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Abstract

Security-enhanced Linux incorporates a strong, flex-
ible mandatory access control architecture into
Linux. It provides a mechanism to enforce the sep-
aration of information based on confidentiality and
integrity requirements. This allows threats of tam-
pering and bypassing of application security mech-
anisms to be addressed and enables the confine-
ment of damage that can be caused by malicious
or flawed applications. Using the system’s type
enforcement and role-based access control abstrac-
tions, it is possible to configure the system to meet a
wide range of security needs. This paper describes
how Security-enhanced Linux was used to meet a
number of general-purpose system security objec-
tives.

1 Introduction

Operating system security is fundamental to the se-
curity of every computing system because operating
systems are a critical point of failure for the entire
system. Unfortunately, attempts to secure com-
puter systems continue to be based on the flawed
assumption that adequate security can be provided
in applications with the existing security mecha-
nisms of mainstream operating systems. The reality
is that secure applications require secure operating
systems, and any effort to provide system security
which ignores this premise is doomed to fail. The
integration of Mandatory Access Control (MAC) is
a necessary step in the complex task of building a
completely secure operating system. It would signif-
icantly improve system security and enable protec-
tion from many vulnerabilities that plague systems
today [14].

A general purpose MAC architecture needs the abil-
ity to enforce an administratively-set security pol-

icy over all subjects and objects in the system,
basing decisions on labels containing a variety of
security-relevant information. When properly im-
plemented, it enables a system to adequately de-
fend itself and offers critical support for applica-
tion security by protecting against the tampering
with, and bypassing of, secured applications. It al-
lows critical processing pipelines to be established
and guaranteed. MAC provides strong separation
of applications that permits the safe execution of
untrustworthy applications. Its ability to limit the
privileges associated with executing processes lim-
its the scope of potential damage that can result
from the exploitation of vulnerabilities in applica-
tions and system services. MAC enables informa-
tion to be protected from legitimate users with lim-
ited authorization as well as from authorized users
who have unwittingly executed malicious applica-
tions. The ability for the system to do these types
of things is necessary before the construction of se-
cure systems will be possible.

It is impossible to obtain the benefits derived from
MAC with existing Discretionary Access Controls
(DAC) like those currently found in Unix systems.
It is not adequate to base access decisions only on
user identity and ownership. It must be possible to
consider additional security-relevant criteria such as
the role of the user, the function and trustworthiness
of programs, or the sensitivity or integrity of the
data. As long as users have complete discretion over
objects, it will not be possible to control data flows
or enforce a system-wide security policy.

Protection against malicious code is not possible us-
ing existing DAC mechanisms because every pro-
gram executed by the user inherits all of the privi-
leges associated with that user. Malicious programs
are free to change the permissions associated with
all of the user’s objects, as well as disclose or al-
ter the objects themselves. This problem is ex-
acerbated by the fact that only two categories of
users are supported, completely trusted administra-



tors and completely untrusted ordinary users. Many
system services and privileged programs must run
with coarse-grained privileges that far exceed their
requirements. A flaw in any one of these programs
can be exploited to obtain complete system access.

Traditional MAC mechanisms have typically been
too limiting to serve as a general security solu-
tion. They have tended to be too tightly coupled
to a multi-level security (MLS) [5] policy which
bases its access decisions on clearances for subjects
and classifications for objects. This traditional ap-
proach is too limiting to meet many security require-
ments [6, 7, 8]. It provides poor support for data and
application integrity, separation of duty, and least
privilege requirements. It requires special trusted
subjects that act outside of the access control model.
It fails to tightly control the relationship between a
subject and the code it executes. Thus, traditional
MAC systems have limited ability to offer protec-
tion based on the function and trustworthiness of
the code, to correctly manage permissions required
for execution, and to minimize the likelihood of ma-
licious code execution.

