
Testing Linux® with the Linux Test Project

Paul Larson
Linux Technology Center

International Business Machines
plars@us.ibm.com

Abstract

The Linux Test Project is an organization
aimed at improving the Linux kernel by bring-
ing test automation to the kernel testing effort.
To meet this objective, the Linux Test Project
develops test suites that run on multiple plat-
forms for validating the reliability, robustness,
and stability of the Linux kernel. The LTP test
suite is designed to be easy to use, portable,
and flexible enough that tests could be added
without requiring the developer to use func-
tions provided by the LTP test driver. This pa-
per covers what the Linux Test Project is and
what we are doing to help improve Linux. I
also plan to cover the features provided by the
test harness, the structure of the test cases, and
how test cases can be written to contribute to
the Linux Test Project.

1 Introduction

Through the years of Linux development,
many people have asked the question, “What
is being done to test Linux?” Historically,
Linux testing efforts have been primarily in-
formal and ad-hoc in nature. Users of Linux
simply use it for their own normal purposes
and report any problems they find. Little has
been done to bring any organized testing effort
to Linux. This matter improved somewhat in
May 2000 when Silicon Graphics Inc. (SGI™)
introduced the first version of the Linux Test

Project (LTP). Since that time, many individ-
uals in the open source community as well
as companies such as IBM®, OSDL™, and
BULL® have contributed to the LTP.

2 LTP Test Scripts

One of the design goals of the Linux Test
Project was to make it easy to use. To facilitate
this, the LTP includes three scripts for execut-
ing subsets of the automated tests. They are:

• runalltests.sh – runs all the automated ker-
nel tests in sequential order

• network.sh – runs all the automated net-
work tests in sequential order

• diskio.sh – runs the stress_floppy and
stress_cdrom tests

The runalltests.sh script can be executed with
little or no manual setup required by the user.
Even though the script is named “runalltests”
it does not really run every test in the LTP, but
it does run almost all of them. It runs all of
the non-destructive and completely automated
tests that do not require the user to perform
manual setup tasks. Destructive tests and tests
that consume so many system resources that
they are designed to be run independently, such
as a few of the memory test programs, are not
included in the runalltests script.

Ottawa Linux Symposium 2002 266

The network.sh script includes most of the net-
work tests. These are grouped separately be-
cause additional setup is required for these tests
to function correctly. Two test machines are
necessary to run all of the network tests. Both
machines should have the same version of LTP
compiled and installed in the same location.
The client machine is the one where the net-
work.sh script is actually executed. On the
server machine, a .rhosts entry must be cre-
ated for the root user to allow connections from
the client machine. The following services will
need to be running for successful execution of
the network test suite: rlogind, ftpd, telnetd,
echo (stream), fingerd, and rshd. More detailed
information about the setup for the machines
running LTP may be found in the document
“How To Run the Linux Test Project(LTP) Test
Suite” [RunLTP].

The diskio.sh script is a small test set that runs
two IO-intensive tests. One of these targets the
cdrom drive and the other targets the floppy
drive. For the cdrom test to run, a cdrom with
data on it must be inserted in the cdrom drive.
For the floppy stress test to run, a blank format-
ted floppy disk must be in the floppy drive.

3 Pan: The LTP Test Driver

The test driver for the Linux Test Project test
suite is called pan. Pan can parse a file that
lists the tests to be executed, execute them, and
exit with 0 if all tests passed, or with a number
indicating how many tests failed. The line from
runalltests.sh that executes pan looks like this:

${LTPROOT}/pan/pan -e -S -a $$ -n $$
-f ${TMP}/alltests

The -e is necessary to tell pan to exit with the
number of test programs that failed. By default
it will ignore exit statuses, but it is generally
useful to have pan run this way.

The-Soption tells pan to run test programs se-
quentially as they are read from the command
file. If this option is not specified, it will select
test programs at random to run.

The -a $$ in the command line tells pan the
name of a file to use to store the active test
names, pids, and commands being executed.
The $$ is used here to have it use the current
pid so that a unique file is used to store this
information. This file is often useful for deter-
mining which test program was running last if
the test machine hangs or crashes.

The -n $$ in the command line is a tag name
by which this pan process will be known. It is
required and should be unique so $$ is conve-
nient to use again.

