
Linux Kernel Power Management

Patrick Mochel
Open Source Development Labs

mochel@osdl.org

Abstract

Power management is the process by which
the overall consumption of power by a com-
puter is limited based on user requirements and
policy. Power management has become a hot
topic in the computer world in recent years,
as laptops have become more commonplace
and users have become more conscious of the
environmental and financial effects of limited
power resources.

While there is no such thing as perfect power
management, since all computers must use
some amount of power to run, there have been
many advances in system and software archi-
tectures to conserve the amount of power being
used. Exploiting these features is key to pro-
viding good system- and device-level power
management.

This paper discusses recent advances in the
power management infrastructure of the Linux
kernel that will allow Linux to fully exploit the
power management capabilities of the various
platforms that it runs on. These advances will
allow the kernel to provide equally great power
management, using a simple interface, regard-
less of the underlying archtitecture.

This paper covers the two broad areas of
power management—System Power Manage-
ment (SPM) and Device Power Management
(DPM). It describes the major concepts behind
both subjects and describes the new kernel in-
frastructure for implementing both. It also dis-

cusses the mechanism for implementing hiber-
nation, otherwise known as suspend-to-disk,
support for Linux.

1 Overview

Benefits of Power Management

A sane power management infrastructure pro-
vides many benefits to the kernel, and not only
in the obvious areas.

Battery-powered devices, such as embedded
devices, handhelds, and laptops reap most of
the rewards of power management, since the
more conservative the draw on the battery is,
the longer it will last.

System power management decreases boot
time of a system, by restoring previously saved
state instead of reinitializing the entire system.
This conserves battery life on mobile devices
by reducing the annoying wait for the computer
to boot into a useable state.

Recently, power management concepts have
begun to filter into less obvious places, like the
enterprise. In a rack of servers, some servers
may power down during idle times, and power
back up when needed again to fulfill network
requests. While the power consumption of a
single server is but a drop in the water, being
able to conserve the power draw of dozens or
hundreds of computers could save a company
a significant amount of money.

Linux Symposium 326

Also, at the lower-level, power management
may be used to provide emergency reaction to
a critical system state, such as crossing a pre-
defined thermal threshold or reaching a criti-
cally low battery state. The same concept can
be applied when triggering a critical software
state, like an Oops or a BUG() in the kernel.

System and Device Power Management

There are two types of power management that
the OS must handle—System Power Manage-
ment and Device Power Management.

Device Power Management deals with the pro-
cess of placing individual devices into low-
power states while the system is running. This
allows a user to conserve power on devices that
are not currently being used, such as the sound
device in my laptop while I write this paper.

Individual device power management may be
invoked explicitly on devices, or may happen
automatically after a device has been idle for a
set of amount of time. Not all devices support
run-time power management, but those that do
must export some mechanism for controlling it
in order to execute the user’s policy decisions.

System Power Management is the process by
which the entire system is placed into a low-
power state. There are several power states
that a system may enter, depending on the plat-
form it is running on. Many are similar across
platforms, and will be discussed in detail later.
The general concept is that the state of the run-
ning system is saved before the system is pow-
ered down, and restored once the system has
regained power. This prevents the system from
performing an entire shutdown and startup se-
quence.

System power management may be invoked for
a number of reasons. It may automatically en-
ter a low-power state after it has been idle for
some amount of time, after a user closes a lid

on a laptop, or when some critical state has
been reached. These are also policy decisions
that are up to the user to configure and require
some global mechanism for controlling.

2 Device Power Management

Overview

Device power management in the kernel is
made possible by the new driver model in the
2.5 kernel. In fact, the driver model was in-
spired by the requirement to implement decent
power management in the kernel. The new
driver model allows generic kernel to commu-
nicate with every device in the system, regard-
less of the bus the device resides on, or the class
it belongs to.

The driver model also provides a hierarchi-
cal representation of the devices in the system.
This is key to power management, since the
kernel cannot power down a device that an-
other device, that isn’t powered down, relies
on for power. For example, the system cannot
power down a parent device whose children are
still powered up and depend on their parent for
power.

In its simplest form, device power manage-
ment consists of a description of the state a
device is in, and a mechanism for controlling
those states. Device power states are described
as ‘D’ states, and consist of states D0-D3, in-
clusive. This device state representation is in-
spired by the PCI device specification and the
ACPI specification [ACPI]. Though not all de-
vice types define power states in this way, this
representation can map on to all known device
types.

Each D state represents a tradeoff between the
amount of power a device is consuming and
how functional a device is. In a lower power
state (represented by a higher digit following

Linux Symposium 327

D), some amount of power to a device is lost.
This means that some of the device’s operating
state is lost, and must be restored by its driver
when returning to the D0 state.

