
Linux NFS Version 4: Implementation and Administration

William A. Adamson
CITI

University of Michigan
Ann Arbor, Michigan, 48103

andros@citi.umich.edu, http://www.citi.umich.edu/u/andros
Kendrick M. Smith

CITI
University of Michigan

Ann Arbor, Michigan, 48103
kmsmith@citi.umich.edu, http://www.citi.umich.edu/u/kmsmith

Abstract

NFS Version 4 has many new features that differen-
tiate it from previous versions of NFS and address
shortcomings in areas such as security and WAN
performance. In this paper we detail CITI’s refer-
ence implementation of NFS V4 [RFC3010] in the
Linux kernel.

We describe the changes we made to the Linux ker-
nel to implement the protocol, and issues in match-
ing protocol requirements with POSIX behavior in
local Linux filesystems. We also discuss the manage-
ment of client and server state, security and lock-
ing mechanisms, compound RPC, and client data
caching.

We conclude with a discussion of the challenges in
NFS V4 system administration and issues in migrat-
ing from and coexisting with earlier versions of NFS.
This paper is targeted to file system developers and
network administrators who are interested in the de-
sign and features of secure, standard, interoperable
distributed file systems.

1 Introduction

The tradeoffs of distributed file systems have been
known for many years [Khanna]. The advantages
of providing a centrally administered shared file
space available to geographically separated users
versus the issues surrounding performance, secu-

rity, cross-platform behaviour, and administrative
overhead have resulted in several successful (surviv-
ing?) products such as NFS, AFS, CIFS, Novell,
AppleTalk, etc that emphasize different tradeoff so-
lutions.

The original NFS version 1 protocol [RFC1094] was
designed to operate in a LAN environment with an
emphasis on simple servers, timely recovery from
server and client failure, and good throughput for
reading and writing. Security was not an issue, as
most of the product space consisted of corporate
intranets.

Subsequent NFS versions [RFC1813] have added
new features and performance improvements with-
out changing the original model of stateless servers
and clients. As the number of networked comput-
ers as well as the mobility and number of computer
users has increased, NFS finds itself in an environ-
ment it was not designed for - requirements for high
performance long haul secure file access.

In addressing this new Internet world, NFS V4 is
a dramatic departure from its predecessors. The
protocol purports to reduce network traffic by use
of a new rpc construct, the compound rpc and by
client file cache consistency guarantees provided by
new delegation operations. Locking is part of the
protocol, with support for both share and byte range
locks. Strong security is mandated by use of the
RPCSEC GSS protocol, and new ACL’s associated
with each file. Finally, NFS V4 is an IETF protocol,
with an extension path.



Our current implementation of the NFS V4 client
and server is ported to the Linux-2.4.4 kernel, and
uses the ext2 file system as the underlying local file
system. We have, of course, implemented the client
and server with an eye to being independent of the
underlying local file system - although we do depend
on ext2 particulars with regards to our early ACL
work.

NFS V4 is a young, complex protocol, and is chang-
ing as implementors fit together all the pieces for
the first time. We present short descriptions, and
detailed discussion on implementation issues sur-
rounding NFS V4 protocol features. We recommend
the use of [RFC3010] as a reference for vocabulary,
and a more detailed description of the protocol.

2 Namespace Issues

The NFS V4 keeps many of the same high level
namespace ideas as previous NFS versions: it is
the client that constructs the hierarchical file name
space using mounts to build a hierarchy, with NFS
servers expressing the exported portions of their lo-
cal filesystems in an /etc/exports file. There are
however major differences in the design of the NFS
V4 namespace, with consequences that have yet to
be fully explored.

2.1 Server Pseudo File System

The NFS V4 server joins its exported sub-trees with
a read-only virtual file system called the Pseudo File
System. The idea is that any client can mount the
Pseudo FS. Users then browse the Pseudo FS via
LOOKUP. Access into exported sub-trees is based
on the user’s rpc credentials and file system permis-
sions. This is a major change from previous versions
of NFS where an IP based access list was associated
with each exported sub-tree. This design has several
features for the NFS administrators.

• Client /etc/fstab maintenance: Note that if the
client mounts the root of the Pseudo FS, the
client’s /etc/fstab entry does not change with
changes to the server’s export sub-tree list.

• Server export namespace: On the server, the
local namespaces and export namespace are

kept separate, so that either can be reorganized
without changing the other.

The pseudo file system pulls together disjoint parts
of the exported local file system into a coherent,
browsable package for the client.