The Flask Architecture [17] was created as an at-
tempt to serve as a general architecture for MAC.
An important design goal was to provide flexible
support for security policies, since no single MAC
policy model is likely to satisfy everyone’s security
requirements. This goal was achieved by cleanly
separating the security policy logic from the enforce-
ment mechanism. Care was taken to ensure that
well-defined policy interfaces were specified that
could support the widest set of useful security poli-
cies. The architecture provides support for policy
changes and allows security policies to be expressed
naturally in terms that make sense to the particu-
lar security policy that is implemented. In addition,
with the Flask architecture, the enforcement of the
security policy can be transparent to applications
because it is possible to define default security be-
havior.

Security-Enhanced Linux [13, 12], or SELinux for
short, is an application of the Flask architecture in
the Linux operating system. MAC has been inte-
grated into the major subsystems of the Linux ker-
nel, including fine-grained controls for operations
on processes, files, and sockets. The security pol-
icy decision logic has been encapsulated into a new
kernel component called the Security Server (SS)
which makes labeling, access and polyinstantiation
decisions in response to policy-independent requests

that have been placed throughout the kernel. This
architecture enables the kernel to enforce policy de-
cisions without needing access to the details of the
policy.

The SS implemented for SELinux was designed
with a particular model of MAC selected to ad-
dress the limitations of traditional MAC implemen-
tations. Because of the flexibility of the Flask ar-
chitecture, this model is easily modified, or even re-
placed, to support other models as well. In general,
this will not be necessary because the SS released
with SELinux is capable of supporting many secu-
rity policies that meet a wide variety of security
objectives. It achieves significant policy flexibility
using configuration files to define security policies
that are easily tailored to meet specific installation
needs.

The remainder of this paper is a discussion of how
SELinux with its current SS implementation can be
used to dramatically increase the level of security
possible in a Linux system. It begins with a de-
scription of the model of security that the current
SS implements. It is then shown how SELinux was
used to meet some general security objectives. The
paper ends with a short discussion of related work
and some concluding remarks.

2 Security Server

The Flask architecture is sufficiently general to sup-
port many models of mandatory access control. A
particular model must be chosen for every imple-
mentation of the security server. Once selected, a
security server is constructed that makes all security
relevant decisions in the context of that model. The
security server is cleanly separated from the rest of
the kernel, hidden behind a well-defined interface.
This section describes the security server that was
implemented for SELinux.

In choosing the security model for a security server
implementation, care should be taken to ensure that
it is sufficiently expressive to meet whatever security
objectives are expected. The flexibility of the Flask
architecture allows the security server to be mod-
ified, or even replaced, to alter the supported se-
curity model to meet additional requirements. The
complete encapsulation of the security policy logic
within the security server makes this possible with-



out any impact on the rest of the system.

The content and format of labels used in the sys-
tem depend on the particular security model im-
plemented by the security server. Security deci-
sions within the security server are based on security
contexts which represent security labels. A secu-
rity context is a policy independent data type that
can be handled by different parts of the system but
should only be interpreted by the security server.
It contains all of the security attributes associated
with a particular labeled object that are relevant to
the policy decision logic.

Security contexts are usually not bound directly to
objects. A second policy-independent data type
called a security identifier (SID) is bound to each
object that requires a label. SIDs are nonglobal and
nonpersistent opaque objects that are mapped to se-
curity contexts. This mapping is created at run time
and maintained by the security server. When an ob-
ject is created, the security server decides which SID
to use as a label. SIDs associated with objects are
passed into the security server and used as the basis
for security decisions.

The mandatory access controls of SELinux are im-
plemented as permission checks that have been in-
serted at control points throughout the Linux ker-
nel. Approximately 140 fine-grained permissions,
grouped into 28 object classes, have been defined
to allow the control of nearly every system oper-
ation. Examples of permissions are the transition
and signal permissions in the process class or create
and write permissions in the file class. Permission
checks are made between a source SID and a target
SID for a particular permission in some object class.
Usually, but not always, these are the SIDs associ-
ated with a calling process and some object, like a
file, that is being accessed. To respond to permis-
sion checks, the security server’s policy logic uses the
security relevant attributes contained in the security
contexts associated with the source and target SIDs
to determine if a permission can be granted.

2.1 Security Server Model of SELinux

The implementation of the example security server
for SELinux required that a concrete security model
be selected. A combination of Identity-based Ac-
cess Control (IBAC), Role-based Access Control
(RBAC), and Type Enforcement (TE) was chosen.

