced as compared to page walks required
for translation from a virtual address to physical 4kB
page. Also the number of TLB entries per 2MB chunk
in memory is reduced by a factor of 512 as compared to
4kB pages. In this way huge pages improve the perfor-
mance of the applications which perform memory inten-
sive operations. In the context of virtualization, i.e. Xen
hypervisor, we propose a design and implementation to
support huge pages for paravirtualized guest paging op-
erations.

Our design reserves 2MB pages (MFNs) from the do-
main’s committed memory as per configuration speci-
fied before a domain boots. The rest of the memory
is continued to be used as 4kB pages. Thus availabil-
ity of the huge pages is guaranteed and actual physi-
cal huge pages can be provided to the paravirtualized
domain. This increases the performance of the applica-
tions hosted on the guest operating system which require
the huge page support. This design solves the problem
of availability of 2MB chunk in guest’s physical address
space (virtualized) as well as the Xen’s physical address
space which would otherwise may be unavailable due to
fragmentation.

1 Introduction

“The Xen hypervisor is a layer of software running di-
rectly on computer hardware replacing the operating
system thereby allowing the computer hardware to run
multiple guest operating systems concurrently. Sup-
port for x86, x86-64, Itanium, Power PC, and ARM

processors allow the Xen hypervisor to run on a wide
variety of computing devices and currently supports
Linux, NetBSD, FreeBSD, Solaris, Windows, and other
common operating systems as guests running on the
hypervisor.”[5]

A system running the Xen hypervisor contains three
components:

1. Xen Hypervisor

2. Domain 0, the Privileged Domain (Dom0) – Priv-
ileged guest running on the hypervisor with direct
hardware access and guest management responsi-
bilities

3. Domain U, Unprivileged Domain Guests (DomU)
– Unprivileged guests running on the hypervisor.

Types of Virtualization in Xen:

1.1 Paravirtualization

A term used to describe a virtualization technique that
allows the operating system to be aware that it is running
on a hypervisor instead of base hardware. In this type of
virtualization, the operating system is modified in a way
that it has direct access to a subset of hardware.

1.2 Hardware Virtual Machine (HVM)

A term used to describe an unmodified operating sys-
tem that is running in a virtualized environment and is
unaware that it is not running directly on the hardware.
Special hardware support is required in this type of vir-
tualization i.e. Intel-VT or AMD-V.

• 7 •

8 • X-XEN : Huge Page Support in Xen

Figure 1: Huge Pages

Figure 2: Register bits.

2 Huge Pages

Huge pages (Figure 1) are memory pages of size
2MB/4MB depending upon the bits PAE and PSE in
CR4 register and PS bit (Figure 2) in the page directory
entry.

These bits can be set or cleared using specific instruc-
tions in kernel code. The bits table shown above depicts
the various page sizes supported according to the bits set
or cleared. Huge pages can be reserved in Linux kernel
by giving boot time parameter (hugepages) option or
by executing following command:

echo n > /proc/sys/vm/nr_hugepages
cat /proc/meminfo | grep Huge

3 Problem with huge pages in virtualized envi-
ronment

When the paravirtualized kernel is compiled with
CONFIG_HUGETLB_PAGE, support for HugeTLBfs is
enabled. Now when the request for hugepage reserva-
tion is made to the kernel, it reserves appropriate PFN
range.

Problem 1: This contiguous PFN range might not corre-
spond to a contiguous MFN range. When an application
allocates a hugepage, the kernel makes the reservation,
but when the application tries to access this hugepage,
the kernel crashes. The reason for this crash is the MFN
corresponding to first PFN of the allocated hugepage
range is now treated as contiguous hugepage by the ar-
chitecture. But the next MFN may not even belong to
the domain itself, hence the kernel crashes.

Problem 2: Consider the case when the allocated con-
tiguous PFN range corresponds to contiguous MFN
range. Even then the first MFN may not be aligned to a
2MB boundary. In this scenario also the kernel crashes.