2.2 Owner, Group and File Permissions

NFS V4 departs from the use of on the wire numeric
uid and gid. Instead, UTF-8 [RFC2279] strings are
used, expressing owner and group names in the form

user@domain-name, group@domain-name

where the @domain-name piece of the name is op-
tional. This was done to provide a common form
independent of a particular underlying implementa-
tion for local storage or presentation to the end user.
Since the Linux kernel as well as the ext2 file system
expresses owner and group in terms of numeric uids
and gids, a translation of the on the wire UTF-8
strings is needed. The name services that resolve
names to uid’s exist outside of the kernel. The sim-
plest form of such a service is the local /etc/passwd
and /etc/group files. Remote data bases such as NIS
or LDAP could also be used, providing extended ser-
vice such as uid mapping. Following Sun Microsys-
tem’s lead, we have implemented a user space dae-
mon, GSSD to perform the name to numeric iden-
tity translation. GSSD is also part of the RPC-
SEC GSS implementation. It communicates with
the NFS V4 kernel client and server via an rpc in-
terface. Currently, it uses the local /etc/passwd and
/etc/group files for name and id resolution.

The connection between the principal piece and the
realm piece of the NFS V4 UTF-8 owner or group
name is open to interpretation. Thus, similar names
could possibly be the same user, or could indicate
different users.

1. alice@
2. alice@umich.edu
3. alice@cable.net
4. "/C=US/ST=Michigan/L=Ann Arbor

/O=University of Michigan
/OU=TEST -- CITI Client CA v1
/CN=Alice L. User 1



(07749036)/Email=alice@UMICH.EDU"

The first name indicates a local UNIX user, the sec-
ond name could be a user in the UMICH.EDU Ker-
beros V5 realm, the third name, a DNS name from
the local cable company, and the forth name, the
owner of an X.509 PKI certificate. These four names
could all represent the University of Michigan user
alice and she could attempt to access NFS V4 files
under any one of theses names, using one of many
rpc security flavors.

To further complicate matters, the same name can
have different meanings. For example, the sec-
ond name could represent a Kerberos V5 prin-
cipal, or a DNS realm name depending on the
RPC credentials that accompany the request. Since
there is no credential associated with a name in
an ACL, there is no difference in file system ac-
cess for different security contexts. What is de-
sirable is to export a file system with multi-
ple security flavors, and have ACL’s control ac-
cess. For example, a file system could be ex-
ported with both RPC AUTH GSS/Kerberos V5
and AUTH UNIX security flavors, the intention be-
ing to allow AUTH UNIX users read-only access,
and Kerberos V5 users write access.

We have just begun our ACL and PKI security im-
plementations, and anticipate lively discussions on
these issues, perhaps resulting in protocol changes.

3 Compound RPC

NFS V4 defines a new RPC procedure, the com-
pound RPC, which subsumes all previous NFS RPC
procedures with the exception of the null proce-
dure. The previous NFS RPC procedures make up
the bulk of the compound rpc components, the idea
being to reduce network traffic by combining what
used to be independent RPC’s into one compound
RPC. NFS operations consume and excrete file han-
dles. The NFS V4 server maintains a current file
handle in global state that holds the input and out-
put file handle parameter used by most NFS opera-
tions. Several new NFS operations manipulate the
current file handle to set a starting point for pro-
cessing compound operations, and return the result
to the client. The operations in a compound rpc
are processed from the top down, each operation

using the filehandle output by the previous opera-
tion. Note that the compound rpc processing is not
atomic, and that error handling stops at the first
operation that returns an error.

One result of this change in the rpc procedure struc-
ture is that the rpc layer can no longer tell what
operation is being requested, because all rpc’s now
have the procedure number of 1. The payload needs
to be xdr’ed and parsed before the list of compound
operations is exposed. One area affected by this
layering change is the implementation of the replay
cache. Coupled with the NFS V4’s mandate of a
strict serialized replay cache for lock mutating op-
erations, the replay cache can no longer be imple-
mented in the rpc dispatcher, but instead requires
more processing (xdr decoding) before replay deter-
mination can occur.

Here is the mount compound rpc that obtains the
pseudo file 2 system root file handle, and which ob-
viates the need for mountd.

PUTROOTFH - Places the root of the
Pseudo FS as the
Current FH.

LOOKUP - Only used if the client is
not mounting the Pseudo FS
root.

GETATTR - Return the Current FH
attributes

GETFH - Return the Current FH

4 Managing NFS V4 State

NFS V4 is explicitly stateful, in contrast with earlier
versions of NFS, which are stateless in principle, but
rely on an auxiliary stateful protocol (NLM) for file
locking. Among other things, this means that file
locking operations are now part of the NFS protocol
proper, eliminating the need for separate rpc.statd
and rpc.lockd daemons. In this section, we describe
the NFS V4 state model in detail.

NFS V4 state is first instantiated via the SETCLI-
ENTID operation, which the client uses to estab-
lish a 64-bit “clientid” for itself on the server. The
clientid, and all other NFS V4 state is lease-based,
meaning that it expires if the client performs no



state–manipulating operations within the server’s
lease period, a timeout period chosen by the server.
There is a special state–manipulating operation,
RENEW, which has no effect beyond renewing the
client’s state on the server. Otherwise idle NFS V4
clients will emit periodic RENEW operations.