The -f option is used to tell pan the name of
a command file to execute test programs from.
The command file is a text file containing one
test per line. The first item on the line is the
tag name of the test, by which pan will know
it. Usually this should match the TCID, or
test case ID, of the test program. After the tag
name and a space should be the executable with
any necessary arguments. These files are usu-
ally stored under the runtest directory of LTP,
but in the case of runalltests, several have been
concatenated together into a file called alltests.
These command files are a convenient way of
grouping test programs together to create cus-
tom test suites.

Another useful option for pan that is not used
in the provided scripts is-s. The-s option tells
pan the number of test programs to run before
exiting. If 0 is used here, pan will keep execut-
ing tests until it is manually stopped.

The-t option can be used to specify the amount
of time pan should run test programs. This
time can be specified in seconds (s), minutes
(m), hours (h), or days (d). For instance,-t 12h
would tell pan to stop executing tests after 12

Ottawa Linux Symposium 2002 267

hours.

A complete list of options for pan can be found
in the man page for pan in the /doc/man1
[LTPMan] directory under LTP.

4 Organization of Test Programs

Test programs may also be executed individ-
ually without the need for running them un-
der pan or from a script. Once compiled, the
test programs are linked to under the /test-
cases/bin directory from the top of the LTP
source tree. Test programs may be executed di-
rectly from here with any valid command line
options. This feature is very useful when a par-
ticular test program is observed to cause an er-
ror. The test program can be executed alone to
reproduce the error without having to wait for
the entire test suite to run.

Sometimes it is desirable to modify test pro-
grams slightly for debugging purposes, or to
add additional testing to them. To help make it
easier to find test programs, they have been or-
ganized under the testcases directory into four
main categories.

• Kernel – Kernel-related tests such as
filesystems, io, ipc, memory management,
scheduler, and system calls

• Network – Network tests including tests
for ipv6, multicast, nfs, rpc, sctp, and net-
work related user commands

• Commands – Tests for user level com-
mands commonly used in application de-
velopment such as ar, ld, ldd, nm, obj-
dump, and size

• Misc – Miscellaneous tests that do not fit
into one of the other categories such as
crash (an adaptation of the well-known
crashme test), f00f, and a floating point
math set of tests

Other test programs that are not part of the au-
tomated test scripts previously mentioned can
also be found under this directory tree.

5 Developing Tests for LTP

The Linux Test Project was designed to be flex-
ible enough to allow test programs to be added
to it without requiring the use of any cumber-
some features that are specific to a certain test
driver. The LTP does provide a small set of
functions that can be used to help with the con-
sistency of test programs and to act as a con-
venience for the developer, but the driver does
not require their use. Test programs written
to be executed under the LTP should be self-
contained so that they can be executed under
pan or separately. They should be able to de-
tect within the test program itself whether or
not each test case passed or failed. The test
program should return 0 if all test cases in it
pass or anything else if any of them fail. The
exact nature of the failure indicated by return
codes other than 0 may be different from one
test program to another. Most of the test pro-
grams in LTP are written in C, but they may
be written in perl, shell scripting languages, or
anything else as long as appropriate return val-
ues are preserved. This flexibility allows devel-
opers to take any quick test program they have
written to test something, make sure it returns
0 if it passes or anything else if it doesn’t, and
submit it for inclusion in the LTP.

Some of the functions in LTP make use of
global variables that define various aspects of
the test case. Even if it is unknown whether
or not these functions will be used, it is a good
idea to define these variables in order to be con-
sistent with other test cases in the LTP.

The TCID variable should be defined in a way
similar to the example below:

char *TCID="test01";

Ottawa Linux Symposium 2002 268

The convention that has been used in other
test cases in the LTP is the system call name,
or some other name representing the test, fol-
lowed by a two digit number. The TCID should
be different from that used by any other LTP
test case or results may be confusing after exe-
cuting all the tests in the test suite. It is also a
good idea to make the TCID be the same as the
name of the source code file for the test pro-
gram. In this example, the file name should be
something liketest01.c.

The global variableTST_TOTALis of type int
and should be used to specify the number of
individual test cases within the test program.
A test program should output a line for each
test case declaring whether the test passed or
failed.

TheTst_count variable is used as a test case
counter in the main test loop:

extern int Tst_count;

The output functions provided by LTP use
Tst_count to get the number of the test case
currently being executed. This should be au-
tomatically incremented each pass through the
test loop.

