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Abstract

File systems have conflicting needs with respect to block
allocation for small and large files. Small related files
should be nearby on disk to maximize disk track cache
and avoid seeking. To avoid fragmentation, files that
grow should reserve space. The new multiple block and
delayed allocators for Ext4 try to satisfy these require-
ments by deferring allocation until flush time, packing
small files contiguously, and allocating large files on
RAID device-aligned boundaries with reserved space
for growth. In this paper, we discuss the new multiple
block allocator for Ext4 and compare the same with the
reservation-based allocation. We also discuss the perfor-
mance advantage of placing the meta-data blocks close
together on disk so that meta-data intensive workloads
seek less.

1 Introduction

The Ext4 file system was forked from Ext3 file system
about two years ago to address the capability and scal-
ability bottleneck of the Ext3 file system. Ext3 file sys-
tem size is hard limited to 16 TB on x86 architecture,
as a consequence of 32-bit block numbers. This limit
has already been reached in the enterprise world. With
the disk capacity doubling every year and with increas-
ing needs for larger file systems to store personal digital
media, desktop users will very soon want to remove the
limit for Ext3 file system. Thus, the first change made
in the Ext4 file system is to lift the maximum file system
size from 232 blocks(16 TB with 4 KB blocksize) to 248

blocks.

Extent mapping is also used in Ext4 to represent new
files, rather than the double, triple indirect block map-
ping used in Ext2/3. Extents are being used in many
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Figure 1: Ext4 extents, header and index structures

modern file systems[1], and it is well-known as a way to
efficiently represent a large contiguous file by reducing
the meta-data needed to address large files. Extents help
improve the performance of sequential file read/writes
since extents are a significantly smaller amount of meta-
data to be written to describe contiguous blocks, thus re-
ducing the file system overhead. It also greatly reduces
the time to truncate a file as the meta-data updates are
reduced. The extent format supported by Ext4 is shown
in Fig 1 and Fig 2. A full description of Ext4 features
can be found in [2].

Most files need only a few extents to describe their
logical-to-physical block mapping, which can be ac-
commodated within the inode or a single extent map
block. However, some extreme cases, such as sparse
files with random allocation patterns, or a very badly
fragmented file system, are not efficiently represented
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using extent maps. In Ext4, it is more important to have
an advanced block allocator to reduce file fragmenta-
tion. A well-designed block allocator should pack small
files close to each other for locality and also place large
files contiguously on disk to improve I/O performance.

The block allocator in the Ext3 file system does limited
work to reduce file fragmentation and maintains group
locality for small files under the same directory. The
Ext3 allocator tries to allocate multiple blocks on a best
effort basis but does not do a smart search to find a bet-
ter location to place a large file. It is also unaware of
the relationship between different files, thus it is quite
possible to place small related files far apart, causing
extra seeks when loading a large number of related files.
Ext4 block allocation tries to address these two prob-
lems with the new multiple block allocator while still
making it possible to use the old block allocator. Mul-
tiple block allocation can be enabled or disabled by
mount option -o mballoc and -o nomballoc, re-
spectively. The current development version of Ext4 file
system enables the multiple block allocator by default.

While a lot of work has gone into the block allocator,
one must not forget that the inode allocator is what de-
termines where blocks start getting allocated to begin
with. While disk platter density has increased dramat-
ically over the years, the old Ext3 inode allocator does
little to ensure data and meta-data locality in order to
take advantage of that density and avoid large seeks.
Ext4 has begun exploring the possibilities of compact-
ing data to increase locality and reduce seeks, which ul-
timately leads to better performance. Removal of re-

strictions in Ext4’s block groups has made it possible
to rethink meta-data placement and inode allocation in
ways not possible in Ext3.

This paper is organized into the following sections. In
Section 2.1 and 2.2, we give some background on Ext3
block allocation principles and current limitations. In
Section 2.3, we give a detailed description of the new
multiple block allocator and how it addresses the limita-
tions facing the Ext3 file system. Section 2.4 compares
the Ext3 and Ext4 block allocators with some perfor-
mance data we collected.