The clientid is the highest level of NFS V4 state;
one clientid exists per client. The next highest is
the NFS V4 lockowner; it is intended that one lock-
owner exist per distinct process on the client, al-
though the client is free to define them according
to its convenience. When a file is opened using the
OPEN operation, the client specifies a lockowner;
if this lockowner does not exist yet, the server will
instantiate one. NFS V4 lockowners are always cre-
ated in this way. The lockowner has three separate
(we believe) meanings in NFS V4:

• It has the “obvious” meaning: the unit of con-
tention for locks.

• It is the unit of serialization: OPEN, CLOSE,
and LOCK operations (plus a few closely
related operations) are serialized on a per–
lockowner basis, meaning that before the client
can send the (N+1)–th such operation for a
given lockowner, it must wait for completion
of the N–th.

• It is the unit of open file ownership: a file can
be opened at most once by each lockowner.

The serialization of certain operations referred to
above is needed to guarantee replay protection for
state–establishing (non–idempotent) operations. A
sequence number is associated with each lockowner,
and an NFS V4 server caches the most recent non–
idempotent operation on a per–lockowner basis, so
that it can be replayed if a duplicate sequence num-
ber is received.

Finally, the lowest level of state is the NFS V4
stateid. Stateids are instantiated by OPEN and con-
sumed by CLOSE; each stateid identifies an open
file (much like a Unix file descriptor). Each stateid
is associated to a particular lockowner, and to a par-
ticular file. Furthermore, at most one stateid can be
associated to a particular (lockowner, file)–pair; in
other words, an NFS V4 lockowner cannot open a
file more than once. Stateids are required for file–
manipulating operations, such as file locking, read
and write, and file truncation.

In order to support the NFS V4 features of Win32
share semantics, lease based non-blocking byte
range locks, file delegation, and the compound rpc,
the NFS V4 client and server need to manage state
at various scopes ranging from global to per file.
When a file is delegated to a client, the client man-
ages all state associated with the delegated file, in-
cluding delegation to other processes, as well as
share and byte range locking. Thus the client and
the server maintain much of the same state.

4.1 Linux and NFS V4 Lockowners

A major client–side design decision is: how should
the client allocate its NFS V4 lockowners? We are
currently deliberating between two alternatives:

• 1. One lockowner per pid. The NFS V4
RFC specifically advocates mapping “a thread
id, process id, or other unique value” to an
NFS V4 lockowner. However, we have encoun-
tered unexpected implementation issues associ-
ated with using this type of mapping for Unix
clients. The issues arise when trying to im-
plement the correspondence between Unix file
descriptors and NFS V4 stateids. First, mul-
tiple file descriptors might correspond to the
same stateid, because a Unix process can open
the same file under multiple descriptors, and
at most one NFS V4 stateid can be associated
to a given (lockowner, file)–pair. Second, mul-
tiple stateids might be associated to a given
descriptor, because a Unix process might share
the descriptor with a child process, and a sep-
arate stateid is required for each NFS V4 lock-
owner. Thus it is required to implement a
many–to–many mapping between file descrip-
tors and stateids. This mapping is difficult to
implement correctly in all cases, particularly
since it interacts with many other subsystems,
for example, the mmap() subsystem. This un-
foreseen implementation complexity has led us
to consider a second option:

• 2. One lockowner per inode. An alternative is
to define a single lockowner for each inode. An
OPEN is sent to the server when the first pro-
cess opens the inode, and the matching CLOSE
is sent when the last process closes it. This
avoids the issues of choice 1, but there is a
tradeoff: the client now has to assume part of
the responsibility for detecting lock conflicts.



The server does know which parts of the file
have been locked by the client as a whole but
only the client knows which of its locks cor-
respond to distinct processes. So, if the client
wants to lock a region, for example, it first must
check whether any other processes have set con-
flicting locks, then send the LOCK request to
the server, which will check whether and other
clients have set conflicting locks.

Philosophically, we believe that this tradeoff in im-
plementation complexity is the result of the NFS V4
lockowner being “overloaded” with two meanings:
it are the unit of (a) lock contention, and (b) open
file ownership. It is possible for our client to de-
fine its lockowners in a way which fits cleanly with
either of these meanings, but not both. Defining
per–pid lockowners (choice 1) will result in a good
fit with (a) but not (b). Defining per–inode lock-
owners (choice 2) will result in a good fit with (b)
but not (a).

In addition to the implementation complexity, there
are also performance tradeoffs to be considered. Our
work is not yet to the point where we can conduct re-
alistic performance benchmarks, but our prediction
is that file locking will be slower under choice 1 than
choice 2, because of coarser serialization, whereas
ordinary file I/O may be slightly faster because each
inode never needs to be opened more than once.

As of this writing, our implementation uses per–
pid lockowners (choice 1), but with some significant
outstanding issues. We are considering switching
to per–inode lockowners (choice 2), since we feel it
would reduce the overall implementation complex-
ity. Furthermore, it would have the advantage of
confining the extra complexity to the locking sub-
system only, where it can be more easily audited for
bugs.