D0 represents the state when the device is fully
powered on and ready for, or in, use. This state
is implicitly supported by every device, since
every device may be powered on at some point
while the system is running. In this state, all
units of a device are powered on, and no device
state is lost.

D3 represents the state when the device is off.
This state is also implicitly supported by every
device, since every device is implicitly pow-
ered off when the system is powered off. In this
state, all device context is lost and must be re-
stored before using the device again. This usu-
ally means the device must also be completely
reinitialized.

The PCI Power Management spec goes on to
define D3hot as a D3 state that is entered via
driver control and D3cold that is entered when
the entire system is powered down. In D3hot,
the device may not lose all operating power,
requiring less restoration that must take place.
This is however, device-dependent. The kernel
does not distinguish between the two, though a
driver theoretically could take extra steps to do
so.

D1 and D2 are intermediate power states that
are optionally supported by a device. In each
case, the device is not functional, but not en-
tirely powered off. In order to bring the device
back to an operating state, less work is required
than reviving the device from D3. In D1, more
power is consumed than in D2, but more device
context is preserved.

A device’s power management information is
stored instruct device_pm :

struct device_pm {

#ifdef CONFIG_PM
dev_power_t power_state;
u8 * saved_state;
atomic_t depend;
atomic_t disable;
struct kobject kobj;

#endif
};

struct device contains a statically allo-
cateddevice_pm object. The PM configu-
ration dependency guarantees the overhead for
the structure is nil when power management
support is not compiled in.

The kernel defines the following power states
in include/linux/pm.h :

typedef enum {
DEVICE_PM_ON,
DEVICE_PM_INT1,
DEVICE_PM_INT2,
DEVICE_PM_OFF,
DEVICE_PM_UNKNOWN,

} dev_power_t;

When a device is registered, its initial power
state is set toDEVICE_PM_UNKNOWN. The
device driver may query the device and initial-
ize the known power state using

void device_pm_init_power_state(
struct device * dev,
dev_power_t state);

Controlling a Device’s State

A device’s power state may be controlled by
the suspend() and resume() methods in
struct device_driver :

int (*suspend)(struct device * dev,
u32 state, u32 level);

int (*resume) (struct device * dev,
u32 level);

Linux Symposium 328

These methods may be initialized by the low-
level device driver, though they are typically
initialized at registration time by the bus driver
that the driver belongs to. The bus’s functions
should forward power management requests to
the bus-specific driver, modifying the seman-
tics where necessary.

This model is used to provide the easiest route
when converting to the new driver model.
However, a device driver’s explicit initializa-
tion of these methods will be honored.

The same methods are called during individual
device power management transitions and sys-
tem power management transitions.

There are two steps to suspend a device and
two steps to resume it. In order to suspend a
device, two separate calls are made to the sus-
pend() method—one to save state, and another
to power the device down. Conversely, one call
is made to the resume() method to power the
device up, and another to restore device state.

These steps are encoded:

enum {
SUSPEND_SAVE_STATE,
SUSPEND_POWER_DOWN,

};

enum {
RESUME_POWER_ON,
RESUME_RESTORE_STATE,

};

and are passed as the ‘level’ parameter to each
method.

During theSUSPEND_SAVE_STATEcall, the
driver is expected to stop all device requests
and save all relevant device context based on
the state the device is entering.

This call is made in process context, so the
driver may sleep and allocate memory to

save state. However during system suspend,
backing swap devices may have already been
powered down, so drivers should useGFP_
ATOMICwhen allocating memory.

SUSPEND_POWER_DOWNis used only to
physically power the device down. This call
has some caveats, and drivers must be aware
of them. Interrupts will be disabled when this
routine is called. However, during run-time de-
vice power management, interrupts will be re-
enabled once the call returns. Some devices
are known to cause problems once they are
powered down and interrupts reenabled—e.g.
flooding the system with interrupts. Drivers
should be careful not to service power manage-
ment requests for devices known to be buggy.

During system power management, interrupts
are disabled and remain disabled while power-
ing down all devices in the system.

The resume sequence is identical, though re-
versed, from the suspened sequence. The
RESUME_POWER_ONstage is performed first,
with interrupts disabled. The driver is expected
to power the device on. Interrupts are then en-
abled and theRESUME_RESTORE_STATEis
performed, and the driver is expected to restore
device state and free memory that was previ-
ously allocated.

A driver may use thestruct device_
pm::saved_state field to store a pointer
to device state when the device is powered
down.