Finally, we discuss the inode allocator changes made in
Ext4. We start with Section 4.1, describing the Ext3
inode allocation policy, the impact that the inode allo-
cation has on overall file system performance, and how
changing the concept of a block group can lead to per-
formance improvements. In Section 4.3, we explore a
new inode allocator that uses this new concept in meta-
data allocation to manipulate block allocation and data
locality on disk. Later, we examine the performance im-
provements in the Ext4 file system due to the changing
of block group concept and the new inode allocator. Fi-
nally, we will discuss some potential future work in Sec-
tion 4.5.

2 Ext4 Multiple Blocks Allocator

In this section we give some background on the Ext2/3
block allocation before we discuss the new Ext4 block
allocator. We refer to the old block allocator as the Ext3
block allocator and the new multiple block allocator as
the Ext4 block allocator for simplicity.

2.1 Ext3 block allocator

Block allocation is the heart of a file system design.
Overall, the goal of file system block allocation is to
reduce disk seek time by reducing file system fragmen-
tation and maintaining locality for related files. Also,
it needs to scale well on large file systems and paral-
lel allocation scenarios. Here is a short summary of the
strategy used in the Ext3 block allocator:

To scale well, the Ext3 file system is partitioned into 128
MB block group chunks. Each block group maintains a
single block bitmap to describe data block availability
inside this block group. This way allocation on different
block groups can be done in parallel.
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When allocating a block for a file, the Ext3 block alloca-
tor always starts from the block group where the inode
structure is stored to keep the meta-data and data blocks
close to each other. When there are no free blocks avail-
able in the target block group it will search for a free
block from the rest of the block groups. Ext3 always
tries to keep the files under the same directory close to
each other until the parent block group is filled.

To reduce large file fragmentation Ext3 uses a goal block
to hint where it should allocate the next block from. If
the application is doing a sequential I/O the target is to
get the block following the last allocated block. When
the target block is not available it will search further to
find a free extent of at least 8 blocks and starts allocation
from there. This way the resulting allocations will be
contiguous.

In case of multiple files allocating blocks concurrently,
the Ext3 block allocator uses block reservation to make
sure that subsequent requests for blocks for a particular
file get served before it is interleaved with other files.
Reserving blocks which can be used to satisfy the subse-
quent requests enable the block allocator to place blocks
corresponding to a file nearby. There is a per-file reser-
vation window, indicating the range of disk blocks re-
served for this file. However, the per-file reservation
window is done purely in memory. Each block alloca-
tion will first check the file’s own reservation window
before starts to find unreserved free block on bitmap. A
per-file system red-black tree is used to maintain all the
reservation windows and to ensure that when allocating
blocks using bitmap, we don’t allocate blocks out of an-
other file’s reservation window.

2.2 Problems with Ext3 block allocator

Although block reservation makes it possible to allocate
multiple blocks at a time in Ext3, this is very limited and
based on best effort basis. Ext3 still uses the bitmap to
search for the free blocks to reserve. The lack of free
extent information across the whole file system results
in poor allocation pattern for multiple blocks since the
allocator searches for free blocks only inside the reser-
vation window.

Another disadvantage of the Ext3 block allocator is that
it doesn’t differentiate allocation for small and large
files. Large directories, such as /etc, contain large
numbers of small configuration files that need to be

-20000

-15000

-10000

-5000

 0

 5000

 10000

 0  10  20  30  40  50  60

P
hy

si
ca

l b
lo

ck
 n

um
be

r 
re

la
tiv

e 
to

 fi
rs

t p
hy

si
ca

l b
lo

ck
 a

llo
ca

te
d

Logical block number

Ext3 block allocation for small files

"ext3-small-files"

Figure 3: Ext3 block allocator for small files

read during boot. If the files are placed far apart on
the disk the bootup process would be delayed by ex-
pensive seeks across the underlying device to load all
the files. If the block allocator could place these related
small files closer it would be a great benefit to the read
performance.

