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Abstract

Readahead design is one of the crucial aspects
of filesystem performance. In this paper, we
analyze and identify the bottlenecks in the re-
designed Linux 2.6 readahead code. Through
various benchmarks we identify that 2.6 reada-
head design handles database workloads inef-
ficiently. We discuss various improvements
made to the 2.6 readahead design and their per-
formance implications. These modifications
resulted in impressive performance improve-
ments ranging from 25%–100% with various
benchmarks. We also take a closer look at our
modified 2.6 readahead algorithm and discuss
current issues and future improvements.

1 Introduction

Consider an application that reads data sequen-
tially in some fixed-size chunks. The kernel
reads data sufficiently enough to satisfy the re-
quest from the backing storage and hands it
over to the application. In the meantime the
application ends up waiting for the data to ar-
rive from the backing store. The next request
also takes the same amount of time. This is
quite inefficient. What if the kernel anticipated
the future requests and cached more data? If it
could do so, the next read request could be sat-
isfied much faster, decreasing the overall read
latency.

Like all other operating systems, Linux uses
this technique calledreadaheadto improve
read throughput. Although readahead is a great
mechanism for improving sequential reads, it
can hurt the system performance if used blindly
for random reads.

We studied the performance of the readahead
algorithm implemented in 2.6.0 and noticed the
following behavior for large random read re-
quests.

1. reads smaller chunks of data many times,
instead of reading the required size chunk
of data once.

2. reads more data than required and hence
wasted resources.

In Section 2, we discuss the readahead algo-
rithm implemented in 2.6 and identify and fix
the inefficient behavior. We explain the perfor-
mance benefits achieved through these fixes in
Section 3. Finally, we list the limitations of our
fixes in Section 4.

2 Readahead Algorithm in 2.6

2.1 Goal

Our initial investigation showed the perfor-
mance on Linux 2.6 of the Decision Support
System (DSS) benchmark on filesystem was
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about 58% of the same benchmark run on raw
devices. Note that the DSS workload is charac-
terized by large-size random reads. In general,
other micro-benchmarks like rawio-bench and
aio-stress showed degraded performance with
random workloads. The suboptimal readahead
behavior contributed significantly toward de-
graded performance. With these inputs, we set
the following goals.

1. Exceed the performance of 2.4 large ran-
dom workloads.

2. DSS workload on filesystem performs at
least 75% as well as the same on raw de-
vices.

3. Maintain or exceed sequential read perfor-
mance.

2.2 Introduction to the 2.6 readahead algo-
rithm

Figure 1 presents the behavior of 2.6.0
readahead. Thecurrent_window holds
pages that satisfy the current requests. The
readahead_window holds pages that sat-
isfy the anticipated future request. As more
page requests are satisfied by thecurrent_
window the estimated size of the next
readahead_window expands. And if
page requests miss thecurrent_window
the estimated size of thereadahead_
window shrinks. As soon as the read
request crosscurrent_window bound-
ary and steps into the first page of the
readahead_window , the readahead_
window becomes thecurrent_window
and thereadahead_window is reset. How-
ever, if the requested page misses any page
in the current_window and also the first
page in thereadahead_window , both the
current_window and the readahead_
window are reset and a new set of pages
are read into thecurrent_window . The

number of pages read in the current win-
dow depends upon the estimated size of the
readahead_window . If the estimated size
of the readahead_window drop down to
zero, the algorithm stops reading ahead, and
enters the slow-read mode till page request pat-
tern become sufficiently contiguous. Once the
request pattern become sufficiently contiguous
the algorithm re-enters into readahead-mode.

2.3 Optimization For Random Workload

We developed a user-level simulator program
that mimicked the behavior of the above reada-
head algorithm. Using this program we studied
the read patterns generated by the algorithm in
response to the application’s read request pat-
tern.

In the next few subsections we identify the bot-
tlenecks, provide fixes and then explain the re-
sults of the fix. As a running example we use a
read sequence consisting of 100 random read-
requests each of size 16 pages.