Power Dependencies

Devices that are children of other devices (e.g.
devices behind a PCI bridge) depend on their
parent devices to be powered up to either pro-
vide power to them and/or provide I/O transac-
tions.

The system must respect the power dependen-

Linux Symposium 329

cies of devices and must not attempt to power
down a device which another device depends
on being on. Put another way, all children de-
vices must be powered down before their par-
ent can be powered down. Conversely, the par-
ent device must be powered up before any chil-
dren devices may be accessed.

Expressing this type of dependency is simple,
since it is easy to determine whether or not a
device has any children or not. But, there are
more interesting power dependencies that are
more difficult to express.

On a PCI Hotplug system, the hotplug con-
troller that controls power to a range of slots
may reside on the primary PCI bus. How-
ever, the slots it controls may reside behind a
PCI-PCI bridge that is a peer of the hotplug
controller. The devices in the slots depend on
the hotplug controller being on to operate, but
it is not the devices’ parent. There are sim-
ilar transversal relationships on some embed-
ded platforms in which some I/O controller re-
sides near the system root that some PCI de-
vices, several layers deep, may depend on to
communicate properly.

Both types of power dependencies are rep-
resented using the struct device_
pm::depend field. Implicit dependencies,
like parent-child relationships, are handled by
the depend count being incremented when a
child is registered with the PM core. When
that child device is powered down or removed,
its parent’s depend count is decremented. Only
when a device’s depend count is 0 may it be
powered down.

Explicit power dependencies can be imposed
on devices using

int device_pm_get(struct
device *);

void device_pm_put(struct
device *);

device_pm_get() will increment a de-
vice’s dependency count, anddevice_pm_
put() will decrement it. It is up to the driver
to properly manage the dependency counts on
device discovery, removal, and power manage-
ment requests.

Disabling Power Management

There are circumstances in which a driver must
refuse a power management request. This
is usually because the driver author does not
know the proper reinitialization sequence, or
because the user is performing an uninterrupt-
ible operation like burning a CD.

It is valid for a driver to return an error from
a suspend() method call. For example, a
driver may know a priori that it can’t handle
the request. This works to the system’s bene-
fit, since the PM core can check if any devices
have disabled power management before start-
ing a suspend transition.

To disable or enable power management, a de-
vice may call

int device_pm_disable(struct
device *);

void device_pm_enable(struct
device *);

The former increments the struct
device_pm::disable count, and the
lattr decrements it. If the count is positive,
system power management will be disabled
completely, and device power management on
that device.

These calls should be used judiciously, since
they have a global impact on system power
management.

Linux Symposium 330

3 System Power Management

System power management (SPM) is the pro-
cess of placing the entire system into a low-
power state. In a low-power state, the sys-
tem is consuming a small, but minimal, amount
of power, yet maintaining a relatively low re-
sponse latency to the user. The exact amount
of power and response latency depends on the
state the system is in.

Power States

The states a system can enter are dependent on
the underlying platform, and differ across ar-
chitectures and even generations of the same
architecture. There tend to be three states that
are found on most archtitectures that support
a form of SPM, though. The kernel explic-
itly supports these states—Standby, Suspend,
and Hibernate, and provides a mechnanism for
a platform driver (an architectural port of the
kernel) to define new states.

typedef enum {
POWER_ON = 0,
POWER_STANDBY = 0x01,
POWER_SUSPEND = 0x02,
POWER_HIBERNATE = 0x04,

} pm_system_state_t;

Standby is a low-latency power state that is
sometimes referred to as “power-on suspend.”
In this state, the system conserves power by
placing the CPU in a halt state and the devices
in the D1 state. The power savings are not sig-
nificant, but the response latency is minimal—
typically less than 1 second.

Suspend is also commonly known as “suspend-
to-RAM.” In this state, all devices are placed in
the D3 state and the entire system, except main
memory, is expected to maintain power. Mem-
ory is placed in self-refresh mode, so its con-
tents are not lost. Response latency is higher

than Standby, yet still very low—between 3-5
seconds.

Hibernate conserves the most power by turn-
ing off the entire system, after saving state to a
persistant medium, usually a disk. All devices
are powered off unconditionally. The response
latency is the highest—about 30 seconds—but
still quicker than performing a full boot se-
quence.

Most platforms support these states, though
some platforms may support other states or
have requirements that don’t match the as-
sumptions above. For example, some PPC lap-
tops support Suspend, but because of a lack
of documentation, the video devices cannot be
fully reinitialized and hence may not enter the
D3 state. The hardware will supply enough
power to devices for them to stay in the D2
state, which the drivers are capable of recov-
ering from.