We used two test cases to illustrate the performance
characteristic of Ext3 block allocator for small and large
files, as shown in Fig 3 and Fig 4. In the first test we
used one thread to sequentially create 20 small files of
12 KB. In the second test, we create a single large file
and multiple small files in parallel. The large file is cre-
ated by a single thread, while the small files are created
by another thread in parallel. The graph is plotted with
the logical block number on the x-axis and the physical
block number on the y-axis. To better illustrate the lo-
cality, the physical block number plotted is calculated by
subtracting the first allocated block number from the ac-
tual allocated block number. With regard to small files,
the 4th logical block number is the first logical block
number of the second file. This helps to better illustrate
how closely the small files are placed on disk.

Since Ext3 simply uses a goal block to determine where
to place the new files, small files are kept apart by Ext3
allocator intentionally to avoid too much fragmentation
in case the files are large files. This is caused by lack
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Figure 4: Ext3 block allocator for large file

of information that those small files are generated by
the same process and therefore should be kept close to
each other. As we see in Fig [3], the locality of those
small files are bad, though the files themselves are not
fragmented.

Fig [4] illustrates the fragmentation of a large file in
Ext3. Because Ext3 lacks knowledge that the large file is
unrelated to the small files, the allocations for the large
file and the small files are fighting for free spaces close
to each other, even though the block reservation helped
reduce the fragmentation to some extent already. A bet-
ter solution is to keep the large file allocation far apart
from unrelated allocation at the very beginning to avoid
interleaved fragmentation.

2.3 Ext4 Multiple block allocator

The Ext4 multiple block allocator tries to address the
Ext3 block allocator limitation discussed above. The
main goal is to provide better allocation for small and
large files. This is achieved by using a different strat-
egy for different allocation requests. For a relatively
small allocation request, Ext4 tries to allocate from a
per-CPU locality group, which is shared by all alloca-
tions under the same CPU, in order to try to keep these
small files close to each other. A large allocation request

is allocated from per-file preallocation first. Like Ext3
reservation, Ext4 maintains an in-memory preallocation
range for each file, and uses that to solve the fragmenta-
tion issues caused by concurrent allocation.

The Ext4 multiple block allocator maintains two preal-
located spaces from which block requests are satisfied:
A per-inode preallocation space and a per-CPU locality
group prealloction space. The per-inode preallocation
space is used for larger request and helps in making sure
larger files are less interleaved if blocks are allocated at
the same time. The per-CPU locality group prealloca-
tion space is used for smaller file allocation and helps in
making sure small files are placed closer on disk. Which
preallocation space to use depends on the total size de-
rived out of current file size and allocation request size.
The allocator provides a tunable /prof/fs/ext4/
<partition>/stream_req that defaults to 16. If
the total size is less than stream_req blocks, we use
per-CPU locality group preallocation space.

While allocating blocks from the inode preallocation
space, we also make sure we pick the blocks in such
a way that random writes result in less fragmentation.
This is achieved by storing the logical block number as
a part of preallocation space and using the value in de-
termining the physical block that needs to be allocated
for a subsequent request.

If we can’t allocate blocks from the preallocation space,
we then look at the per-block-group buddy cache. The
buddy cache consists of multiple free extent maps and a
group bitmap. The extent map is built by scanning all
the free blocks in a group on the first allocation. While
scanning for free blocks in a block group we consider
the blocks in the preallocation space as allocated and
don’t count them as free. This is needed to make sure
that when allocating blocks from the extent map, we
don’t allocate blocks from a preallocation space. Do-
ing so can result in file fragmentation. The free extent
map obtained by scanning the block group is stored in a
format, as shown in Fig 5, called a buddy bitmap. We
also store the block group bitmap along with the extent
map. This bitmap differs from the on-disk block group
bitmap in that it considers blocks in preallocation space
as allocated. The free extent information and the bitmap
is then stored in the page cache of an in-core inode, and
is indexed with the group number. The page containing
the free extent information and bitmap is calculated as
shown in Fig 6.
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Figure 5: Ext4 buddy cache layout

/*
* the buddy cache inode stores the block bitmap

* and buddy information in consecutive blocks.

* So for each group we need two blocks.