As a final note, we remark that the issues raised
in this section have also been raised to the NFS
V4 protocol designers, and it is quite possible that
the protocol will be modified somehow in order to
alleviate these issues for Unix clients. The issues do
exist at the time of this writing, but they may be
eliminated in the final version of the NFS V4 RFC.

4.2 Linux and NFS V4 OPEN

Another client-side difficulty that we have encoun-
tered is the implementation of open(). The NFS
V4 OPEN operation has semantics similar to the
POSIX open() system call, in the sense that:

• OPEN can be used to simultaneously create
and open a file, with an atomicity guarantee.

• Files must be opened by name, i.e. the pa-
rameters to the OPEN are the name of the file
being opened, and the filehandle of the contain-
ing directory. It is not possible to open a file by
filehandle, at least at the time of this writing.

During NFS V4’s design, it was intended that NFS
V4 OPEN operations would correspond to POSIX
open() calls in a roughly one–to–one fashion. In the
Linux VFS, open() is implemented in three steps:

• 1. The VFS calls the filesystem’s lookup()
method, to look up the file by name, and in-
stantiate an inode for it.

• 2. If the file does not already exist, and
O CREAT was specified in the open(), the
filesystem’s create() method is called to create
it.

• 3. The filesystem’s open() method is called to
open the file.

Unfortunately, in a network filesystem, this imple-
mentation is prone to several race conditions against
other clients. For example, after the lookup() is
done in step 1, another client could delete the file
before the open() in step 3 (or worse yet, replace
it with a different file). Protecting against all race
conditions of this type is quite difficult. This is-
sue does not arise for local filesystems because the
VFS acquires semaphores which “lock out” other
processes and effectively make the combination of
(1)–(3) atomic. However, in NFS V4, it is not pos-
sible to “lock out” other clients in this way, and we
are presented with an inherent race condition.

Our point of view is that the root of this problem
is that there is no way for a Linux file system to
process the entire open() system call at once; in-
stead the VFS splits the open() into three pieces in



separate filesystem methods. We have created an
experimental solution by defining a new filesystem
method, called lookup open(), which receives all the
parameters to the open() system call. The NFS V4
client’s lookup open() method simply bundles these
parameters into a single NFS V4 OPEN and sends
it to the server. If a filesystem chooses not to define
the lookup open() method, the VFS will fall back
on the default behavior of splitting the open() into
the three steps above. In this way, backward com-
patibility is retained, while solving the race condi-
tion in NFS V4. We emphasize that this is only an
tentative, experimental solution, and will probably
change substantially. We do feel that some modi-
fication of the Linux VFS is needed to implement
open() correctly in NFS V4, but we do not yet have
a definitive idea of what the “right” change is.

4.3 Linux and NFS V4 Locks

NFS V4 defines a LOCK operation, which is de-
signed to implement byte–range file locking. This
operation is part of the NFS V4 protocol proper,
in contrast with NFSv3, which uses the auxiliary
protocol NLM (and its associated daemon, lockd)
for file locking. One important difference between
locking in NFS V4 and locking in NLM is the lack
of dependence on a callback mechanism. When an
NLM client waits for a blocking lock, and the lock
becomes available, the server sends an RPC to a
“callback” service on the client, to inform the client
that the lock was granted. In contrast, an NFS V4
client must poll the server, repeatedly requesting the
lock until it is available. This design decision, al-
though disadvantageous from a performance stand-
point, was made because it only requires one–way
reachability between client and server, and will al-
ways work correctly in the presence of intervening
firewalls, NAT boxes, etc.

Byte–range locking in NFS V4 was intended to op-
erate in a heterogeneous Unix/Win32 environment.
However, one significant difference between byte–
range locking on these two platforms is the treat-
ment of subranges. In a POSIX lock request, ar-
bitrary subranges are allowed. For example, bytes
[0,10] of a file could be locked with one request, and
bytes [3,6] unlocked in a subsequent request, leav-
ing the ranges [0,2] and [7,10] locked. In contrast,
Win32 platforms enforce a strict one–to–one corre-
spondence between byte ranges, so such a locking
request would be disallowed. NFS V4 tries to ac-

commodate both types of server environments by
allowing servers to enforce a one–to–one correspon-
dence between locking ranges if necessary. However,
servers are encouraged to support more general lock-
ing requests if feasible.

This presents a problem for Unix clients, since
they cannot assume that the server can process
subrange locking requests. Consider the example
above, where a request is made to unlock bytes [3,6].
A Unix NFS V4 client would have to simulate this
request by factoring it into three separate requests
to the server:

• 1. A request to unlock the entire byte range
[0,10].

• 2. A request to lock bytes [0,2].

• 3. A request to lock bytes [7,10].

Naturally, this presents a race condition if, for exam-
ple, another client sets a lock on bytes [0,2] between
steps 1 and 2! In this event, unlocking the range
[3,6] would result in the “loss” of the lock on the
range [0,2], which probably spells disaster for the
client.

