
Tuning 10Gb network cards on Linux
A basic introduction to concepts used to tune fast network cards

Breno Henrique Leitao
IBM

leitao@linux.vnet.ibm.com

Abstract

The growth of Ethernet from 10 Mbit/s to 10 Gbit/s has
surpassed the growth of microprocessor performance in
mainstream servers and computers. A fundamental ob-
stacle to improving network performance is that servers
were designed for computing rather than input and out-
put.

The processing of TCP/IP over Ethernet is traditionally
accomplished by a software running on the central pro-
cessor of the server. As network connections scale be-
yond Gigabit Ethernet speeds, the CPU becomes bur-
dened with the large amount of TCP/IP protocol pro-
cessing required by the current network speed. Re-
assembling out-of-order packets, handling the protocols
headers, resource-intensive memory copies, and inter-
rupts put a tremendous load on the system CPU, result-
ing in a CPU doing almost I/O traffic instead of running
applications.

During the network evolution, each generation of new
cards presents a lot of features that increase the perfor-
mance of the network, and when not properly config-
ured, can harm the overall system and network perfor-
mance.

Linux, on the other side, is an operating system that runs
from embedded system to super computers, and its de-
fault configuration is not tuned to run 10 Gbit/s network
cards on wire speed, and it possibly will limit the total
available throughput artificially. Hence, some modifi-
cations in the system is required to achieve good per-
formance. Most of these performance modifications are
easy to do, and doesn’t require a deep knowledge of the
kernel code in order to see the results.

This paper will describe most of the basic settings that
should be set in a Linux environment in order to get
the maximum speed when using fast network adapters.

Since this is a vast topic, this paper will focus on the
basic concepts.

1 Terminology

This section will cover basic terminology used in the
article. For other terminologies, RFC2647[1] is a good
place to start looking for.

Throughput

The term throughput basically has the same meaning as
data transfer rate or digital bandwidth consumption, and
denotes the achieved average useful bit rate in a com-
puter network over a physical communication link. The
throughput is basically measured with little overhead,
and for reference, it is measured below the network layer
and above the physical layer. In this way, throughput in-
cludes some protocol overhead and retransmissions.

When talking about network terminology, it is worth
to remember that one Kbit/s means 1,000 bit/s and not
1,024 bit/s.

Round trip time

Round trip time (RTT) is the total amount of time that a
packet takes to reach the target destination and get back
to the source address.

Bandwidth delay product

Bandwidth Delay Product (BDP) is an approximation
for the amount of data that can be in flow in the network
during a time slice. Its formula is simply a product of the
link bandwidth and the Round Trif Time. To compute
the BDP, it is required to know the speed of the slowest
link in the path and the Round Trip Time (RTT) for the
same path, where the bandwidth of a link is expressed
in Gbit/s and the round-trip delay is typically between 1

• 169 •

170 • Tuning 10Gb network cards on Linux

msec and 100 msec, which can be measured using ping
or traceroute.1

In TCP/IP, the BDP is very important to tune the buffers
in the receive and sender side. Both side need to have
an available buffer bigger than the BDP in order to allow
the maximum available throughput, otherwise a packet
overflow can happen because of out of free space.

1.1 Jumbo Frames

Jumbo frames are Ethernet frames that can carry more
than the standard 1500 bytes of payload. It was defined
that jumbo frames can carry up to 9000 bytes, but some
devices can support up to 16128 bytes per frame. In this
case, these super big packets are referenced as Super
Jumbo Frames. The size of the frame is directly related
to how much information is transmitted in a slot,2 and is
one of the major factors to increase the performance on
the network, once the amount of overhead is smaller.

Almost all 10 Gbit/s switches support jumbo frames,
and new switches supports super jumbo frames. Thus,
checking if the network switches support these frames
is a requirement before tuning this feature on.

Frame size is directly related to the interface Maximum
Transfer Unit (MTU), and it is a specific adapter con-
figuration that must be set for each node in a network.
Moreover, all interfaces in the same network should
have the same MTU in work to communicate properly,
a different MTU on a specific node could cause awful
issues.

Setting the MTU size uses the following command
ifconfig <interface> mtu <size>.

It is important to note that setting the MTU to a high
number, does not mean that all your traffic would use
jumbo packets. For example, a normal ssh session is al-
most insensible to a MTU change, once almost all SSH
packets are sent using small frames.

Once you the jumbo frames are enabled on an interface,
the software application should start using it, otherwise
the performance will not be as good as expected.

1Although there are better ways to measure the packet RTT, these
tools are enough for the purpose of this paper.

2As referenced on 802.3.

It is also observed that TCP responsiveness is improved
by larger MTUs. Jumbo frames accelerate the conges-
tion window increase by a factor of six compared to the
standard MTU. Jumbo frames not only reduce I/O over-
head on end-hosts, they also improve the responsiveness
of TCP.

1.2 Multi streams

The network throughput is heavily dependent on the
type of traffic that is flowing in the wire. An impor-
tant point is the number of streams, also viewed as a
socket, opened during a time slice. It involves creating
and opening more than one socket and parallelizing the
data transfer among these sockets. The link usage is bet-
ter depending on how many streams are flowing. Even
if the system is well tuned, it is not easy to achieve the
wire speed using just a single stream.

The rule of thumb says that multi stream applications are
preferred instead of an application that has just a con-
nection and try to send all the data through it. Actually
a lot of software, as application servers, allows setting
the number of opened sockets, mainly when the appli-
cation is trying to connect to a database.

As practical case, the Netperf tool provides a more accu-
rate result when using multi stream mode with 8 actives
streams.

1.3 Transmission queue size

The transmission queue is the buffer that holds packets
that is scheduled to be sent to the card. Tuning the size
of this buffer is necessary in order to avoid that packet
descriptors are lost because of no available space in the
memory.

Depending on the type of the network, the default 1000
packets value could not be enough and should be raised.
Actually, a good number is around 3000 depending of
the network characteristics.

