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1 Introduction

Many software developers in recent years have
turned to Linux as their operating system of
choice. Until the advent of uClinux, how-
ever, developers of smaller embedded sys-
tems, usually incorporating microprocessors
with no MMU, (Memory Management Unit)
could not take advantage of Linux in their
designs. uClinux is a variant of mainstream
Linux that runs on “MMU-less” processor ar-
chitectures. Perhaps a DSP? If a general pur-
pose DSP has enough of a useable instruction
set why not!

Component costs are of primary concern in
embedded systems, which are typically re-
quired to be small and inexpensive. Micropro-
cessors with on-chip MMU hardware tend to
be complex and expensive, and as such are not
typically selected for small, simple embedded
systems, which do not require them.

Benefits

Using Linux in devices, which require some in-
telligence, is attractive for many reasons:

• It is a mature, robust operating system

• It already supports a large number of de-
vices, filesystems, and networking proto-
cols

• Bug fixes and new features are constantly
being added, tested and refined by a large
community of programmers and users

• It gives everyone from developers to end
users complete visibility of the source
code

• A large number of applications (such as
GNU software) exist which require little
to no porting effort

• Linux’s very low cost

2 uClinux System Configurations

Embedded systems running uClinux may be
configured in many ways other than that of the
familiar UNIX-like Linux distribution. Nev-
ertheless, an example of a system running
uClinux in this way will help to illustrate how
it may be used.

Kernel / Root Filesystem

The Arcturus uCdimm is a complete computer
in an so-DIMM form factor, built around ei-
ther a Motorola 68VZ328 “DragonBall” mi-
crocontroller, the latest processor in a family
widely popularized by the “Palm Pilot” or a
Motorola CF5272 “ColdFire” microcontroller.
It is equipped with 2M of flash memory, 8M of
SDRAM, both synchronous and asynchronous
serial ports, and an Ethernet controller. There
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is a custom resident boot monitor on the de-
vice, which is capable of downloading a bi-
nary image to flash memory and executing it.
The image that is downloaded consists of a
uClinux kernel and root filesystem. In UNIX
terms, the kernel makes a block device out of
the memory range where the root filesystem re-
sides, and mounts this device as root. The root
filesystem is in a read-only UNIX-like format
called “ROMFS”. Since the DragonBall runs
at 32MHz, the kernel and optionally user pro-
grams execute in-place in flash memory. Faster
systems like the MCF5272 ColdFire running at
48 MHz or 66 MHz benefit from copying the
kernel and root filesystem into RAM and exe-
cuting there.

The Micro Signal Architecture MSA devel-
oped by ADI (and Intel) is very interesting.
While a DSP processor, it possesses enough
general-purpose processor instruction support
to allow operating systems like uClinux to be
deployed. The ADI BlackFin is one such pro-
cessor.

Other embedded systems may be inherently
network-based, so a kernel in flash memory
might mount a root filesystem being served
via nfs (Network File System). An even more
network-centric device might request its kernel
image and root filesystems via dhcp (Dynamic
Host Configuration Protocol) and bootp. Note
that drivers for things like IDE and SCSI disk,
CD, and floppy support are all still present in
the uClinux kernel.

User Space

The contents of the root filesystem vary more
dramatically between embedded systems using
uClinux than between Linux workstations.

The uClinux distribution contains a root
filesystem which implements a small UNIX-
like server, with a console on the serial port,

a telnet daemon, a web server, nfs (Network
File System) client support, and a selection of
common UNIX tools.

A system such as an mp3 (MPEG layer 3 com-
pressed audio) CD player might not even have
a console. The kernel might contain only sup-
port for a CD drive, parallel I/O, and an audio
DAC. User space might consist only of an in-
terface program to drive buttons and LEDs, to
control the CD, and which could invoke one
other program; an MPEG audio player. Such
an application specific system would obviously
require much less memory than the full-fledged
uClinux distribution as it is shipped.

3 Development Under uClinux

Development Tools

Developing software for uClinux systems typ-
ically involves a cross-compiler toolchain built
from the familiar GNU compiler tools. Soft-
ware that builds under gcc (GNU C Compiler)
for x86 architectures, for example, often builds
without modification on any uClinux target.