We have tried to tame this race condition as much
as possible by implementing two types of locking
in our client: POSIX locking and “strict locking”.
If POSIX locking is enabled, our client will as-
sume that the server is capable of processing ar-
bitrary subrange requests (which would be the case
for our Linux server or a typical Unix server). If
“strict locking” is enabled, our client will assume
that the server supports only the minimum sub-
range requests mandated by NFS V4 (which would
be the case for a typical Win32 server), and fac-
tor its locking requests appropriately. In the event
that a lock is lost due to the race condition, the
client will log a panic message in the syslog. The
two types of locking are currently selectable as a
mount option, so that the system administrator can
determine whether the server is a Unix or Win32
server, and make the selection accordingly. How-
ever, it is our understanding that the protocol will
soon be changed so that the locking type can be
autonegotiated between client and server at mount
time, making it transparent to the user.

Note that this “lost lock” race condition can only
occur if the client actually makes locking requests



for proper subranges, which seems to happen infre-
quently in practice. Furthermore, it can only occur
if the client is a Unix client, and the server is a
Win32 server, which is not a typical configuration.
Nevertheless, users of NFS V4 should be aware that
there is an inherent race condition in file locking be-
tween Unix clients and Win32 servers.

5 Delegation

File delegation is a feature of NFS V4 which is in-
tended to enhance performance by providing clients
with cache consistency guarantees, obviating the
need to send frequent revalidation RPC’s to the
sever.

Whenever a client opens a file, the server can op-
tionally return either a read delegation or a write
delegation for the file to the client, as part of the
OPEN response. A read delegation is a guaran-
tee to the client that no other clients have opened
the file for writing; thus the client is free to cache
the file aggressively (in a read-only fashion) with-
out need for periodic cache consistency checking. A
write delegation is a guarantee that no other clients
have opened the file at all; thus the client is free to
defer and gather writes, before sending them to the
server. The policy for granting delegations is im-
plemented by the server; clients have no ability to
request or refuse delegations. However, a client can
return a delegation at its choosing, so even though
a delegation cannot be refused, it can be returned
immediately in a separate RPC.

The cache consistency guarantees provided by dele-
gation are similar to those provided by file locking,
but delegation differs from locking in several impor-
tant respects. First, a file lock is granted to a par-
ticular process on a particular client, whereas a file
delegation is granted to the client as a whole. Sec-
ond, file locks are requested by clients, if exclusive
access is needed for correctness reasons, whereas del-
egations cannot be requested by clients; the server
assigns them to clients in an attempt to increase per-
formance. Third, a file lock can be maintained in-
definitely; delegations can be recalled by the server
at any time, as we now explain.

After the server grants a delegation, it may re-
ceive an OPEN request from a different client which
would conflict with the delegation. In this event, the

server employs a callback mechanism to recall the
delegation, before responding to the OPEN. There-
fore, before the server will assign delegations to a
client, it must verify that the callback service is
available which is done when the client does its
SETCLIENTID. If the callback service is unreach-
able (e.g., because of intervening NAT boxes or
firewalls), the client will be unable to participate
in file delegation (which is strictly a performance-
enhancing feature), although all other features of
NFS V4 will still be available. In particular, file
locking will still work, since it is implemented using
a polling scheme rather than a callback mechanism.
A major design goal in NFS V4 was that it should
not rely on the presence of a callback service. This
is in contrast with NFSv3’s lockd, which depends
on callbacks.

In addition to allowing aggressive data caching, del-
egations can improve performance by allowing a
client to perform certain file operations locally, with-
out sending an RPC to the server. This is partic-
ularly true in the presence of a write delegation,
which ensures that the client has exclusive access to
the file. In this case, the client can ”localize” al-
most all file operations, including utime() requests,
file opens/closes, reads/writes, and file locking.

At the time of this writing, our implementation of
file delegation is in a state of active development.
The basic mechanism of exchanging delegations be-
tween the client and server is implemented, includ-
ing the callback service, but the optimizations avail-
able to the client in the presence of a delegation are
not. We have yet to modify the client’s data caching
policy, and localize certain file operations, when a
delegation is held. So far, we have not encounted
any serious issues implementing file delegations in
Linux.

Finally, we note that NFS V4 delegations exist only
for regular files; it is not possible to associate a
delegation with a directory. As a future research
project, we speculate that directory delegation may
offer performance improvements similar to those of-
fered by file delegation. By analogy with file delega-
tion, a read delegation for a directory would guar-
antee to a client that no other clients may change
the directory contents while the delegation is held.
A write delegation would guarantee that no other
clients may read or change the directory contents
while the delegation is held. If successful, direc-
tory delegation could be incorporated into a future
version of NFS V4 under the NFS V4 ”minor ver-



sioning” mechanism.

6 RPCSEC GSS Implementation

NFS V4 requires the RPCSEC GSS protocol for
strong security. The use of the RPCSEC GSS secu-
rity flavor in NFS V4 differs from it’s use in previous
versions of NFS in several ways.