Instead of cluttering the code with a lot of con-
ditional policy to determine the correct state for
devices to enter, the PM subsystem abstracts
system state information into dynamically reg-
istered objects.

struct pm_state {
struct pm_driver * drv;
pm_system_state_t sys;
pm_device_state_t dev;
struct kobject kobj;

};

The drv field is a pointer to the platform-
specific object configured to handle the power
state. The sys field is the low-level power state
that the system will enter. The dev field is the
lowest power state that devices may enter. The
kobj field is the generic object for managing an
instance’s lifetime.

The kernel defines default power state objects
representing the assumptions above:

Linux Symposium 331

struct pm_state pm_state_standby;
struct pm_state pm_state_suspend;
struct pm_state pm_state_hibernate;

Platform drivers may also define and register
additional power states that they support using:

int
pm_state_register(struct

pm_state *);
void
pm_state_unregister(struct

pm_state *);

The PM sysfs Interface

The PM infrastructure registers a top-level
subsystem with the kobject core, which pro-
vides the/sys/power/ directory in sysfs.
By default, there is one file in the directory
/sys/power/state .

Reading from this file displays the states that
are currently registered with the system; e.g.:

cat /sys/power/state
standby suspend hibernate

By writing the name of a state to this file, the
system will perform a power state transition,
which is described next.

Each power state that is registered receives
a directory in/sys/power/ , and three at-
tribute files:

tree /sys/power/suspend/
/sys/power/suspend/
|-- devices
|-- driver
‘-- system

The ‘devices’ file and the ‘system’ file describe
which power state the devices in the computer

and the state the computer itself are to enter,
respectively. The ‘driver’ file displays which
low-level platform PM driver is configured to
handle the power transition. Writing to this file
sets the driver internally.

Power Management Platform Drivers

The process of transitioning the OS into a
low-power state is largely platform-agnostic.
However, the low-level mechanism for actually
transitioning the hardware to a low-power state
is very platform specific, and even dependent
on the generation of the hardware.

On some platforms, there may be multiple
ways to enter a low-power state, presenting a
policy decision for the user to make. Note
this arises usually only in choosing whether to
enter a minimal power state during a Hiber-
nation transition, or turning the system com-
pletely off.

To cope with these variations, the PM core de-
fines a simple driver model:

struct pm_driver {
u32 states;
int (*prepare)(u32 state);
int (*save) (u32 state);
int (*sleep) (u32 state);
int (*restore)(u32 state);
int (*cleanup)(u32 state);
struct kobject kobj;

};

int
pm_driver_register(struct

pm_driver *);

void
pm_driver_unregister(struct

pm_driver *);

The states field ofstruct pm_driver is a
logical or of the states the driver supports. The
methods are platform-specific calls that the PM

Linux Symposium 332

core executes during a power state transition.
They are designed to perform the following:

prepare — Verify that the platform can enter
the requested state and perform any nec-
essary preparation for entering the state.

save — Save low-level state of the platform
and the CPU(s).

sleep — Enter the requested state.

restore — Restore low-level register state of
the platform and CPU(s).

cleanup — Perform any necessary actions to
leave the sleep state.

A platform should intialize and register a driver
on startup:

struct pm_driver acpi_pm_driver = {
.states = (POWER_STANDBY |

POWER_SUSPEND |
POWER_HIBERNATE),

.prepare = acpi_enter_sleep_state_prep,

.sleep = acpi_pm_sleep,

.cleanup = acpi_leave_sleep_state,

.kobj = { .name = "acpi" },
};

static int __init acpi_sleep_init(void) {
return pm_driver_register(

&acpi_pm_driver);
}

Each registered PM driver receives a di-
rectory in sysfs in/sys/power/ . Each
driver receives one default attribute file named
states , which displays the power states the
driver supports. This file is not writable by
userspace.

tree /sys/power/acpi/
/sys/power/acpi/
‘-- states
cat /sys/power/acpi/states
standby suspend hibernate

Platform drivers may define and export their
own attributes.

struct pm_attribute {
struct attribute attr;
ssize_t (*show)(struct pm_driver *,

char *);
ssize_t (*store)(struct pm_driver *,

const char *,
size_t);

};

int pm_attribute_create(
struct pm_driver *,
struct pm_attribute*);

void pm_attribute_remove(
struct pm_driver *,
struct pm_attribute *);

The semantics forpm_driver attributes fol-
low the same semantics as other sysfs at-
tributes. Please see the kernel sysfs documen-
tation for more information.

Power State Transitions

Transitioning the system to a low-power state
is, unfortunately, not as simple as telling the
platform to enter the requested low power state.
The file drivers/power/suspend.c
contains the entire sequence, and should be
used as reference material for the official
process. A synopsis is provided here.