1.4 SMP IRQ affinity

The main way that a CPU and a I/O device communi-
cates is through interrupts. Interrupt means that when
a device wants attention, it raises an interruption, and
the CPU handles it, going to the device and checking

2009 Linux Symposium • 171

CPU0 CPU1 CPU2 CPU3
16: 832 1848 1483 2288 XICS Level IPI
17: 0 0 0 0 XICS Level hvc_console
18: 0 0 0 0 XICS Level RAS_EPOW
53: 53 0 1006570 0 XICS Level eth0-TxRx-0
54: 28 0 0 159907 XICS Level eth0-TxRx-1
55: 2105871 0 0 0 XICS Level eth0-TxRx-2
56: 1421839 0 0 0 XICS Level eth0-TxRx-3
57: 13 888 0 0 XICS Level eth0-tx-0
58: 13 0 888 0 XICS Level eth0-tx-1
59: 13 0 0 888 XICS Level eth0-tx-2
60: 4 0 0 0 XICS Level eth0:lsc
256: 1 0 0 0 XICS Level ehea_neq
261: 0 0 0 0 XICS Level eth1-aff
262: 119 5290 0 0 XICS Level eth1-queue0
273: 7506 0 0 1341 XICS Level ipr

Figure 1: Which CPU is handling which device IRQ

what are the devices needs. On an SMP system, the spe-
cific CPU handling your interruption is very important
for performance.

Network devices usually has from one to a few in-
terrupt line to communicate with the CPU. On multi-
ple CPU system, each CPU call handles an interrup-
tion request. Usually the round robin algorithm is used
to choose the CPU that will handle a specific inter-
ruption for a specific card. In order to check which
CPU handled the device interruption, the pseudo-file
/proc/interrupts will display all the interrupts
lines, and which CPU handled the interruptions gener-
ated for each interrupt line. Figure 1 is an example of
the content of /proc/interrupts pseudo-file.

In order to achieve the best performance, it is recom-
mended that all the interruptions generated by a device
queue is handled by the same CPU, instead of IRQ bal-
ancing. Although it is not expected, round robin IRQ
distribution is not good for performance because when
the interruption go to another fresh CPU, the new CPU
probably will not have the interrupt handler function in
the cache, and a long time will be required to get the
properly interrupt handler from the main memory and
run it. On the other hand, if the same CPU handles the
same IRQ almost all the time, the IRQ handler function
will unlikely leave the CPU cache, boosting the kernel
performance.

In this manner, no IRQ balancing should be done for

networking device interrupts, once it destroys perfor-
mance. It is also important that TX affinity matches RX
affinity, so the TX completion runs on the same CPU as
RX. Don’t mapping RX completion to RX completion
causes some performance penalty dues cache misses.

Almost all current distros comes with a daemon that bal-
ance the IRQs, which is very undesirable, and should be
disable. In order to disable the irqbalance tool, the
following command should stop it.

service irqbalance stop

If disabling this daemon is a very drastic change, then
it is possible to disable irqbalance only for those
CPUs that has an IRQ bound, and leave the IRQ balance
enabled on all other CPUs. This can be done by edit-
ing the file /etc/sysconfig/irqbalance, and
changing the IRQBALANCE_BANNED_CPUS option.
So, all the CPUs that are bound to an interface queue,
must be set as banned in the irqbalance configura-
tion file.

Once the irqbalance daemon is disabled or config-
ured, the next step is to configure which CPU will han-
dle each device interruption.

In order to bind an interrupt line to a CPU, kernel 2.4
or superior provides scheme on the /proc interface
which was created to allow the user to choose which

172 • Tuning 10Gb network cards on Linux

group of processors will handle a specific interrupt line.
This configuration lives at /proc/<IRQ number>
/smp_affinity, and can be changed any time on-
the-fly. The content of the smp_affinity is a hex-
adecimal value that represents a group of CPU, as for
example, ff representing all eight CPUs available. So,
each field in the bit mask corresponds to a processor,
and to manipulate it properly, a binary to hexadecimal
transformation will be required.

Each digit in ff represents a group of four CPUs, with
the rightmost group being the least significant. The let-
ter f is the hexadecimal representation for the decimal
number 15 and represent 1111 in binary, and each of
the places in the binary representation corresponds to a
CPU.

CPU Binary Hex
0 0001 0x1
1 0010 0x2
2 0100 0x4
3 1000 0x8

By combining these bit patterns (basically, just adding
the Hex values), it is possible to a group of processors.
For example, a representation of a group of two CPUs,
for instance CPU0 (0x1) and CPU2 (0x4), is the sum of
both individually, which means 0x1 + 0x4 = 0x5.

1.5 Taskset affinity

On a multi stream setup, it is possible to see some tasks
that are transmitting and receiving the packets, and de-
pending on the schedule policy, the task can migrate
from one CPU to other from time to time. Since task mi-
gration is a huge penalty for performance, it is advised
that a task is bound to one or few CPUs, as described
above for IRQ. Since disabling the receive and sent task
from being floating in all the CPUs, the cache misses
rate is decreased, and the performance improved.

In order to bind a task to a CPU, the command
taskset should be used as follows.

$ taskset -p 0x1 4767
pid 4767’s current affinity mask: 1
pid 4767’s new affinity mask: 1

1.6 Interrupt coalescence

Most modern NICs provide interruption moderation or
interruption coalescing mechanisms to reduce the num-
ber of IRQs generated when receiving frames. As Ether-
net frames arrive, the NIC saves them in memory, but the
NIC will wait a receive delay before generating an inter-
ruption to indicate that one or more frames have been re-
ceived. This moderation reduces the number of context
switches made by the kernel to service the interruptions,
but adds extra latency to frame reception.

Using interruption coalescence doesn’t allow the system
to suffer from IRQ storms generated during high traf-
fic load, improving CPU efficiency if properly tuned for
specific network traffic.

Enabling interruption coalescence could be done using
the tool ethtool together with parameter -C. There
are some modules that do not honor the ethtool
method of changing the coalescence setting and imple-
ments its own method. In this case, where this option
is specific to the device driver, using modinfo to dis-
cover the module parameter that enables it is the best
option.

