
PowerPC 64-bit Kernel Internals

David Engebretsen, Mike Corrigan, Peter Bergner
IBM

Rochester, Minnesota
{engebret,mikejc,bergner}@us.ibm.com

Abstract

This paper describes the internals of a new imple-
mentation of Linux∗ for IBM’s 64-bit PowerPC∗∗

processors. This new kernel is based on the pre-
existing PowerPC 32-bit kernel, with major changes
to the memory management subsystem including a
new memory map, support for discontiguous real
memory, support for logical partitioning, and a new
mechanism for maintaining the coherency between
the hardware hashed page table and the Linux soft-
ware page table.

1 Introduction

System platforms which are built around 64-bit
PowerPC processors include both the pSeries∗∗

(formerly RS/6000∗∗) and iSeries∗∗ (formerly
AS/400∗∗) brands. The pSeries platform typi-
cally runs AIX∗∗ as its operating system, although
Linux/PPC32 is also supported. The iSeries plat-
form runs OS/400∗∗ as its operating system. The
new V5R1 release of OS/400 adds support for run-
ning Linux in a logical partition [AAN00].

Described in this paper is the implementation of a
version of Linux designed to take full advantage of
the underlying hardware and software on both the
pSeries and iSeries platforms. The kernel has been
designed to minimize the code differences that are
required to run in these widely different environ-
ments.

2 PowerPC-64 System Overview

2.1 Platforms Based on PowerPC-64

The design of Linux/PPC64 has targeted execution
on all of IBM’s recent platforms that use 64-bit Pow-
erPC processors, including both pSeries and iSeries
systems.

On pSeries systems, Linux runs directly on the hard-
ware and has been designed to support processors
ranging from the POWER3∗∗ [OCW00], through
the current generation of RS64 IV∗∗ (aka SStar)
[BEK00], to the forthcoming POWER4∗∗ [DIE99].

On iSeries systems, multiple instances of
Linux/PPC64 (as well as OS/400 and
Linux/PPC32) can be run in logical partitions
of the system. See Figure 1. The new kernel
implementation has been designed from the start
to run in an iSeries logical partition, resulting in
very little unique code for the two platforms.

Hypervisor

OS/400
V5R1

Primary

OS/400
V4R5

Linux
PPC32

Linux
PPC64

CPU
0

CPU
1

CPU
2

CPU
3

0.25
CPU

0.75
CPU

2.0
CPU

1.0
CPU

Figure 1: iSeries Partitioned System



2.2 Processor Architecture

IBM’s 64-bit implementations of the PowerPC pro-
cessor architecture provide full 32-bit execution
compatibility with no performance loss, a feature
that allows the Linux/PPC64 to provide excellent
support of existing Linux/PPC32 applications.

Although the various 64-bit processors all imple-
ment the same architecture and appear very similar
to operating system code, there are a few differ-
ences worth noting. All of the processors can toler-
ate unaligned storage accesses, except the POWER3
which requires double word accesses to be at least
word aligned. This fact led to complications in some
places such as the token ring driver.

The RS64 IV provides hardware multithreading
(HMT) thereby presenting twice as many proces-
sor contexts to the operating system as physically
exist. By enabling this feature, hardware contexts
switch on certain long latency events such as an L2
cache miss, thus improving throughput.

POWER4 adds a two core per chip design plus some
small changes to the address translation path.

Both RS64 IV and POWER4 provide enablement
for logical partitioning. This includes features such
as a hypervisor state that is distinct from privi-
leged state and the protection of critical processor
resources such as the hardware page table pointer
from code not running in the hypervisor state.

3 Kernel Internals

This section describes the features that have been
implemented to support 64-bit PowerPC processors
where the kernel may be running natively on pSeries
hardware or in an iSeries logical partition.

As is the case with all other operating systems used
on these platforms, Linux runs in big endian mode.
The 64-bit PowerPC ELF ABI [TES01] dictates the
LP64 data model be used as it is in every other 64-
bit Linux implementation. This means that vari-
ables of type long and pointers are defined to be
64-bit, while an int is defined to be 32-bit.