• Mandated Use: There are two mandatory
GSS-API mechanisms, Kerberos V5 [RFC1964]
and LIPKEY [RFC2847] which is layered on
SPKM-3 [RFC2847]. There is a per mecha-
nism ordered list of integrity, confidentiality,
and key distribution algorithms that must be
implemented.

• Machine certificates: The SETCLIENTID ne-
gotiation should be done over an rpc channel
secured by either Kerberos V5 or LIPKEY mu-
tual authentication using machine credentials.

• Multiple mechanisms per export NFS V4 allows
the security flavor and triple to be different on
a per file basis.

• Security Negotiation The SECINFO operation
is an automated means of negotiating security
as the file system is explored by the user.

While Kerberos is a well known and widely imple-
mented security product, SPKM versions and LIP-
KEY exist only as RFC’s. The SPKM3 security
mechanism is based heavily on the SPKM1 and
SPKM2 [RFC2025] mechanisms. SPKM3’s differs
from the previous SPKM versions mainly in that
there is no requirement for initiator X509 creden-
tials. In this case, the initiator sends an unauthen-
ticated create context messages to the target, and
the target returns its credentials to the initiator.
Thus, at its lowest QOP level, SPKM3 is open to a
man-in-the-middle attack where the attacker poses
as the target to the initator and as the initiator to
the target. Upon receiving the target X.509 creden-
tials, the initiator checks the target credential signa-
ture, looking for a common signer. Thus in order for
the man-in-the-middle attack to work, the attacker
needs to have its fake target credentials signed by a
member of the initiators certificate chain. SPKM3
does allow for the use of initiator credentials, which
prevents the man-in-the-middle attack.

The required LIPKEY security mechanism is lay-
ered on top of SPKM3. LIPKEY encrypts a user’s
login name and password in the session key nego-
tiated by SPKM3, providing a means of initiator
identity that requires no credentials. Since NFS
V4 clients are required to have machine credentials
[RFC3010], we can imagine using the machine cre-
dentials as initiator credentials in the SPKM3 layer,
and then using the LIPKEY user name and pass-
word to identify the user.

6.1 User Level Implementation

Our user level implementation is based on the MIT
Kerberos V5 gssrpc [RFC2203] which was incom-
plete, and needed many changes in order to meet
the RPSEC GSS protocol specfication. The MIT
Kerberos V5 GSS-API implementation is quite com-
plete, and we could just use it. We have enabled the
GSS-API mechanism glue layer provided in the MIT
Kerberos V5 source which presents the GSS-API
layer to the ONC RPC, and switches on the mecha-
nism type. The combination of GSS-API and ONC-
RPC is complicated by the need to merge similar
functionality such as transport independence and
the sequencing of portions of the transport steam.
We have yet to completely merge the GSS-API con-
cept of multiple channels into the ONC-RPC, but
other than that, our user-level RPCSEC GSS Ker-
beros 5 mechanism implementation is mostly com-
plete.

There is no previous SPKM implementation to
base our work on, so we started from scratch,
and as of this writing, the SPKM3 implementa-
tion is incomplete. SPKM is designed to to be
compatible with the X.509 [X.509] public key in-
frastructure, which naturally leads to the use of
OpenSSL libraries for our open source user-level im-
plementation. The required ASN1 [ISO8825] en-
coding and decoding turned out to be the main
bottleneck to progress. We are using the Val-
icert asn1parse compiler [asn1parse] to produce the
ASN1 DER encode and decode functionality which
links against SSLeay-0.9b libraries. 1 The Valicert
asn1parser was designed to handle all the ASN1
syntax needed for the SSLeay crytpo code, and
SPKM3 requires ASN1 syntax not currently han-
dled by the parser. For this reason, the SPKM3
ANS1 encoding/decoding of the InitialContextTo-

1Valicert is soon to come out with an OpenSSL compiler
which we will switch to.



 GSSD

Kerberos 5 KDC

3 2

NFS Version 4 Client

user

kernel

14

NFS Version 4 Server

GSSD

user

kernel

6 7

5

8

Figure 1: Kernel RPCSEC GSS Kerberos V5 context creation. 1,4,6,7 GSSD RPC interface calls. 3,2 Kerberos V5
mutual authenticated KDC calls. 5,8 RPCSEC GSS Null procedure calls.

ken is done with routines from the Kerberos V5
gssapi libraries with the payload encoding/decoding
done by asn1parser generated routines.

6.2 Kernel Implementation

A main feature of the RPCSEC GSS protocol is the
ability to add security mechanism that adhere to
the GSS-API specification without changes to the
ONC RPC layer, yet the available open source se-
curity code such as Kerberos V5 and OpenSSL is
not kernel safe. For this reason, we have left a good
deal of the security functionality in a user space
daemon, GSSD, which communicates with the ker-
nel NFS V4 via an rpc interface. GSSD communi-
cation requires the loopback source address and a
reserved port, with AUTH UNIX root credentials.
GSSD’s main job is gss context creation, and ser-
vices such GSS-API calls as gss init sec context(),
and gss accept sec context(). GSS-API calls that in-
volve encryptions such as gss wrap(), gss unwrap(),
gss verifymic() and gss getmic() are serviced in the
kernel.