NAPI

“New API” (NAPI) is a feature that solves the same is-
sue that Interrupt coalescence solved without hurting la-
tency too much. NAPI was created in the linux kernel
aiming to improve the performance of high-speed net-
working, and avoid interrupt storms. NAPI basically
creates a mixture of interrupts and polling, called “adap-
tive interrupt coalescing.” It means that in high traffic
the device interruptions are disabled and packets are col-
lected by polling, decreasing the system load. When the
traffic is not high, then the interrupt scheme takes place,
avoiding long latencies because of the pooling scheme.
Also, NAPI-compliant drivers are able to drop packets
in NIC (even before it reaches the kernel) when neces-
sary, improving the system overall performance.

NAPI was first incorporated in the 2.6 kernel and was
also backported to the 2.4.20 kernel. In general, run-
ning an NAPI enabled driver is a plus to get good per-
formance numbers.

2 Offload features

Originally TCP was designed for unreliable low speed
networks, but the networks changed a lot, link speed be-

2009 Linux Symposium • 173

comes more aggressive and quality of service is now a
strict requirement for a lot of applications. Although
these huge changes is still happening, the TCP protocol
is almost the same as it was designed. As the link speed
grows, more CPU cycle is required to be able to han-
dle all the traffic. Even the more current CPUs waste a
considerable amount of cycle in order to process all the
CPU communication.

A generally accepted rule of thumb3 is that one hertz of
CPU is required to send or receive one bit of TCP/IP[2].
For example a five gigabit per second of traffic in a net-
work requires around five GHz of CPU for handling
this traffic. This implies that two entire cores of a 2.5
GHz multi-core processor will be required to handle the
TCP/IP processing associated with five gigabit per sec-
ond of TCP/IP traffic. Since Ethernet is bidirectional, it
means that it is possible to send and receive 10 Gbit/s.
Following the 1 Hz per bit rule, it would need around
eight 2.5 GHz cores to drive a 10 Gbit/s Ethernet net-
work link.

Looking into this scenario, the network manufacturers
started to offload a lot of repetitive tasks to the network
card itself. It leaves the CPU not so busy executing the
usual networking tasks, as computing the checksum and
copying memory around.

The manufactures classify offload features in two types,
those that are stateful and those that are stateless, where
a state references the TCP state. This section will cover
only the stateless features, and the stateful feature will
be briefly described in Section 5.8.

Almost all offload features are configured using the
ethtool tool. In order to check which features are
set, run ethtool using the -k parameter, as follows:

ethtool -k eth2

Offload parameters for eth2:
rx-checksumming: off
tx-checksumming: off
scatter-gather: off
tcp segmentation offload: off
udp fragmentation offload: off
generic segmentation offload: off

3This general rule of thumb was first stated by PC Magazine
around 1995, and is still used as an approximation nowadays.

In order to enable or disable any feature, the parameter
-K should be used with on to enable the feature, and
off to disable it. The following example enables TX
checksum feature for interface eth2.

ethtool -K eth2 tx on

2.1 RX Checksum

The TCP RX checksum offload option enables the net-
work adapter to compute the TCP checksum when a
packet is received, and only send it to the kernel if the
checksum is correct. This feature saves the host CPU
from having to compute the checksum, once the card
guaranteed that the checksum is correct.

Enabling RX checksum offload can be done using
ethtool -K ethX rx on4

Note that if receive checksum offload is disabled, then it
is not possible to enable large receive offload (LRO).

2.2 TX Checksum

TX Checksum works almost as RX checksum, but it
asks the card to compute the segment checksum before
sending it. When enabling this option, the kernel just fill
a random value in the checksum field of the TCP header
and trust that the network adapter will fill it correctly,
before putting the packet into the wire.

In order to enable TX checksum offload, the command
ethtool -K ethX tx on should be run.

When the TX and RX offload are enabled, the amount
of CPU saved depends on the packet size. Small pack-
ets have little or no savings with this option, while
large packets have larger savings. On the PCI-X gigabit
adapters, it is possible to save around five percent in the
CPU utilization when using a 1500 MTU. On the other
hand, when using a 9000 MTU the savings is approxi-
mately around 15%.

It is important to note that disabling transmission check-
sum offload also disables scatter and gather offload since
they are dependent.

4Replace ethX to the target interface

174 • Tuning 10Gb network cards on Linux

2.3 Scatter and Gather

Scatter and Gather, also known as Vectored I/O, is a
concept that was primarily used in hard disks[3]. It ba-
sically enhance large I/O request performance, if sup-
ported by the hardware. Scatter reading is the ability
to deliver data blocks stored at consecutive hardware
address to non-consecutive memory addresses. Gather
writing is the ability to deliver blocks of data stored at
non-consecutive memory addresses to consecutively ad-
dressed hardware blocks.

One of the constraints that happens to DMA is that the
physical memory buffer should be contiguous in order
to receive the data. On the other hand, a device that
supports scatter and gather capability allows the kernel
to allocate smaller buffers at various memory locations
for DMA. Allocating smaller buffers is much easier and
faster than finding for a huge buffer to place the packet.

When scatter and Gather is enable, it is also possible to
do a concept called page flip. This basically allows the
transport and other headers to be separated from the pay-
load. Splitting header from payload is useful for copy
avoidance because a virtual memory system may map
the payload to an possible application buffer, only ma-
nipulating the virtual memory page to point to the pay-
load, instead of copying the payload from one place to
another.

The advantage of Scatter and Gather is to reduce over-
head allocating memory and copying data, also as hav-
ing a better memory footprint.

In order to enable Scatter and gather, the command
ethtool -K ethX sg on should be run.

2.4 TCP Segmentation Offload

TCP segmentation offload (TSO), also called Large Seg-
ment Offload (LSO), is feature used to reduce the CPU
overhead when running TCP/IP. TSO is a network card
feature designed to break down large groups of data sent
over a network into smaller segments that pass through
all the network elements between the source and desti-
nation. This type of offload relies on the network inter-
face controller to segment the data and then add the TCP,
IP and data link layer protocol headers to each segment.

The performance improvement comes from the fact that
the upper layers deliver a huge packet, as 64K, to the

card and the card splits the this packet in small frames
which honor the MTU size.