3.1 Compiler Issues

There are several interesting compiler and toolchain
issues that have been introduced with the
Linux/PPC64 kernel.

The first issue is that the 64-bit PowerPC ELF ABI
was patterned after the 64-bit PowerOpen ABI used
by AIX, so its structure layout and calling conven-
tion rules are quite different than the 32-bit Pow-
erPC ELF ABI. By leveraging an existing 64-bit
PPC ABI, less effort was required to port GCC to
the new architecture.

The new ABI also has features some developers may
not be familiar with, such as the Table Of Contents
(TOC) which behaves in a fashion similar to the
Global Offset Table (GOT). Because the TOC is
accessed frequently, the 64-bit PowerPC ELF ABI
specifies that general purpose register R2 is to be
reserved for use as the TOC pointer.

A second compiler issue of more practical impor-
tance is that the PPC64 compiler is still under de-
velopment. Currently, it is able to build statically
linked applications such as the Linux kernel. How-
ever, it cannot build dynamically linked programs
due to unfinished work in the compiler and lack of a
PPC64 glibc implementation. This limitation pro-
vided a strong incentive for supporting unmodified
PPC32 binary applications.

3.2 PowerPC Specific Data Structures

The PPC64 kernel implementation has added two
data structures which are used to store system
wide and processor specific information. The first,
the naca (node address communications area) is
used to hold system wide information such as the
number of processors in the system (or partition),
the size of real memory available to the kernel,
and cache characteristics. In addition, this data
structure contains one field architected by the
iSeries hypervisor which is initialized (at kernel
build time) to point to the data area used by the
hypervisor to communicate system configuration
data (vital product data or VPD) to the kernel.
The naca is always located at a fixed real address
(0x4000) in order to facilitate debug.



The second data structure is the paca (processor
address communications area). This structure con-
tains information unique to each processor; there-
fore an array of paca’s are created, one for each log-
ical processor. The biggest use of this data structure
is as a save location during interrupt processing.
Special Purpose Register 3 (SPRG3) of each proces-
sor always points to the virtual address of the paca
associated with that processor. Upon an interrupt,
the value stored in SPRG3 is read and used as a base
pointer to the paca where a small amount of proces-
sor state is stored while relocation remains disabled
and a kernel stack is not yet available.

3.3 Initialization

The early phases of boot and initialization differ be-
tween the pSeries and iSeries platforms. This sec-
tion describes some of the differences.

3.3.1 pSeries Native

Initially, the kernel is loaded by a bootloader (for
example Yaboot [Yab01]) into a contiguous block
of real memory and given control with relocation
disabled. Initialization code in the kernel interacts
with OpenFirmware (OF) [OF94] to accomplish the
following tasks:

1. Determine the system configuration including
real memory layout and the device tree.

2. Instantiate the Run-Time Abstraction Services
(RTAS), a firmware interface that shields the
operating system from many details of the
hardware platform.

3. Move secondary processors from spinning in OF
to spinning in a kernel loop.

The initialization code then relocates the kernel to
real address 0x0. Next, an initial kernel stack is
created, the TOC and naca pointers are initialized,
and an initial hardware page table (HPT) and seg-
ment table (STAB) are built to map real memory
from 0x0 through the HPT itself. Finally relocation
is enabled and initialization continues through code
common to both pSeries and iSeries.

3.3.2 iSeries LPAR

Before the Linux kernel gets control, the iSeries hy-
pervisor:

1. Assigns memory to the partition as a 64 MB
contiguous load area and the balance in 256
KB chunks.

2. Loads the Linux kernel into the load area.

3. Provides system configuration data to the
Linux kernel via several data areas provided
within the Linux kernel.

4. Sets up hardware translations to the Linux ker-
nel space address (0xC000. . . ) for the first 32
MB of the load area.

5. Gives control to the Linux kernel with reloca-
tion enabled at the System Reset interrupt vec-
tor on each of the assigned processors.

The Linux kernel continues the initialization as fol-
lows:

1. Builds an array (called msChunks) which is
used to map the kernel’s view of real addresses
to the actual hardware addresses. See Section
3.4.

2. Builds an event queue which is used by the hy-
pervisor to communicate system events (I/O in-
terrupts) to the partition.