2.3.1 First Miss

Using the above read pattern, we noticed that
the readahead algorithm generated 1600 re-
quests of size one page. The algorithm penal-
ized the application by shutting down reada-
head immediately, for not reading from the be-
ginning of the file. It is sub-optimal to as-
sume that application’s read pattern is ran-
dom, just because it did not read the file from
the beginning. The offending code is at line
16 in Figure 1. Once shut down, the slow-
read mode made readahead to not resume since
the current_window never becomes large
enough. For the ext2/ext3 filesystem, the
current_window must become 32 pages
large, for readahead to resume. Since the ap-
plication’s requests were all 16 pages large,
thecurrent_window never opened. We re-
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1 for each page in the current request
2 do
3 if readahead is shutdown
4 then // read one page at a time (SLOW-READ MODE)
5 if requested page is next to the previously requested page
6 then
7 open the current_window by one more page
8 else
9 close the current_window entirely
10 fi

11 if the current_window opens up by maximum readahead_size
12 then
13 activate readahead // enter READAHEAD-MODE
14 fi
15 read in the requested page

else // read many pages at a time (READAHEAD MODE)
16 if this is the first read request and is for the first page

of this open file instance
17 set the estimated readahead_size to half the size of
18 maximum readahead_size
19 fi

20 if the requested page is within the current_window
21 increase the estimated readahead_size by 2
22 ensure that this size does not exceed maximum
23 readahead_size
24 else
25 decrease the estimated readahead_size by 2
26 if this estimate becomes zero, shutdown readahead
27 fi

28 if the requested page is the first page in the readahead_window
29 then
30 move the pages in the readahead_window to the
31 current_window and reset the readahead_window
32 continue
33 fi
34
35 if the requested page is not in the current_window
36 then
37 delete all the page in current_window and readahead_window
38 read the estimated number of readahead pages starting
39 from the requested page and place them into the current
40 window.
41 if all these pages already reside in the page cache
42 then
43 shrink the estimated readahead_size by 1 and

shutdown readahead if the estimate touches zero
44 fi
45 else if the readahead_window is reset
46 then
47 read the estimated number of readahead pages
48 starting from the page adjacent to the last page
49 in the current window and place them in the
50 readahead_window.
51 if all these pages already reside in the page cache
52 then
53 shrink the estimated readahead_size by 1 and

shutdown readahead if the estimate touches zero
54 fi
55 fi
56 fi
57 fi
58 done

Figure 1:Readahead algorithm in 2.6.0
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moved the check at line 16 to not expect read
access to start from the beginning.

For the same read pattern the simulator showed
99 32-page requests, 99 30-page requests, one
16-page request, and one 18-page request to
the block layer. This was a significant improve-
ment over 1600 1-page requests seen without
these changes.

However, the DSS workload did not show any
significant improvement.

2.3.2 First Hit

The reason why DSS workload did not show
significant improvement was that readahead
shut down because the accessed pages already
resided in the page-cache. This behavior is
partly correct by design, because there is no
advantage in reading ahead if all the required
pages are available in the cache. The corre-
sponding code is at line 43. But shutting down
readahead by just confirming that the initial
few pages are in the page-cache and assum-
ing that future pages will also be in the page
cache, leads to worse performance. We fixed
the behavior, to not close thereadahead_
window the first time, even if all the requested
pages were in the page-cache. The combina-
tion of the above two changes ensured contin-
uous large-size read activity.

The simulator showed the same results as the
First-Miss fix.

However, the DSS workload showed 6% im-
provement.

2.3.3 Extremely Slow Slow-read Mode

We also observed that the slow-read mode of
the algorithm expected 32 contiguous page ac-
cess to resume large size reads. This is not

a realistic expectation for random workload.
Hence, we changed the behavior at line 9 to
shrink thecurrent_window by one page if
it lost contiguity.

The simulator and DSS workload did not show
any better results because the combination
of First-Hit and First-Miss fixes ensured that
the algorithm did not switch to the slow-read
mode. However a request pattern comprising
of 10 single page random requests followed by
a continuous stream of 4-page random requests
can certainly see the benefits of this optimiza-
tion.

2.3.4 Upfront Readahead

Note that readahead is triggered as soon as
some page is accessed in thecurrent_
window . For random workloads, this is
not ideal because none of the pages in the
readahead_window are accessed. We
changed line 45, to ensure that the reada-
head is triggered only when the last page in
the current_window is accessed. Essen-
tially, the algorithm waits until the last page
in the current_window is accessed. This
increases the probability that the pages in the
readahead_window if brought in, will get
used.

With these changes, the simulator generated 99
30-page requests, one 32-page request, and one
16-page request.

There was a significant 16% increase in perfor-
mance with the DSS workload.

2.3.5 Largecurrent_window

Ideally, the readahead algorithm must gen-
erate around 100 16-page requests. Ob-
serve however that almost all the page re-
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quests are of size 30 pages. When the algo-
rithm observes that a page request has missed
the current_window , it scraps both the
current_window and the readahead_
window , if one exists. It ends up reading
in a newcurrent_window , whose size is
based on the estimatedreadahead_size .
Since all of the pages in a given applica-
tion’s read request are contiguous, the esti-
mated readahead size tends to reach the max-
imum readahead_size . Hence, the size of
the newcurrent_window is too large; most
of the pages in the window tend to be wasted.
We ensured that the newcurrent_window
is as large as the number of pages that were
used in the presentcurrent_window .