Hence, the prerequisites for hugepage allocation in vir-
tualized environment are that allocated hugepages must
be contiguous, and must be 2MB aligned in both the
kernel address space (virtualized PFNs) and the hyper-
visor’s address space (MFN).

4 Motivation

Huge pages are used by various applications such as
JVM, Oracle, MySql for performance improvement.
These applications use mmap system call for huge page
allocation from huge page pool.

As the applications and data grow larger and larger, the
need of huge pages (HugeTLB) increases. The database
service providers have their databases deployed on ded-
icated servers where they utilize hugepage support for
improvement in performance. When these providers
now want to host these dedicated servers on the Xen
based cloud, there is a need to provide huge page sup-
port in the virtualized environment such that it will
be able to utilize the performance improvement of
HugeTLB.

2011 Linux Symposium • 9

5 Earlier work

Solution of this problem was previously attempted by
Dave McCraken. In that implementation there is a flag
named superpages in the config file specified for DomU.
If this particular flag is set to 1 in the config file, then
during domain creation all allocations are aligned on
2MB boundaries and in 2MB chunks (i.e. 512 MFNs).
Hence, the prerequisite for the domain creation in this
case is that hugepages (or 2MB contiguous chunks)
equivalent to the amount of domain’s memory (mem-
ory/2) should be available with Xen’s buddy allocator.
If these chunks are not available then the domain de-
nies booting. After the domain has booted and begins
using memory, then due to pre-existing fragmentation
problem the amount of contiguous PFNs required for
hugepage allocation may not be available with the do-
mains.

6 Innovation

In the server environment, when the database servers
must handle large amount of data and users, they are
usually hosted on the dedicated servers. To get the per-
formance benefits they use hugepages instead of nor-
mal 4kB pages. When these dedicated servers are to be
moved to Xen based cloud environment, that is where
our design to solve the problem fits in. In our imple-
mentation we allow to specify the number of hugepages
that will be required. When the domain is created, the
appropriate MFN and PFN ranges for hugepage alloca-
tion are reserved. This implementation ensures that once
the domain has booted it will always get that specified
number of hugepages. The implementation will be fur-
ther elaborated in Section 7.

7 Implementation

Our implementation works in three phases. In the first
phase we reserve the MFNs for hugepage allocation
from the Xen’s allocator. In the second phase we re-
serve equivalent PFN range in the kernel for hugepage
allocation. The third phase occurs when the request for
hugepage reservation for the applications is made by the
kernel. These three phases are further elaborated below.

Figure 3: Solution.

7.1 Domain Creation

In our implementation we added a parameter
hugepage_num which is specified in the config
file of the DomU. It is the number of hugepages
that the guest is guaranteed to receive when the
kernel asks for hugepage using its boot time
parameter or reserving after booting (eg. using
echo XX > /proc/sys/vm/nr_hugepages).

We have introduced two variables in the domain’s
structure in the Xen hypervisor: hugepage_num
is an integer which eventually stores the number of
hugepages mentioned in the config file of the domain,
and hugepage_list stores the MFNs of the pages to
reserve for the domain. When the domain is being cre-
ated, the number of hugepages is stored in the variable
hugepage_num, and then calls to Xen’s allocator for
2MB chunks (order 9) are made. The resulting MFNs
are added to hugepage_list.

struct domain {
:
//Storing MFN list
struct page_list_head hugepage_list;
//Number of hugepages
unsigned int hugepage_num;
:

} d;

10 • X-XEN : Huge Page Support in Xen

Figure 4: Domain Creation

Figure 5: Domain Booting

7.2 Domain Booting

When the domain is booting, the memory seen by the
kernel is reduced by the amount required for hugepages.
The kernel then makes a hypercall to Xen to get
the count of hugepages. Xen takes the count from
hugepage_num and returns it to the kernel. The
kernel now increments xen_extra_mem_start by
the amount equivalent to the count of hugepages i.e.
count * 2MB. This is required so that the function-
ing of ballooning driver is not hampered by our imple-
mentation. Now the kernel adds these PFNs (at 2MB in-
tervals) in the xen_hugepfn_list which is a newly
introduced variable in the kernel. Hence, the PFN range
is reserved in the kernel for hugepage allocation.