Debugging a target via gdb (GNU debugger)
presents a debugging interface common to all
the platforms supported by gdb. The debug-
ging interface to a uClinux kernel on a target
depends on debugging support for that target.
If the target processor has hardware support for
debugging, such as IEEE’s JTAG or Motorola’s
BDM, gdb may connect non-intrusively to the
target to debug the kernel. If the processor
lacks such support, a gdb “stub” may be in-
corporated into the kernel. gdb communicates
with the stub via a serial port, or via Ethernet.

uClibc

uClibc, the C library used in uClinux, is a
smaller implementation than those which ship
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with most modern Linux distributions. The li-
brary has been designed to provide most of the
calls that UNIX-like C programs will use. If
an application requires a feature that is not im-
plemented in uClibc, the feature may be added
to uClibc, it may me linked in as a separate li-
brary, or it may be added to the application it-
self.

Differences Between uClinux And Linux

Considering that the absence of MMU sup-
port in uClinux constitutes a fundamental dif-
ference from mainstream Linux, surprisingly
little kernel and user space software is affected.
Developers familiar with Linux will notice lit-
tle difference working under uClinux. Embed-
ded systems developers will already be familiar
with some of the issues peculiar to uClinux.

Two differences between mainstream Linux
and uClinux are a consequence of the removal
of MMU support from uClinux. The lack of
both memory protection and of a virtual mem-
ory model are of importance to a developer
working in either kernel or user space. Certain
system calls to the kernel are also affected.

Memory Protection

One consequence of operating without mem-
ory protection is that an invalid pointer refer-
ence by even an unprivileged process may trig-
ger an address error, and potentially corrupt or
even shut down the system. Obviously code
running on such a system must be programmed
carefully and tested diligently to ensure robust-
ness and security.

Virtual Memory

There are three primary consequences of run-
ning Linux without virtual memory. One is
that processes, which are loaded by the ker-
nel, must be able to run independently of their

position in memory. One way to achieve this
is to “fix up” address references in a program
once it is loaded into RAM. The other is to
generate code that uses only relative address-
ing (referred to as PIC, or Position Independent
Code). uClinux supports both of these meth-
ods.

Another consequence is that memory alloca-
tion and deallocation occurs within a flat mem-
ory model. Very dynamic memory allocation
can result in fragmentation, which can starve
the system. One way to improve the robustness
of applications that perform dynamic memory
allocation is to replacemalloc() calls with re-
quests from a preallocated buffer pool.

Since virtual memory is not used in uClinux,
swapping pages in and out of memory is not
implemented, since it cannot be guaranteed
that the pages would be loaded to the same lo-
cation in RAM. In embedded systems it is also
unlikely that it would be acceptable to suspend
an application in order to use more RAM than
is physically available.

System Calls

The lack of memory management hardware on
uClinux target processors has meant that some
changes needed to be made to the Linux system
interface. Perhaps the greatest difference is the
absence of thefork() andbrk() system calls.

A call to fork() clones a process to create a
child. Under Linux,fork() is implemented us-
ing copy-on-write pages. Without an MMU,
uClinux cannot completely and reliably clone
a process, nor does it have access to copy-on-
write.

uClinux implementsvfork() in order to com-
pensate for the lack offork(). When a parent
process callsvfork() to create a child, both pro-
cesses share all their memory space including
the stack.vfork()then suspends the parent’s ex-
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ecution until the child process either callsexit()
or execve(). Note that multitasking is not oth-
erwise affected. It does, however, mean that
older-style network daemons that make exten-
sive use offork() must be modified. Since child
processes run in the same address space as their
parents, the behaviour of both processes may
require modification in particular situations.

Many modern programs rely on child pro-
cesses to perform basic tasks, allowing the sys-
tem to maintain an interactive “feel” even if the
processing load is quite heavy. Such programs
may require substantial reworking to perform
the same task under uClinux. If a key applica-
tion depends heavily on such structuring, then
it may be necessary to either re-create the ap-
plication, or an MMU-enabled processor may
also be needed.

A hypothetical, simple network daemon,
hyped, will illustrate the use offork(). hyped
always listens on a well-known network port
(or socket) for connections from a network
client. When the client connects,hypedgives
it new connection information (a new socket
number) and callsfork(). The child process
then accepts the client’s reconnection to the
new socket, freeing the parent to listen for new
connections.

uClinux has neither an autogrow stack nor
brk() and so user space programs must use the
mmap()command to allocate memory. For
convenience, our C library implementsmal-
loc() as a wrapper tommap(). There is a
compile-time option to set the stack size of a
program.

4 Brief Anatomy Of The uClinux
Kernel

This section describes the changes that were
made to the Linux kernel to allow it to run on

MMU-less processors.