As previously mentioned, SELinux does not depend
on this model; it is straightforward to replace it with
some other choice. It was chosen as the example
because it is sufficiently general to support many
security objectives found in real-world security.

The SELinux security server maintains security con-
texts with three relevant security attributes, an
identity, a role, and a type. It determines which
combinations of values for these attributes can be
combined into security contexts. It uses each com-
ponent of the security context to compute a portion
of the access decisions.

There is an identity associated with every process on
the system. Changes to it are rigorously controlled
and the policy configuration only allows certain pro-
grams to change the identity (currently login and
crond). When a user logs on and presents his cre-
dentials, the identity portion of the security context
related to his login shell will reflect the user’s real
identity. SELinux identities are orthogonal to Linux
UIDs. Except when specified in the policy, when-
ever the UID of a process is changed, its SELinux
identity remains unchanged; when a new program is
executed, the identity component will be preserved.
In this way, all access control decisions can be based
the correct identity.

The actions of any particular user are restricted by
the RBAC policy. Users are assigned a set of roles
that they may assume. The transition between roles
is controlled by the policy. Although not strictly
necessary, the security policy has been configured
to limit role transitions to occur only as a result of
running programs that require user authentication.
This was done to ensure that roles changes can only
occur with explicit user consent and not from exe-
cuting some malicious program.

Roles are used to express allowable user actions.
The RBAC policy used in SELinux differs from
that described in [10] in that it defines allowable
user actions for a particular role using the TE pol-
icy. Whereas a typical RBAC policy would directly
specify permissions granted to roles, the SELinux
RBAC policy specifies domains that can be entered
by roles, and defers the assignment of permissions to
the TE configuration. Although this form of RBAC
does not offer additional security over a strict TE
policy, it does allow the TE policy to be more easily
managed using the higher-level concept of roles.

The TE policy is used to express the fine-grained



access controls. Each object in the system is as-
signed a type. An access matrix is defined where
each element of the matrix determines the allow-
able accesses between a pair of types. In SELinux,
the accesses are expressed in terms of permissions
granted for each subject and object class that were
defined for the kernel control points. All permis-
sions must be explicitly granted.

This form of TE differs from that defined in [6] in
that there is no distinction made between types and
domains. Domains are treated just as any other
type. Domains are simply types assigned to pro-
cesses. Because of this, types used as domains can
also be used as a type of a related object, e.g. the
type of its procfs entries. The term domain is of-
ten still used for convenience even though the secu-
rity server does not internally distinguish them from
types. By reducing domains and types to a single
type abstraction, a single table can be used to ex-
press the TE policy based on type pairs rather than
separate tables for subject interactions and object
accesses. This also allows inter-object relationships
to be defined in the policy.

This form of TE is also distinct in that the permis-
sions are grouped by object class to facilitate ex-
pressing a matrix where so many more permissions
are defined than typically is the case. The class con-
cept allows permissions to be defined for each kind
of object based on the services for that object, and
it allows the policy to distinguish different kinds of
objects, e.g. granting different permissions to a de-
vice file than to a regular file or to a raw socket than
to a TCP socket. This enables SELinux to provide
finer-grained permissions than what is typically ex-
pected when using TE.

TE offers many benefits over the traditional ap-
proach to MAC. The TE access matrix provides
a clean separation of the policy and enforcement
mechanisms. It is capable of supporting many poli-
cies. It is useful for expressing integrity, separation,
containment, and invocation policies. No trusted
subjects that can violate the policy are necessary.
Because every process can be assigned a domain, ev-
ery process can be controlled using exactly the same
mechanism. Fine-grained permissions can be as-
signed to programs limiting privileged programs to
the minimal permissions required to complete their
task. Lastly, TE allows the relationship between a
subject and its executable to be tightly controlled,
enabling protection based on the function and trust-
worthiness of code and offering protection against

the execution of malicious code.