The main test loop is just a for loop, but it im-
plements a macro calledTEST_LOOPING()
to control the number of iterations through the
loop.

for (lc=0; TEST_LOOPING(lc);
lc++) {

...
}

Standard command line options for LTP test
cases allow the user to set a certain number of
iterations or an amount of time to run each test
program. TEST_LOOPING() handles mak-
ing sure that the test program is executed for

the correct number of iterations, or for the cor-
rect amount of time.

The actual test itself should be wrapped in the
TEST() macro. The TEST() macro starts
by resetting the errno variable to 0 to ensure
that the correct errno is detected after the test
is complete. After executing the system call
passed to it,TEST() sets two global variables.
TEST_RETURNis set to the return code and
TEST_ERRNOis set to the value of errno upon
return. There is also a variation of theTEST()
macro calledTEST_VOID() for use with test-
ing system calls that return void.

Test programs that require little or no manual
setup are preferred. Usually setup can be per-
formed within the test program itself, or with
command line options that can be passed from
the execution script. If manual setup is re-
quired, the test program may be left out of
automated execution scripts, or grouped with
other test programs that have similar setup re-
quirements such as those found in the network
test suite.

Many test programs require a temporary direc-
tory to store files and directories created dur-
ing the test. This is especially true of filesys-
tem tests, and tests of system calls that operate
on files and directories. Thetst_tmpdir()
and tst_rmdir() functions provide a con-
venient method of creating and cleaning up a
temporary area for the test program to use.

The tst_tmpdir() function creates a
unique, temporary directory based on the first
three characters of the TCID global variable.
Once the directory is created, it makes it the
current working directory and returns to con-
tinue execution of the test program. The name
of the directory created will be saved in an ex-
tern char* variable calledTESTDIR for possi-
ble use by the test case, and for later removal
by the tst_rmdir() function. If it is un-
able to create a unique name, unable to cre-

Ottawa Linux Symposium 2002 269

ate the directory, or unable to change directory
to the new locationtst_tmpdir() will use
tst_brk() to output aBROKmessage for
all test cases in the test program and exit via
the tst_exit() function. Since no cleanup
function will be performed automatically in
this situation, tst_tmpdir() should only
be used at the beginning of the test program be-
fore any resources that would require a cleanup
function have been created.

The tst_rmdir() function will remove
the temporary directory created by a call to
tst_tmpdir() along with any other files
or directories created under the temporary di-
rectory. Thesystem() function is used by
tst_rmdir() so the test case should not
perform unexpected signal handling on the
SIGCHLDsignal.

One of the biggest conveniences provided
by using the Linux Test Project API is
parse_opts() . The parse_opts()
function provides a consistent set of useful
command line options for test cases, and al-
lows the developer to easily add more options.

#include "test.h"
#include "usctest.h"

char *parse_opts(int argc,
char *argv[],
option_t option_array[],
void (*user_help_func)());

typedef struct {
char *option;
int *flag;
char **arg;

} option_t;

Option_array must be created by the devel-
oper to contain the desired options in addition
to the default ones.User_help_func()
is a pointer to a function that will be called
when the user passes-h to the test case. This

function should display usage information for
the additional options added only. If you
do not wish to specify any additional com-
mand line options,parse_opts() should
be called with NULL for option_array and
user_help_func() .

The default options provided by parse_opts
are:

-c n – Fork n copies of this test and run them in
parallel. If -i or -I are also specified, each
forked copy will run for the given num-
ber of iterations or amount of time respec-
tively.

-e – Log all errnos received during the test.

-f – Suppress messages about functional
testing

-h – Print the help message listing
these default options first, then call
user_help_func() to display help
for any extra options the developer may
have added.

-i n – Run the test for n consecutive iterations.
Specifying a 0 for n will cause the test to
loop continuously.

-I x – Run the test loop until x seconds have
passed.

-p – Wait to receive aSIGUSR1before be-
ginning the test.TEST_PAUSEmust be
used in the test at the point you want it to
wait for SIGUSR1.

-P x – Delay x seconds between iterations.

Another useful feature of the Linux Test
Project API is that it provides functions to out-
put results and give test status in a consistent
manner, and exit the test program with an exit

Ottawa Linux Symposium 2002 270

code consistent with the results from that out-
put. This paper will not cover all of the func-
tions to do this but will briefly discuss the most
common ones.