*/
block = group * 2;
pnum = block / blocks_per_page;
poff = block % blocks_per_page;

page = find_get_page(inode->i_mapping, pnum);
.......
if (!PageUptodate(page)) {

ext4_mb_init_cache(page, NULL);
......

Figure 6: Buddy cache inode offset mapping

Before allocating blocks from the buddy cache, we nor-
malize the request. This helps prevent heavy frag-
mentation of the free extent map, which groups free
blocks in power of 2 size. The extra blocks allo-
cated out of the buddy cache are later added to the
preallocation space so that the subsequent block re-
quests are served from the preallocation space. In the
case of large files, the normalization follows a list of
heuristics based on file size. For smaller files, we
normalize the block request to stripe size if speci-
fied at mount time or to s_mb_group_prealloc.
s_mb_group_prealloc defaults to 512 and can
be configured via /proc/fs/ext4/<partition/
group_prealloc

Searching for blocks in buddy cache involves:

• Search for requested number of blocks in the extent

map.

• If not found, and if the request length is same
as stripe size, search for free blocks in stripe
size aligned chunks. Searching for stripe aligned
chunks results in better allocation on RAID setup.

• If not found, search for free blocks in the bitmap
and use the best extent found.

Each of these searches starts with the block group in
which the goal block is found. Not all block groups
are used for the buddy cache search. If we are look-
ing for blocks in the extent map, we only look at block
groups that have the requested order of blocks free.
When searching for stripe-size-aligned free blocks we
only look at block groups that have stripe size chunks
of free blocks. When searching for free blocks in the
bitmap, we look at block groups that have the requested
number of free blocks.

2.4 Ext4 multiple block allocator performance ad-
vantage

The performance advantage of the multiple block allo-
cator related to small files is shown in Fig 7. The blocks
are closer because they are satisfied from the same lo-
cality group preallocation space.

The performance advantage of multiple block allocator
related to large files is shown in Fig 8. The blocks are
closer because they are satisfied from the inode-specific
preallocation space.
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Figure 7: Multiple block allocator small file perfor-
mance
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Figure 8: Multiple block allocator large file perfor-
mance

Table 1 shows the compilebench[5] number compar-
ing Ext4 and Ext3 allocators with the data=ordered
mount option. Compilebench tries to age a file system
by simulating some of the disk IO common in creating,
compiling, patching, stating and reading kernel trees. It
indirectly measures how well file systems can maintain
directory locality as the disk fills up and directories age

Test Ext4 allocator Ext3 allocator
intial create 20.44 MB/s 19.64 MB/s
create total 11.81 MB/s 8.12 MB/s
patch total 4.95 MB/s 3.66 MB/s
compile total 16.66 MB/s 12.57 MB/s
clean total 247.54 MB/s 82.57 MB/s
read tree total 7.06 MB/s 6.99 MB/s
read compiled
tree total

9.06 MB/s 10.40 MB/s

delete tree total 7.06 seconds 16.66 seconds
delete compiled
tree total

9.64 seconds 22.21 seconds

stat tree total 5.31 seconds 13.39 seconds
stat compiled
tree total

5.63 seconds 14.70 seconds

Table 1: Compliebench numbers for Ext4 and Ext3 al-
locator

2.5 Evolution of an Allocator

The mballoc allocator included in Ext4 is actually the
third generation of this allocation engine written by
Alex Tomas (Zhuravlev). The first two versions of the
allocator were focused mainly on large allocations (1
MB at a time), while the third generation also works to
improve small files allocation.

Even at low I/O rates, the single-block allocation used
by Ext3 does not necessarily make a good decision for
inter-block allocations. The Linux VFS layer splits any
large I/O submitted to the kernel into page-sized chunks
and forces single-block allocations by the file system
without providing any information about the rest of the
outstanding I/O on that file. The block found for the
first allocation is usually the first free block in the block
group, and no effort is made to find a range of free
blocks suitable for the amount of data being written to
the file. This leads to poor allocation decisions, such as
selecting free block ranges that are not large enough for
even a single write() call.