The first step is to verify that the system
can enter the power state. The PM core
must have a driver that supports the requested
state, the driver must return success from its
prepare() method, and the driver core must
return success fromdevice_pm_check() .
Next, the PM core quiesces the running system
by disabling preemption and ‘freezing’ all pro-
cesses.

Next, system state is saved by calling
device_suspend() to save device state,

Linux Symposium 333

and the driver’ssave() method to save low-
level system state. If we’re entering a vari-
ant of the Hibernation state, the contents of
memory must be saved to a persistant medium.
pm_hibernate_save() is called to per-
form this, which is described in the section Hi-
bernation.

Once state is saved, the PM core disables in-
terrupts and callsdevice_power_down()
to place each device in the specified low power
state. Finally, it calls the driver’ssleep()
method to transition the system to the low-
power state.

The resume sequence has two variants, de-
pending on whether the system is returning
from a Hibernation state or not. If it is not,
the platform is responsible for returning execu-
tion to the correct place (after the return from
the driver’ssleep() method). This may be a
function of the processor, the firmware, or the
low-level platform driver.

If we’re returning from Hibernation, the sys-
tem detects it during a boot process in the
function pm_resume() . pm_resume() is
a late_initcall, which means it is called after
most subsystems and drivers have been regis-
tered and initialized, including all non-modular
PM drivers. It calls pm_hibernate_
load() , which is responsible for attempting
to read, load, and restore a saved memory im-
age. Doing this replaces the currently run-
ning system with a saved one, and execution
returns to after the call topm_hibernate_
store() .

One way or another, the PM core proceeds
to power on all devices and restore interrupts.
The driver’srestore() method is called to
restore low-level system state, anddevice_
pm_resume() is called to restore device con-
text. Finally, the driver’scleanup() method
is called, processes are ‘thawed,’ and preemp-
tion is reenabled.

A suspend transition is triggered by writ-
ing the requested state to the sysfs file
/sys/power/state . Once the complete
transition is complete, execution will return to
the process that wrote the value.

4 Hibernation

This section describes the Hibernate power
state; specifically the process the PM core uses
to save memory to a persistant medium, and
the model for implementing a low-level back-
end driver to read and write saved state from a
specific medium.

As mentioned in the previous section, Hiber-
nate is a low-power state in which system
memory state is saved to a persistant medium
before the system is powered off and restored
during the system boot sequence.

Hibernate is the only low-power state that can
be used in the absence of any platform sup-
port for power management. Instead of en-
tering a low-power state, the configured PM
driver may simply turn the system off. This
mechanism provides perfect power savings (by
not consuming any), and can be used to work
around broken power management firmware or
hardware. The PM core registers a default plat-
form driver that supplies this mechanism. It is
named ‘shutdown’ and supports the Hibernate
state only.

Hibernation can also add value to situations
which would otherwise ignore standard power
management concepts. For example, system
state can be saved and restored should a battery
(either in a laptop or a UPS) become critcally
low. Or, system state could be saved when the
kernel Oops’d or hit aBUG() . The system
could be rebooted and the state examined later.

Linux Symposium 334

Hibernation Backend Drivers

Hibernate is commonly referred to as
“suspend-to-disk,” implying that the medium
that system state is saved to is a physical disk.
This assumption does not offer the possibility
that another type of media may be used to
capture state, nor does it make the distinction
of how the state is stored on disk, since it could
theoretically be stored on a dedicated partition,
in free swap space, or in a regular file on an
arbitrary filesystem.

The PM subsystem offers the ability to config-
ure a variable medium type to save state to.

struct pm_backend {
int (*open) (void);
void (*close)(void);
int (*read_image)(void);
int (*write_image)(void);
struct kobject kobj;

};

int pm_backend_register(struct p
m_backend *);

void pm_backend_unregister(struct
pm_backend *);

The PM core provides a default backend driver
namedpmdisk that uses a dedicated partition
type to save state. The internals of pmdisk are
discussed later.

Backend drivers are registered as children of
the Hibernatepm_state object, and are rep-
resented by directories in sysfs.

They may also define and export attributes us-
ing the following interface:

struct pm_backend_attr {
struct attribute attr;
ssize_t (*show)(struct pm_backend *,

char *);

ssize_t (*store)(struct pm_backend *,

const char *,
size_t);

};

int pm_backend_attr_create(
struct pm_backend *,
struct pm_backend_attr *);

void pm_backend_attr_remove(
struct pm_backend *,
struct pm_backend_attr *);

Snapshotting Memory

The Hibernate core ‘snapshots’ system mem-
ory by indexing and copying every active page
in the system. Once a snapshot is complete, the
saved image and index is passed to the backend
driver to store persistantly.