Some studies suggests that enabling TSO saves around
10% in the CPU when using a 1500 MTU.

In order too enable TCP segmentation offload, the com-
mand ethtool -K ethX tso on should be run.

2.5 Large Receive Offload

Large Receive Offload (LRO) is a technique that in-
creases inbound throughput of high-bandwidth network
connections by reducing CPU overhead. It works by ag-
gregating, in the card, multiple incoming packets from a
single stream into a larger buffer before they are passed
to the network stack, thus reducing the number of pack-
ets that have to be processed, and all headers overhead.
This concept is basically the opposite of TSO. LRO
combines multiple Ethernet frames into a single receive,
thereby decreasing CPU utilization when the system is
receiving multiple small packets.

There are two types of LRO, one that are just a change in
the network structure that is usually enabled by default
in new drivers. This one aggregates frames in the device
driver rather than in the card itself. The other one is a
hardware feature that aggregate the frames into the card
itself and provides much better results. The last one is
specific for each device driver and it is usually enabled
using a module parameter, as lro_enable for s2io
driver.

2.6 Generic Segmentation Offload

After TSO was implemented, It was observed that a lot
of the savings in TSO come from traversing the ker-
nel networking stack once instead than many times for
each packet. Since this concept was not dependent of
the hardware support, the Generic Segmentation Offload
(GSO) was implemented to postpone the segmentation
as late as possible. Once this is a general concept, it can
be applied to other protocols such as version 6 of TCP,
UDP, or even DCCP.

GSO like TSO is only effective if the MTU is signifi-
cantly less than the maximum value of 64K.

In order to enable generic segmentation offload, the
command ethtool -K ethX gso on should be
run.

2009 Linux Symposium • 175

3 Kernel settings

The Linux kernel and the distributions that package it
typically provides very conservative defaults to certain
network kernel settings that affect networking parame-
ters. These settings can be set via the /proc filesystem
or using the sysctl command. Using sysctl is usu-
ally better, as it reads the contents of /etc/sysctl.
conf or any other selected chosen config script, which
allows to keep the setting even after the machine restart.
Hereafter only the modifications using the sysctl will be
covered.

In order to change a simple configuration, a command as
sysctl -w net.core.rmem_max=16777216
should be run. In this case, the parameter -w
want to set the value 16777216 into the variable
net.core.rmem_max. Note that this is a temporary
setting, and it will be lost after the system is restart.
However most of the configuration should hold after a
system restart, and in this case a modification in the file
/etc/sysctl.conf will be necessary.

Also, it is possible to create a file with a lot of config-
uration, which can be called using the command that
follows.

sysctl -p /script/path

It’s also possible to see all the parameters related to net-
work using the following parameter.

sysctl -a | grep net

On other hand, checking just a option can be done as
follows.

sysctl net.ipv4.tcp_window_scaling

3.1 TCP Windows Scaling

The TCP/IP protocol has a header field called window.
This field specifies how much data the system which
sent the packet is willing and able to receive from the
other end. In other words, it is the buffer space required
at sender and receiver to save the unacknowledged data
that TCP must handle in order to keep the pipeline full.

In this way, the throughput of a communication is lim-
ited by two windows: congestion window and receive
window. The first one tries not to exceed the capacity
of the network (congestion control) and the second one

tries not to exceed the capacity of the receiver to process
data (flow control). The receiver may be overwhelmed
by data if for example it is very busy (such as a Web
server). As an example, each TCP segment contains the
current value of the receive window. So, if the sender re-
ceives an ACK which acknowledge byte 4000 and spec-
ifies a receive window of 10000 (bytes), the sender will
not send packets after byte 14000, even if the congestion
window allows it.

Since TCP/IP was designed in the very far past, the win-
dow field is only 16 bits wide, therefore the maximum
window size that can be used is 64KB. As it’s known,
64KB is not even close to what is required by 10Gbit/s
networks. The solution found by the protocol engineer
was windows scaling describer in RFC 1323, where it
creates a new TCP option field which left-shift the cur-
rent window value to be able to represent a much larger
value. This option defines an implicit scale factor, which
is used to multiply the window size value found in a reg-
ular TCP header to obtain the true window size.

Most kernels enables this option by default, as could
be seen running the command sysctl net.ipv4.
tcp_window_scaling.

3.2 TCP Timestamp

TCP timestamp is a feature also described by RFC 1323
that allow a more precise round trip time measurement.
Although timestamp is a nice feature, it includes an
eight bytes to the TCP header, and this overhead affects
the throughput and CPU usage. In order to reach the
wire speed, it is advised to disable the timestamp fea-
ture, setting running sysctl -w net.ipv4.tcp_
timestamps=0

3.3 TCP fin timeout setting

When TCP is finishing a connection, it gets into a state
called FIN-WAIT-2, which still wasting some memory
resources. If the client side doesn’t finish the connec-
tion, the system needs to wait a timeout to close it by
itself. On Linux, it is possible to determine the time that
must elapse before TCP/IP can release the resources for
a closed connection and reuse them. By reducing the
value of this entry, TCP/IP can release closed connec-
tions faster, making more resources available for new
connections. So, when running on a server that has a big

176 • Tuning 10Gb network cards on Linux

amount of closed socket, this adjust saves some system
resources. In order to adjust this value, the parameter
net.ipv4.tcp_fin_timeout should be changed
to a smaller number than the default. Around 15 and 30
seconds seem to be a good value for moderate servers.

3.4 TCP SACK and Nagle

TCP Sack is a TCP/IP feature that means TCP Se-
lective Acknowledgement and was described by RFC
2018, It was aimed for networks that have big windows
and usually lose packets. It consists in sending explicit
ACK for the segments of the stream has arrived cor-
rectly, in a non-contiguous manner, instead of the tra-
ditional TCP/IP algorithm that implements cumulative
acknowledgement, which just acknowledges contiguous
segments.

As most of the 10 Gbit/s network are reliable and usu-
ally losing packets is not the common case, disabling
SACK will improve the network throughput. It is impor-
tant to note that if the network is unreliable, and usually
lose packets, then this option should be turned on.