2.2 Configuring Security Policies

The specific policy that is enforced by the kernel
is dictated by security policy configuration files.
These text-based configuration files allow the secu-
rity server implementation to support many secu-
rity policies. They account for a significant part
of security policy flexibility possible with SELinux.
Once a security policy specification is completed, it
is straightforward to customize that policy to meet
the specific needs of different installations. It is pos-
sible to maintain different security policies that ad-
dress completely different security objectives with
just one base system.

The configuration files are written using a simple
language developed for the security server. The con-
figuration is checked and compiled into a binary rep-
resentation that is loaded into the security server at
boot time. It may also be reloaded at runtime as
controlled by the policy.

The TE configuration file defines an extensible set
of types. Using the allow statement, allowable per-
missions between pairs of types are specified for each
object class.

allow type_1 type_2:class { perm_1 ... perm_n };

The TE configuration file defines automatic transi-
tions between types when programs of certain types
are executed. Such transitions ensure that sys-
tem processes and certain programs are placed into
their own separate domains automatically when ex-
ecuted. It also defines default labels for files created
by programs of certain types in certain types of di-
rectories to ensure that files are created with the
right types. Both are done using the type transition
statement.

type_transition type_1 type_2: file

default_file_type;

type_transition type_1 type_2: process

default_process_domain;

The RBAC configuration file defines an extensible
set of roles. Each process has an associated role.



The configuration file specifies the set of types that
may be entered by processes executing in a given
role. The role statement is used to define the roles.

role rolename types { type_1 ... type_n };

As users execute programs, transitions to other roles
may, according to the policy configuration, auto-
matically occur to support changes in privilege. A
role transition rule specifies the default role of a
transformed process based on its prior role and the
type of the program executable. If no rule is speci-
fied, then the default role of a process is the same as
its role prior to the execve call. The role transition
statement is used to define the roles.

role_transition current_role program_type new_role;

Although the language allows role transitions to oc-
cur on program execution, the SELinux configura-
tion never uses this functionality. Instead it uses
domain transitions for changes in privileges during
a session. Roles are only allowed to change on login
or by executing the newrole program which causes
a user authentication. Unlike the TE policy, the
RBAC policy has no entrypoint controls to control
the transition into roles. Care must be taken when
granting this capability. Role changes tend to in-
volve significant changes in privileges (e.g user be-
coming system administrator) whereas domain tran-
sitions tend to be finer-grained changes.

The IBAC configuration file defines each user recog-
nized by the system security policy. Each user has
a set of roles that may be entered by processes with
the user’s identity. This is specified with the user
statement.

user username roles { role_1 ... role_n };

There are two other configuration files available to
further specify a security policy. They are the as-
sert.te and constraints files. The first allows the
specification of TE assertions that must hold true
for the expressed policy to be valid. The second
uses boolean expressions to express restrictions on
users or roles. Both are useful tools to construct
security policies.

Lastly, the operation of SELinux depends not only
on the security policy configuration but also on the

labels of objects in the file system. New objects are
labeled when they are created. When the object
is moved onto persistent storage, a persistent SID
(PSID) is stored with that object. The PSID rep-
resents a security context, and a mapping between
them is stored within the file system. PSIDs are
mapped into SIDs when the kernel accesses the ob-
ject. See [13, 17] for a more complete discussion on
PSIDS.

When existing file systems are brought into
SELinux, labels must be assigned. The file contexts
configuration file specifies security contexts for files
based on pathname regular expressions. The setfiles
utility program reads this configuration and sets the
security contexts on each file accordingly. When set-
files is run, the system stores the proper PSID with
each file and updates the security context mapping.
In this way, the security policy can depend on the
file system labels.

3 Meeting Security Objectives

The SELinux release includes an example of a
general-purpose security policy configuration de-
signed to meet a number of security objectives as
an example of how a system may be secured [16].
The example RBAC configuration is very simple.
All system processes run in the system r role. Two
roles are currently defined for users, user r for ordi-
nary users and sysadm r for system administrators.

Most of the policy is specified through the exam-
ple TE configuration. Separate domains are de-
fined for various system processes and authorized
for the system r role. Each user role has an asso-
ciated initial login domain, the user t domain for
the user r role and the sysadm t domain for the
sysadm r role. This initial login domain is associ-
ated with the user’s initial login shell. As the user
executes programs, domain transitions occur auto-
matically as needed to change privileges. Different
sets of domains are authorized for each of the user
roles.