All of these functions need to be passed attype
that specifies the type of message that is being
sent. The available values for ttype are:

• TPASS – Indicates that the test case had
the expected result and passed

• TFAIL – Indicates that the test case had
an unexpected result and failed

• TBROK – Indicates that the remaining
test cases are broken and will not execute
correctly because some precondition was
not met such as a resource not being avail-
able.

• TCONF – Indicates that the test case was
not written to run on the current hardware
or software configuration such as machine
type, or kernel version.

• TRETR – Indicates that the test case has
been retired and should not be executed
any longer.

• TWARN – Indicates that the test case ex-
perienced an unexpected or undesirable
event that should not affect the test itself
such as being unable to clean up resources
after the test finished.

• TINFO – Specifies useful information
about the status of the test that does not
affect the result and does not indicate a
problem.

The first result output function is
tst_resm() .

void tst_resm(int ttype,
char *tmesg,
[arg ...])

This function will outputtmesgto STDOUT.
Thetmesgstring and associated arguments can
be given totst_resm() and the other func-
tions listed here in the same fashion as strings
with arguments can be passed toprintf() .
After outputting the message, the test case will
resume.

void tst_brkm(int ttype,
void (*func)(),
char *tmesg, [arg ...])

The tst_brkm() function prints the mes-
sage specified bytmesg, calls the function
pointed to byfunc, and exits the test program
breaking any remaining test cases.

void tst_exit()

The tst_exit() function exits the test
program with status depending onttypes
passed to previous calls to functions such
as tst_brkm() and tst_resm() . For
TPASS, TRETR, TINFO, andTCONFthe exit
status is unaffected and will be 0 indicating
that the test passed.TFAIL , TBROK, and
TWARNall indicate that something went wrong
during the test or that the test failed. Us-
ing these values at any point in the test pro-
gram beforetst_exit() is called will cause
tst_exit() to exit the test program with a
non-zero status.

When a test cases receives an unexpected sig-
nal, it is useful to provide a means of making it
exit gracefully. The LTP provides a convenient
way of doing this through thetst_sig()
function.

#include "test.h"

void tst_sig(fork_flag,
handler, cleanup)

Ottawa Linux Symposium 2002 271

char *fork_flag;
int (*handler)();
void (*cleanup)();

If the test case is creating child pro-
cesses through functions such asfork() or
system() , thentst_sig needs to know to
ignore SIGCHLD. This can be accomplished
by settingfork_flagto FORK. If the test case is
not creating child processes,fork_flagshould
be set to NOFORK. Keep in mind that if
the test program usestst_tmpdir() and
tst_rmdir() , the fork_flag should be set
to FORK becausetst_rmdir() uses the
system() library call.

The handler parameter oftst_sig() rep-
resents the function that will be called when
an unexpected signal is intercepted. The de-
veloper may provide a custom signal han-
dler function here that returns int, or the de-
fault signal handler may be used. To use
the default signal handler fortst_sig() ,
passDEF_HANDLERas thehandler parame-
ter to tst_sig() . If the default handler is
used, then theTCID and Tst_countvariables
must be defined. The default handler will use
tst_res() to output messages for all re-
maining test cases that were incomplete when
the signal was received.

The cleanup parameter is used to specify
a cleanup function. After the handler has
been executed,tst_sig() will execute the
cleanup function. The cleanup function should
take care of removing any resource used by the
test program such as files or directories that
were created to facilitate testing. If nothing is
required for cleanup,NULL can be passed to
tst_sig() in place of a cleanup function.

6 The Future of LTP

Most of the future plans for the Linux Test
Project focus on expanding test coverage. The

majority of test cases in the LTP today test sys-
tem calls. This is, of course, a very important
part of testing Linux, but not the only thing that
should be addressed. Some test programs have
already been added for things such as network-
ing, memory management, scheduling, com-
mands, floating point math, and databases, but
the breadth of test coverage should continue to
expand. As the variety of tests increases, it may
one day become necessary to modularize the
LTP test programs into separate suites that can
be executed and even downloaded separately.
The LTP was reorganized to make this easier if
and when it becomes desirable to do so.