The snapshot process has one critical require-
ment: that at least half of memory be free. This
imposes a strict limitation on the use of the cur-
rent Hibernate implementation during periods
of high memory usage. However, this design
decision simplifies the requirements of the im-
plementaion itself.

The snapshot sequence is a three-step process.
First, all of the active pages in the system are
indexed, enough new pages are allocated to
clone these pages, then each page is copied into
its clone, or “shadow.”

Active pages are detected by iterating over
each page frame number (’pfn’) in the sys-
tem and determining whether we should save it
or not. A page’s saveability is initially deter-
mined by whether or not thePageNosave bit
is set, and then whether the page is free or not.
Reserved pages may not be saveable, depend-
ing on whether they exist in the’__nosave’
data section.

Pages marked Nosave or declared
in the __nosave section (with the
’__nosavedata’ suffix) are volatile

Linux Symposium 335

data and variables internal to the Hibernate
core. They are used and modified during the
snapshot process, and are not saved.

Saveable pages are indexed in page-sized ar-
rays calledpm_chapters :

#define PG_PER_CHAPT \
(PAGE_SIZE / sizeof(pgoff_t))

struct pm_chapter {
pgoff_t c_pages[PG_PER_CHAPT];

};

pm_chapters are dynamically allocated
based on the number of saveable pages in the
system. The addresses of the allocated chapters
are stored in another page-sized array, called a
pm_volume :

#define CHAPT_PER_VOL \
(PAGE_SIZE / \
sizeof(struct pm_chapter *))

struct pm_volume {
struct pm_chapter *

v_chapters[CHAPT_PER_VOL];
};

There are two staticpm_volumes in the Hi-
bernate core—one for the memory index (pm_
mem_index), and one for the snapshot (pm_
mem_shadow). This imposes an upper limit
on the amount of memory that can be snapshot-
ted by the Hibernate core:

CHAPT_PER_VOL * PG_PER_CHAPT * PAGE_SIZE / 2

is the number of bytes that can be saved, as-
suming half of memory must be free to store
the snapshot. On a 32-bit x86 machine with
4K-sized pages, this works out to be:

1024 * 1024 * 4096 / 2
= 2,147,483,648 bytes
= 2 GB

which is more than enough, since accessing
memory above 1GB requires 4M-sized pages.

After memory has been indexed, but before
it has been copied, the contents ofpm_mem_
index andpm_mem_shadoware copied to
pm_mem_clone and pm_shadow_clone .
The latter are also statically allocated objects,
but are not declared “nosave.” The purpose of
the clones is to save the addresses of the dy-
namically allocated chapter pages so we can
free them once the saved image has been re-
stored.

At this stage, the Hibernate core calls a re-
quired architecture- specific function:

int pm_arch_hibernate(
pm_system_state_t state);

The state parameter should be set toPOWER_
HIBERNATE. This call is responsible for sav-
ing low-level register state and callingpm_
hibernate_save() , which copies each in-
dexed page inpm_mem_index to its corre-
sponding page inpm_mem_shadow.

Restoring Memory

During a resume sequence, the Hibernate
core calls the backend’sopen() method,
which is responsible for settingpm_num_
pages , which the Hibernate core will use to
pre-allocatepm_mem_index and pm_mem_
shadow .

The backend’sread_image() method is
called, which populatespm_mem_index with
the target location of each saved page, and
pm_mem_shadow, which contains the saved
pages.

The saved image will replace the memory on a
different running system. The pages that have
been allocated to store the saved image popu-
lated from the backend may conflict with pages

Linux Symposium 336

in the saved image that are to be restored. The
Hibernate backend must guarantee that none of
the pages currently pointed to bypm_mem_
shadow conflict with the pages indexed by
pm_mem_index . To do this, it loops through
each page address inpm_mem_shadowand
compares them with each page address inpm_
mem_index . If any matches are found, a new
page is allocated and the contents copied.

To replace memory, the Hibernate core calls

pm_arch_hibernate(POWER_ON);

The architecture is responsible for iterating
over the pages inpm_mem_shadow and
copying each one to its destination, as indexed
in pm_mem_index . It is also responsible for
restoring low-level register state once memory
has been replaced.

This burden is placed on the architecture so it
can implement a replacement algorithm with-
out using the stack for variable storage. The
saved memory image contains the saved stack,
while the current stack pointer register will
point to a location on the stack in the memory
being replaced. These will likely not match and
cause the system to crash very quickly.