Architecture-Generic Kernel Changes

The architecture-generic memory management
subsystem was modified to remove reliance on
MMU hardware by providing basic memory
management functions within the kernel soft-
ware itself. For those who are familiar with
uClinux, this is the role of the directory/mm-
nommuderived from and replacing the direc-
tory /mm. Several subsystems needed to be
modified, added, removed, or rewritten. Kernel
and user memory allocation and deallocation
routines had to be reimplemented. Support for
transparent swapping / paging was removed.
Program loaders which support PIC (Position
Independent Code) were added. A new binary
object code format, named “flat” was created,
which supports PIC and which has a very com-
pact header. Other program loaders, such as
that for ELF, were modified to support other
formats which, instead of using PIC, use abso-
lute references which it is the responsibility of
the kernel to “fix up” at run time. Each method
has advantages and disadvantages. Traditional
PIC is quick and compact but has a size re-
striction on some architectures. For example,
the 16-bit relative jump in Motorola 68k archi-
tectures limits PIC programs to 32K. The run-
time fix-up technique removes this size restric-
tion, but incurs overhead when the program is
loaded by the kernel.

Porting uClinux To New Platforms

The task of adding support for a new CPU ar-
chitecture in uClinux is similar to doing so in
Linux proper. Fortunately, there is a great deal
of code in Linux that can be ported with mi-
nor adaptations and reused in uClinux. Ma-
chine dependent startup code and header files
already exist in Linux for MMU versions of
processors in the ARM, Motorola 68k, MIPS,
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SPARC and other families. This code may be
adapted to support non-MMU versions of these
processors in uClinux.

Driver code, which already exists in Linux, is
often easily portable to run under uClinux. Is-
sues in porting such code may involve endian
issues or memory handling code, which as-
sumes the presence of MMU support.

5 The Future of uClinux

Numerous enhancements are in the works for
uClinux. The diversity of the innovations that
mainstream Linux receives from the commu-
nity pave a good path for the development of
uClinux. The uClinux developer community is
very active; enhancements and innovations are
frequently made.

Real-Time

Linux is now a platform for hard real-time
application development (that is, applications
with deterministic latency under varying pro-
cessor loads). The Linux kernel scheduler
already provides non-deterministic, or “soft”,
real-time, and systems such as RT-Linux and
RTAI (Real-Time Application Interface) up-
grade the Linux kernel to provide hard (deter-
ministic) real-time support. Real-time applica-
tions in Linux have access to the extensive re-
sources of the Linux kernel without sacrificing
hard real-time performance. Efforts are under-
way to provide the RTAI subsystem for use on
various MMU-less processors.

Adding DSP support or adding general purpose
processor support to a DSP

Processors like the ColdFire MCF5272 are pri-
marily general purpose processors with a RSIC
instruction set. Yet Motorola included limited
DSP functionality with a multiply and accu-

mulate DSP functions. This is an approach
of adding functionality into general purpose
processors. In this case the ColdFire proces-
sor can and does have uClinux support. Other
processors like the Analog Devices BlackFin
(MSA DSP), the processor is primarily a DSP
with added general purpose processor support.
uClinux is portable to the BlackFin and ex-
pected to be publicly available in the fall of
2002.

The attached paper“Exploiting the Compu-
tational Resources of a Programmable DSP
Micro-processor (Micro Signal Architecture
MSA) in the field of Multiple Target Tracking”
(Hussain et al 2001), is a technical represen-
tation of the computational requirements for a
multiple target acquisition system. Such a sys-
tem would require a DSP and would greatly
benefit from a UNIX like operating system af-
forded by uClinux. Commercial uses for such
a system would include traditional sonar/radar
devices allowing for affordable collision detec-
tion systems, for robots, and automobiles.

uClinux 2.4

uClinux 2.4, with support for Motorola Drag-
onBall and ColdFire, was released in January
of 2001. New ports, including MIPS, Hitachi
SH2, ARM, and SPARC, will be made to the
uClinux 2.4 tree, which is based on Linux 2.4.
but enhancements are also still being made to
the uClinux 2.0 tree. uClinux 2.4 will give de-
velopers access to many of the new features
added to Linux since 2.0, including support
for USB, IEEE Firewire, IrDA, and new net-
working features such as bandwidth allocation,
(a.k.a. QoS: Quality of Service) IP Tables, and
IPv6.