The rest of this section describes how the TE con-
figuration meets a specific set of security objectives.
It provides and explains detailed examples of the
configuration to address each objective. In some
cases, macros in the actual configuration have been
expanded for the excerpts in this section to reveal



greater detail about the configuration. Addition-
ally, in some cases, the full expansion of a macro
has been pruned for brevity.

3.1 Limiting Raw Access to Data

Access controls for individual processes and files are
of little use if an attacker can directly access raw
data. Hence, the policy configuration must carefully
limit raw access to data. The example configuration
defines a set of types for objects that can be used
to access raw data. Access to these types is only
granted to a small set of privileged domains, and
entry to these domains is carefully controlled.

Since fsck and related utilities must access the raw
disk, a fsadm t domain is defined for such utilities.
A fsadm exec t type is assigned to the program files
for these utilities. The following excerpt shows a
portion of the configuration relevant to this domain:

allow fsadm_t fsadm_exec_t:process

{ entrypoint execute };

allow fsadm_t fixed_disk_device_t:blk_file

{ read write };

allow initrc_t fsadm_t:process transition;

allow sysadm_t fsadm_t:process transition;

The first statement in this excerpt allows the
fsadm t domain to be entered by executing a pro-
gram labeled with the fsadm exec t type. The
second statement allows the fsadm t domain to
read and write block special files with the
fixed disk device t type. The third statement allows
the rc scripts to transition to this domain (e.g. so
that fsck can be run automatically during initial-
ization). The last statement allows an authorized
system administrator to transition to this domain
(e.g. so that fsck can be explicitly run by an ad-
ministrator). Access to the raw disk device is con-
trolled both with respect to the particular program
and to the context in which the program is called.

Since klogd must access the kernel memory devices,
a klogd t domain is defined for this daemon. A
klogd exec t type is assigned to the program file for
the daemon. The following excerpt shows a portion
of the configuration relevant to this domain:

allow klogd_t klogd_exec_t:process

{ entrypoint execute };

allow klogd_t memory_device_t:chr_file read;

allow initrc_t klogd_t:process transition;

This excerpt is very similar to the excerpt for
fsadm t. The klogd t domain can only be entered
by executing a program labeled with the klogd exec t
type. The klogd t domain can read character spe-
cial files with the memory device t type. The rc
scripts can transition to the klogd t domain when
the daemon is executed.

3.2 Protecting Kernel Integrity

A second goal of the example policy configuration is
to prevent attackers from tampering with the ker-
nel. An example of how the configuration protects
the integrity of the kernel can be seen through its
protections on the /boot files. Most of the /boot
files are labeled with a boot t type and can only be
modified by an administrator. Since certain files in
/boot are automatically updated during initializa-
tion, a separate boot runtime t type is defined for
such files, and the domain for rc scripts is autho-
rized to update these files. The following excerpt
shows a portion of the configuration for these boot
files:

allow initrc_t boot_t:dir

{ read search add_name remove_name };

allow initrc_t boot_runtime_t:file

{ create write unlink };

type_transition initrc_t boot_t:file boot_runtime_t;

The first statement allows the rc scripts to mod-
ify the /boot directory. The individual controls
over each file ensure that this does not allow the
rc scripts to remove or rename the existing files in
/boot in order to replace them. The second state-
ment allows the scripts to create or delete a file with
the boot runtime t type. The last statement causes
files created in /boot by the scripts to automatically
default to the boot runtime t type.

A second example of how the policy configuration
protects the integrity of the kernel can be seen in
its handling of kernel modules. Distinct types are
assigned to the module utilities and module object
files to prevent unauthorized modification. The fol-
lowing excerpt shows a portion of the configuration
for controlling the ability to insert kernel modules
into a running kernel:

allow insmod_t insmod_exec_t:process

{ entrypoint execute };

allow insmod_t self:capability sys_module;

allow sysadm_t insmod_t:process transition;



The first statement allows the insmod t domain to
be entered by executing a program with the in-
smod exec t type. This type is assigned to the
insmod utility. The second statement allows the
insmod t domain to use the CAP SYS MODULE
capability to insert modules. The last statement
allows system administrators to transition to this
domain when they run the utility.