3. Opens a connection (via the hypervisor) to a
hosting partition for virtual I/O.

To provide partition isolation, the iSeries hypervisor
requires (and enforces) that all code in an iSeries
partition runs with relocation enabled.

3.4 Address Space Layout

The PowerPC architecture defines the address space
seen by an application to be the effective address.
This address is passed through a translation mecha-
nism (for example a segment table) which produces
what is known as a virtual address. This address is
then translated by the hardware page table to pro-
duce an absolute address used by the hardware to
address memory.



The term absolute address has been added for the
Linux/PPC64 implementation to describe the trans-
lation from the operating system’s logical view of
real addresses to actual processor bus addresses.
This additional mapping was added primarily to
present a contiguous real address map to Linux in a
partitioned environment where the partition’s mem-
ory may be distributed throughout real memory. In
the case of iSeries, this occurs in 256 KB chunks of
storage.

3.4.1 Effective Address Space

The effective address space has been broken into five
distinct regions as summarized in Table 1.

The high order nibble is used to distinguish between
user space and the various kernel address spaces.
Each user process has associated with it the typical
three level Linux page directory which provides the
effective to logical mapping for that process.

The vmalloc, I/O, and bolted spaces each have a
distinct Linux page directory which is used to map
effective to logical addresses. For kernel addresses
starting with 0xC, the virtual to logical mapping can
be obtained by simply masking off the high order
nibble, so no table is necessary.

The 32-bit user space range has been implemented
to match that used for Linux/PPC32 for compat-
ibility. The 64-bit user space has 243 bytes of ad-
dressability.

3.4.2 Virtual Address Space

In the PowerPC architecture, all processes must
have a unique set of virtual addresses. This allows
a single hardware page table to be used for all pro-
cesses, but does require a separate segment transla-
tion to be used for each process. Because of the hash
structure of the PowerPC page table, it is desirable
to ensure that the virtual addresses are distributed
uniformly across the hash table groups.

The effective to virtual mapping for a process is
shown in Figure 2. It is accomplished by concate-
nating bits 21-35 of the effective address (known as
the ESID) with a 23 bit field which is a process’ con-
text number, where all processes are defined to have
context numbers from the interval [16, . . . , 223). The

ESID Page Byte

Context (23)

Effective Address

Ordinal

36 16 12

* 42470972311
& 0xfffffffff

Virtual Address VSID Page Byte

Figure 2: Address Translation

result is then multiplied by a large constant and
masked to produce a 36 bit virtual segment ID or
VSID. In the case of kernel addresses, the high or-
der nibble is used in place of the process’ context
number.

3.4.3 Absolute Address Space

The translation from logical addresses as seen by
the kernel to absolute addresses as viewed from
the processor takes place whenever creating a hard-
ware page table entry, DMA translation table en-
tries (TCEs), or when communicating addresses to
the iSeries hypervisor. The msChunks array is in-
dexed by (logical address >> 18) and provides a
translation from logical address to absolute address.
Thus:

abs = (msChunks[logical>>18]<<18) |

(logical&0x3ffff);

3.5 Memory Management

On architectures such as Intel, Alpha∗∗∗, and
S/390∗∗ the Linux page tables are also the hard-
ware page tables. The PowerPC HPT does not fit
this model. The HPT is maintained as a cache of
entries from the Linux page tables. In some cases it
is possible to generate an entry in the HPT at the
same time that an entry is placed into a Linux page
table, but in general it is not possible. In any event,
since the HPT cannot always contain all valid trans-
lations, it must be possible to generate HPT entries
by looking up entries in the Linux page tables during



Use Start End
User(32b) 0x00000000 0xBFFFFFFF
User(64b) 0x0000000000000000 0x000007FFFFFFFFFF
Reserved 0x1000000000000000 0xBFFFFFFFFFFFFFFF

Kernel 0xC000000000000000 0xC00007FFFFFFFFFF
vmalloc 0xD000000000000000 0xD00007FFFFFFFFFF

I/O 0xE000000000000000 0xE00007FFFFFFFFFF
Bolted 0xF000000000000000 0xF00007FFFFFFFFFF

Table 1: Effective Address Summary

storage interrupt processing. On partitioned sys-
tems, the HPT is managed by the hypervisor. The
iSeries hypervisor does not allow the partition oper-
ating system direct access to the HPT. Entries are
added and removed from the HPT via hypervisor
calls.