The addition of a user level daemon adds complexity
into the already complex gss context creation dance.
Figure 1 illustrates the RPC communication needed
to establish a Kerberos V5 GSS context. Note that

Kerberos V5 user credentials need to be in place
prior to these steps. The first two steps show the call
through the GSSD upcall interface to the Kerberos
V5 data base requesting a Kerberos v5 service ticket
for the NFS V4 server. The requested service ticket
is delivered to GSSD in step 3 where the client side
of the service ticket is decrypted and passed to the
NFS V4 client along with the server portion of the
service ticket in step 4. In step 5, an RPCSEC GSS
overloaded Null procedure carries the server portion
of the service ticket to the NFS V4 server, which
forwards it to GSSD in step 6 to be decrypted. The
results are passed back to the NFS V4 server in step
7, and a status is returned to the NFS V4 client in
step 8.

0ur current design of using the GSSD upcall inter-
face for context creation allows us to use our user
level mechanism switching and spkm3 implementa-
tion. We are in the process of developing a kernel
credential cache.

7 Access Control Lists

Our ACL implementation is based on the EA/ACL
patch for Linux [ACL] , which is still under devel-



opment, but in our experience has been quite stable
and complete. We have only started implementing
ACL’s recently, and our implementation is still in
an early stage, so we simply outline the roadmap
for our work here.

The Linux ACL path implements Posix ACL’s, as
described in [posix1003] However, NFS V4 has its
own ACL model, which is much more rich and finely
granulated than the Posix model. To bridge the
gap, we have identified a subset of the NFS V4 ACL
model which is functionally equivalent to the Posix
model. For our initial ACL implementation, our
client and server will always reject ACL’s which are
not in this subset. In this way, we hope to make
Posix ACL’s work transparently in a homogeneous,
purely Linux environment, leaving open the possi-
bility that they will not work correctly in the pres-
ence of other platforms.

Eventually, we would like to see support for the full
range of NFS V4 ACL’s. The difficulty, however,
is ensuring that the additional, non-Posix ACL’s
are enforced by the server’s filesystem itself. Im-
plementing NFS V4 ACL’s would be fairly straight-
forward if we were free to enforce the ACL’s in
the NFS V4 server code, but in our opinion, this
is dangerous, since by accessing the files outside of
NFS V4 (for example, through ftp or local access
on the file server itself), the ACL’s could be by-
passed. We believe that to avoid potentially danger-
ous security–related surprises, an implementation of
NFS V4 ACL’s in the fs layer itself is called for, but
it is unclear whether this will be feasible within the
current scope of our project.

8 Administration

Although NFS V4 shares many features of previ-
ous NFS versions, there are distinct differences in
features such as namespace and security that effect
administrative tasks. In this section, we describe
these differences.

8.1 Server Administration

As in previous versions of NFS, server options are
expressed in the /etc/exports file. One of the first
tasks in server administration is to decide what secu-

rity infrastructure will be used to protect exported
subtrees. Currently, the the Linux server Pseudo
filesystem is exported as a read only file system with
the AUTH UNIX security flavor. The Pseudo file
system name space is constructed by reading en-
tries in the /etc/exports file. We follow Sun Mi-
crosystem’s example and allow selection of security
options on a per export basis expressing security
option choices via an /etc/exports file syntax devel-
oped by Sun. Exported file systems no longer need
to express access in terms of client IP addresses,

Every entry in the /etc/exports file looks like this.

(pseudo path) (export path) [ro] [sec=[:]]

• Pseudo path is the path of the pseudo system.
This is the file system that the client will see.
You can make any hierarchal virtual file system
you want with these pseudo directories. The
last directory is the mount point where the ex-
ported directory will be mounted.

• Export path is the path to the actual directory
that you will be exporting.

• Mount Options: ro is to make the exported di-
rectory read-only. This is optional.

• sec=option[:option] lists the security option(s)
required by the exported file system.

Here’s a list of valid security options Note: cur-
rently, only krb5 is implemented.

1. none (AUTH NONE)
2. sys (AUTH SYS)
3. dh (AUTH DES, old diffe-hellman)
4. krb5 (RPCSEC GSS Krb5 authentication)
5. krb5i (RPCSEC GSS Krb5 integrity)
6. krb5p (RPCSEC GSS Krb5 protection)
7. spkm3 (SPKM3 authentication)
8. spkm3i (SPKM3 integrity)
9. spkm3p (SPKM3 protection)
10. lkey (LIPKEY authentication)
11. lkeyi (LIPKEY integrity)
12. lkeyp (LIPKEY protection)

An NFS V4 /etc/exports file looks like this:



/foo /export
/goo/dir1 /usr/local ro
/goo/dir2 /usr/share ro sec=dh:lkeyi
/goo/dir3 /usr/man sec=sys
/goo/dir4 /usr/doc sec=krb5:spkm3
# a comment

The server needs an identity and accompanying cre-
dentials in both the Kerberos V5 and LIPKEY
(PKI) security realms in order to support the re-
quired RPCSEC GSS security mechanisms.