3.3 Protecting System File Integrity

Just as the integrity of the kernel must be pro-
tected, the integrity of other critical system files
must also be protected. Separate types are defined
and assigned to system software, system configura-
tion information, and system logs to protect their
integrity. The dynamic linker is labeled with the
ld so t type. Many domains must be granted exe-
cute access to this type, since many programs are
dynamically linked. System programs are labeled
with types such as bin t for ordinary programs or
sbin t for system administration programs. System
shared libraries are labeled with the shlib t type.
Write access to these types is limited to administra-
tors.

The protections applied to the /etc directory are
an example of protecting system configuration files.
Most files in /etc are labeled with the etc t type and
write access to this type is strictly limited. Since
the /etc/aliases and /etc/aliases.db files and
the /etc/mail directory must be modified by the
sendmail program, separate types are defined for
this file and directory, and the sendmail t domain is
granted write access to these types, as shown below:

allow sendmail_t etc_aliases_t:file

{ read write };

allow sendmail_t etc_mail_t:dir

{ read search add_name remove_name };

allow sendmail_t etc_mail_t:file

{ create read write unlink };

An example of protecting the integrity of system log
files is the wtmp file, which stores login records. The
policy configuration defines a wtmp t type for this
file. Separate domains are defined for programs (e.g.
login, utempter, gnome-pty-helper) which must
update this file, and write access is only granted for
these domains. The following excerpt shows permis-
sions granted to this type for several domains:

allow local_login_t wtmp_t:file { read write };

allow remote_login_t wtmp_t:file { read write };

allow utempter_t wtmp_t:file { read write };

3.4 Confining Privileged Processes

Flaws in privileged processes are often exploited to
subvert the security of a system. The example con-
figuration confines such processes by defining sepa-
rate domains for them and restricting their accesses
to least privilege. One example of such a process
is sendmail. The following excerpt shows some of
the permissions granted to the sendmail t domain
in which sendmail runs:

allow sendmail_t smtp_port_t:tcp_socket name_bind;

allow sendmail_t mail_spool_t:dir

{ read search add_name remove_name };

allow sendmail_t mail_spool_t:file

{ create read write unlink };

allow sendmail_t mqueue_spool_t:dir

{ read search add_name remove_name };

allow sendmail_t mqueue_spool_t:file

{ create read write unlink };

The first statement allows sendmail to bind to
the SMTP port. The next two statements allow
sendmail to manage the mail spool directory. The
last two statements allow sendmail to manage the
mail queue directory. Even if a flaw in sendmail
is exploited, the set of accesses granted to the at-
tacker is strictly limited to what is specified in the
configuration.

Another example of a privileged process is ftpd.
The following excerpt shows some of the permissions
granted to the domain for this daemon:

allow ftpd_t wtmp_t:file append;

allow ftpd_t var_log_t:file append;

allow ftpd_t ls_exec_t:process execute;

The first statement allows ftpd to append to the
wtmp file. The second statement allows ftpd to ap-
pend to /var/log/xferlog. For even better pro-
tection, a separate type could be defined for this
particular log file, e.g. xferlog t, to strictly limit the
daemon to that file. The last statement allows ftpd
to execute the ls program. As with the sendmail
example, an attacker who subverts ftpd can only
perform the actions authorized by the configuration.



3.5 Separating Processes

To protect processes in one domain from interfer-
ence by processes in another domain, the example
policy configuration restricts process interactions.
The ability to access the /proc entries for processes
in other domains is only granted to certain privi-
leged domains such as the domain for system admin-
istrators. This is shown by the following excerpt:

allow sysadm_t domain:dir { read search };

allow sysadm_t domain:{ file lnk_file } read;

The /proc entries for each process are labeled with
the domain of the process. These two statements
grant the sysadm t domain permission to access the
/proc entries for all domains. Most domains are
only allowed to access the entries for processes in
the same domain.