In order to disable it, set 0 into the net.ipv4.tcp_
sack parameter.

On the other side, Nagle algorithm should be turned
on. Nagle is a TCP/IP feature described by RFC 896
and works by grouping small outgoing messages into a
bigger segment, increasing bandwidth and also latency.
Usually Nagle algorithm is enabled on standard sockets,
and to disable it, the socket should set TCP_NODELAY
in its option.

3.5 Memory options

Linux supports global setting to limit the amount of sys-
tem memory that can be used by any one TCP connec-
tion. It also supports separate per connection send and
receive buffer limits that can be tuned by the system ad-
ministrator.

After kernel 2.6.17, buffers are calculated automatically
and usually works very well for the general case. There-
fore, unless very high RTT, loss or performance require-
ment is present, buffer settings may not need to be tuned.
If kernel memory auto tuning is not present (Linux 2.4
before 2.4.27 or Linux 2.6 before 2.6.7), then replacing
the kernel is highly recommended.

In order to ensure that the auto tuning is present and
it is properly set, the parameter net.ipv4.tcp_
moderate_rcvbuf should be set to 1.

Once the auto tuning feature is on, the limits of memory
used by the auto tuner should be adjusted, since most
of the network memory options have the value that need
to be set. The value is an array of 3 values that rep-
resents the minimum, the initial and maximum buffer
size as exemplified above. These values are used to set
the bounds on auto tuning and balance memory usage.
Note that these are controls on the actual memory usage
(not just TCP window size) and include memory used
by the socket data structures as well as memory wasted
by short packets in large buffers.

net.ipv4.tcp_rmem = 4096 87380 3526656

There are basically three settings that define how TCP
memory is managed that need a special care and will be
described hereafter. They are net.ipv4.tcp_rmem,
which define the size (in bytes) of receive buffer used
by TCP sockets, net.ipv4.tcp_wmem which de-
fine the amount of memory (in bytes) reserved for send
buffers, and the net.ipv4.tcp_mem, which define
the total TCP buffer-space allocatable in units of page
(usually 4k on x86 and 64k on PPC). So, tuning these
settings depends on the type of the Ethernet traffic and
the amount of memory that the server has.

All of those value should be changed so that the maxi-
mum size is bigger than the BDP, otherwise packets can
be dropped because of buffer overflow. Also, setting
net.ipv4.tcp_mem to be twice the delay bandwidth
delay product of the path is a good idea.

Secondarily, there are a lot of configurations that need to
be tuned depending on the how network is working, and
if the performance requirement was met. The impor-
tant ones are net.core.rmem_max, net.core.
wmem_max, net.core.rmem_default, net.
core.wmem_default, and net.core.optmem_
max. The kernel file Documentation/network/
ip-sysctl.txt has a description for almost all of
these parameters and should be consulted whenever nec-
essary.

Another useful setting that deserves a check is net.
core.netdev_max_backlog. This parameter de-
fines the maximum number of packets queued on the

2009 Linux Symposium • 177

input side, when the interface receives packets faster
than kernel can process them, which is usual on 10
Gbit/s network interface. This option is opposite for the
txqueuelen, that define the length of the queue in the
transmission side. As the value for the maximum back-
log depends on the speed of the system, it should be fine
tuned. Usually a value near 300000 packets is a good
start point.

4 Bus

One important aspect of tuning a system is assuring
that the system is able to support the desired needs, as
throughput and latency. In order to ensure that a system
is able to run on the desired speed, a brief overview of
common the bus subsystem will be described. Since 10
Gbit/s network cards are only available on PCI extended
(PCI-X) and PCI Express (PCI-E), this article will focus
on these buses.

PCI is the most common bus for network cards, and it is
very known for its inefficiency when transferring small
bursts of data across the PCI bus to the network interface
card, although its efficiency improves as the data burst
size increases. When using the standard TCP protocol,
it is usual to transfer a large number of small packets as
acknowledgement and as these are typically built on the
host CPU and transmitted across the PCI bus and out the
network physical interface, this impacts the host overall
throughput.

In order to compare what is required to run a 10 Gbit/s
card on full speed, some bus performance will be dis-
played. A typical PCI bus running at 66 MHz, has an
effective bandwidth of around 350 MByte/s.5 The more
recent PCI-X bus runs at 133 MHz and has an effective
bus bandwidth of around 800 MByte/s. In order to fill a
10 Gigabit Ethernet link running in full-duplex, the or-
der of 1.25GByte/s of bandwidth is required in each di-
rection, or a total of 2.5 GByte/s, more than three times
the PCI-X implementations, and nearly seven times the
bandwidth of a legacy PCI bus. So, in order to get the
best performance of the card, a PCI-E network card is
highly recommended.

Also, usually most of the network traffic is written or
read from the disk. Since the disk controller usually
shares the same bus with network cards, a special con-
sideration should be taken in order to avoid bus stress.

5PCI Encoding overhead is two bits in 10.

4.1 PCI Express bandwidth

PCI Express version 1.0 raw signaling is 250 MByte/s
lane, while PCI Express version 2.0 doubles the
bus standard’s bandwidth from 250 MByte/s to
500MByte/s, meaning a x32 connector can transfer data
at up to 16 GByte/s

PCI Express version 3.0 that is already in development
and is scheduled to be released in 2010, will be able to
deliver 1 GByte/s per lane.

4.2 Message-Signalled Interrupt

One important PCI-E advantage is that interrupts are
transferred in-line instead of out-of-band. This feature
is called Message-signalled Interrupt (MSI). MSI en-
ables a better interrupt handling since it allows multiple
queueable interrupts.

Using MSI can lower interrupt latency, by giving every
kind of interruption its own handler. When the kernel
receives a message, it will directly call the interrupt han-
dler for that service routine associated with the address.
For example, there are many types of interrupts, one for
link status change, one for packet transmitted status, one
for packet received, etc. On the legacy interrupt system,
the kernel is required to read a card register in order to
discover why the card is interrupting the CPU, and to
call the proper interrupt handler. This long path causes
a delay that doesn’t happen when the system is using
MSI interrupts.