Once the memory image is restored, the archi-
tecture must restore register context to get the
stack pointer pointing to the right place. This
is the reason that the same function is called to
both save and restore the low-level registers.

Returning from pm_arch_hibernate()
once memory has been replaced will re-
store execution to the point inhibernate_
write() wherepm_arch_hibernate()
was called, in the saving sequence. To detect
this, the Hibernate core declares:

static in_suspend __nosavedata = 0;

and sets to it one during the save path. Since
it’s not saved, it will be 0 during the re-
store path, allowing the Hibernate core to be-
have appropriately. The cloned volumes are
copied back intopm_mem_index and pm_
mem_shadow, and the dynamically allocated
pages are freed.

Backend Driver Semantics

The Hibernate core calls the backend driver’s
open() method before any Hibernate opera-
tion. It is the backend’s responsibility to ver-
ify the existence of the media and to open any
necessary communication channels to it. The
backend driver is responsible for reading image
metadata from the medium and settingpm_
num_pages to the number of saved pages if a
saved image exists. The Hibernate core will
use this value to pre-allocate storage for the
saved pages.

It may also use this opportunity to verify there
is enough free space on the device. The maxi-
mum requirement is the total amount of mem-
ory in the system, as indicated by:

num_physpages * PAGE_SIZE

This check is optional at this stage, since the
size of the saved memory image may be much
smaller than this, and may fit on a device with
less free space than the total size of memory.

When the Hibernate core is done, it will call
the backend’sclose() method. The back-
end is responsible for closing any communica-
tion channels to the storage medium and free-
ing any memory it had allocated.

After the Hibernate core has shadowed mem-
ory, it calls the backend’swrite_image()
method. It does not pass any parameters.pm_
mem_index andpm_mem_shadowmust be
used directly. The backend must saved each

Linux Symposium 337

page pointed to in each chapter ofpm_mem_
shadow . It must also save each chapter page
of pm_mem_index . The exact format in
which these are saved are up to the driver.

When restoring a memory image, after the
Hibernate core has allocated storage for
the saved memory, the backend’sread_
image() method is called.pm_mem_index
contains enough allocated chapters to store the
saved chapters andpm_mem_shadow con-
tains enough allocated chapters and pages to
store all of the saved pages. The backend must
populate all of these.

pmdisk

pmdisk is a simple hibernate backend driver.
It uses a dedicated partition with a custom for-
mat for storing system state. Internally, pmdisk
uses the bio layer to read and write pages di-
rectly to/from the disk.

A pmdisk partition may be created using a util-
ity calledpmdisk . It simply writes a pmdisk
header to a partition, which is defined as:

#define PM_HIBERNATE_SIG "PMHibernate"
#define PM_HIBERNATE_VER 1

#define PM_UNUSED_SPACE \
(PAGE_SIZE - (4 * \
sizeof(unsigned long) + 16))

struct pmdisk_header {
char h_unused[PM_UNUSED_SPACE];
unsigned long h_version;
unsigned long h_chksum;
unsigned long h_pages;
unsigned long h_chapters;
char h_sig[16];

} __attribute__((packed));

Internally, the pmdisk backend driver reads the
header from the first page of the configured
partition when itsopen() method is called.
It verifies that it is a pmdisk partition, and sets

pm_num_pages if there is an image stored on
the disk.

On aclose() call, pmdisk set theh_pages ,
h_chapters , andh_chksum fields of the
header and writes it to the first page on the disk.
Note that on a memory restore operation,pm_
num_pages will be 0, signifying the memory
image on the disk is no longer valid.

A saved memory image on a pmdisk partition
is layed out like:

0: pmdisk header
1 toNc Saved chapters ofpm_mem_index
Nc to Np Saved pages frompm_mem_shadow

On a write_image() call, pmdisk will
first initialize an internal checksum variable.It
will then write each chapter frompm_mem_
index to disk, then each page frompm_mem_
shadow to disk. As it writes each page, it
will pass it to a checksum function. The check-
sum function is simple and definitely not cryp-
tographically secure. But, it does provide an
easy verification that an image on disk is valid.

On aread_image() call, pmdisk reads each
chapter intopm_mem_index and each page
into pm_mem_shadow. As it reads each page,
it checksums them. Once all pages have been
read, it compares the current checksum with
the h_chksum field of the header. It returns
success only if they match.

The internal pmdisk exports a sysfs attribute
file named ‘dev’ which userspace must use to
tell the kernel of the correct pmdisk partition
to use. There is currently no way for pmdisk to
automatically detect any valid partitions in the
system.