Similarly, the ability to trace other processes or
send signals to other processes is typically limited
to processes in the same domain, except for sending
SIGCHLD to notify the parent of the completion of
the child. The following excerpt shows a case where
processes in different domains are allowed to send
signals to each other:

allow user_t user_netscape_t:process

{ sigkill sigstop signal };

allow user_netscape_t user_t:process sigchld;

The first statement allows an ordinary user to send
arbitrary signals to his netscape process. The sec-
ond statement allows the netscape process to send
SIGCHLD to the ordinary user process so that it can
be reaped when it exits. Since there are no state-
ments allowing an ordinary user process to send sig-
nals to an administrator process or to system pro-
cesses, an ordinary user cannot interfere with these
other processes. Likewise, since there are no state-
ments allowing the user’s browser to send any signal
other than SIGCHLD to other user processes, mali-
cious mobile code executed by the browser cannot
kill the user’s other processes.

Since many processes use temporary files, the con-
figuration must ensure that processes in different
domains cannot interfere with one another by ac-
cessing each other’s temporary files. The configura-
tion achieves this goal by defining a derived type for

temporary files created by each domain and limiting
access to that type to the corresponding domain. If
a domain requires access to a temporary file created
by another domain, then it can be granted permis-
sion to that type on a case-by-case basis. The fol-
lowing excerpt shows a portion of the configuration
for the temporary file type defined for the ordinary
user domain:

allow user_t tmp_t:dir

{ read search add_name remove_name };

allow user_t user_tmp_t:file

{ create read write unlink };

type_transition user_t tmp_t:file user_tmp_t;

The first statement authorizes the ordinary user do-
main to create and unlink files in the /tmp directory.
The individual controls over each file ensure that
the domain cannot unlink files created by other do-
mains, e.g. the administrator domain. The second
statement allows the ordinary user domain to create
and access files with the user tmp t type. The last
statement causes files created by the ordinary user
domain in /tmp to be automatically labeled with
this type. Similar statements are defined for the
administrator domain and for other domains that
use temporary files, with a separate type defined for
each such domain. This ensures that ordinary users
cannot create and use their own temporary files but
does not allow them to access the temporary files of
other domains.

The configuration likewise defines different types for
the home directories and terminal devices used by
the different domains for users. The following ex-
cerpt shows statements granting permissions to ter-
minal devices and home directories for the ordinary
user domain:

allow user_t user_tty_device_t:chr_file { read write };

allow user_t user_devpts_t:chr_file { read write };

type_transition user_t devpts_t:file user_devpts_t;

allow user_t user_home_t:file

{ create read write unlink };

3.6 Protecting the Administrator Do-
main

Since the administrator domain is highly privileged,
the policy configuration must ensure that this do-
main can only be entered in a secure fashion. The
example configuration only allows entry via domains



for the login program and the newrole program.
The login program is run in a separate domain for
local logins than for remote logins so that the con-
figuration can prohibit entry on remote logins, since
such logins may bypass authentication via .rhosts
files. However, users who are remotely logged in
may still use the newrole program after login in
order to enter this domain. The following excerpt
shows some of the relevant statements:

type_transition getty_t login_exec_t:process

local_login_t;

allow local_login_t sysadm_t:process transition;

allow newrole_t sysadm_t:process transition;

The first statement causes the login program to
run in the local login t domain when it is exe-
cuted by getty. A separate statement that is not
shown causes the login program to run in a sep-
arate remote login t domain when it is executed
by rlogind. The next statement allows the lo-
cal login t domain to transition to the administra-
tor domain. The last statement allows the newrole
program to transition to the administrator domain.

As described in the previous subsection, the exam-
ple configuration also protects the administrator do-
main by preventing processes in other domains from
interfering with it. The administrator domain is also
protected against the execution of malicious code
by limiting it to executing approved types and by
automatically transitioning unsafe software such as
netscape to a more restricted domain.

4 Related Work

Two other security projects have developed flexible
access control frameworks for the Linux kernel. The
Rule Set Based Access Control (RSBAC) for Linux
project [15] provides a general framework for kernel
access control and a set of security policy modules.
The Medusa DS9 project [3] provides a kernel access
control architecture that allows processes and files
to be placed into separate virtual spaces in accor-
dance with a policy defined by a user-space autho-
rization server.