Since uClinux is Open Source, development
effort spent on uClinux will never be lost. En-
gineering professionals world-wide, are using
uClinux to create commercial products and a



Ottawa Linux Symposium 2002 135

significant portion of their work is contributed
back to the open source community.

**********
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Abstract: During the last few decades the im-
proved technology available for surveillance
systems has generated a great deal of interest
in algorithms capable of tracking large num-
ber of objects.. Typical sensor systems, such
as radar or sonar using information from one
or more sensors can obtain noisy information
data returns from true targets and other pos-
sible objects. The tracking problem requires
the processing of this data to produce accurate
estimates of the position and velocity of the
targets. There are two types of uncertainties
involved with the measurement data, first the
position inaccuracy, as the measurements are
corrupted by noise, and second the measure-
ment origin since there may be uncertainty as
to which measurement originates from which
target. These uncertainties lead to a data asso-
ciation problem and the tracking performance
depends not only on the measurement noise but
also upon the uncertainty in the measurement
origin. Therefore, in a multiple target environ-
ment extensive computation may be required
to establish the correspondence between mea-
surements and tracks every radar scan.

It is also true that tremendous advancement has
also been made in the computational capabili-
ties of a processing unit to deal with such de-
manding tasks. In this paper we present a sim-
ulated study of implementing a recursive mul-

tiple target tracking (MTT) algorithm using a
track splitting filter, study uses a MSA proces-
sor from Analog Devices Inc. (ADI) which is a
programmable Digital Signal Processor (DSP)
with the added functionality to realize many
of the programming advancements more nor-
mally associated with Micro-controllers. In ad-
dition, the study also explores the porting and
support of an embedded real time operating
system to such an architecture.

Keywords: DSP, RTAI, Kalman Filter, Target
Tracking, State Estimation, uClinux.

1. INTRODUCTION

In the ideal situation of tracking a single tar-
get, where one noisy measurement is obtained,
standard Kalman filter technique can be used at
each radar scan In the multi-target case, an un-
known number of measurements are received
at each radar scan and, assuming no false mea-
surements, each measurement has to be associ-
ated with an existing or new target tracking fil-
ter. When the targets are well apart from each
other forming a measurement prediction ellipse
around a track to associate the measurement
with the appropriate track is a standard tech-
nique [1]. When targets are near to each other,
more than one measurement may fall within
the prediction ellipse of a filter and prediction
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ellipses of different filters may interact. The
number of measurements accepted by a filter
will therefore be quite sensitive in this situation
to the accuracy of the prediction ellipse. Sev-
eral approaches may be used for this situation
[2, 3]. One such approach is called the Track
Splitting Filter algorithm. In this algorithm, if
n measurements occur inside a prediction el-
lipse, then the filter branches or splits inton
tracking filters.

This situation, which results in an increased
number of filters, requires more processing
power and in some cases the system may satu-
rate. A mechanism for restricting excess tracks
splitting is required, since eventually this pro-
cess may result in more than one filter tracking
the same target. The first criterion is the sup-
port function, which uses the likelihood func-
tion of a track as the pruning criterion. The
second, similarity criterion, which uses a dis-
tance threshold to prune similar filter tracking
the same target [4]. The flow chart shown in
Fig. 1 depicts the actual processing sequence
of a recursive MTT algorithm.

2. TARGET MOTION MODEL AND
STATE ESTIMATION

The motion of a target being tracked is as-
sumed to be approximately linear and modeled
by the following equations

xn+1 = Φxn + Γωn (1)

zn+1 = Hxn+1 + νn+1 (2)

where the state vector

xT
n+1 = (x x• y y•)n+1 (3)

is a four dimensional vector,ωn is the two di-
mensional disturbance vector,zn+1 is the two
dimensional measurement vector andνn+1 is

the two dimensional measurement error vec-
tor. AlsoΦ is the assumed (4x4) state transition
matrix,Γ is the excitation matrix (4x2) and H is
the measurement matrix (2x4) and are defined
respectively by,

Φ =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 (4)

Γ =


∆t2/2 0

∆t 0
0 ∆t2/2
0 ∆t

 (5)

H =

[
1 0 0 0
0 0 1 0

]
(6)

Here ∆t is the sampling interval and corre-
sponds to the time interval (scan interval) as-
sumed constant, at which radar measurement
data is received. The system noise sequence
ωn is a two dimensional Gaussian sequence for
which