MSI-X is an extension to MSI to enable support for
more vectors and other advantages. MSI can support
at most 32 vectors while MSI-X can up to 2048. Also,
when using MSI, each interrupt must go to the same ad-
dress and the data written to that address are consecu-
tive. On MSI-X, it allows each interrupt to be separately
targeted to individual processors, causing a great bene-
fit, as a high cache hit rate, and improving the quality of
service.

In order to ensure that MSI or MSI-X are enabled
on a system, the lspci command should be used to
display the PCI device capabilities. The capabilities
that describe these features and should be enabled are
Message Signalled Interrupts or MSI-X as
described by Figure 2.

178 • Tuning 10Gb network cards on Linux

lspci | grep "10 Giga"
0002:01:00.0 Ethernet controller: Intel Corporation 82598EB 10 Gigabit AF

Network Connection (rev 01)

lspci -vv -s 0002:01:00.0 | grep Message
Capabilities: [50] Message Signalled Interrupts: 64bit+ Queue=0/0 Enable+

Figure 2: lspci output

4.3 Memory bus

Memory bus might not be as fast as required to run a full
duplex 10 Gbit/s network traffic. One important point is
ensure that the system memory bandwidth is able to sup-
port the traffic requirement. In order to prove that the
memory bandwidth is enough for the desired through-
put, a practical test using Netperf can be run. This test
displays the maximum throughput that the system mem-
ory can support.

Running a Netperf test against the localhost is enough
to discover the maximum performance the machine can
support. The test is simple, and consist of starting the
netserver application on the machine and running
the test, binding the client and the server in the same
processor, as shown by Figure 3. If the shown band-
width is more than the required throughput, then the
memory bus is enough to allow a high load traffic. This
example uses the -c and -C options to enable CPU
utilization reporting and shows the asymmetry in CPU
loading.

netperf -T0,0 -C -c
Utilization
Send Recv

... Throughput local remote ...
10^6bits/s % S % S

13813.70 88.85 88.85

Figure 3: Test for memory bandwidth

4.4 TCP Congestion protocols

It is a very important function of TCP to properly match
the transmission rate of the sender and receiver over the

network condition[4]. It is important for the transmis-
sion to run at high enough rate in order to achieve good
performance and also to protect against congestion and
packet losses. Congestion occurs when the traffic of-
fered to a communication network exceeds its available
transmission capacity.

This is implemented in TCP using a concept called win-
dows. The window size advertised by the receiver tells
the sender how much data, starting from the current po-
sition in the TCP data byte stream can be sent without
waiting for further acknowledgements. As data is sent
by the sender and then acknowledged by the receiver,
the window slides forward to cover more data in the byte
stream. This is usually called sliding window.

Some usual congestion avoidance algorithm has a prop-
erty to handle with the window size called “additive in-
crease and multiplicative decrease” (AIMD). This prop-
erty is proven to not be adequate for exploring large
bandwidth delay product network, once general TCP
performance is dependent of the Congestion control al-
gorithm[5]. And the congestion control algorithm is ba-
sically dependent of network bandwidth, round trip time
and packet loss rate. Therefore, depending on the char-
acteristics of your network, an algorithm fits better than
another.

On Linux it is possible to change the congestion avoid-
ance algorithm on the fly, without even restarting your
connections. To do so, a file called /proc/sys/net/
ipv4/tcp_available_congestion_control
lists all the algorithms available to the system, as
follows:

cat /proc/sys/net/ipv4/tcp_available_
congestion_control
cubic reno

2009 Linux Symposium • 179

Also, it is possible to see what algorithm the system is
currently using, looking into file /proc/sys/net/
ipv4/tcp_congestion_control. To set a new
algorithm, just echo one of those available algorithm
name into this file, as follows:

echo cubic > /proc/sys/net/ipv4/tcp
_congestion_control

This article will outline some of the most common
TCP/IP collision avoidance algorithms.

4.5 RENO

TCP Reno was created to improve and old algorithm
called Tahoe[6]. Its major change was the way in which
it reacts when detect a loss through duplicate acknowl-
edgements. The idea is that the only way for a loss to
be detected via a timeout and not via the receipt of a
dupack is when the flow of packets and acks has com-
pletely stopped. Reno is reactive, rather than proactive,
in this respect. Reno needs to create losses to find the
available bandwidth of the connection.

Reno is probably the most common algorithm and was
used as default by Linux until kernel 2.6.19.

When using Reno on fast networks, it can eventually
underutilize the bandwidth and cause some variation in
the bandwidth usage from time to time[7]. For example,
in slow start, window increases exponentially, but may
not be enough for this scenario. On a scenario when
using 10Gbit/s network with a 200ms RTT, 1460B pay-
load and assuming no loss, and initial time to fill pipe
is around 18 round trips, which result in a delay of 3.6
seconds. If one packet is lost during this phase, this time
can be much higher.

Also, to sustain high data rates, low loss probabilities
are required. If the connection loose one packet then
the algorithm gets into AIMD, which can cause severe
cut to the window size, degrading the general network
performance.

On the other hand, Reno in general is more TCP-
friendly than FAST and CUBIC.

4.6 CUBIC

CUBIC is an evolution of BIC. BIC is algorithm that
has a pretty good scalability, fairness, and stability dur-
ing the current high speed environments, but the BIC’s
growth function can still be too aggressive for TCP, es-
pecially under short RTT or low speed networks, so CU-
BIC was created in order to simply its window control
and improve its TCP-friendliness. Also, CUBIC im-
plements an optimized congestion control algorithm for
high speed networks with high latency

In general, CUBIC is on the best algorithm to get the
best throughput and TCP-fairness. That is why it is im-
plemented and used by default in Linux kernels since
version 2.6.19.

4.7 FAST

FAST (FAST AQM Scalable TCP) was an algorithm
created with high-speed and long-distance links in mind.