At very high I/O rates (over 1 GB/s) the single-block al-
location engine also becomes a CPU bottleneck because
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every block allocation traverses the file system allocator,
scans for a free block, and locks to update data struc-
tures. With mballoc, one test showed an improvement
from 800 MB/s to 1500 MB/s on the same system by
reducing the CPU cost per allocated block.

What is critical to the success of mballoc is the ability
to make smart allocation decisions based on as many
blocks of file data as possible. This necessitated the de-
velopment of delayed allocation for normal I/O. When
mballoc has a good idea that a file is small or large, and
how many data blocks to allocate, it can make good de-
cisions.

The first version of mballoc used the buddy allocator
only to allocate contiguous chunks of blocks, and would
align the allocation to the start of a free extent. While
this still leads to performance gains due to avoided seeks
and aggregation of multiple allocations, it is not opti-
mal in the face of RAID devices that have lower over-
head when the I/O is properly aligned on RAID disk and
stripe-wide boundaries.

The second version of mballoc improved the buddy al-
locator to align large allocations to RAID device bound-
aries. This is easily done directly from the buddy bitmap
for RAID geometries that use power-of-two numbers of
data disks in each stripe by simply stopping search for
free bits in the buddy bitmap at the RAID boundary size.

Avoiding the read-modify-write cycle for RAID systems
can more than double performance because the costly
synchronous read is avoided. In RAID devices that have
a read cache that is aligned to the stripe boundaries, do-
ing a misaligned read will double the amount of data
read from disk and fill two cachelines.

The Ext4 superblock now has fields that store the RAID
geometry at mke2fs time or with tune2fs. It is likely
that the complex RAID geometry probing done at mkfs
time for XFS will also be adopted by mke2fs in order to
populate these fields automatically.

During testing for the current third version of mballoc
the performance of small file I/O was investigated, and
it was seen that the aggregate performance can be im-
proved dramatically only when there are no seeks be-
tween the blocks allocated to different files. As a result
the group allocation mechanism is used to pack small
allocations together without any free space in between.
In the past there was always space reserved or left at the
end of each file “just in case” there were more blocks to

allocate. For small files, this forces a seek after each
read or write. With delayed allocation, the size of a
small file is known at allocation time and there is no
longer a need for a gap after each file.

The current mballoc allocator can align allocations to
a RAID geometry that is not power-of-two aligned,
though it is slightly more expensive.

More work still remains to be done to optimize the al-
locator. In particular, mballoc keeps the “scan groups
for good allocations” behaviour of the Ext2/3 block al-
locator. Implementing an in-memory list for more op-
timal free-extent searching, as XFS does, would further
reduce the cost of searching for free extents.

Also, there is some cost for initializing the buddy
bitmaps. Doing this at mount time, as the first version
of mballoc did, introduces an unacceptable mount delay
for very large file systems. Doing it at first access adds
latency and hurts performance for the first uses of the file
system. Having a thread started at mount time to scan
the groups and do buddy initialization asynchronously
among other things, would help avoid both issues.

3 Delayed allocation

Because Ext4 uses extent mapping to efficiently repre-
sent large files, it is natural to process a multiple block
allocation together, rather than one block allocation at
a time as done in Ext3. Because block allocation re-
quests for buffered I/O are passed through the VFS layer
one at a time at the write_begin time, the underly-
ing Ext3 file system cannot foresee and cluster future
requests. Thus, delayed allocation is being proposed
multiple times to enable multiple block allocation for
buffered I/O.

Delayed allocation, in short, defers block allocations
from write() operation time to page flush time. This
method provides multiple benefits: it increases the op-
portunity to combine many block allocation requests
into a single request reducing fragmentation and saving
CPU cycles, and avoids unnecessary block allocation for
short-lived files.