With this change, the simulator generated 100
16-page requests, and 100 32-page requests.
These results are awful because the last page
of the application’s request almost always co-
incides with the last page of thecurrent_
window . Hence, the readahead is triggered
when the last page of thecurrent_window
is accessed, only to be scrapped.

We further modified the design to read the new
current_window with one more page than
the number of pages accessed in the present
current_window .

With this change, the simulator for the same
read pattern generated 99 17-page requests,
one 32-page request, and one 16-page request
to the block layer, which is close to ideal!

The DSS workload showed another 4% better
performance.

The collective changes were:

1. Miss fix: Do not close readahead if the
first access to the file-instance does not
start from offset zero.

2. Hit fix: Do not close readahead if the first

access to the requested pages are already
found in the page cache.

3. Slow-read Fix: In the slow-read path,
reduce one page from thecurrent_
window if the request is not contiguous.

4. Lazy-read: Defer reading the
readahead_window until the last
page in the current_window is
accessed.

5. Largecurrent_window fix: Read one
page more than the number of pages ac-
cessed in the current window if the request
misses the current window.

These collective changes resulted in an impres-
sive 26% performance boost on DSS workload.

2.4 Sequential Workload

The previously described modifications were
not without side effects! The sequential work-
load was badly effected. Trond Myklebust
reported 10 times worse performance on se-
quential reads using the iozone benchmark on
an NFS based filesystem. The lazy read op-
timization broke the pipeline effect designed
for sequential workload. For sequential work-
load, readahead must be triggered as soon as
some page in the current window is accessed.
The application can crunch through pages in
the current_window as the new pages get
loaded in thereadahead_window .

The key observation is that upfront readahead
helps sequential workload and lazy readahead
helps random workload. We developed logic
that tracked the average size of the read re-
quests. If the average size is larger than the
maximum readahead size, we treat that work-
load as sequential and adapt the algorithm to
do upfront readahead. However, if the average
size is less than the maximumreadahead_
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1 for each page in the current request ; do
3 if readahead is shutdown
4 then // read one page at a time (SLOW-READ MODE)
5 if requested page is next to the previously requested page
6 then
7 open the current_window by one more page
8 else
9 shrink current_window by one page
10 fi
11 if the current_window opens up by maximum readahead_size
12 then
13 activate readahead // enter READAHEAD-MODE
14 fi
15 read in the requested page

else // read many pages at a time (READAHEAD MODE)
16-17 if this is the first read request for this open file-instance ; then
18 set the estimated readahead_size to half the size of maximum readahead_size
19 fi
20 if the requested page is within the current_window
21 increase the estimated readahead_size by 2
22 ensure that this size does not exceed maximum readahead_size
23 else
24 decrease the estimated readahead_size by 2
25 if this estimate becomes zero, shutdown readahead
26 fi
27 if requested page is contiguous to the previously requested page
28 then
29 Increase the size of the present read request by one more page.
30 else
31 Update the average size of the reads with the size of the previous request.
32 fi
33 if the requested page is the first page in the readahead_window
34 then
35 move the pages in current_window to the readahead_window
36 reset readahead_window
37 continue
38 fi
39-40 if the requested page is not in the current_window ; then
41 delete all pages in current_window and readahead_window
42 if this is not the first access to this file-instance
43 then
44 set the estimated number of readahead pages to the

average size of the read requests.
45 fi
46 read the estimated number of readahead pages starting from

the requested page and place them into the current window.
47 if this not the first access to this file instance and

all these pages already reside in the page cache
48 then
49 shrink the estimated readahead_size by 1 and

shutdown readahead if the estimate touches zero
50 fi
51 else if the readahead_window is reset and if the average

size of the reads is above the maximum readahead_size
52 then
53 read the readahead_window with the estimated
54 number of readahead pages starting from the
55 page adjacent to the last page in the current window.
56 if all these pages already reside in the page cache
57 then
58 shrink the estimated readahead_size by 1 and

shutdown readahead if the estimate touches zero
59 fi
60 fi
61 fi
62-63 fi ; done

Figure 2:Optimized Readahead algorithm
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size , we treat that workload as random and
adapt the algorithm to do lazy readahead.

This adaptive-readahead fixed the regression
seen with sequential workload while sustaining
the performance gains of random workload.

Also we ran a sequential read pattern through
the simulator and found that it generated large
size upfront readahead. For large random
workload it hardly read ahead.