We are developing a NFS V4 server Tcl/Tk admin-
istrative tool that communicates with the NFS V4
server via the NFS V4 ioctl interface. Using the
tool, administrators will be able to start and stop
server threads, edit the /etc/exports interface, list
information about attached clients including users,
lockowners and open state, and reap state such as
deadlocked locks. The tool will also supply a mes-
sage interface to NFSV4 debug messages supply-
ing a window front end to the existing sysctl debug
granularity settings.

We recommend running the NFS V4 server as a file
server only, not permitting local access. NFS V4 has
features such as Kerberos V5 and LIPKEY security
mechanisms not supported by the local file system,
which makes local access problematic.

8.2 Client Administration

As was mentioned in Section 6, it’s recommended
that the establishment of a clientid via the SET-
CLIENTID negotiation be done under a secure mu-
tual authentication. We currently require the use of
client machine credentials for SETCLLIENTID and
callback communication.

We recommend that clients always mount the root
of a servers Pseudo filesystem, allowing servers to
change their exports under the Pseudo filesystem.
The automounter is no longer needed. Currently,
there is no uid and gid mapping service, nor security
realm principal name mapping service, so attention
needs to be given to matching local and remote uid
and gid’s.

8.3 Issues in Migrating from NFS ver-
sion 3

A goal of previous versioning of NFS was backward
compatibility. Not so with NFS V4. This protocol
is such a departure from previous versions there is
no common client nor server. Exactly how to mi-
grate data from NFS V3 to NFS V4 is unknown.
One hopeful migration strategy is to configure an
NFS V4 server such that the same data could also
be exported from an NFS V3 server. This might be
possible under certain conditions. NFS V4 locking
is very similar to NLM mechanisms. The NFS V4
server could export using security mechanisms com-
mon with NFS V4 such as AUTH UNIX. The NFS
V4 sever could use UNIX file permissions instead of
ACL’s, etc. If this is possible, then this would allow
clients to slowly switch from an NFS V3 base to an
NFS V4 base.

9 Conclusion

The NFS V4 protocol is still in a developmen-
tal stage. There are very active commercial
ports in progress, including Solaris, Network Appli-
ance Filer, Windows98/NT/2000, and other ports
planned. We are hopeful that as the protocol gains
momentum, our work can be included into future
Linux kernel releases.

10 Acknowledgments

We would like to thank Sun Microsystems for spon-
soring CITI’s NFS Version 4 Open Source Refer-
ence Implementation Project. We also acknowledge
Dug Song, Jake Moilanen, and Weston Adamson for
their work on the project.

11 Availability

Our source, documentation, and performance re-
sults are available at

http://www.citi.umich.edu/projects/nfsv4/



References

[RFC1813] B. Callaghan et al., NFS Version 3 Pro-
tocol Specification, RFC 1813(June 1995)

[RFC3010] S. Shepler et al., NFS version 4 Proto-
col, RFC 3010(December 2000)

[RFC1094] Sun Microsystems, Inc.,NFS: Network
File System Protocol Specification, RFC
1094(March 1989)

[RFC2279] F. Yergeau, UTF-8, a transformation
format of ISO 10646, RFC 2279, (January
1998)

[RFC1964] J. Linn et al., The Kerberos Version 5
GSS-API Mechanism, RFC 1964 (June 1996)

[RFC2847] M. Eisler, LIPKEY - A Low Infrastruc-
ture Public Key Mechanism Using SPKM, RFC
2025 (June 2000)

[RFC2025] C. Adams, The Simple Public-Key GSS-
API Mechanism (SPKM), RFC 2025 (October
1967)

[RFC2203] M. Eisler et al., RPCSEC GSS Protocol
Specification, RFC 2203 (September 1997)

[RFC2459] R, Yousley et al., Internet X.509 Public
Key Infrastructure Certificate and CRL Profile,
RFC 2459 (January 1999)

[ISO8825] M. Rose et al., Information Technology -
Open Systems Interconnection Specificaton of
Basic Encoding Rules fro Abstract Syntax No-
tation One, ISO/IEC (1990)

[asn1parse] Valicert ASN1 Parser
http://www.valicert.com/developers/download.html,
last referenced June 2001.

[ACL] Extended Attribute and Access Control
Lists for Linux
http://acl.bestbits.at, last referenced
June 2001.

[posix1003] IEEE, IEEE Draft P1003.1e Draft
Standard 17, (March 10,1999)

[Khanna] R. Khanna, Distributed Computing Im-
plementation and Strategies, PTR Prentice
Hall (1994).