Figure 6: Demand Supply

7.3 Hugepage reservation Request

When a request for hugepage is made by using boot time
parameter or reserving after booting (eg. Using echo

XX > /proc/sys/vm/nr_hugepages), the kernel
makes a hypercall to allocate hugepage. The hypervisor
then removes one MFN from hugepage_list in the
domain’s structure and returns it to the kernel. The ker-
nel removes one PFN from xen_hugepfn_list in
the kernel. Then it maps 512 MFNs to the correspond-
ing PFNs beginning from the PFN and MFN just retried.
This process is repeated for the number of hugepages
requested by the kernel. Hence, all the requirements for
hugepage allocation are satisfied i.e. the hugepages are
contiguous and 2MB aligned on both kernel (PFN) and
hypervisor (MFN) side.

8 Performance

The performance of huge pages was measured by allo-
cating different memory sizes as shown in Figures 7 and
8. Memory was allocated using mmap function call and
flag MAP_HUGETLB was passed in the argument.

9 Constraints

1. Existing live migration techniques need to be mod-
ified to support huge page migration.

2. Our implementation may not support 1GB super
pages.

2011 Linux Symposium • 11

Figure 7: X-axis: Buffer Length & Y-Axis: Time re-
quired (Thread =4)

Figure 8: X-axis: Buffer Length & Y-Axis: Time re-
quired (Thread =6)

References

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, Andrew Warfield. Xen and the art of virtual-
ization. In Proceedings of the nineteenth ACM sym-
posium on Operating systems principles, 2003.

[2] Abhishek Nayani, Mel Gorman & Ro-
drigo. Memory Management in Linux.
http://www.ecsl.cs.sunysb.edu/
elibrary/linux/mm/mm.pdf

[3] Tim Deegan, CITRIX Systems. Mem-
ory management in (x86) Xen. http:
//www.slideshare.net/xen_com_mgr/
xen-memory-management

[4] Andrés Krapf. XEN Memory Management (In-
tel IA-32). http://www-sop.inria.fr/
everest/personnel/Andres.Krapf/
docs/xen-mm.pdf

[5] http://www.xen.org/files/
Marketing/WhatisXen.pdf

http://www.ecsl.cs.sunysb.edu/elibrary/linux/mm/mm.pdf
http://www.ecsl.cs.sunysb.edu/elibrary/linux/mm/mm.pdf
http://www.slideshare.net/xen_com_mgr/xen-memory-management
http://www.slideshare.net/xen_com_mgr/xen-memory-management
http://www.slideshare.net/xen_com_mgr/xen-memory-management
http://www-sop.inria.fr/everest/personnel/Andres.Krapf/docs/xen-mm.pdf
http://www-sop.inria.fr/everest/personnel/Andres.Krapf/docs/xen-mm.pdf
http://www-sop.inria.fr/everest/personnel/Andres.Krapf/docs/xen-mm.pdf
http://www.xen.org/files/Marketing/WhatisXen.pdf
http://www.xen.org/files/Marketing/WhatisXen.pdf

12 • X-XEN : Huge Page Support in Xen

	X-XEN : Huge Page Support in Xen
	A. Gadre, K. Kabra, A. Vasani & K. Darak
	Introduction
	Paravirtualization
	Hardware Virtual Machine (HVM)

	Huge Pages
	Problem with huge pages in virtualized environment
	Motivation
	Earlier work
	Innovation
	Implementation
	Domain Creation
	Domain Booting
	Hugepage reservation Request

	 Performance
	 Constraints