2.4.1 Simplification

Andrew Morton rightly noted that reading an
extra page in thecurrent_window to avoid
lazy-readahead was not elegant. Why have
lazy-readahead and also try to avoid lazy-
readahead by reading one extra page? The
logic is convoluted. We simplified the logic
through the following modifications.

1. Read ahead only when the average size
of the read request exceeds the maximum
readahead_size . This helped the se-
quential workload.

2. When the requested page is not in
the current_window , replace
the current_window , with a new
current_window the size of which
is equal to the average size of the
application’s read request.

This simplification produced another percent
gain in DSS performance, by trimming down
thecurrent_window size by a page. More
significantly the sequential performance re-
turned back to initial levels. We ran the above
modified algorithm on the simulator with var-
ious kinds of workload and got close to ideal
request patterns submitted to the block layer.

To summarize, the new readahead algorithm
has the following modifications.

Figure 3: Progressive improvement in DSS
benchmark, normalized with respect to the per-
formance of DSS on raw devices.

1. Miss fix: Do not close readahead if the
first access to the file-instance does not
start from offset zero.

2. Hit fix: Do not close readahead if the first
access to the requested pages are already
found in the page cache.

3. Slow-read Fix: Decrement one page from
the current_window if the request is
not contiguous in the slow-read path.

4. Adaptive readahead: Keep a running
count of the average size of the applica-
tion’s read requests. If the average size
is above the maximumreadahead_
size , readahead up front. If the request
misses thecurrent_window , replace
it with a newcurrent_window whose
size is the average size of the application’s
read requests.

Figure 2 shows the new algorithm with all the
optimization incorporated.

Figure 3 illustrates the normalized steady in-
crease in the DSS workload performance with
each incremental optimization. The graph is
normalized with respect to the performance of
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DSS on raw devices. Column 1 is the base
performance on filesystem. Column 2 is the
performance on filesystem with the hit, miss
and slow-read optimization. Column 3 is the
performance on filesystem with first-hit, first-
miss, slow-read and lazy-read optimization.
Column 4 is the performance on filesystem
with first-hit, first-miss, slow-read, and large
current_window optimization. Column 5
is the performance on filesystem with first-hit,
first-miss, slow-read, and adaptive read simpli-
fication. Column 6 is the performance on raw
device.

3 Overall Performance Results

In this section we summarize the results col-
lected through simulator, DSS workload, and
iozone benchmark.

3.1 Results Seen Through Simulator

We generated different types of input read pat-
terns. There is no particular reason behind
these particular read pattern. However, we en-
sured that we get enough coverage. Overall
the read requests generated by our optimized
readahead algorithm outperformed the original
algorithm. The graphs refer to our optimized
algorithm as 2.6.7 because all these optimiza-
tions are merged in the 2.6.7 release candidate.

Figure 4 shows the output of readahead algo-
rithm with and without optimization for 30-
page read request followed by 2-page seek, re-
peated 984 times.

Figure 5 shows the output of readahead algo-
rithm with and without optimization for 16-
page read request followed by 117-page seek,
repeated 100 times.

Figure 6 shows the output of readahead algo-
rithm with and without optimization for 32-

2.6.0 2.6.7
Average Size 31 30
Pages Read 61010 29535

Wasted Pages 31490 15
No Of Read Requests 1970 987

Figure 4: Application generates 30-page read
request followed by 2-page seek, repeating 984
times. Totally 29520 pages requested.

2.6.0 2.6.7
Average Size 1 16
Pages Read 1600 1600

Wasted Pages 0 0
No Of Read Requests1600 100

Figure 5: Application generates 16-page read
request followed by 117-page seek, repeating
100 times. Totally 1600 pages requested.
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2.6.0 2.6.7
Average Size 1 31.95
Pages Read 32000 32009

Wasted Pages 0 9
No Of Read Requests32000 1002

Figure 6: Application generates 32-page read
request followed by 3-page seek, repeating
1000 times. Totally 32000 pages requested.

page read request followed by 3-page seek, re-
peated 1000 times.

Figure 7 shows the output of readahead algo-
rithm with and without optimization for 32-
page read request followed by 68-page seek,
repeated 1000 times.

Figure 8 shows the output of readahead algo-
rithm with and without optimization for 40-
page read request followed by 5-page seek, re-
peated 1000 times.

Figure 9 shows the output of readahead al-
gorithm with and without optimization for 4-
page read request followed by 96-page seek,
repeated 1000 times.

Figure 10 shows the output of readahead al-
gorithm with and without optimization for 16-
page read request followed by 0-page seek, re-
peated 1000 times.