The PowerPC-64 processors translate effective ad-
dresses to virtual addresses via a segment table.
The segment table, like the hardware page table,
is a hash table which cannot always contain all
valid translations. The kernel handles segment ta-
ble faults by loading appropriate entries into the
segment table (the hypervisor is not involved in
this process). These entries are directly computable
from the faulting effective address and the process’
context value.

3.5.1 Bolted Memory

The iSeries hypervisor requires that all code run-
ning in a partition must have relocation enabled.
In order to maintain as much commonality as pos-
sible between the iSeries and pSeries code, the
Linux/PPC64 kernel always runs with relocation en-
abled, except at initial entry into the pSeries excep-
tion handlers. Since the PowerPC hardware page
table cannot (in general) contain all required ad-
dress translations, sometimes entries must be cast
out to make room for new entries. The require-
ment to handle page faults with relocation enabled
requires that HPT entries required to handle page
faults must never be cast out. These special hard-
ware page table entries are known as bolted entries.
There must be bolted entries for each of the follow-
ing:

1. Fault handler code. This code is identified ei-
ther by its absolute address (the first four pages

of real system memory), or through use of the
compiler directive bolted.

2. Hardware page table (on non-LPAR systems).

3. All task structure and kernel stacks.

4. All Linux page tables.

5. The msChunks array. This data structure is
used to convert Linux logical addresses to hard-
ware absolute addresses when building HPT en-
tries. See Section 3.5.3.

6. The naca.

7. The paca array. This object must be bolted as
it is used to store data during interrupt pro-
cessing.

All of the above, except the kernel stacks and Linux
page tables, are fixed at boot time and are bolted
using their kernel (0xC000. . . ) addresses.

Kernel stacks and Linux page table pages are ad-
dressed via the 0xF000. . . effective address range.
Because the PowerPC hardware page table has a
limited number of entries per hash class, the bolted
entries are placed into their own effective address
range in order to provide a controlled distribution
of entries across the hash table. This minimizes the
possibility that any hash class will completely fill up
with bolted entries. Bolted entries are identified by
a flag bit in both the Linux page table and hardware
page table entries.

Allocation requests for bolted kernel stacks and
linux page tables are made using the following new
interfaces:

void *addr = btmalloc(size);

btfree(void *addr);



Effective Address

PGD Select

PGD Idx PMD Idx PTE Idx

Offset

4 11 11 9 1217

32b

2 pgs

32b

2 pgs

128b

2 pgs

Logical
Memory

Real
Page

Hardware Page Table

128b

0

Absolute
Memory

Abslt
Page

msChks

Figure 3: Page Table

Because allocation requests are limited to space for a
kernel stack (4 pages) or linux page tables (2 pages
per level), the implementation of this allocator is
straight forward.

3.5.2 Linux Page Table Structure

The Linux/PPC64 Linux page tables are imple-
mented as three level tables, using two 4 KB pages
at each level as shown in Figure 3. In order to
support the largest possible effective address range
while working within the constraints imposed by the
three level page table, 32-bit entries are used in the
first two page table levels. The smaller entries can
be used by taking advantage of the fact that all ta-
bles are page aligned and must themselves lie within
the 43 bit bolted address range. A pointer to the
next level of page table is created from the 32-bit
entry by left shifting the value by the page offset
size (12 bits) and adding the bolted address base
(0xF000. . . ).

The third level of the Linux page table contains 128
bit entries which contain the logical page number,
page flags and an index into the hardware page
table of the corresponding hardware page table
entry. This index allows HPT entries to be easily
invalidated when Linux page table entries are
removed.

Three kernel page tables are maintained, one for
vmalloc addresses, one for iomapped addresses and
one for bolted addresses. There is no Linux page ta-
ble to map the base kernel addresses (0xC000. . . ) as
these can be translated to logical addresses simply
by removing the leading 0xC.