E(ωn) = 0 (7)

where E is the expectation operator. The co-
variance ofωn is

E(ωnω
T
n ) = Qnδnm (8)

whereQn is a positive semi-definite (2x2) di-
agonal matrix andδnm is the Kronecker delta
defined as

δnm =
0 n 6= m
1 n = m

The measurement noise sequenceνn is a two
dimensional zero mean Gaussian white se-
quence with a covariance of
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E(νn νT
n) = Rnδnm (9)

whereRn is a positive semi-definite symmetric
(2x2) matrix given by

Rn =

[
σ2

x σxy

σxy σ2
y

]
(10)

σ2
x andσ2

y are the variances in the error of the
x, y position measurements, andσxy is the co-
variance between the x and y measurements er-
rors. It is assumed that the measurement noise
sequence and the system noise sequence are in-
dependent of each other, that is

E(νn ωT
n) = 0 (11)

The initial statex0 is also assumed independent
of theνn andωn sequences that is

E(x0 ωT n) = 0 (12)

E(x0 νT n) = 0 (13)

x0 is a four dimensional random vector with
meanE(x0) = x0/0 and a (4x4) positive semi-
definite covariance matrix defined by

P0 = E[(x0 − x−
0)(x0 − x−

0)
T] (14)

wherex−
0 is the mean of the initial statex0.

The Kalman filter is an optimal filter as it min-
imizes the mean squared error between the esti-
mated state and the true state (actual) provided
the target dynamics are correctly modeled.

The standard Kalman filter equations for esti-
mating the position and velocity of the target
motion described by eqns. (1) and (2) are

Figure 1: Recursive MTT

x∧
n+1/n = Φx∧

n (15)

x∧
n+1 = x∧

n+1/n + Kn+1 νn+1 (16)

Kn+1 = Pn+1/nH
TB−1

n+1 (17)

Pn+1/n = ΦPnΦT + ΓQF
nΓT (18)

Bn+1 = Rn+1 + HPn+1/nH
T (19)
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Pn+1 = (I−Kn+1H)Pn+1/n (20)

νn+1 = zn+1 −Hx∧
n+1/n (21)

wherex∧
n+1/n, x∧

n+1, Kn+1, Pn+1/n, Bn+1, and
Pn+1 are the predicted state, estimated state,
the Kalman gain matrix, the prediction covari-
ance matrix, the covariance matrix of innova-
tion, and the covariance matrix of estimation
respectively.QF

n is the covariance of the mea-
surement noise assumed by the filter which is
normally taken equal toQn. In a practical sit-
uation, however, the value of this covariance
is not known so the choice should be such that
the filter can adequately track any possible mo-
tion of the target. To start the computation an
initial value is chosen forP0. Even if this is
a diagonal matrix, then clearly from the above
equations the covariance matricesBn+1, Pn+1

andPn+1/n for a given n, do not remain diago-
nal whenRn+1 is not diagonal.

3. MSA

The MSA processor has five independent,
full functional computation units: Two
Arithmetic/Logic Units (ALU), Two Multi-
plier/Accumulator Units and a Barrel Shifter,
Fig. 2 shows the MSA. The processor units
can process 8-bit, 16 bit, 32 bit and 40 bit data,
depending upon the type of function being per-
formed.

• Data Address Generator (DAG)

The Micro Signal Architecture processor base
is a dual data path, modified Harvard Architec-
ture. The two DAG support the sophisticated
operations required in DSP algorithms, such
as reversed addressing, circular buffering. In
addition, auto increment, auto decrement and
base plus immediate offset addressing are pos-
sible. These units update dedicated register

files, the DAG register file and the pointer reg-
ister file. In general, DSP mathematical opera-
tions involving circular buffers uses the DAG
register file. The DAG register file contains
four sets of 32 bit Index, Length, Modify and
Base registers, for a total of sixteen 32 bit regis-
ters. With these two independent DAGs, MSA
can generate two 32 bit addresses in a single
cycle, fetching or storing two 32 bit or four 16
bit operands. The pointer register file is used
for more general operations. It has six gen-
eral purpose 32 bit addressing registers and two
dedicated 32 bit Stack Pointers for stack ma-
nipulation. The Micro Signal Architecture pro-
cessor can access a unified 4 GB linear address
space.