The value that userspace must write todev is
a 16-bit dev_t value in hexadecimal format
containing the major/minor number pair of the
device to use. This format is not favored, but

Linux Symposium 338

is the only current method for obtaining a ref-
erence to a specific block device at the time of
writing. This interface will change in the fu-
ture.

5 Other Power Management Op-
tions

So far, a lot of talk has been dedicated to de-
scribing the internals of the new power man-
agement subsystem, but little has been given
to describe how the new infrastructure inter-
acts with current power management options.
This section describes those relationships, and
although it focuses on options specific to ia32
platforms, the relationships should be extend-
able to other platforms.

ACPI

In terms of system power management, fits
nicely into the new PM infrastructure. It be-
haves as a PM driver, and provides platform-
specific hooks to transition the system into a
low-power state. At the basic SPM level, this
is all that is required, though ACPI offers a po-
tentially much more powerful solution, since it
it exposes more intimate knowledge of the plat-
form power requirements than has ever been
available on ia32 platforms (e.g. response la-
tencies, power consumption etc.). Exploiting
this knowledge is up to the ACPI platform
driver to expose these attributes via sysfs.

ACPI offers similar potential for device power
management. Devices that appear in the
firmware’s DSDT (Differentiated System De-
scription Table) may expose a very fine-
grained level of detail about the devices’ power
requirements and capabilities.

ACPI also stress the capabilities of device Per-
formance States. A performance state is a
power state that describes a trade-off between

the capabilities of a device against the power
consumption of the device. In each perfor-
mance state that a device supports, the device is
fully running, but different functional hardware
units may be powered off to conserve power.
The driver model does not explicitly recognize
performance states, though the new PM exten-
sions to the driver model provide a framework
that could easily be extended to recognize per-
formance states.

APM

APM power management does not appear on
very many new systems, but the current Linux
installed base includes a large number of APM-
capable computers. The new PM model was
not developed with APM, or any firmware-
driven PM model, in mind. However, care was
taken to ensure that it conceptually made sense
to use such mechanisms as low-level platform
drivers for the PM model. No work has been
done, however, to convert APM to act as a PM
driver for the new model.

pm infratructure

The original PM infrastucture was developed
by Andrew Henroid and was very ground-
breaking, since nothing like it had been done
for the Linux kernel before. It exists in its en-
tirety in:

kernel/pm.c
include/linux/pm.h

The general idea is that drivers can declare and
register an object with the pm infrastructure
that is accessed during a power state transition.
The idea is very similar to what we have now,
though the registration now is implicit when
a device is registered with the system. And,
based on the implementation, we can guarantee

Linux Symposium 339

that each device is notified in proper ancestral
order, which the old model cannot do.

Because the new model is far superior the old-
style pm infrastructure, it is declared depre-
cated. All drivers that implement pm callbacks
should be converted to use the hooks provided
by the new driver model.

swsusp

swsusp is a mechanism for doing suspend-to-
disk by saving kernel state to unused swap
space. It was also a ground-breaking feature,
as it was the first true suspend-to-disk imple-
mentation for Linux. There are some ques-
tionable characteristics of swsusp that many
people have that the maintainers of swsusp
counter are frivilous concerns, and it currently
exists as an alternative to the new PM model.
However, I’ve revoked any philosophical is-
sues with swsusp. It can be, and should be
ported to be, used as a backend driver for the
generic Hibernate mechanism. The current
code base could be reduced to a fraction of its
current complexity.

6 Resources

The current power management kernel tree can
be found in the BitKeeper repository:

bk://devloper.osdl.org/
linux-2.5-power

Information about the Linux power manag-
ment infrastructure, including GNU diffs, doc-
umentation and utilities like pmdisk can be
found at

http://developer.osdl.org/

~mochel/power/

General OSDL developer resources can be
found at:

http://developer.osdl.org/

7 Acknowledgements

Many people have contributed to this docu-
ment, both explicitly and implicitly. First, Li-
nus deserves a mention for encouraging me
look at implementing ACPI suspend-to-ram as
my first kernel project. Andy Grover and
Paul Diefenbaugh of Intel for many things—
contributing ACPI to the kernel, for talking
with me, for always arguing with and motivat-
ing me internally to do things better, and for
pushing me over the edge to write the finest
OS driver model in existence. Andy Henroid
for writing the first open-source power man-
agement model and providing a great base—
despite its shortcomings—to learn and build
from. Pavel Machek for constantly providing
code and being energetic about the project. All
the swsusp people for doing it in the first place
and keeping it up, no matter how much I gripe
about it.

Linux is a trademark of Linus Torvalds. Bit-
Keeper is a trademark of BitMover, Inc.

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