3.5.3 Discontiguous Real Memory

While Linux has support for discontiguous real
memory, it is not designed to handle a large num-
ber of discontinuities. To facilitate reconfiguration
of memory among iSeries partitions, the hypervi-
sor allocates memory to partitions in blocks (called
chunks here) whose sizes must be much smaller than
the total absolute memory size. The hypervisor dis-
tributes memory in 256 KB chunks but guarantees
that a Linux partition will have a ’Load Area’ which
is 64 MB of contiguous real storage.

The Linux/PPC64 kernel maintains an msChunks
array of 32-bit entries which is used to convert a
Linux logical address (what Linux thinks of as a
physical address) to the actual hardware absolute
address. The hardware absolute addresses are only
used when creating an HPT entry or a TCE. Use
of a 256 KB chunk size allows this code to be in-
dependent of whether Linux is running in an iSeries
partition or pSeries hardware where memory chunks
are typically much larger. This mechanism allows



the architecture independent parts of Linux to see a
contiguous logical address space. This data array is
allocated and built early in the boot process. On iS-
eries, the information needed to build the msChunks
array is obtained from the hypervisor.

3.5.4 Hypervisor Interfaces

When the Linux/PPC64 kernel needs to modify the
hardware page table while running in an iSeries par-
tition, it must do so via a call to the iSeries hy-
pervisor. The iSeries hypervisor does not give the
partition direct access to the hardware page table.
Whenever entries are added or modified, the hyper-
visor must ensure that the absolute address used in
the entry is valid for the partition.

The hypervisor provides the following interfaces for
this function:

1. find valid - find any valid entry for a given vir-
tual address.

2. invalidate - invalidate a specified entry.

3. add validate - add a new valid entry.

4. modify pp - modify protection status for a spec-
ified entry.

3.6 Interrupt Handling

Interrupt processing in Linux/PPC64 requires a
small amount of code that is unique to the platform
on which the kernel is running. This unique code
sets up a common environment where relocation is
enabled for the remainder of the exception process-
ing. These separate code paths are not conditional;
rather, the entry points for an exception are defined
to be different depending on the platform. Once the
unique code has completed, a common code path is
followed for both platforms. Figure 4 shows this
convergence of code paths. The following sections
describe the process in greater detail.

3.6.1 pSeries

The pSeries native version of the 64-bit kernel puts
the interrupt vectors at the architecturally defined

x00:

save SRR[01],R21 in paca

enable relocation

branch to Ex_Common

load paca into R20

save R21 in paca

load paca into R20

branch to Ex_Common

Ex_LPAR:

Ex_Common:save R22 in paca

save R20 to SPRG2

save R20 to SPRG2

create a kernel sf

save remaining regs

load kernel TOC

handle exception

Exception vectors
at 0x100, 0x200, ...
as defined by PPC
entered w/relocation
off

LPAR exception
entry points
entered w/relocation
on

Common handler
code runs with
relocation on

Figure 4: Interrupt Flow

locations in the first four real pages of storage. The
initial exception code does a minimal amount of
work by storing R21 (used as a temp register), SRR0
(address of the current instruction at the time of the
exception), and SRR1 (processor state at time of ex-
ception) into the paca locations as expected by the
common handlers. The code then enables relocation
and jumps to the common handlers.

3.6.2 iSeries

The iSeries hypervisor gets control for all interrupts
and passes control to the partition’s interrupt han-
dler via a return from interrupt. When the parti-
tion’s interrupt handler gets control, SRR0 and SRR1
do not contain the values that the interrupt handler
would expect. The actual SRR0 and SRR1 values are
stored in the paca by the hypervisor. The Linux
exception handlers get the values of SRR0 and SRR1
from this data area.

The interrupt handlers for an iSeries partition do
not have to be placed at the locations architected
by the PowerPC architecture in the partition’s log-
ical memory. The Linux kernel contains a statically
defined array containing the addresses of each of
the interrupt handlers allowing the code to place
the pSeries interrupt handlers at the location ar-
chitected by the PowerPC processor while allowing
the iSeries interrupt handlers to perform unique pro-
cessing before branching into the common interrupt
handlers.