Figure 2: MSA

• Memory Management Unit (MMU)

The memory Management unit (MMU) pro-
vides protection to individual tasks that may
be operating on the Micro Signal Architec-
ture Processor and may protect system Mem-
ory Mapped Registers from unintended access.
The architecture includes two Memory Man-
agement Units: one for instruction memory
and the other one for data memory. These
MMUs control accesses to caches, on chip
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SRAM and off chip memories. The Micro Sig-
nal Architecture Processor supports multiple
pages of memory, in four page sizes: 1 K byte,
4 K byte, 1 M byte, 4 M byte. The instruction
MMU may designate as many as sixteen dis-
tinct memory pages, each with a separate set
of criteria governing its cache and protection
properties. The Data MMU may designate a
further sixteen memory pages.

The Micro Signal Architecture Processor uses
a modified Harvard Architecture in combi-
nation with a hierarchical memory structure.
Memory closest to the Core are referred to as
level 1 (L1), and generally have a single cycle,
zero latency access by the core. Other mem-
ories on chip are referred to as level 2 (L2)
and may have multiple-cycle access or latency.
Off-chip memories are usually seen at the same
hierarchical level as the on chip L2 memory. At
the L1 level, the instruction memory holds in-
structions only and the two data memories hold
only data. At L2 level a single unified mem-
ory space exists, holding both instructions and
data. Also L1 instruction memory and L1 data
memories may be configured as either SRAM
or caches. The Micro Signal Architecture Pro-
cessor has a dedicated scratch data memory
that is always configured as an additional L1
data SRAM. Scratchpad memory is designed
to store stack and local variables.

• Program Sequencer

The program sequencer is used to get instruc-
tions from the L1 instruction memory and de-
termine if these instructions are 16 bit ‘Con-
trol’ instructions, 32 bit ‘DSP’ instructions or
64 bit ‘DSP multi-function’ instruction. The
sequencer manages the control of data through
the processor core, insuring that the pipe line is
fully interlocked and that zero overhead loop-
ing is correctly managed.

• Event Controller, Timer and JTAG Inter-
face

The event controller supports nested and priori-
tized events. The controller has five basic types
of events: Emulation, Reset, Non-maskable In-
terrupt (NMI), Exception and Interrupts. The
programmable interval timer is used to gener-
ate periodic interrupts. The 8-bit pre-scale reg-
ister can be used to set the number of cycles
for decrementing a 32 bit counter register. The
number of clock cycles per timer decrement
may be one to 256. An interrupt is generated
when this count register reaches zero. The reg-
ister may be automatically reloaded from a 16
bit period register and the count resumed.

The JTAG interface provides the method by
which the Micro Signal Architecture emula-
tions interact with the processor core. The em-
ulation unit contains an instruction register and
data register that is accessed through the JTAG
port. These two registers are used to control
and interrogate the processor during emulation
mode. Additionally the trace unit can be used
to store the last 16 non-sequential PC values,
which can be used to reconstruct the processor
sequence.

• Performance Monitor Unit (PMU)

During the operation of the Micro Signal Ar-
chitecture Processor, the performance moni-
tor unit can be used to review the efficiency
of certain operations, e.g., cache misses, and
provide the information for code optimization.
The performance unit consists of six instruc-
tion address watch points and two data address
watch points. These address watch points may
be combined in pairs to create address range
watch points, which additionally may be asso-
ciated with various counters for evaluating the
performance and profiling the processor code.
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• Instruction Set

The Micro Signal Architecture Processor as-
sembly level instruction set employs an alge-
braic syntax, presenting code to the program-
mer that is very readable even at the assembly
level. The instructions have been specifically
tuned to provide a very flexible, yet densely
encoded instruction set that will compile to a
very small final memory size. The instruction
set also provides fully featured multi-function
instructions that allow the programmer to use
any of the Micro Signal Architecture Processor
core resources in a single instruction. Coupled
with a variety of enhanced features more often
seen on micro-controllers, this instruction set is
very efficient when compiling code for C and
C++ languages.

• Modes of Operation

The Micro Signal Architecture Processor has
five distinct modes of operations: User, Su-
pervisor, Emulation, Idle and Reset. User
mode has restricted access to certain system
resources, thus providing a protected soft-
ware environment. Supervisor and Emula-
tion modes have unrestricted access to core re-
sources. Idle and Reset modes prevent soft-
ware execution, so resource access is not an
issue.

4. DSP PROGRAMMING MODEL

The instruction set for the Micro Signal Archi-
tecture processor provides two types of instruc-
tions: one primarily for micro-controller and
general tasks, and those used for DSP oriented
computation. Specific Micro Signal Architec-
ture instructions are tuned for their correspond-
ing task, but instructions can easily be com-
bined. Table 1 shows the resources available to
the DSP processing. DSP instructions usually
read two 32 bit operands from the register file,

compute results and either store results back to
the register file or accumulate them in the two
accumulators as shown in Fig. 3.