In general, with delayed allocation, instead of allocat-
ing the disk block in write_begin, the VFS just
does a plain block look up. For those unmapped buffer
heads, it calculates the required number of blocks to
reserve (including data blocks and meta-data blocks),
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reserves them to make sure that there are enough free
blocks in the file system to satisfy the write. After
that is done, it marks the buffer heads as delayed allo-
cated(BH_DELAY). No block allocation is done at that
moment. Later, when the pages get flushed to disk
by writepage() or writepages(), these func-
tions will walk all the dirty pages in the specified inode,
cluster the logically contiguous ones, and attempts to
perform cluster block allocation for those buffer heads
marked as BH_DELAY all together, then submit the page
or pages to the bio layer. After the block allocation is
complete, the unused block reservation is returned back
to the file system.

The current implementation of delayed allocation is
mostly done in the VFS layer, hoping that multi-
ple file systems, such as Ext2 and 3, can benefit
from the feature. There are new address space op-
erations added for Ext4 for delayed allocation mode,
providing call back functions for write_begin(),
write_end() and writepage() for delayed allo-
cation, with updated block allocation/reservation/look-
up functions. The current Ext4 delayed allocation only
supports data=writeback journalling mode. In
the future, there are plans to add delayed support for
data=ordered journalling mode.

4 FLEX_BG and the Inode allocator

4.1 The old inode allocator

The inode allocator in an Ext2/3 file system uses the
block groups as the vehicle to determine where new in-
odes are placed on the storage media. The Ext2/3/4 file
system is divided into small groups of blocks with the
block group size determined by the amount of blocks
that a single bitmap can handle. In a 4 KB block file
system, a single block bitmap can handle 32768 blocks
for a total of 128 MB per block group. This means
that for every 128 MB, there will be meta-data blocks
(block/inode bitmaps and inode table blocks) interrupt-
ing the contiguous flow of blocks that can be used to
allocate data.

The Orlov directory inode allocator [6] tries to maxi-
mize the chances of getting large block allocations by
reducing the chances of getting an inode allocated in a
block group with a low free block count. The Orlov
allocator also tries to maintain locality of related data

(i.e. files in the same directory) as much as possible.
The Orlov allocator does this by looking at the ratio of
free blocks, free inodes, and number of directories in a
block group to find the best suitable placement of a di-
rectory inode. Inode allocations that are not directories
are handled by a second allocator that starts its free in-
ode search from the block group where the parent direc-
tory is located and attempts to place the inodes with the
same parent inode in the same block group. While this
approach works very well given the block group design
of Ext2/3/4, it does have some limitations:

• A 1 TB file system has around 8192 block groups.
Searching through that many block groups on a
heavily used file system can become expensive.

• Orlov can place a directory inode in a random lo-
cation that is physically far away from its parent
directory.

• Orlov’s calculations to find a single 128 MB block
group are expensive in this multi-terabyte world we
live in.

• Given that hard disk seek times are not expected
to improve much during the next couple of years,
while at the same time seeing big increases in ca-
pacity and interface throughput, the Orlov allocator
does little to improve data locality.

Of course the real problem is not Orlov itself, but the re-
strictions imposed on it by the size of a block group.
One solution around this limitation is to implement
multi-block bitmaps. The drawback with this imple-
mentation is that things like handling bad blocks inside
one of those bitmap or inode tables becomes very com-
plicated when searching for free blocks to replace the
bad ones. A simpler solution is to get rid of the notion
that meta-data need to be located within the file system
block group.

4.2 FLEX_BG

Simply put, the new FLEX_BG feature removes the re-
striction that the bitmaps and inode tables of a particular
block group MUST be located within the block range of
that block group. We can remove this restriction thanks
to e2fsprogs being a robust tool at finding errors through
fsck. While activating the FLEX_BG feature flag itself
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doesn’t change anything in the behavior of Ext4, the
feature does allow mke2fs to allocate bitmaps and in-
ode tables in ways not possible before. By tightly al-
locating bitmaps and inode tables close together, one
could essentially build a large virtual block group that
gets around some of the size limitations of regular block
groups.

The new extent feature benefits from the new meta-data
allocation by moving meta-data blocks that would oth-
erwise prevent the availability of contiguous free blocks
on the storage media. By moving those blocks to the
beginning of a large virtual block group, the chances
of allocating larger extents are improved. Also, hav-
ing the meta-data for many block groups contiguous on
disk avoids seeking for meta-data intensive workloads
including e2fsck.