The iSeries hypervisor intercepts all external inter-
rupts and does the first level of processing for them.
It then enqueues an I/O event for each interrupt
onto the partition’s interrupt queue (LpQueue). The
Linux kernel polls the LpQueue whenever interrupts
are about to be enabled (such as after interrupt pro-
cessing or sti) and pulls any event it finds off the
queue and processes the interrupt.

3.6.3 Soft Disable

To support shared processors as well as the hyper-
visor heartbeat mechanism (which requires periodic
interrupts to occur) on iSeries, the kernel only “soft”
disables interrupts. External interrupts and decre-
menter interrupts remain enabled from the hard-
ware’s point of view even when the Linux kernel
has disabled external interrupts. The external and
decrementer interrupt handlers merely mark (in the
processor’s paca) that an interrupt occurred and
then return to the interrupted code. Only when
interrupts are subsequently “soft” enabled are the
interrupt service routines driven.

3.7 iSeries Unique System Call Issues

The iSeries hypervisor is invoked using the normal
system call instruction. This is the same instruction
which user level code uses to invoke the operating
system within a partition. Since, on iSeries, all in-
terrupts are partially processed by the hypervisor,
it must have a way to distinguish between a system
call intended to invoke a hypervisor service and one
intended to be passed through to the partition ker-
nel. For a Linux partition, the iSeries hypervisor in-
terprets any system call made from privileged mode
with R0 = -1 as a hypervisor request, all others are
passed to the partition’s system call interrupt vec-
tor. The specific hypervisor function requested is
identified in R3, while parameters are passed to the
hypervisor in R4-R10. Data is returned from the
hypervisor in R3-R6.

3.8 I/O Subsystem

The I/O subsystem on the two platforms is quite dif-
ferent. On pSeries, I/O adapters and bridges are di-
rectly visible and managed by the kernel and device
drivers as is typically done in other Linux kernels.

For iSeries, two modes of operation exist: virtual
I/O and native I/O. The virtual I/O model presents
a virtualized set of devices (console, disk, etc) to
the kernel. Native I/O allows Linux device drivers
to directly manage I/O adapters, within some con-
straints.

The remainder of this section is a brief overview
of some of the implementation issues for I/O in
Linux/PPC64. For a full description of the iSeries
specific issues, see [Bou01].

3.8.1 DMA Space

As with most 64-bit systems, 64-bit PowerPC
systems have hardware to translate 32-bit PCI
dma addresses into the system’s larger absolute
address space. On PowerPC, the translation
entries are known as TCEs (Translation Con-
trol Entries). The management of TCEs is im-
plemented within the pci alloc consistent /
pci free consistent (and similar pci functions).
For pSeries, the kernel directly manages the TCE
table. For iSeries, the hypervisor does not allow di-
rect access to the TCE table, therefore hypervisor
calls must be made to add and delete TCE table
entries.

3.8.2 MMIO Space

On RS64 IV based pSeries systems looking out from
the processor, all PCI devices are mapped to ad-
dresses just below 240 in the absolute address space.
From the point of view of PCI devices, all addresses
lie within the first 4 GB of addressing. This differ-
ence is reconciled by walking all PCI busses and as-
signing resource mappings from the processor’s view
into each pci dev struct. Device drivers that try
to directly read adapter address registers to deter-
mine where devices are mapped are not supported.

On iSeries systems, all MMIO accesses must be run
through the hypervisor. This allows the hypervisor
to check all accesses and provide the degree of iso-
lation required on that platform. In addition, this
approach allows the hypervisor to manage some of
the error recovery when access to certain I/O de-
vices fails. This does result in some performance
overhead, but was required to maintain complete
separation of partitions in the presence of certain
types of I/O errors.



3.9 RTAS

The Run-Time Abstraction Service (RTAS) is
pSeries firmware which allows an OS to access plat-
form specific functions without needing platform de-
pendent code. The Linux/PPC64 kernel makes use
of some RTAS functions such as routines for ac-
cessing a machine’s NVRAM, reboot and shutdown,
xics-interrupt, and RTAS’s heartbeat mechanism.