A FAST TCP flow seeks to maintain a constant number
of packets in queues throughout the network. FAST is
a delay-based algorithm that try to maintain a constant
number of packets in queue, and a constant window
size, avoiding the oscillations inherent in loss-based al-
gorithms, as Reno. Also, it also detects congestion ear-
lier than loss-based algorithms. Based on it, if it shares
a network with loss-based “protocol,” the FAST algo-
rithms tend to be less aggressive. In this way, FAST has
the better Friendliness than CUBIC and Reno.

5 Benchmark Tools

There are vast number of tools that can be used to
benchmark the network performance. In this section,
only Netperf, Mpstat and Pktgen will be covered.
These are tools that generate specifics kind of traffic and
then shows how fast the network transmitted it.

5.1 Netperf

Netperf6 is a tool to measure various aspects of network-
ing performance. It is primarily focus is on data transfer
using either TCP or UDP. Netperf has also a vast num-
ber of tests like stream of data and file transfer among
others.

6http://www.netperf.org

180 • Tuning 10Gb network cards on Linux

netperf -t TCP_STREAM -H 192.168.200.2 -l 10
TCP STREAM TEST from 0.0.0.0 port 0 AF_INET to 192.168.200.2 port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

87380 16384 16384 10.00 7859.85

Figure 4: Netperf running for 10 seconds

netperf -H 192.168.200.2 -t TCP_RR -l 10
TCP REQUEST/RESPONSE TEST from 0.0.0.0 port 0 AF_INET to

192.168.200.2 port 0 AF_INET
Local /Remote
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec

16384 87380 1 1 10.00 42393.23

Figure 5: Netperf running with TCP_RR

It is easy to benchmark with Netperf. An installation of
the tool is required in the client and server. On the server
side, a daemon called netserver should be started
before the tests begin, so that the Netperf client could
connect to it. Netperf usually is listening on port 12865.

In order to ensure that the Netperf setup is working prop-
erly, a simple test as netperf -H <hostname> is
enough to prove that the communication is good be-
tween the client and the server.

Netperf tests are easier when considering to use the set
of scripts files provided with the Netperf distribution.
These scripts are usually located at /usr/share/
doc/netperf/examples. These scripts has a set
of features and configuration that is used on those test
cases. Since these scripts are heavily configurable, it is
not required to read the entire Netperf manual in order
to run more complex tests.

Netperf supports a lot of tests cases, but in this paper
only TCP/UDP streams and transaction will be covered.

Streams

On streams test, Netperf supports a vast number of test-
cases, but only three are widely used, they are TCP_
STREAM, TCP_MAERTS7 and UDP_STREAM. The dif-
ference between TCP_STREAM and TCP_MAERTS, is
that on first, the traffic flows from the client to the server,
and on TCP_MAERTS, the traffic flows from the server
to the client. Thus running both TCP_STREAM and
TCP_MAERTS in parallel generate a full-duplex test.

Figure 4 shows a simple example of TCP_STREAM test
case running against IP 192.168.200.2 for ten sec-
onds.

Transactions

Transaction is another area to investigate and tune in or-
der to improve the quality of the network, and to do so,
Netperf provides a testcase to measure request/response
benchmark. A transaction is defined as a single reply for
a single request. In this case, request/response perfor-
mance is quoted as “transactions/s” for a given request
and response size.

7MAERTS is an anagram of STREAM

2009 Linux Symposium • 181

#!/bin/bash

NUMBER=8
TMPFILE=‘mktemp‘
PORT=12895

for i in ‘seq $NUMBER‘
do

netperf -H $PEER -p $PORT -t TCP_MAERTS -P 0 -c -l $DURATION
-- -m 32K -M 32K -s 256K -S 256K >> $TMPFILE &

netperf -H $PEER -p $PORT -t TCP_STREAM -P 0 -c -l $DURATION
-- -m 32K -M 32K -s 256K -S 256K >> $TMPFILE &

done

sleep $DURATION

echo -n "Total result: "

cat $TMPFILE | awk ’{sum += $5} END{print sum}’

Figure 6: Script to run Netperf using multistream

In order to measure transactions performance, the test
type should be TCP_RR or UDP_RR, as shown by Fig-
ure 5.

In order to do some complex benchmark using transac-
tion, a script called tcp_rr_script is also available
and can be configured to accomplish the user’s needed.

Since Netperf uses common sockets to transmit the data,
it is possible to set the socket parameters used by a test.
Also, it is possible to configure some details of the spe-
cific test case that is being used. To do so, the parame-
ter −− -h should be appended in the end of the Net-
perf line, as netperf -t TCP_RR −− -h for the
request performance test case.

5.2 Netperf multi stream

Netperf supports multi stream in version four only,
which may not be available to some distro distro. Net-
perf version two is the mostly distributed and used ver-
sion. The script described in Figure 6 simulates a multi
stream Netperf, and is widely used in the network per-
formance community.

5.3 Pktgen

Pktgen is a high performance testing tool, which is in-
cluded in the Linux kernel as a module. Pktgen is cur-
rently one of the best tools available to test the transmis-
sion flow of network device driver. It can also be used to
generate ordinary packets to test other network devices.
Especially of interest is the use of pktgen to test routers
or bridges which often also use the Linux network stack.
Pktgen can generate high bandwidth traffic specially be-
cause it is a kernel space application. Hence it is useful
to guarantee that the network will work properly on high
load traffic.

It is important to note that pktgen is not a Netperf re-
placement, pktgen cannot execute any TCP/IP test. It is
just used to help Netperf in some specific transmission
test cases.

Pktgen can generate highly traffic rates due a very nice
kernel trick. The trick is based on cloning ready-to-
transmit packets and transmitting the original packet and
the cloned ones, avoiding the packet construction phase.
This idea basically bypass almost all the protocol ker-
nel layers, generating a high bandwidth traffic without
burdening the CPU.