In addition to broader coverage, a desirable
feature is a wider range of test subsets. One
example of this that has often been discussed
is a predefined set of test programs and dif-
ferent options passed to test programs to cre-
ate a stress suite. This could be further sub-
divided into components such as a memory
stress suite, a scheduler stress suite, a filesys-
tem stress suite, and so on.

Another project for future development is a
front end for defining a customized set of test
programs and executing them. There is already
a simple menu for launching some of the test
suites under the LTP, but something more ad-
vanced is desired. Ideally, a good front end
should allow the user to select from all avail-
able test programs and see a description of all
of them. It should also allow the user to define
how long to run the suite, how many instances
to have running at once, and other options. Fi-
nally, it should allow exporting and importing
of profiles so that customized test executions
can be reproduced later.

Currently, functions are provided by LTP to
create test cases with a consistent output for-
mat, style, and command line options. These
functions are only provided for C though. Tests
may be developed in other languages, or even

Ottawa Linux Symposium 2002 272

in C, but not make use of these functions and
still work under the LTP test suite. The func-
tions are provided as a convenient way of gain-
ing a consistent set of features found through-
out most of the test programs in the LTP test
suite. To encourage more test development
by developers who prefer other languages and
want to make use of these functions, they may
be implemented in languages such as perl,
python, or others upon popular request.

The LTP has recently made significant progress
towards running on other architectures besides
x86. The majority of test programs in the LTP
test suite have been made to work on architec-
tures such as IA64, PPC, and S390. A small
amount of work may still be needed for the LTP
on a few of these architectures, but the LTP test
suite is executed frequently on all of these ar-
chitectures. As additional equipment becomes
available, this list may be expanded to include
other architecture targets that are capable of
running Linux. Some changes may be neces-
sary to make the LTP test suite run cleanly on
these other systems.

The completeness of current test cases should
also be analyzed and improved upon if neces-
sary. We are currently looking at code cover-
age analysis tools to determine how much of
the target kernel code is being executed by test
cases in the LTP. As we find areas of kernel
code that are not adequately covered by test
cases in the LTP, new test cases are written or
existing ones are modified to expand coverage
to these areas. The tools that are being devel-
oped to do this will not only allow us to see
what areas of the kernel are covered by each
test program, but will also allow kernel devel-
opers to find test cases that target a specific area
of the kernel. So, if changes are made in the
kernel and the developer wants to find test pro-
grams that will target that area of the code, they
can search for the specific test programs that
will do that.

7 Enhancing the LTP

Additional test programs are of course critical
to the test suite, but for the Linux Test Project
to be truly effective, people must use it. The
Linux Test Project encourages and appreciates
the contributions of anyone in the open source
community who wishes to participate. It would
be nice to see the LTP test suite run as part of
the exit criteria for releasing new kernels in the
stable and development trees. In addition to
this, it would be useful for kernel developers
to execute the test suite against patches before
submitting them. The LTP test suite will not
find all problems but may reduce the number
of errors in new code if used properly. If ker-
nel developers and testers diligently submit test
programs for defects as they are found, the test
suite could even help reduce the number of re-
gressed defects found in Linux.

The LTP is taking steps to encourage more
community involvement. Results of testing
done by the LTP are posted on the LTP web-
site at http://ltp.sourceforge.net and on the ltp-
results mailing list. Requests for testing can
also be submitted on the ltp-results list. An ad-
ditional mailing list exists for the purpose of
discussing development of the LTP test suite.
The LTP test suite is also available as a test-
ing tool inside the STP test tool at OSDL
(http://www.osdl.org/stp).

References

[LTPMan] The Linux Test Project Man Pages
Linux Test Project.
http://cvs.sourceforge.net

/cgi-bin/viewcvs.cgi/ltp/ltp

/doc/ (2000)

[Howto] Nate Straz,Linux Test Project
HOWTOLinux Test Project.
http://cvs.sourceforge.net

Ottawa Linux Symposium 2002 273

/cgi-bin/viewcvs.cgi/ltp/ltp

/doc/ (2000)

[RunLTP] Casey Abell and Robbie
Williamson,How To Run the Linux Test
Project(LTP) Test SuiteLinux Test
Project.
http://ltp.sourceforge.net

/ltphowto.php (2001)

Disclaimer and Trademarks

This paper represents the views of the author,
and not the IBM Corporation.

IBM is a trademark of International Business
Machines Corporation.

Other company, product or service names may
be the trademarks or service marks of others.

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