The RTAS firmware runs in a 32-bit execution envi-
ronment with relocation disabled, thus posing some
problems for the Linux/PPC64 kernel. The RTAS
functions save the state of the machine registers that
it uses, however because it is running in 32-bit mode,
only half of each register is saved. This forces the
Linux/PPC64 kernel to explicitly save any registers
RTAS may use on a kernel stack. However, this
is not enough to restore our state, since the stack
pointer may have also been clobbered by RTAS.
Therefore, the kernel stack pointer must be saved
before entering RTAS to a location from which it
can easily be restored. The paca is used for this
purpose because SPRG3 always points to the proces-
sor’s paca entry, even across a call into RTAS.

4 User Environment

The PowerPC hardware architecture was designed
to provide excellent backward compatibility with a
32-bit execution environment. Processors run in 32-
bit mode without any performance penalty.

General purpose software built for a 64-bit environ-
ment that does not require the increased address-
ability can be expected to suffer a slight perfor-
mance loss due to various factors including the ma-
nipulation of 64-bit labels and indirection through
the TOC. Some overhead during system calls occurs
for 32-bit applications, but the impact is expected
to be minimal.

Because of the lack of an overriding negative perfor-
mance issue when executing in 32-bit mode and the
existence of a large base of existing Linux/PPC32
applications, the typical execution environment on
Linux/PPC64 is expected to be 32-bit. To facili-
tate this mode of operation, libraries, tools, shells,
and utilities will all be located where they are in
the current Linux/PPC32 environment (for exam-

ple /usr/lib). 64-bit libraries will be located in a
new tree.

5 Conclusions

Linux/PPC64 has been designed to run with few
modifications on platforms ranging from POWER3
processor pSeries workstations though the largest
logically partitioned iSeries server. With seamless
compatibility with the existing Linux/PPC32 code
base, users can easily migrate to this new kernel and
realize the performance gains and reliability offered
by the new class of systems on which Linux is now
available.

6 Acknowledgments

The authors would like to thank the Linux/PPC64
team: Todd Inglett, Pat McCarthy, Don Reed, Paul
Albrecht, Jeff Scheel, Adam Litke, John Scales,
Tilmann Bitterberg, and Tom Gall for their hard
work on this project. We would also like to thank
the extended team of Linux/PPC32 and PPC64
toolchain developers who provided the basis for the
64-bit port.

∗ Linux is a registered trademark of Linus Torvalds.

∗∗ Trademark or registered trademark of Interna-
tional Business Machines Corporation.

∗∗∗ Trademark or registered trademark of Compaq
Computer Corporation.



References

[OCW00] F. P. O’Connell, S. W. White, POWER3:
The next generation of PowerPC processors,
IBM Journal of Research and Development v.
44 n. 6 (November 2000) pp. 873-884.

[BEK00] J. M. Borkenhagen, R. J. Eickemeyer, R.
N. Kalla, S. R. Kunkel, A multithreaded Pow-
erPC processor for commercial servers, IBM
Journal of Research and Development v. 44 n.
6 (November 2000) pp. 885-898.

[AAN00] Bill Armstrong, Troy Armstrong,
Naresh Nayar, Ron Peterson, Tom Sand,
Jeff Scheel, Logical Partitioning, http://www-

1.ibm.com/servers/eserver/iseries/beyondtech/lpar.htm.

[DIE99] Keith Diefendorff, Power4 Focuses on
Memory Bandwidth, Microprocessor Report v.
13 n. 13 (October 6, 1999) pp. 1 - 8.

[TES01] Ian Lance Taylor, David Edelsohn, Swox
AB, 64-bit PowerPC ELF ABI Supplement,
Version 1.2 (February 28, 2001).

[Yab01] Yaboot, Yet Another Bootloader, 2001.
Available at http://www.penguinppc.org/˜benh.

[OF94] IEEE Std 1275-1994 Standard for Boot
(Initialization, Configuration) Firmware, Core
Practices and Requirements, (1994).

[Bou01] David Boutcher, The iSeries Linux Kernel
2001 Linux Symposium, (July 2001).