182 • Tuning 10Gb network cards on Linux

Params: count 10000000 min_pkt_size: 60 max_pkt_size: 60
frags: 0 delay: 0 clone_skb: 1000000 ifname: eth3
flows: 0 flowlen: 0
dst_min: 10.1.1.2 dst_max:
src_min: src_max:
src_mac: 00:C0:DD:12:05:4D dst_mac: 00:C0:DD:12:05:75
udp_src_min: 9 udp_src_max: 9 udp_dst_min: 9
udp_dst_max:
src_mac_count: 0 dst_mac_count: 0
Flags:

Current:
pkts-sofar: 10000000 errors: 16723
started: 1240429745811343us

stopped: 1240429768195855us idle: 1954836us
seq_num: 10000011 cur_dst_mac_offset: 0

cur_src_mac_offset: 0
cur_saddr: 0xa010101 cur_daddr: 0xa010102
cur_udp_dst: 9 cur_udp_src: 9
flows: 0

Result: OK: 22384512(c20429676+d1954836) usec,
10000000 (60byte,0frags)
446737pps 214Mb/sec (214433760bps) errors: 16723

Figure 7: pktgen output example

Figure 7 shows a typical example of the output after run-
ning a test with pktgen.

It is easy but not trivial to run a pktgen example and the
steps will not be covered in this article. For more infor-
mation, the file Documentation/networking/
pktgen.txt at the kernel code is a good source.

5.4 Mpstat

Mpstat is a tool provided by sysstat8 package that
is probably the most used tool to verify the processors
load during a network performance test. Mpstat mon-
itors SMP CPUs usage and it is a very helpful tool to
discover if a CPU is overloaded and which process is
burdening each CPU.

Mpstat can also display statistics with the amount of
IRQs that were raised in a time frame and which CPU
handled them, as it is shown on Figure 8. This is a

8http://pagesperso-orange.fr/sebastien.
godard/

very useful test to guarantee that the IRQ affinity, dis-
cussed earlier, is working properly. In order to discover
which IRQ number represents which device line, the file
/proc/interrupts contains the map between the
IRQ number and the device that holds the IRQ line.

5.5 Other technologies

This section intends to briefly describe some other tech-
nologies that help to get a better network utilization.

5.6 I/OAT

Intel I/OAT is a feature that improves network applica-
tion responsiveness by moving network data more ef-
ficiently through Dual-Core and Quad-Core Intel Xeon
processor-based servers when using Intel network cards.
This feature improves the overall network speed.

In order to enable the Intel I/OAT network accelerations
the driver named ioatdma should be loaded in the ker-
nel.

2009 Linux Symposium • 183

12:12:25 CPU 18/s 59/s 182/s 216/s 338/s 471/s BAD/s
12:12:25 0 0.09 0.88 0.01 0.00 0.00 0.00 2.23
12:12:25 1 0.13 0.88 0.00 0.00 0.00 0.00 0.00
12:12:25 2 0.15 0.88 0.01 0.00 0.00 0.00 0.00
12:12:25 3 0.19 0.88 0.00 0.00 0.00 0.00 0.00
12:12:25 4 0.10 0.88 0.01 0.00 0.00 0.00 0.00
12:12:25 5 0.13 0.88 0.00 0.00 0.00 0.00 0.00
12:12:25 6 0.08 0.88 0.01 0.00 0.00 0.00 0.00
12:12:25 7 0.20 0.88 0.00 0.00 0.00 0.00 0.00

Figure 8: Mpstat output

modprobe ioatdma

It is not recommended to remove the ioatdma module
after it was loaded, once TCP holds a reference to the
ioatdma driver when offloading receive traffic.

5.7 Remote DMA

Remote Direct Memory Access (RDMA) is an exten-
sion of DMA where it allows data to move, bypassing
the kernel, from the memory of one computer into an-
other computer’s memory. Using RDMA permits high-
throughput, low-latency networking, which is a great
improvement in many areas. The performance is visi-
ble mainly when the communication happens between
two near computers, where the RTT is small.

For security reasons, it is undesirable to allow the re-
mote card to read or write arbitrary memory on the
server. So RDMA scheme prevents any unauthorized
memory accesses. In this case, the remote card is only
allowed to read and write into buffers that the receiver
has explicitly identified to the NIC as valid RDMA tar-
gets. This process is called registration.

On Linux there is a project called OpenRDMA that
provides an implementation of RDMA service layers.
RDMA layer is already implemented by common appli-
cations such as NFS. NFS over RDMA is already being
used and the performance was proved to be much better
than the standard NFS.

5.8 TCP Offload Engine

TCP Offload Engine (TOE) is a feature that most net-
work cards support in order to offload the TCP engine

to the card. It means that the card has the TCP states for
an established connection. TOE usually help the ker-
nel, doing trivial steps in the card as fragmentation, ac-
knowledges, etc.

This feature usually improve the CPU usage and re-
duces the PCI traffic, but creates issues that are hard
to manage, mainly when talking about security aspects
and proprietary implementations. Based on these facts,
Linux doesn’t support TOE by default, and a vendor
patch should be applied in the network driver in order
to enable this feature.

6 References

[1] D. Newman, RFC2647—Benchmarking
Terminology for Firewall Performance,
http://www.faqs.org/rfcs/rfc2647.html

[2] Annie P. Foong, Thomas R. Huff, Herbert H. Hum,
Jaidev P. Patwardhan, Greg J. Regnier, TCP
Performance Re-Visited http://www.cs.duke.
edu/~jaidev/papers/ispass03.pdf

[3] Amber D. Huffman, Knut S. Grimsurd, Method and
apparatus for reducing the disk drive data transfer
interrupt service latency penaltyr US Patent 6640274

[4] Van Jacobson, Michael J. Karels, Congestion
Avoidance and Control, http:
//ee.lbl.gov/papers/congavoid.pdf

[5] Chunmei Liu, Eytan Modiano, On the performance
of additive increase multiplicative decrease (AIMD)
protocols in hybrid space-terrestrial networks,
http://portal.acm.org/citation.cfm?
id=1071427

184 • Tuning 10Gb network cards on Linux

[6] Kevin Fall, Sally Floyd, Comparisons of Tahoe,
Reno, and Sack TCP http:
//www.icir.org/floyd/papers/sacks.pdf

[7] Jeonghoon Mo, Richard J. La, Venkat Anantharam,
and Jean Walrand Analysis and Comparison of TCP
Reno and Vegas, http:
//netlab.caltech.edu/FAST/references/
Mo_comparisonwithTCPReno.pdf

Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