4.3 FLEX_BG inode allocator

Given that we can now have a larger collection of blocks
that can be called a block group, making the kernel
take advantage of this capability was the obvious next
step. Because the Orlov directory inode allocator owed
some design decisions to the size limitations of tradi-
tional block groups, a new inode allocator would need
to employ different techniques in order to take better ad-
vantage of the on disk meta-data allocation. Some of the
ways the new inode allocator differs from the old allo-
cator are:

• The allocator always tries to fill a virtual block
group to a certain free block ratio before attempt-
ing to allocate on another group. This is done to
improve data locality on the disc by avoiding seeks
as much as possible.

• Directories are treated the same as regular inodes.
Given that these virtual block groups can now han-
dle multiple gigabytes worth of free blocks, spread-
ing directories across block groups not only does
not provide the same incentive, it could actually
hurt performance by allowing larger seeks on rela-
tively small amounts of data.

• The allocator may search backwards for suitable
block groups. If the current group does not have
enough free blocks, it may try the previous group
first just in case space was freed up.

• The allocator reserves space for file appends in the
group. If all the blocks in a group are used, ap-
pending blocks to an inode in that group could
mean that the allocation could happen at a large off-
set within the storage media increasing seek times.
This block reservation is not used unless the last
group has been used past its reserved ratio.

The size of a virtual group is always a power-of-two
multiple of a normal block group in size, and it is speci-
fied at mke2fs time. The size is stored in the super block
in to control how to build the in-memory free inode and
block structure that the algorithm uses to determine the
utilization of the virtual block group. Because we look
at the Ext4 block group descriptors only when a suitable
virtual group is found, this algorithm requires fewer en-
dian conversions than the traditional Orlov allocator on
big endian machines.

One big focus of this new inode allocator is to maintain
data and meta-data locality to reduce seek time when
compared to the old allocator. Another very important
area of focus is reduction in allocation overhead. By
not handling directory inodes differently, we remove a
lot of the complexity from the old allocator while the
smaller number of virtual block groups makes searching
for adequate block groups easier.

Now that a group of inode tables is treated as if it were
a single large inode table, the new allocator also ben-
efits from another new feature found in Ext4. Unini-
tialized block groups mark inode tables as uninitialized
when they are not in use and thus skips reading those in-
ode tables at fsck time providing significant fsck speed
improvements. Because the allocator only uses an in-
ode table when the previous table on the same virtual
group is full, fewer inode tables get initialized result-
ing in fewer inode tables that need to be loaded and im-
proved fsck times.

4.4 Performance results

We used the FFSB[4] benchmark with a profile that ex-
ecutes a combination of small file reads, writes, creates,
appends, and deletes. This helps simulate a meta-data
heavy workload. A Fibre Channel disk array was used
as a storage media for the FFSB test with 1 GB of fast
write cache. The benchmark was run with a FLEX_BG
virtual block group of 64 packed groups and it is com-
pared to a regular EXT4 file system mounted with both



272 • Ext4 block and inode allocator improvements

mballoc and delalloc. Note that 64 packed groups is
not the optimum number for every hardware configura-
tion, but this number provided very good overall perfor-
mance for workloads on the hardware available. Further
study is needed to determine the right size for a particu-
lar hardware configuration or workload.

Op Ext4 Ext4(flex_bg)
read 67937 ops 73056 ops
write 98488 ops 104904 ops
create 1086604 ops 1228395 ops
append 31903 ops 33225 ops
delete 59503 ops 70075 ops
Total ops/s 4477.37 ops/s 5026.78 ops/s

Table 2: FFSB small meta-data FibreChannel(1 thread)-
FLEX_BG with 64 block groups

In Table 2, the single threaded results show a 10% over-
all improvement in operations-per-second throughput.
The 16 threaded results in Table 3 show an even better
improvements of 18% over the regular EXT4 allocation.
The results also show that there is 5.6% better scalabil-
ity from 1 to 16 threads when using FLEX_BG grouping
compared to the normal allocation.