Resources Description

Data Exe-
cution Unit
0

• 16 x 16 bit MAC unit (MAC
0)
• 40 bit accumulator (a0)
• 40 bit shifter

Data Exe-
cution Unit
1

• 16 x 16 bit MAC unit (MAC
1)
• 40 bit accumulator (a1)

Data Regis-
ter File

8, 32 bit wide, accessible as
register halves

Table 1: Execution Units and Register File

Figure 3: Register Files and Execution Unit

The register file delivers two 32 bit operands
to MAC units and accepts two 32 bit results
in return. In addition, the register file delivers
two 32 bit values to the memory system or it
receives two 32 bit values from memory. To
perform multiplication, each MAC unit select
two 16 bit operands from the two 32 bit words
that it receives from the register file as shown
in Fig. 4.

It also means that each MAC unit uses
four possible combinations of input operands.
Therefore, when both MAC units operate in
parallel, sixteen possible combinations of 16
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Figure 4: Operand Selection

bit input operand results. Multiply and accu-
mulate operations can be performed on four
combinations of input operands, as shown in
Fig. 5, for MAC 0. Assembly instruction ex-
ample of dual MAC operation.

A0 += R1.H*R2.L, A0
+=R1.L*R2.L;

In addition to performing a multiply accumu-
late, the multiplier results may optionally be
written to the register file, independently of
each other. In addition to multiply accumulate,
in which the contents of the accumulator are
effected, MSA also has multiply instructions
which does not effect the contents of the ac-
cumulator.

The ALUs have a different mechanism than
MACs, ALU 0 as the primary source of arith-
metic and logic operation, it can perform the
following operations:

• 32 bit operation on two 32 bit inputs pro-
ducing one output.

• One 16 bit operation on two 16 bit inputs
residing in arbitrary register halves pro-
ducing one 16 bit output.

• Two 16 bit (dual) operation on four 16 bit
inputs (in two registers). Dual 16 bit ALU
operations can perform four combinations

Figure 5: MAC 0 Possible Choices

of addition and subtraction on the input
operands as shown in Fig. 6.

Figure 6: Dual 16-bit ALU Operations

The result from the upper halves are placed into
the upper half of the destination register and
lower halves to the lower half of the destina-
tion register. It also supports the cross option,
in which case the order of the two 16 bit result
is inverted. In addition to the operations sup-
ported on the primary computation unit ALU
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0, a small number of instructions support the
secondary arithmetic unit ALU 1 in parallel
with ALU 0. The Micro Signal Architecture
core does not support full dual ALU function-
ality, because the maximum number of input
operands that may be transferred from the reg-
ister file to the execution units is limited to two
32 bit operands. Therefore, parallel ALU oper-
ations on ALU 0 and ALU 1 can be performed
only on the same two 32 bit words.

5. IMPLEMENTATION

For the implementation of the target tracking
algorithm employing a track splitting filter, a
sensor was simulated in two dimensions to
generate data for different scenarios. The sim-
ulating program is capable of generating up to
20 targets in a predefined scan window, two
versions of the program can be used: one, in
which initial position, heading, noise and other
parameters are taken as default, in the second
case all this data can be entered by the pro-
grammer. The generated data basically pro-
vides the following input information corre-
sponding to each individual target.

x y σ2
x σ2

y σxy Flag CID

Where x, y is the noisy position measurements,
σ2

x, σ2
y andσxy are the measurement noise co-

variance values, Flag is an index used to see if
a measurement has been used by the filter and
CID is another index color ID used for iden-
tification of each tracking filter/measurement.
Basically, first five variables will be available
in real time to the tracking algorithm through
an interface, in an actual implementation. Here
the input data is given to the algorithm through
hand coded assembly instructions.

6. RESULT AND CONCLUSION

For the evaluation of our algorithm, a simula-
tor for MSA hardware architecture was writ-
ten as the actual silicon for MSA is expected

in September, 2001. For our evaluation a two
crossing target scenario was used, the sensor
was moving parallel to the target, towards the
targets at a very high speed compared with the
targets. The two targets at start up were ap-
proximately 30 Km from the sensor and cross
each other at 30th scan. After successful initial-
ization of two targets, tracking proceeded with
each tracking filter accepting only one mea-
surement as they are well apart. Track split-
ting (branching) starts at the 24th scan, maxi-
mum number of tracks occur at 31st scan. At
38th scan all the redundant tracks are pruned
and normal tracking of two targets resume. It
should be noted here that lots of detail about
tracking is not revealed [5][6] as the actual em-
phasis is about utilizing the architecture advan-
tages of the processor.