Several other projects have developed particular ac-
cess control mechanisms for the Linux kernel. The
Domain and Type Enforcement (DTE) for Linux

project [11] provides a variant of Type Enforcement
that uses an implicit typing mechanisms based on
pathnames. This project is based on the original
DTE prototype [4], which also investigated how to
configure the DTE controls to meet real security
objectives [18]. SubDomain [9] provides a variant
of DTE that is limited to confining programs and
that directly specifies access control configurations
in terms of programs and files rather than domains
and types. The Linux Intrusion Detection System
(LIDS) project [1] provides administratively-defined
program-based access control lists for files along
with a collection of other features. For further dis-
cussion on related work see [13].

Due to its highly flexible architecture and compre-
hensive controls, SELinux is capable of represent-
ing many of the security policies and mechanisms
provided by these other projects. However, since
SELinux was only designed to address mandatory
access controls based on the labels of subjects and
objects, it cannot directly represent some of the re-
quirements of these projects. The Linux Security
Module project [2] has been created to develop a
common set of kernel hooks that can support the
needs of all of the Linux security projects, with the
goal of integrating this general set of hooks into the
mainstream Linux kernel.

5 Conclusions

The integration of mandatory access controls into
Linux is necessary in order to allow secure systems
to be built with Linux. Since no single security
model is suitable for all purposes, a general-purpose
solution must be sought. SELinux has many of the
properties that should be considered for a general-
purpose security architecture.

SELinux is a comprehensive and flexible system
with a well-defined MAC architecture that has been
validated through several prototypes. It cleanly sep-
arates policy decisions from their enforcement using
a general interface. It provides support for policy
changes and is independent of policy, policy lan-
guages, and labeling formats. It has individual la-
bels and controls for kernel objects and services al-
lowing fine-grained control over such abstractions
including: file systems, directories, files, open file
descriptions, sockets, messages, network interfaces,
and use of capabilities. Additionally, SELinux has



configurable default behavior that allows the secu-
rity mechanisms to function transparently to appli-
cations.

The security model chosen for the prototype
SELinux security server has proven to be a very ef-
fective model for security. Using its combination of
IBAC, RBAC and TE, the SELinux security server
provides flexible support for a wide range of secu-
rity policies. With the SELinux security server, it
is possible to configure the system to meet many
security requirements. The flexibility of SELinux,
allows the security server to be modified or replaced
as needed without impacting the rest of the kernel.

The example security policy configuration released
with SELinux serves as an example of how a number
of important security objectives may be met using
the prototype’s security model. The flexibility of
the security policy mechanism attained through the
configuration files enables the policy to be easily
modified and extended, allowing customization as
might be required for any given installation. Hence,
many security policies can be supported with the
same base system.

Type Enforcement has proven a valuable security
policy abstraction that has made the SELinux pro-
totype a better system. Its advantages over the tra-
ditional approaches to MAC have led to a security
policy that better protects the system. The poten-
tial that the TE access matrix could become quite
complex is a possible downside to TE, but the ben-
efits that TE offers should far outweigh this. Ex-
perience with SELinux shows that a realistic policy
can be constructed that greatly improves security.
Complexity can be managed through the distribu-
tion of base security policies with the system that al-
low individual installations to customize the policy
as needed rather than start from scratch. Complex-
ity can be further managed through policy specifi-
cation language enhancements and the development
of policy specification and analysis tools.

The SELinux prototype is very much a work in
progress. SELinux was never intended to be a
complete secure system. Instead, the purpose of
SELinux was to serve as an example of how strong,
flexible MAC could be added to a mainstream oper-
ating system to greatly improve the security of the
system. SELinux succeeds in doing this for Linux.
The Linux Security Module project [2] is an impor-
tant effort to bring MAC to Linux. Success in its
goal of creating the general security interface for the

Linux kernel will enable Linux users to realize not
only the security benefits of SELinux but also those
from other security projects.

Availability

The Security-Enhanced Linux software is available
under the GNU General Public License (GPL) at
http://www.nsa.gov/selinux.
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