Op Ext4 Ext4(flex_bg)
read 96778 ops 119135 ops
write 143744 ops 174409 ops
create 1584997ops 1937469 ops
append 46735 ops 56409 ops
delete 93333 ops 113598 ops
Total ops/s 6514.51 ops/s 7968.24 ops/s

Table 3: FFSB small meta-data (16 threads)- FLEX_BG
with 64 block groups

To see the overall effect of the new allocator on more
complex directory layouts, we used Compilebench[5],
which generates a specified number of Linux kernel tree
like directories with files that represent file sizes in the
actual kernel tree. In table 4, we see the overall results
for the benchmark are better when using grouping and
the new inode allocator. One exception is both the "read
tree" and the "read compiled tree" which show slightly
slower results. It shows that there is still some room for
improvement in the meta-data allocation and the inode
allocator.

Test Ext4 Ext4(flex_bg)
intial create 73.38 MB/s 81.09 MB/s
create total 69.90 MB/s 73.32 MB/s
patch total 21.73 MB/s 21.85 MB/s
compile total 125.52 MB/s 127.26 MB/s
clean total 921.01 MB/s 973.91 MB/s
read tree total 18.73 MB/s 18.43 MB/s
read compiled
tree total

35.59 MB/s 33.91 MB/s

delete tree total 4.18 seconds 3.70 seconds
delete compiled
tree total

4.11 seconds 3.90 seconds

stat tree total 2.68 seconds 2.59 seconds
stat compiled
tree total

3.20 seconds 2.86 seconds

Table 4: Compliebench FiberChannel - FLEX_BG with
64 block groups

4.5 Future work

The concept of grouping meta-data in EXT4 is still in its
infancy and there is still a lot of room for improvement.
We expect to gain performance out of the EXT4 file sys-
tem by looking at the layout of the meta-data. Because
the definition of the FLEX_BG feature removes meta-
data placement restrictions, this allows the implemen-
tation of virtual groups to be fluid without sacrificing
backward compatibility.

Other optimizations that are worth exploring are place-
ment of meta-data in the center of the virtual group in-
stead of the beginning to reduce the worst case seek sce-
nario. Because the current implementation just focuses
on inodes as a way to manipulate the block allocator, fu-
ture implementations could go further still and make the
various block allocators FLEX_BG grouping aware. Be-
cause the right size of groups depends on things related
to the disk itself, making mke2fs smarter to automati-
cally set the virtual group size base on media size, me-
dia type and RAID configuration will help users deploy
this feature.

Shorter-term fixes for removing file system size limita-
tions are in the works. The current code stores the sum
of free blocks and inodes of all the groups that build
a virtual block group in an in-memory data structure.
This means that if the data structure exceeds page size,
the allocation would fail, in which case we revert back
to the old allocator on very large file systems. While
this is a performance feature, storing all this informa-
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tion in memory may be overkill for very large file sys-
tems. Building this on top of an LRU scheme removes
this limitation and saves kernel memory.

5 Conclusion

The main motivation for forking the Ext4 file system
from the Ext3 file system was to break the relatively
small file system size limit. This satisfies the require-
ments for larger files, large I/O, and a large number of
files. To maintain the Ext4 file system as a general pur-
pose file system on a desktop, it is also important to
make sure the Ext4 file system performs better on small
files.

We have discussed the work related to block allocation
and inode allocation in the Ext4 file system and how to
satisfy the conflicting requirements of making Ext4 a
high performance general purpose file system for both
the desktop and the server. The combination of pre-
allocation, delayed allocation, group preallocation, and
multiple block allocation greatly help reduce fragmen-
tation issues occurring on large file allocation and poor
locality issues on small files that have been seen in Ext3
file system. By tightly allocating bitmap and inode ta-
bles close together with FLEX_BG, one could essen-
tially build a large virtual block group that increases the
likelyhood of allocating large chunks of extents and al-
lows Ext4 file system to handles better on meta-data-
intensive workload. Future work, including support for
delayed allocation for ordered mode journalling and on-
line defragmentation, will help to future reduce file frag-
mentation issues.
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