2.6.0 2.6.7
Average Size 31.31 31.91
Pages Read 93970 32099

Wasted Pages 61970 99
No Of Read Requests 3001 1006

Figure 7: Application generates 32-page read
request followed by 68-page seek, repeating
1000 times. Totally 32000 pages requested.

2.6.0 2.6.7
Average Size 31.13 31.91
Pages Read 50810 51176

Wasted Pages 10801 11176
No Of Read Requests 1631 1601

Figure 8: Application generates 40-page read
request followed by 5-page seek, repeating
1000 times. Totally 40000 pages requested.
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2.6.0 2.6.7
Average Size 30.94 4.02
Pages Read 61914 4023

Wasted Pages 57914 23
No Of Read Requests 2001 1001

Figure 9: Application generates 4-page read
request followed by 96-page seek, repeating
1000 times. Totally 4000 pages requested.

2.6.0 2.6.7
Average Size 30.08 31.85
Pages Read 16031 16050

Wasted Pages 31 50
No Of Read Requests 533 504

Figure 10:Application generates 16-page read
request with no seek, repeating 1000 times. To-
tally 16000 pages requested.

3.2 DSS Workload

The configuration of our setup is as follows:

• 8-way Pentium III machine.

• 4GB RAM

• 5 fiber-channel controllers connected to
50 disks.

• 250 partitions in total each containing a
ext2 filesystem.

• 30GB Database is striped across all these
filesystems. No filesystem contains more
than one table.

• Workload is mostly read intensive, gener-
ating mostly large 256KB random reads.

With this setup we saw an impressive 26% in-
crease in performance. The DSS workload on
filesystems is roughly about 75% to DSS work-
load on raw disks. There is more work to do,
although the bottlenecks may not necessarily
be in the readahead algorithm.

3.3 Iozone Results

The iozone benchmark was run a NFS based
filesystem. The command used wasiozone

-c -t1 -s 4096m -r 128k . This com-
mand creates one thread that reads a file of
size 4194304 KB, generating reads of size 128
KB. The results in Table 1 show an impres-
sive 100% improvement on random read work-
loads. However we do see 0.5% degradation
with sequential read workload.

4 Future Work

There are a couple of concerns with the above
optimizations. Firstly, we see a small 0.5%
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Read Pattern 2.4.20 2.6.0
2.6.0 +

optimization
Sequential Read 10846.87 14464.20 13614.49

Sequential Re-read 10865.39 14591.19 13715.94
Reverse Read 10340.34 10125.13 20138.83
Stride Read 10193.87 7210.96 14461.63

Random Read 10839.57 10056.49 19968.79
Random Mix Read 10779.17 10053.37 21565.43

Pread 10863.56 11703.76 13668.21

Table 1:Iozone benchmark Throughput in KB/sec for different workloads.

degradation with the sequential workload using
the iozone benchmark. The optimized code as-
sumes the given workload to be random to be-
gin with, and then adapts to the workload de-
pending on the read patterns. This behavior can
slightly affect the sequential workload, since it
takes a few initial sequential reads before the
algorithm adapts and does upfront readahead.

The optimizations introduce a subtle change
in behavior. The modified algorithm does
not correctly handle inherently-sequential clus-
tered read patterns. It wrongly thinks that
such read patterns seek after every page-read.
The original 2.6 algorithm did accommodate
such patterns to some extent. Assume an
application with 16 threads reading 16 con-
tiguous pages in parallel, one per thread.
Based on how the threads are scheduled, the
read patterns could be some combination of
those 16 pages. An example pattern could
be 1,15,8,12,9,6,2,14,10,7,5,3,4,11,12,13. The
original 2.6.0 readahead algorithm did not care
which order the page requests came in as long
as the pages were in the current-window. With
the adaptive readahead, we expect the pages to
be read exactly in sequential order.

Issues have been raised regularly that the
readahead algorithm should consider the size
of the current read request to make intelligent
decisions. Currently, the readahead logic bases
its readahead decision on the read patterns seen
in the past, including the request for the cur-

rent page without considering the size of the
current request. This idea has merit and needs
investigation. We probably can ensure that we
at least read the requested number of pages if
readahead has been shutdown because of page-
misses.

5 Conclusion

This work has significantly improved random
workloads, but we have not yet reached our
goal. We believe we have squeezed as much as
possible performance from the readahead algo-
rithm, though there is some work to be done to
improve some special case workloads, as men-
tioned in Section 4. There may be other sub-
systems that need to be profiled to identify bot-
tlenecks. There is a lot more to do!

6 Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International Busi-
ness Machines, Incorporated in the United States,
other countries, or both.

Other company, product, and service names may be
trademark or service marks of others.



402 • Linux Symposium 2004 • Volume Two



Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