The main concern was to implement the com-
putationally expensive algorithm in such a way
to take the advantages of the DSP instruction
set for MSA also, one of the reason of selecting
Blackfin was its DSP assembly language alge-
braic syntax which is probably ideal for such
an application. As pointed out earlier, the algo-
rithm is hand coded in assembly in order to ex-
ploit the DSP. Where ever necessary C is used
for the actual implementation. As the archi-
tecture supports richly encoded instruction set
for such a demanding task, in some cases mul-
tiple operations are performed with less num-
ber of cycles, this obviously improves real time
processing. Here, we just present one particu-
lar sequence where the implementation helps
in achieving our mission of exploiting its ar-
chitecture. At each radar scan incoming mea-
surements (returns) are to be tested with each
established track (path) for a possible match.
The following computation sequence that in-
cludes multiplication of three matrices of di-
mensions [(1x2)*(2x2)*(2x1)] is to be calcu-
lated and then compared with a known value to
find out if a possible match exits. Therefore,
each track should accept the true measurement
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from the same target, although this situation
changes at the time of multiple measurements
existing in the same vicinity. In our case when
the target cross each other. Now to evaluate
this expression

d2
n = νn

TB−1
nνn

supposeνT
n of dimension (1x2) is stored in data

register R0 such that:

R0.L = νn
T(0, 0) R0.H = νn

T(0, 1)

(0, 0) represents first row, first column element
of the matrix and so on. SimilarlyB−1

n is stored
in two registers as

R2.L = B−1
n (0, 0) R2.H = B−1

n (0, 1)

R3.L = B−1
n (1, 0) R3.H = B−1

n (1, 1)

By using MSA instruction set we can perform
this task in just four steps:

A0 = R0.L ∗ R2.L
A1 = R0.L ∗ R2.L

]
(Parallel Op)

R4.L = A0+ = R0.H ∗ R3.L
R4.H = A1+ = R0.H ∗ R3.H

]
(Parallel Op)

A0 = R4.L ∗ R0.L
A1 = R4.H ∗ R0.H

]
(Parallel Op)

d2
n = A0 + A1

The above calculation is just a replica of
calculations performed repeatedly in a recur-
sive filter, which basically suite such DSP
architecture. Because DSP processors are
characterized by tight code loop and in-fact
data flow driven. Therefore, this type of
loop/calculations can be implemented very
efficiently. Actually, the number of times
d2

n is evaluated to find a probable track-
measurement pair increases exponentially with
increasing number of track splitting. If it is
possible to do such calculations quickly the ef-
ficiency will increase in terms of time. The
simulated study carried out here has logically
determined the advantage of using MSA core
for such an application. The simulated study
after running a number of scenarios and careful
evaluation reveals that MSA may provide 20 to
30% improved performance in processing for
such a computationally intensive application.
Although, no bench mark evaluation criterion
is used for such evaluation.

The selection of an operating system suitable
for implementation in a target tracking sys-
tem presents many challenges. The main chal-
lenge is selecting a processor and complimen-
tary operating system able to handle the com-
putationally expensive load. The combination
of Blackfin architecture and Linux operating
system meets this challenge with Linux Ker-
nel. The second being the ability of the op-
erating system to respond in a deterministic
manner. This can be achieved by operating
system that are designed to operate in Real
Time. Linux was selected in this study as
its characteristic performance achieves close to
a predictable real time response under known
loads. However, Linux on its own is not a suit-
able Real Time Operating System (RTOS) and
some characterize Linux’s response time as
“Soft Real Time”, the observed jitter is larger
than the jitter associated with running Linux
under the control of a real time scheduler such
as found in “Real Time Executive in C for DSP
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(RTXCDSP)” or the Real Time Application In-
terface (RTAI) [11].

Recently, efforts are underway to provide the
RTAI subsystems for use on various MMU-less
processors. If one is to develop an embedded
system using such a DSP (MSA) for real time
applications, uClinux with uClibc may provide
an excellent platform for such real time target
tracking implementation. The work is already
underway for porting uClinux and uClibc for
this processor (MSA).
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